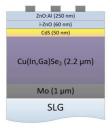


L. Van Puyvelde, J. Lauwaert, H. Vrielinck Ghent University, Department of Solid State Sciences Defects in SemiConductors Krijgslaan 281-S1, 9000 Gent, Belgium

Need for solar cells: space research, oil crisis, cleaner energy, stabler energy


Evolution towards thin film:

Si solar cell absorbs relatively poor \rightarrow thick absorber needed (~100 μ m)

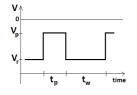
 \bigvee

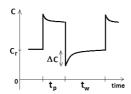
CuInGaSe₂ material has high absorption coefficient \rightarrow thin absorber (~2 μ m)

Advantage: lower cost, flexible cell

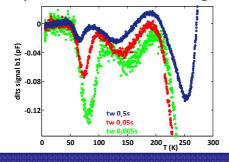
Problem: defects in absorber lattice reduce efficiency

→ Research DiSC: defect characterization

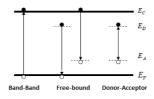




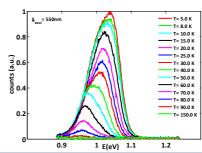
Research methods:


Deep Level Transient Spectroscopy

→ measure capacitance transient after volgage pulse for different temperature



→ deep defects, contact signal



Photoluminescence

→ measure light of radiative recombination when cell is illuminated

→ shallow defects

Conclusion: by controlling defects in thin film solar cells the efficiency can be enhanced.