Proceedings of the 15th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2015

Higher order Borel-Pompeiu representations

J. Bory Reyes ${ }^{1}$, H. De Schepper ${ }^{2}$, A. Guzmán Adán ${ }^{2}$ and F. Sommen ${ }^{2}$
${ }^{1}$ ESIME-Zacatenco, Instituto Politécnico Nacional, México DF 07738, México
${ }^{2}$ Clifford Research Group, Department of Mathematical Analysis, Faculty of Engineering and Architecture, Ghent University, Galglaan 2, 9000 Ghent, Belgium emails: juanboryreyes@yahoo.com, hennie.deschepper@ugent.be, ali.guzmanadan@ugent.be, frank.sommen@ugent.be

Abstract

We establish a higher order Borel-Pompeiu formula for monogenic functions associated to an arbitrary orthogonal basis (called structural set) of Euclidean space, or combinations of such structural sets.

Key words: Borel-Pompeiu representation, Cauchy-type integral, structural set MSC 2000: 30G35, 31B10, 32A26

1 Introduction and preliminaries

Clifford analysis in its original form (see [6]) deals with the study of so-called monogenic functions (null solutions of the Cauchy Riemann operator), which are a higher dimensional analogue of holomorphic functions in the complex plane. One of the key results in this function theory is the Borel-Pompeiu representation formula, leading to various higherdimensional analogues of well-known classical theorems. Integral representation formulas
$\delta_{i j}$ is Kronecker's symbol. Then for $A=\left\{h_{1}, \ldots, h_{k}\right\}\left(1 \leq h_{1}<\cdots<h_{k} \leq n\right), e_{A}=$ $e_{h_{1}} \cdots e_{h_{k}}$ and $e_{\emptyset}=1$ define a basis of $\mathbb{R}_{0, n}$, whence any $a \in \mathbb{R}_{0, n}$ may be written as $a=\sum_{A \subseteq \mathbb{N}_{n}} a_{A} e_{A}$ where $a_{A} \in \mathbb{R}$ or still as $a=\sum_{k=0}^{n}[a]_{k}$, where $[a]_{k}=\sum_{|A|=k} a_{A} e_{A}$ is a so-called k-vector. Denoting the space of k-vectors by $\mathbb{R}_{0, n}^{(k)}$, it holds that $\mathbb{R}_{0, n}=\bigoplus_{k=0}^{n} \mathbb{R}_{0, n}^{(k)}$. In this way, the spaces \mathbb{R} and \mathbb{R}^{n} are identified with $\mathbb{R}_{0, n}^{(0)}$ and $\mathbb{R}_{0, n}^{(1)}$. Moreover, each element $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}$ can be written as $x=x_{0}+\sum_{i=1}^{n} x_{i} e_{i} \in \mathbb{R}_{0, n}^{(0)} \oplus \mathbb{R}_{0, n}^{(1)}$ and is called a paravector. It holds that $x \bar{x}=\bar{x} x=x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}=|x|^{2}$. We will use the conjugation, defined by $\bar{a}=\sum_{A \subseteq \mathbb{N}_{n}} a_{A} \bar{e}_{A}$, where $\bar{e}_{A}:=(-1)^{k} e_{h_{k}} \cdots e_{h_{1}}=(-1)^{\frac{k(k+1)}{2}} e_{A}$, if $e_{A}=e_{h_{1}} \cdots e_{h_{k}}$. We consider functions $f: \Omega \rightarrow \mathbb{R}_{0, n}$, where Ω is a bounded domain in \mathbb{R}^{n+1}, with sufficiently smooth boundary Γ.

Let $\psi:=\left\{\psi^{0}, \psi^{1}, \ldots, \psi^{n}\right\} \subset \mathbb{R}_{0, n}^{(0)} \oplus \mathbb{R}_{0, n}^{(1)}$, and let $\bar{\psi}:=\left\{\overline{\psi^{0}}, \overline{\psi^{1}}, \ldots, \overline{\psi^{n}}\right\}$. On $C^{1}\left(\Omega, \mathbb{R}_{0, n}\right)$ we define the left and the right ψ-Cauchy-Riemann operator by

$$
{ }^{\psi} D[f]:=\sum_{i=0}^{n} \psi^{i} \frac{\partial f}{\partial x_{i}}, \quad D^{\psi}[f]:=\sum_{i=0}^{n} \frac{\partial f}{\partial x_{i}} \psi^{i}
$$

Let Δ_{n+1} be the $(n+1)$-dimensional Laplace operator, then the factorization

$$
{ }^{\psi} D \cdot \bar{\psi}_{D}=\bar{\psi}_{D} \cdot \psi^{\psi} D=D^{\psi} \cdot D^{\bar{\psi}}=D^{\bar{\psi}} \cdot D^{\psi}=\Delta_{n+1},
$$

will hold if and only if $\psi^{i} \cdot \overline{\psi^{j}}+\psi^{j} \cdot \overline{\psi^{i}}=2 \delta_{i j}, i, j \in \mathbb{N}_{n}^{0}$, implying that ψ should be an orthonormal basis, called structural set, of $\mathbb{R}^{n+1} \cong \mathbb{R}_{0, n}^{(0)} \oplus \mathbb{R}_{0, n}^{(1)}$. Note that ψ and $\bar{\psi}$ are structural sets simultaneously. Choosing as a structural set the standard basis of \mathbb{R}^{n+1}, we obtain the standard Cauchy-Riemann operator D. Basic properties of the structural sets can be found in $[8]$ and the references therein.

Null solutions of the left , respectively the right ψ-Cauchy-Riemann operator are called left, respectively right ψ-hyperholomorphic functions. Let $\Theta_{n+1}^{(k)}$ be the fundamental solution of the iterated Laplace operator $\Delta_{n+1}^{k}, k \in \mathbb{N}$:

$$
\Theta_{n+1}^{(k)}(x)=\frac{|x|^{2 k-(n+1)}}{\left|\mathbb{S}^{n}\right| 2^{k-1}(k-1)!\prod_{v=1}^{k}(2 v-n-1)} .
$$

J. Bory Reyes, H. De Schepper, A. Guzman Adan, F. Sommen

Theorem 1 (Cauchy integral theorem). Let $f \in{ }^{\psi} \mathfrak{M}\left(\Omega, \mathbb{R}_{0, n}\right) \cap C^{0}\left(\bar{\Omega}, \mathbb{R}_{0, n}\right)$ and $g \in$ $\mathfrak{M}^{\psi}\left(\Omega, \mathbb{R}_{0, n}\right) \cap C^{0}\left(\bar{\Omega}, \mathbb{R}_{0, n}\right)$. Then

$$
\int_{\Gamma} g(\xi) n_{\psi}(\xi) f(\xi) d S_{\xi}=0
$$

Theorem 2 (Borel-Pompeiu formula). Let $f \in C^{1}\left(\Omega, \mathbb{R}_{0, n}\right) \cap C^{0}\left(\bar{\Omega}, \mathbb{R}_{0, n}\right)$. Then

$$
\int_{\Gamma} K_{\psi}(\xi-x) n_{\psi}(\xi) f(\xi) d \Gamma_{\xi}-\int_{\Omega} K_{\psi}(\xi-x)^{\psi} D[f](\xi) d \xi= \begin{cases}f(x) & \text { if } x \in \Omega \\ 0 & \text { if } x \in \mathbb{R}^{n+1} \backslash \bar{\Omega}\end{cases}
$$

where the first term at the left hand side is a Cauchy type integral.
Theorem 3 Let $f \in L_{p}\left(\Omega, \mathbb{R}_{0, n}\right), p \in(1, \infty)$. Then

$$
{ }^{\psi} D^{\psi} T_{\Omega}[f](x)= \begin{cases}f(x) & \text { if } x \in \Omega \\ 0 & \text { if } x \in \mathbb{R}^{n+1} \backslash \bar{\Omega}\end{cases}
$$

where the ψ-Téodorescu transform is given by (see [1]):

$$
{ }^{\psi} T_{\Omega}[f](x)=-\int_{\Omega} K_{\psi}(\xi-x) f(\xi) d \xi, \quad x \in \mathbb{R}^{n+1}
$$

2 Higher order Borel-Pompeiu representations

Let $\Psi=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ be a collection of k structural sets, denote $\bar{\Psi}=\left\{\bar{\psi}_{k}, \bar{\psi}_{k-1}, \ldots, \bar{\psi}_{1}\right\}$, and consider the left and right Ψ-iterated Cauchy-Riemann operators given by

$$
{ }^{\Psi} D={ }^{\psi_{k}} D^{\psi_{k-1}} D \ldots{ }^{\psi_{1}} D, \quad D^{\Psi}=D^{\psi_{k}} D^{\psi_{k-1}} \cdots D^{\psi_{1}}
$$

Then it holds that ${ }^{\Psi} D \cdot{ }^{\bar{\Psi}} D={ }^{\bar{\Psi}} D \cdot{ }^{\Psi} D=D^{\Psi} \cdot D^{\bar{\Psi}}=D^{\bar{\Psi}} \cdot D^{\Psi}=\Delta_{n+1}^{k}$, and the fundamental solution of ${ }^{\Psi} D$ is given by

$$
\begin{aligned}
K_{\Psi}(x) & =\bar{\Psi} D\left[\Theta_{n+1}^{(k)}\right]=\bar{\psi}_{1} D^{\bar{\psi}_{2}} D \ldots \bar{\psi}_{k} D\left[\Theta_{n+1}^{(k)}\right]=D^{\bar{\psi}_{k}} \cdots D^{\bar{\psi}_{2}} \cdot D^{\bar{\psi}_{1}}\left[\Theta_{n+1}^{(k)}\right]= \\
& =\frac{P_{\Psi}(x)}{\left|\mathbb{S}^{n}\right| 2^{k-1}(k-1)!|x|^{n+1}}
\end{aligned}
$$

Theorem 4 Let $f \in L_{1}\left(\Omega, \mathbb{R}_{0, n}\right)$. Then the integral ${ }^{\Psi} T_{\Omega}[f](x)$ exists for every $x \in \mathbb{R}^{n+1}$.
Theorem 5 Let $f \in C\left(\bar{\Omega}, \mathbb{R}_{0, n}\right)$. Then
(i) ${ }^{\psi_{1}} D^{\Psi} T_{\Omega}[f]={ }^{\tilde{\Psi}} T_{\Omega}[f]$ where $\tilde{\Psi}=\left\{\psi_{2}, \ldots, \psi_{k}\right\}, k \geq 2$.
(ii) ${ }^{\Psi} D^{\Psi} T_{\Omega}[f](x)=f(x)$ for every $x \in \Omega$.

Theorem 6 [Higher order Borel-Pompeiu formula] Let $f \in C^{k}\left(\bar{\Omega}, \mathbb{R}_{0, n}\right)$. Then for $x \in \Omega$

$$
f(x)=\sum_{i=1}^{k}(-1)^{i-1 \Psi^{i}} K_{\Gamma}{ }^{\Psi^{i-1}} D[f](x)+{ }^{\Psi} T_{\Omega}{ }^{\Psi} D[f](x)
$$

where ${ }^{\Psi^{0}} D[f]=f$.

References

[1] R. Abreu-Blaya, J. Bory-Reyes, A. Guzmán-Adán, U. Kaehler. On the П-operator in Clifford analysis (submitted).
[2] H. Begehr. Iterated integral operators in Clifford analysis. Z. Anal. Anwendungen 18, 1999, no. 2, 361-377.
[3] H. Begehr. Representation formulas in Clifford analysis. Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, World Scientific, Singapore, 2002, 8-13.
[4] H. Begehr, J.Y. Du, Z.X. Zhang. On higher order Cauchy-Pompeiu formula in Clifford analysis and its applications, General Math., 11, 2003, 5-26.
[5] H. Begehr, Z.X. Zhang, T.N.H. Vu. Generalized integral representations in Clifford analysis, Complex Var., Elliptic Eqns., 51, 2006, 745-762.
[6] F. Brackx, R. Delanghe, F. Sommen. Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman (Advanced Publishing Program), Boston (1982)

