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Abstract— The robustness of a previously developed numerical algorithm for the computation
of the four Green’s dyadics in homogeneous bianisotropic materials is analyzed. The lossy bian-
isotropic materials are identified as a class of materials for which the numerical computation is
provably robust. This is of practical importance because many bianisotropic materials are lossy.

The most general linear constitutive equations in classical frequency-domain electromagnetics
are those of bianisotropic materials:

d(r) = ¯̄ε · e(r) + ¯̄ξ · h(r), (1a)

b(r) = ¯̄ζ · e(r) + ¯̄µ · h(r). (1b)

Therefore, piecewise homogeneous bianisotropic scatterers are the most general scatterers that
can be handled with boundary integral equation methods. However, the absence of analytical
expressions for the Green’s dyadics poses a serious practical problem and has severely hindered the
development of boundary integral equations for bianisotropic materials. It is worthwhile to point
out that analytical expressions for Green’s dyadics exist for many materials [1–3], but not for all
of them.

To circumvent the need for analytical expressions, an all-numerical scheme to compute the
Bianisotropic Scalar Green’s Function (BSGF) was introduced in [4, 5]. The BSGF is defined as

G(r) =
1

8π3

∫

R3

ejs·r

D(s)
ds, (2)

with D(s) the so-called Helmholtz determinant [6]

D(s) = Det [P(s)] , (3)

which is defined by means of the 6× 6 matrix

P(s) =

[

¯̄ε ¯̄ξ − s× 1
¯̄ζ + s× 1 ¯̄µ

]

. (4)

The symbol 1 denotes the 3× 3 unit matrix, such that

s× 1 =

[

0 −sz sy
sz 0 −sx
−sy sx 0

]

. (5)

It can be shown that the components of the Green’s dyadics, which relate electric and magnetic
currents with the electric and magnetic fields they generate, are linear combinations of at most
fourth-order partial derivatives of this BSGF [4]. Hence, the numerical computation of the Green’s
dyadics can be accomplished if the BSGF and its derivatives (up to fourth order) can be numerically
computed in a stable and efficient way.

It will now be shown that the integral in (2) can be computed in a robust manner if the
bianisotropic material is lossy. A bianisotropic material is called lossy if

ℑ

{

V
H ·

[

¯̄ε ¯̄ξ
¯̄ζ ¯̄µ

]

· V

}

< 0,∀V ∈ C
6 \ {0} . (6)

The proof hinges on two properties:
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• a sufficient speed of convergence to zero of 1
D(s) for ||s|| → ∞ in every direction of R3.

• the nonexistence of real zeros for the Helmholtz determinant D(s),

It is clear that, if both properties are satisfied, an adaptive integration routine can be applied to
(2), which is very robust. The first property will be proved in the final version of this paper. The
second property is proved by assuming that there exists a real zero s0 of the Helmholtz determinant
and showing that this results in a contradiction. If

D(s0) = 0, (7)

then, by the definition of the Helmholtz determinant (3), there exists a complex vector V 0 ∈ C6

such that
[

¯̄ε ¯̄ξ − s0 × 1
¯̄ζ + s0 × 1 ¯̄µ

]

· V 0 = 0. (8)

Taking the imaginary part of the inner product with V
H
0 yields

ℑ

{

V
H
0 ·

[

¯̄ε ¯̄ξ − s0 × 1
¯̄ζ + s0 × 1 ¯̄µ

]

· V 0

}

= 0. (9)

However, if s0 is real, then

ℑ

{

V
H
0 ·

[

0 −s0 × 1

s0 × 1 0

]

· V 0

}

= 0, (10)

regardless of what V 0 may be, because the matrix in between the two vectors is hermitian. There-
fore, (9) simplifies to

ℑ

{

V
H
0 ·

[

¯̄ε ¯̄ξ
¯̄ζ ¯̄µ

]

· V 0

}

= 0, (11)

which contradicts the criterium for lossyness (6). This robustness result for (2) immediately extends
to the approach in [4, 5].

To conclude, the numerical computation of the BSGF and its derivatives is robust for all lossy
bianisotropic materials. Since all passive bianisotropic materials exhibit at least some loss at
nonzero frequencies, this shows that the numerical computation strategy introduced in [4, 5] has
wide applicability, e.g. for modeling circulators or other microwave components.
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