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Abstract. Branching processes can describe the dynamics of various
queueing systems, peer-to-peer systems, delay tolerant networks, etc. In
this paper we study the basic stochastic recursion of multitype branch-
ing processes, but in two non-standard contexts. First, we consider this
recursion in the max-plus algebra where branching corresponds to find-
ing the maximal offspring of the current generation. Secondly, we con-
sider network-calculus-type deterministic bounds as introduced by Cruz,
which we extend to handle branching-type processes. The paper pro-
vides both qualitative and quantitative results and introduces various
applications of (max-plus) branching processes in queueing theory.
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1 Introduction

Branching processes model the dynamics of populations over successive genera-
tions, each member of some generation independently producing offspring in the
next generation in accordance with a given probability distribution. Originating
from the nobility and family extinction problem, branching process theory has
been applied in diverse fields including computer science and networking.

Branching processes have been frequently identified in queueing theory and
the connection between branching processes and queueing theory is well estab-
lished. Already in 1942, Borel showed that the numbers of customers in a busy
period of an M/G/1 queue corresponds to the number of generations till ex-
tinction of a Galton-Watson branching process [8, 19]. Similarly, Crump-Mode-
Jagers branching processes describe the dynamics of processor sharing queues
[16], whereas multitype branching processes with immigration have been used
to study retrial queues [17] and polling systems [23].

Applications of branching processes in networking are not limited to queue-
ing theory. In [22], a multitype branching process is studied to determine the
maximum stable throughput of tree algorithms with free access. Stability of
the tree algorithm corresponds to criticality of the associated multitype Galton-
Watson branching process. Multitype branching processes with migration can
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also capture the dynamics of distributing a file into a delay tolerant network
with the single-hop forwarding paradigm [11]. In addition, peer-to-peer networks
also provide many interesting applications of branching processes [12, 13, 21]. For
example, Leskala et Al. [21] study interacting branching processes in the context
of file sharing networks.

In this paper we study the basic stochastic recursion of multitype branching
processes, but in two non-standard contexts. The first part of the paper intro-
duces problems that yield similar recursions but where summation and multi-
plication are understood as being in another possible algebra than the standard
one. In particular, we define and characterize branching processes in the max-
plus algebra, for both discrete and continuous state spaces. As shown further, we
obtain general characterizations of the stationary behaviour of the single-type
branching process with independent migration in the max-plus algebra. In addi-
tion, multitype branching processes in the max-plus algebra are introduced and
sufficient conditions are proven for stability of these processes in the presence of
stationary ergodic migration.

We then introduce a deterministic framework for studying branching pro-
cesses. A deterministic view on branching allows for focussing on worst-case
behaviour rather then average behaviour, as advocated by literature on network
calculus. When designing a network so as to meet strict bounds on quality of
service, then standard probabilistic descriptions of input and output processes
are no longer relevant; one has to come up with a design adapted to the worst
case of the input process. Much attention has been given to producing a network
calculus in which each network element has a transfer function: it maps a given
description of its input process to a similar description of the output process.
A complete mapping of this type allows one to dimension buffers in the net-
work that guarantee that there are no losses [10, 20]. A more complex situation
arises when the network includes feedback. The outputs are no longer functions
of exogenous traffic. Computing tight bounds for feedback systems proves to be
much harder. A well known example of such a system is given in part ii of [10];
the bound given there is indeed not tight and has later been improved. Other
examples of explicit or implicit feedback for which obtaining tight bounds is not
a simple task are presented in [2, 3] in the context of polling systems.

The deterministic framework for branching processes closely relates to ar-
rival processes in network calculus. It concerns processes that are shaped at the
entrance of the network using RED (Random Early Discard) or leaky bucket
mechanisms. These processes are characterized by a bound ρ on the average rate
as well as some bounded σ on the burstiness. More precisely, the output process
is “σ − ρ constrained”, i.e. for any interval [s, t), the output process from such
a buffer is bounded by ρ(t − s) + σ. R. L. Cruz showed in [10] that standard
network elements preserve this type of bound. Moreover, they imply uniform
bounds on the amount of workload in the network, which allows one to dimen-
sion buffer sizes so as to guarantee no overflow as long as the input processes
are σ − ρ constrained. In this paper we study some form of feedback in which
the arrival process itself depends on the output process. We show that if this



dependence can be described using σ− ρ type bounds, one still obtains uniform
bounds on the workload in the system. We show that the feedback mechanism is
of the same type that is used to define branching processes. Our results thus pro-
vide a motivation for investigating a deterministic type of branching processes.
Finally, as for ordinary network calculus, we relax the deterministic bounds by
introducing elements of stochastic network calculus [18].

2 Branching in the standard algebra

We start by recalling some basic characterization of branching in the standard
algebra. The standard branching process is defined as follows. Let Yn be the
number of individuals in generation n. Starting with a fixed Y0, we define recur-
sively

Yn+1 =

Yn∑
i=1

ξ(i)n

where ξ
(i)
n are independent and identically distributed (i.i.d.) random variables

taking non-negative integer values. Define An(m) :=
∑m
i=1 ξ

(i)
n , we can then

rewrite the above as
Yn+1 = An(Yn) . (1)

Given the definition of the branching process above, branching processes with
immigration are defined through the recursion,

Yn+1 = An(Yn) +Bn , (2)

Bn being referred to as the immigration component.
Next we recall the definition of branching process on a continuous state space.

We note that An is nonnegative and has a divisibility property: for any nonneg-
ative integers m, m1 and m2 such that m1 +m2 = m, and for any n,

An(m) = A(1)
n (m1) +A(2)

n (m2)

where for each n, A
(1)
n and A

(2)
n are independent random processes, both with the

same distribution as An. We take this property, together with the nonnegativity
of An as the basis to define the continuous state branching processes. Noting
that these properties are satisfied by Lévy processes, we define a continuous
state branching process as one satisfying (1) where An is a nonnegative Lévy
process (a subordinator).

Example 1. Consider an M/G/1 queue with gated repeated vacations: the ar-
rivals are modeled by a Poisson process and the service and vacation times con-
stitute sequences of i.i.d. random variables. Each time the server returns from
vacation, it closes a gate, and the next busy period starts. The busy period con-
sists of the service times requested by all those that are present when the gate
is closed. When the busy period ends then the server leaves on vacation. The



period that consists of a busy period followed by a vacation is called a cycle. Let
Yn be the number of customers present at the beginning of the nth cycle. Let

ξ
(i)
n denote the number of customer arrivals during the service time of the ith

customer among those present in the queue at the beginning of cycle n and let
Bn be the number of arrivals during the nth vacation. With these definitions it
easily follows that Yn satisfies (2).

Example 2. Consider the model of the previous example and Let Cn be the nth
cycle time. Moreover, let An(Cn) denote the workload that arrives during Cn
(i.e. the time to serve all those that arrive during the nth cycle time) and Bn
denote the length of the n+1st vacation. Then again (2) holds (thereby replacing
Yn by Cn).

3 Branching in the max-plus algebra

In the max-plus algebra, summation corresponds to max, and multiplication to
summation. Hence, we define the (single-type) branching process in the max-plus
as follows,

Yn+1 =

Yn⊕
i=1

ξ(i)n ,

where
⊕

stands for maximization and where {ξ(i)n } constitutes a doubly indexed
sequence of i.i.d. random variables taking non-negative integer values. Thus (1)
still holds but this time with,

An(m) :=

m⊕
i=1

ξ(i)n . (3)

When considering immigration we shall consider two forms. The first form is,

Yn+1 = An(Yn)⊗Bn , (4)

with ⊗ denoting summation in the standard algebra, such that the former ex-
pression can be written in the standard algebra as,

max
i=1,...,Yn

ξ(i)n +Bn .

Notice that we here replaced only the branching part by its max-plus version.
The second form of immigration we consider is,

Yn+1 = An(Yn)⊕Bn , (5)

which can be written in the standard algebra as,

Yn+1 = max
(

Yn
max
i=1

ξ(i)n , Bn

)
.



To define continuous branching in the max-plus algebra, we relate max-plus
branching with a continuous state space to Lévy processes, just as is done for
ordinary branching. The max-plus equivalent of branching in continuous state
space is defined as the maximum step of a (non-decreasing) Lévy process Ln(t)
over an interval of length y,

An(y) = sup
0≤t<y

dLn(t) . (6)

Notice that the divisibility of the branching process now holds in the max-
plus algebra. For any non-negative real values y, y1 and y2 such that y1 +y2 = y,
and for any n, we now have,

An(y) = A(1)
n (y1)⊕A(2)

n (y2) ,

An being defined in either (3) or (6) (in the former case, y1 and y2 are positive
integers).

We now consider some queueing systems whose dynamics can be described
by the max-plus branching processes introduced above.

Example 3. Consider a discrete-time infinite-server queue with exactly one ar-
rival at each time slot. We consider gated service and general vacations: when
the nth vacation ends, a gate is closed and the n + 1st busy period starts. Let
Yn denote the number of customers present when the nth busy period starts.
All customers that are present are served in parallel, their service times being

i.i.d. and the next vacation starts when all services are completed. Let ξ
(i)
n be

the service time of the ith customer served during the nth busy period and let
Bn denote the length of the nth vacation. As there is a single arrival in each
slot, the sequence Yn satisfies (4) with An as defined in (3).

Example 4. Consider the same model as in previous example and let Ŷn be the
number of customers at the end of the nth busy period. Retaining the notation
introduced in example 3, Ŷn relates to Yn as

Ŷn = An(Yn) = Yn+1 −Bn

such that,
Ŷn+1 = An+1(Ŷn)⊕ Ân+1(Bn) ,

by the divisibility of the max-plus branching process. Here Ân is an indepen-
dent copy of An such that Ân+1(Bn) represents the maximal service time of
a customer that arrives during the nth vacation. This is a branching process
in the max-plus algebra of the same type as (5), the migration process being

Qn
.
= Ân+1(Bn).

Example 5. We consider the same setting of the previous examples except for the
arrival process. The ith arrival occurs at time τ i and brings a service requirement
of ξ(i) which need not be integer valued. The arriving workload is then given by

V (t) =
∑
i

ξ(i)1{0 ≤ τ i ≤ t} .



If the arrival process is Poisson, and the service times are i.i.d. and independent
of the arrival times, then V (t) is a non-decreasing Lévy process. The independent
increments property of Lévy processes allows us to introduce a sequence of i.i.d.
Lévy processes Vn(t), distributed as V (t) which denote the arriving workload
during the nth cycle. As before, the n+ 1st busy period is the maximum service
time of all those that arrived during the nth cycle,

An(Cn) := sup
0≤t≤Cn

dVn(t) .

Hence An is a max-branching process, see (6). As the n+1st cycle time equals the
sum of the largest service time of a customer that arrived during the preceding
cycle and the vacation length Bn, consecutive cycle times relate as in (4), Bn
being the length of the nth vacation as before.

4 Solution

4.1 Discrete state space

We first consider max-plus branching with a discrete state space. For a discrete
random variable r, its distribution function and probability mass function are
denoted by Fr(i) = Pr[r ≤ i] and pr(i) = Pr[r = i], respectively, whereas
r∗(z) = E[zr] denotes its probability generating function.

We first solve (5). In this case, Yn+1 ≤ i if Bn ≤ i as well as all ξ
(j)
n for

j = 1, . . . , Yn; see (3). Hence, we have,

Pr(Yn+1 ≤ i) = E[Pr(Yn+1 ≤ i|Yn, Bn)] = E([Fξ(i)]
Yn1{Bn ≤ i}) .

Here 1{·} denotes the indicator function. As the consecutive Bn are i.i.d. and
independent of An, this gives

Pr(Yn+1 ≤ i) = Y ∗n (Fξ(i)) Pr(Bn ≤ i) .

Let π be the steady state probability vector of Y , π(j) = Pr[Y = j], then we get
the following set of equations for π:

i∑
j=0

π(j) =

∞∑
j=0

π(j)[Fξ(i)]
jFB(i) . (7)

Now assume that ξn and Bn have finite support, they are both bounded by
an integer L. This implies that (7) consists of a set of at most L + 1 linear
equations which allows us to solve for the unknowns (together with the equation∑
i π(i) = 1).



We now solve (4) for the discrete state space. In this case, Yn+1 ≤ i if all

ξ
(j)
n ≤ i−Bn for j = 1, . . . , Yn; see (3). Hence, we have,

Pr(Yn+1 ≤ i) = E[Pr(Yn+1 ≤ i|Yn, Bn)] =

i∑
`=0

E([Fξ(i− `)]Yn1{Bn = `})

=

i∑
`=0

Y ∗n (Fξ(i− `)) pB(`) .

As before, let π be the steady state probability vector of Y , π(j) = Pr[Y = j],
then we get the following set of equations for π,

i∑
j=0

π(j) =

∞∑
j=0

i∑
`=0

π(j)[Fξ(i− `)]j pB(`)

Again assuming that ξn and Bn have finite support, let L denote the common
upper bound, the former set (7) consists of at most L linear equations which
allows us to solve for the unknowns (together with the normalization condition∑
i π(i) = 1).

4.2 Continuous state space

We now consider max-plus branching with a continuous state space. For a con-
tinuous random variable r, let Fr(x) = Pr[r ≤ x] denote its distribution function
and, with some abuse of notation, let r∗(ζ) = E[exp(−ζr)] denote its Laplace-
Stieltjes transform.

We first consider (5). By conditioning on the Yn and Bn, we find,

Pr(Yn+1 ≤ x) = E[Pr(Yn+1 ≤ x|Yn, Bn)] = E(exp(λYn(σ(x)− 1))1{Bn ≤ x})
= Y ∗n (λ(1− σ(x)))FB(x) ,

where λ = Π[0,∞) and σ(x) = Π[0, x)/λ relate to the Lévy measure Π of Ln.
In view of the former expression, we then obtain the following integral equation,

Y ∗n+1(ζ) =

∫ ∞
0

exp(−ζx)d(Y ∗n (λ(1− σ(x)))FB(x)) .

Therefore, the Laplace-Stieltjes transform of the steady state distribution of Y
satisfies,

Y ∗(ζ) = ζ

∫ ∞
0

Y ∗(λ(1− σ(x)))FB(x)e−ζxdx− Y ∗(λ)FB(0) .

We now consider (4). By conditioning on the Yn and Bn, we find,

Pr(Yn+1 ≤ x) = E[Pr(Yn+1 ≤ x|Yn, Bn)]

=

∫ x

0

E(exp(λYn(σ(x− y)− 1)))FB(dy)

=

∫ x

0

Y ∗n (λ(1− σ(x− y)))FB(dy) ,



such that the Laplace-Stieltjes transform of the steady-state distribution satis-
fies,

Y ∗(ζ) = ζ

∫ ∞
0

∫ x

0

Y ∗(λ(1− σ(x− y)))e−ζxFB(dy)dx .

In general, no easy solution for these integral equations is available. One can
nevertheless resort to numerical solution techniques for integral equations, see
e.g. [15].

5 The multitype branching

We now turn to stability conditions for max-plus branching processes. We do
this in a more general setting: (i) we consider vector-valued processes and (ii)
we consider all types of processes which have the same divisibility property as
branching processes. In particular, consider the RK+ valued process {Yn} and
denote the ith entry of Yn by Y in, i = 1, ...,K. The process Yn satisfies the
following equation in vector form:

Yn+1 = An(Yn) +Bn. (8)

The K-dimensional column vector Bn is a stationary ergodic stochastic process
whose entries Bin, i = 1, ...,K are in subsets of the nonnegative real numbers.

For each n, An are non-negative vector valued random fields that are non-
decreasing in their arguments. An are i.i.d. with respect to n, and An(0) = 0.

We characterize max-branching processes by their divisibility property. That
is, we assume that An satisfies the following. If for some k, y = y0 + y1 + ...+ yk

where ym are vectors, then An(y) can be represented as

An(y) =

k⊕
i=0

Â(i)
n (yi) (9)

where {Â(i)
n }i=0,1,2,...,k are identically distributed with the same distribution as

An(·). In particular, for any sequence k(n), {Â(k(n))
n }n are independent.

Remark 1. For a given n, we do not assume independence of the random vari-

ables {Â(i)
n }i=0,1,2,.... In the case of ordinary multitype branching processes, this

leads to a unified framework of linear difference equations and branching pro-
cesses. In the case of max-branching considered here, the correspondence with
max-plus-linear difference equations does not hold. Nevertheless, independence

of {Â(i)
n }i=0,1,2,... is not required for proving stability and is therefore not as-

sumed.

5.1 Examples

We first introduce some processes that satisfy the divisibility property.



Example 6. We define the discrete multitype branching process A(y) as follows.
Let ξ(k)(n), k = 1, 2, 3, ..., n = 1, 2, 3, ... be a doubly-indexed sequence of i.i.d.
random K × K matrices. The elements of these matrices take values in the
nonnegative integers. Moreover, assume that for any ` = 1, 2, 3, ..., `′ = 1, 2, 3, ...,

k = 1, ...,K, i = 1, ...,K, m = 1, ...,K, j = 1, ...,K and m 6= k, ξ
(`)
ki and ξ

(`′)
mj are

independent.
Let yj be the jth element of the vector y, the ith element of the column

vector A(y) is given by

[A(y)]i =

K⊕
j=1

yj⊕
k=1

ξ
(k)
ji . (10)

One easily verifies that the divisibility property holds for this process.

Example 7. As for the single-type max-branching, we express the continuous
multitype max-branching in terms of Lévy processes. To this end, let Ln(y), y ∈
RK+ be an additive Lévy field. That is, we assume that L(y) can be decomposed
into the sum of K independent RK+ valued Lévy processes,

L(y) =

K∑
i=1

Li(yi) ,

yi being the ith element of the vector y as before. The jth element of the con-
tinuous multitype max-branching process A(y) is then defined as follows,

[A(y)]j =

K⊕
i=1

d[Li(yi)]j ,

where [Li(yi)]j is the jth element of Li(yi). Again, one easily verifies that the
divisibility property holds for this process.

5.2 Stability conditions

We shall understand below
⊗k

i=nAi(x) = x whenever k < n, and
⊗k

i=nAi(x) =
Ak(Ak−1(...(An(x))..)) whenever k > n.

In the remainder, let ‖x‖ denote the max-norm in RK and, with some abuse
of notation, let ‖An‖ denote the corresponding operator norm,

‖An‖ = inf{c ≥ 0 : ‖An(y)‖ ≤ c‖y‖,∀y ∈ RK} .

Let A .
= E[‖A0‖]. Then, we have An(y) ≤ ‖A0‖‖y‖, almost surely such that

E[An(y)] ≤ A‖y‖. By the independence of the consecutive branching processes,
this further implies for j > 1,

E

[∥∥∥∥∥
(

j⊗
i=1

Ai

)
(y)

∥∥∥∥∥
]
≤ Aj‖y‖ . (11)

We now introduce our stability conditions.



Theorem 1. Let Yn satisfy (8), with An satisfying the divisibility property (9)
and Bn stationary ergodic. We then have the following.

(i) For n > 0, Yn can be written in the form

Yn = Ỹn +

(
n−1⊗
i=0

Â
(0)
i

)
(Y0) (12)

where

Ỹn =

n−1∑
j=0

 n−1⊗
i=n−j

Â
(n−j)
i

 (Bn−j−1) (13)

is the solution of (8) with initial condition Y0 = 0.
(ii) For A < 1 and E[‖B0‖] < ∞, there is a unique stationary solution Y ∗n of

(8), distributed like,

Y ∗n =d

∞∑
j=0

 n−1⊗
i=n−j

Â
(n−j)
i

 (Bn−j−1), n ∈ Z. (14)

The sum on the right side of (14) converges absolutely almost surely. Further-
more, one can construct a probability space such that limn→∞ ‖Yn − Y ∗n ‖ =
0, almost surely, for any initial value Y0.

Proof. (13) is obtained by iterating (8). Now, define the following set of stochas-
tic recursions on the same probability space as Yn:

Y
[`]
n+1 = An(Y [`]

n ) +Bn, m ≥ −`, Y
[`]
−` = 0. (15)

For each n ≥ 0, Y
[`]
n is monotonically non-decreasing in ` so that the limit

Y ∗n = limn→∞ Y
[`]
n is well defined. Since this is measurable on the tail σ-algebra

generated by the stationary ergodic sequence {An, Bn}, it is either finite almost
surely or infinite almost surely. The last possibility is excluded since it follows by

induction that for every ` ≥ 0 and n ≥ −` that E[‖Y [`]
n ‖] ≤ (1−A)−1 E[‖B0‖],

and hence E[‖Y ∗n ‖] ≤ (1−A)−1 E[‖B0‖], which is finite.

By the definition of Â
(i)
n and by (11), we have

E

[∥∥∥∥∥
(

j⊗
i=1

Â
(0)
i

)
(y)

∥∥∥∥∥
]

= Aj‖y‖,

which converges to zero since A < 1. Since∥∥∥∥∥
(

j⊗
i=1

Â
(0)
i

)
(y)

∥∥∥∥∥



is non-negative, it then follows from Fatou’s Lemma that it converges to zero
almost surely. Finally, this implies that the difference

Yn − Y ∗n =

(
j⊗
i=1

Â
(0)
i

)
(Y0)−

(
j⊗
i=1

Â
(0)
i

)
(Y ∗0 )

converges to 0 almost surely. This implies also the uniqueness of the stationary
regime.

Remark 2. Recall that two forms of immigration were studied in section 3. The
stability conditions of Theorem 1 also hold in the case:

Yn+1 = An(Yn)⊕Bn ,

An and Bn as defined in the current section. To verify this, note that the in-

equality E[‖Y [`]
n ‖] ≤ (1−A)−1 E[‖B0‖] is also valid for this modified recursion.

The rest of the proof remains unaltered.

6 Deterministic Cruz type branching

We now return to ordinary branching processes and study these by means of a
Cruz-type network calculus. Recall the following definition of an arrival curve in
(deterministic) network calculus.

Definition 1. An arrival process is said to satisfy the (σ, ρ) constraints for some
constant ρ and σ, if it satisfies for any interval [s, t], t ≥ s:

A[s, t]
.
= A(t)−A(s) ≤ ρ(t− s) + σ .

In order to apply network calculus for branching processes, we first show
how a single arrival process can be identified for a standard discrete branching
processes. That is, the whole branching process can be derived from this single
arrival process. We shall apply the same type of derivation to an arrival process
that satisfies Cruz-type constraints and obtain a new recursive characterization
of the branching process. We then study the properties of the resulting process.

Consider a discrete-time, one-dimensional branching process given by

yn+1 =

yn∑
i=1

ξ
(n)
i +Bn

where ξ
(n)
i are i.i.d. random variables taking values nonnegative integer numbers.

This branching process is driven by an immigration process Bn and by an
infinite set ξ(n) of driving sequences. In making the relation between Cruz-type
processes and a branching type structure, the immigration term will not play
an important role, and we shall replace it for simplicity by a constant Bn = B.
Our extension of the Cruz framework is to replace the driving processes ξ(n) by
a single σ − ρ constrained arrival process.



More generally, we shall define below the arrival processes for processes that
satisfy the recursion

yn+1 = An(yn) +Bn

where, in the case of standard discrete branching, we have

An(yn) =

yn∑
i=1

ξ
(n)
i (16)

where ξ
(n)
i are i.i.d. random variables taking values in the nonnegative integers.

Definition 2. Let A be a monotone nonnegative random function from R to R.
We call it an arrival generator process (AGP).

Given an AGP A and some t0, we define A1(y) as A1(y) = A[t0, t0 + y], for
0 ≤ y ≤ y1 and define t1 = t0 + y1. We then recursively define tn = yn + tn−1
and for n > 1,

An(y) = A[tn, tn + y]. (17)

where 0 ≤ y ≤ yn+1. Thus for a given AGP A, we obtain a unique sequence An
of arrival processes. Conversely, assume that the sequence An is given, then (17)
defines uniquely the AGP A.

Example 8. In the case of standard discrete branching, y is discrete and the AGP
A is the counting function of a single infinite i.i.d. sequence ζn,

A(y) =

y∑
n=1

ζn ,

where ζn have the same distribution as ξ
(n)
i . It is now easy to check that with

the definition (17), An(y) have the same distribution as those given by (16), and
in particular, the consecutive An are i.i.d.

Example 9. This way of describing a branching process easily extends to branch-
ing processes with a continuous state space. In particular, the AGP is now a
subordinator A. The construction above then ensures that consecutive An are
i.i.d. by the independent increment property of Lévy processes.

We now assume that the AGP is (σ, ρ) constraint which implies that all An
are (σ, ρ) constraint as well. Before proceeding to our main results, we note that
if each An is (σ, ρ) constraint, then the following bound is obtained by applying
the recursion directly.

yn+1 = An+1(yn) +B ≤ ρyn + σ +B ≤ ρ2yn−1 + ρ(σ +B) + σ +B

≤ . . . ≤ ρny1 +
1− ρn+1

1− ρ
(σ +B) (18)

We shall be mainly interested in the case ρ < 1 for which we get the following
uniform bound,

yn ≤ y1 +
σ +B

1− ρ
(19)

Finding tighter bounds is the subject of the following section.



7 Bounds on branching process

We use the construction of the process given in the preceding section, based on
a AGP A. Define

σs,t = A[s, t]− ρ(t− s)

We can then rewrite the branching recursion as follows. The first step is,

y2 = A[0, y1] +B = ρy1 + σ0,t1 +B ,

whereas the nth step is,

yn+1 = A[tn, tn + yn] +B = ρyn + σtn,tn+1
+B .

Solving this recursion gives the following lemma.

Lemma 1. The branching process can be written as

yn+1 = ρny1 +

n−1∑
i=0

ρi(σtn−i,tn−i+1) +
1− ρn+1

1− ρ
B . (20)

We shall use the following Lemma, proved in [2].

Lemma 2. Suppose we have two sequences of real numbers, {Vi}ni=1 and {ζi}ni=1,
such that 0 ≤ ζ1 ≤ · · · ≤ ζn. Then

ζ1V1 + · · · + ζnVn ≤ ζn max{0, Vn, Vn + Vn−1, . . . , Vn + · · · + V1} . (21)

Proof. The proof is by induction on n. Suppose (21) holds for n. Since the right
hand side is non–negative, we can replace ζn with ζn+1 on the right hand side,
and add ζn+1Vn+1 to both sides, thus obtaining equation (22):

ζ1V1 + · · ·+ ζnVn + ζn+1Vn+1

≤ ζn+1 (Vn+1+max{0, Vn, Vn+Vn−1, . . . , Vn+· · ·+V1})
= ζn+1 max{Vn+1, Vn+1 + Vn, Vn+1 + Vn + Vn−1, . . . , Vn+1 + Vn + · · ·+ V1}
≤ ζn+1 max{0, Vn+1, Vn+1 + Vn, . . . , Vn+1 + · · ·+ V1} . (22)

which establishes (21) for n+ 1.

By combining the preceding lemmas, we now obtain a substantial improve-
ment over (19).

Theorem 2. Assume that ρ < 1. Then we have for all n

yn ≤ y1 + σ +
B

1− ρ



Proof. The proof of the Theorem follows by combining the last two lemmas. The
sequence ζ̂i in the last Lemma corresponds to the power of ρ’s: ζn = ρ0 = 1,
ζn−1 = ρ, ζn−i = ρi. Also we have Vi = σti,ti+1 . All elements of the max in (21)
are given by a summation of the form

Vn + Vn−1 + ...+ Vn−i = σtn−i,tn+1

which is bounded by σ. This proves the bound.

It has been argued that deterministic bounds yield overly pessimistic perfor-
mance bounds, which gave rise to various competing stochastic network calculi
[18]. We here adopt the so-called traffic-amount-centric arrival curves to the
branching processes considered here.

Definition 3. An arrival process is said to satisfy the (σ, ρ) constraints proba-
bilistically with non-increasing bounding function f(x) for some constant ρ and
σ, if it satisfies for any interval [s, t], t ≥ s:

Pr[A[s, t]− ρ(t− s) > σ + x] ≤ f(x)

The definition above allows that the (σ, ρ) constraint is violated by the AGP,
albeit with a small probability which is bounded by f(x). We then obtain the
following probabilistic bound for the branching process.

Theorem 3. Assume that ρ < 1 and that An satisfies the (σ, ρ) constraints
probabilistically with bounding function f(x). Then we have,

Pr[yn+1 − ρny1 −
1− ρn+1

1− ρ
B > σ + x] ≤ f(x) .

Proof. Following the arguments of the proof of Theorem 2, we have,

yn+1 ≤ ρny1 + σt1,tn+1 +
1− ρn+1

1− ρ
B ,

or equivalently,

yn+1 − ρny1 −
1− ρn+1

1− ρ
B ≤ σt1,tn+1 ,

This inequality then implies,

Pr[yn+1 − ρny1 −
1− ρn+1

1− ρ
B > σ + x] ≤ Pr[σt1,tn+1 > σ + x] ≤ f(x) .

Here the last inequality follows from the definition of σt1,tn+1
and definition 3.



8 Conclusions

In this paper we reconsider branching processes and their use in evaluating per-
formance of communication systems from two non-standard perspectives. First,
we introduce max-plus branching, where branching corresponds to finding the
maximal offspring of a member of the current generation rather then summing
all offspring of members of the current generation. We show that, as for a stan-
dard branching processes, a divisibility property holds. However, in the case of
max-plus branching, dividing the current generation leads to maximizing over the
respective offspring. The divisibility property also allows us to define continuous-
state max-branching in terms of Lévy processes, just like for ordinary branching.
All max-plus branching processes are investigated in the presence of a migration
component which is either added in the ordinary sense or in the max-plus sense.
Various applications in queueing theory for this type of branching processes are
introduced along the way.

For the single-type discrete max-branching with i.i.d. migration, we obtain a
system of equations for the stationary solution. For the continuous equivalent, a
functional equation is obtained for the Laplace-Stieltjes transform of the station-
ary solution. Finally, for multitype max-branching, we study conditions which
ensures the existence of a stationary solution.

A network calculus approach to branching processes constitutes the second
non-standard perspective. We show that a branching process can be created from
a single arrival process and then find bounds on the growth of this branching pro-
cess in terms of the deterministic constraints on this arrival process. Finally, we
relax these constraints by assuming probabilistic bounds on the arrival process.
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