
Experimental results 

 Significant amounts of Mn, Fe, Cu and Zn are detected within the reference and exposed samples, 

reflecting their essential nature in photosynthesis processes [3]. 

 Average scanning time of 5-10 min demonstrates the high throughput potential. 

 Algae outline derived from the SAXS distribution, followed by projection onto the XRF elemental maps. 

 Inhomogenous subcellular bioaccumulation of Cu in highly concentrated exposure medium (675 µg/L Cu).  

 Large differences in algal sensitivity towards the bioaccumulation of metals: Cu >> Ni > Zn. 

 Experimental details: 2.1010 photons/s at 13 keV, 0.5 s/pixel, NIST SRM 1577c for quantification purposes. 
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Non-contact optical tweezers-based single cell analysis  
through in vivo X-ray elemental imaging 

Optical Tweezers Setup for X-ray Imaging at Synchrotron Facilities  
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OT micro-XRF imaging at Microfocus ESRF-ID13 

 Preservation of the structure of biological organisms 

 Special need for delicate mounting of microscopic 
samples onto a support that does not interfere with 
the X-ray measurement itself. 

 Offline and time-consuming sample preparation 
procedure prior to analysis at a synchrotron facility. 

 Accurate and precise XYZθ movements of the sample 
through the X-ray beam. 

 Organisms close to their natural, in vivo state 

 Free-standing samples in their natural, aqueous environment 

 Non-contact sample positioning and manipulation 

 Eliminate time-consuming and error prone sample preparation 

 Possibility of XRF tomography using multiple optical traps 

Current XRF-related methodological challenges Proposed methodology for solving challenges 
 

Optical tweezers (OT) for non-contact sample manipulation 

combined with 

Highly sensitive, multi-elemental micro-XRF imaging 

Conclusions 

We report on the radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The 

methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal XRF micro-

imaging for the very first time. Several successful test experiments focussing on applications in environmental toxicology have been performed at ESRF-ID13, 

demonstrating the feasibility, repeatability and high throughput potential of the OT XRF methodology [3,4].  

Introduction 

 
 
 

 

Owing to its high sensitivity and non-destructive nature, synchrotron radiation (SR) based confocal X-Ray Fluorescence (XRF) imaging offers the unique 
potential of providing two- and three-dimensional information on the sample composition and elemental distributions with trace level detection limits [1]. 
With the increased availability of nanoscopic X-ray beams provided by 3rd generation SR sources, SR X-ray imaging methods pose important methodological 
challenges concerning sample preparation, non-contact sample manipulation and non-contact positioning. 
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Confocal XRF imaging:  

 Provides highly sensitive, multi-elemental information on the sample composition.  

 Nozzle of Vortex-EM detector equipped with a polycapillary lens  

confocal optic, consequent detector tilt of 45°. 
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 Compact OT setup available from Microfocus beamline ID13, ESRF [2]: 
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X Integrated Small Angle X-ray Scattering (SAXS):  

 Visualize the sample outline and  

internal sample structure. 

 Allows for improved OT XRF  

data processing strategies. 

 Applied CCD cameras include: 

FReLoN, MAXIPIX, Eiger 4M. 

21  2 µm 

Conc. 
(fg/µm²) 

Sample experimental conditions 

 Scrippsiella trochoidea microalgae (≈35 µm width) 

 Exposed to elevated, toxic concentrations of 

transition metals (Ni, Cu, Zn, 96 h exposure). 

 Sample container consists of a quartz capillary filled 

with specimens & medium (Ø 100 µm, 10 µm wall). 
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Optically 
manipulated  
microalgae 

Optically levitated S. trochoidea microalgae in 
aqueous medium, translated to the upper 
capillary wall to prevent X-ray induced vertical 
sample movement during a progressing scan [3]. 


