
Intelligent Distributed Multimedia Collection:
Content Aggregation and Integration

Jelle Nelis, Dieter Verslype, Chris Develder
Ghent University – IBBT

Dept. of Information Technology – IBCN
Ghent, Belgium

Email: Jelle.Nelis@INTEC.UGent.be

Abstract—People’s multimedia content is spread around their
home network and content services on the Internet, such as
YouTube, Flickr, Facebook. In this paper we present a system
that aggregates all the multimedia content of the end user and
integrates it into a unified collection for the user’s convenience.
The system provides location transparency of multimedia content,
content filtering on player compatibility and metadata completion
to aid in improved usability. This effectively enables the user
to rediscover his multimedia collection without any technical
knowledge.

A proof-of-concept implementation has been made that is able
to detect and browse UPnP MediaServer devices as well as collect
information from YouTube. This implementation also contains a
native media player and is able to control UPnP MediaRenderer
devices remotely. Furthermore, a performance measurement has
been done on different ways of iterating through a multimedia
collection.

I. INTRODUCTION

Today, multimedia is everywhere. Network Attached Stor-
age devices become commonplace, Internet services enabling
users to store their multimedia content for sharing or remote
viewing purposes are popping up. There is a tendency to
distribute your entire multimedia collection, be it due to
a lack of organisational skills, limited storage capacity or
functionality demand, which means the end user isn’t able
to fully benefit from their own multimedia collection. Several
usability problems exist. A multimedia collection is difficult to
organize and easily resorts in chaos. Users are unable to locate
their desired content because they don’t know on which device
they stored it. They are unaware of codecs or resolutions; they
just want it to work on all devices in their home.

The Digital Living Network Alliance (DLNA) [1], [2] tried
to solve common use cases like consuming multimedia in
the home by defining device classes. Devices can deliver
(Digital Media Server), consume (Digital Media Renderer and
Digital Media Player) or control (Digital Media Controller)
multimedia. Part of this effort is certifying devices against
these device classes. The underlying technology used by
DLNA is UPnP [3] of which they use the AV specification [4]
to solve the use cases regarding multimedia consumption.

However, the scope of devices considered here cannot be
limited to this one technology, several other technologies exist
that can deliver content within the home network and from the
Internet.

The goal of this paper is to present an architecture for
an intelligent system to manage a distributed multimedia
collection that gives users a complete, personalized view of
the huge pile of available multimedia content. The system
is able to easily add new multimedia sources. Examples are
online multimedia source like YouTube, Flickr, Facebook, etc.
and locally stored multimedia found using different protocols.
The system performs duplicate detection, merges metadata of
resources deemed duplicate and completes content metadata
using external sources such as Discogs for audio content.

Most importantly, it offers the multimedia collection in such
a way that the user can consume their multimedia without any
technical knowledge. One example is that when a multimedia
item isn’t supported by a particular device due to a codec
incompatibility, the system takes care of this: incompatible
content items will not be shown or an appropriate transcoding
action will be taken.

In [5], a comparable system is discussed. However, only
UPnP MediaServer devices are considered as possible data
providers and the integration phases are limited. This paper
adds technology independence and more clever metadata in-
tegration.

In [6], an architecture is presented that solves location
transparency of multimedia content by implementing a virtual
MediaServer that redirects all requests to the MediaServer de-
vices that actually contain the content item. Not only does our
current work present a system that performs more integration
functionality in terms of content aggregation, such as metadata
completion, it also supports the concept brought forward in [6]
as a pluggable view of the system (see Section III).

The paper is structured as follows, Section II discusses the
architecture solving the problems put forward in this section.
In Section III, a proof-of-concept implementation is shown
on which a performance assessment of different ways of
aggregating multimedia collections is done. Results of these
tests are reported in Section IV.

II. ARCHITECTURE

A component diagram of the most important part of the
architecture can be seen in Fig. 1. The major driver behind
the architecture is runtime addition of data providers such as
providers of local content available through UPnP and remote
content such as YouTube. Therefore we work with pluggable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55732332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. IDMC architecture

Fig. 2. IDMC architecture: DataManager

data providers that can detect new and updated content and
signal it to the DataManager component. These data providers
will be managed by the PluginManager component in Fig. 1.
The DataManager component is responsible for all actions
performed on newly discovered multimedia metadata.

The MediaSessionManager component is responsible for the
management of media players that are remote controllable,
such as MediaRenderer devices in the UPnP AV architecture.
To guide the user in consuming multimedia, the media session
manager will automatically select the best resource for the
selected media player and filters content items that are not
compatible with the media player to be used for playing
content to.

The external interfaces in Fig. 1 can be used by whichever
user interface will be built on top of it. In this paper we will,
however, not focus on the user interfaces, instead we will focus
on the DataManager component. In Fig. 2, the further decom-
position of the DataManager component is shown. Essentially,
it is a pipeline that filters the metadata added to the system.
The pipeline is designed in such a way that filters can be
added or removed easily so future improvements can be added
without a hassle.

Currently, the algorithm performs the following steps: for
performance reasons, a first quick check is performed to
filter duplicates based on easily comparable parameters like
content location. This makes sense since we identified in [5]
that current UPnP MediaServer implementations offer their

multimedia metadata in a number of different ways, which
means that even within the same collection, there will be
duplicates that are easy to filter.

The Normalization component makes sure the metadata gets
cleaned so it is ready for further processing. After normaliza-
tion, a second stage duplicate detection is performed. This
component is also responsible for cross referencing metadata,
i.e. suppose a resource on the network can be identified to be
part of the same content item, then the metadata of the current
content item can enrich the metadata of the previously added
content item. As a last step in the algorithm, external sources
are used to get more information about the content item being
processed.

The persistence component is responsible for storing the
unified library and thus contains the metadata of the aggre-
gated multimedia collection. Every filter in the pipeline can
search for and change metadata in the Persistence component
while processing. Furthermore, it exposes a search interface for
user interfaces to provide a view on the multimedia collection.

III. PROOF OF CONCEPT

A demonstration has been implemented of the architecture
discussed in Section II. As discussed previously, the architec-
ture foresees pluggable data providers. To demonstrate this,
two plugins were developed, a UPnP plugin and a YouTube
plugin. The UPnP plugin detects UPnP MediaServer devices
and browses the collection it exposes, the YouTube plugin
imports the favourites of a given user account.

The demonstration environment consisted of a home net-
work with several networked devices. It included a Sony
PlayStation 3 (Media Player), a Sony Bravia TV (Media Ren-
derer), a Windows-PC and a Linux-PC (both MediaServer).
There is a subtle difference between a Media Renderer and
a Media Player: a Media Player is able to play content
through its own user interface while a Media Renderer has the
same functionality as a Media Player, but can also be remote
controlled via the network.

Two user interfaces have been developed, each of which
provided a different view on the aggregated multimedia col-
lection and the system. A native graphical user interface was
developed to be able to browse the collection on your local
computer. This user interface was able to remote control
the playback functions of the Sony Bravia TV through its
MediaRenderer interface. It also included plugin management
functionality to be able to enable support for, in this case,
YouTube at runtime. This demonstrates the flexibility of the
architecture in supporting different content retrieval technolo-
gies.

Since having an aggregated multimedia collection locally
does not help interoperability with legacy devices, another user
interface was developed. A UPnP MediaServer was written
to give Media Players, in this case the Sony PlayStation
3, the possibility to use the functionality provided by the
demonstrated system. This way the MediaPlayer was able to
browse through the unified collection without changing the
software client side.



Fig. 3. Multimedia content tree, C = container, F = file

Fig. 4. Per-leaf aggregation

IV. PERFORMANCE MEASUREMENT

Retrieval of multimedia metadata can be done in several
different ways. A data provider conceptually presents its
data as a file system which can be represented as a graph.
Fig. 3 presents an example of such a representation. Leaf
nodes represent files while non-leaf nodes represent containers.
Containers typically contain similar content items. A heavily
used structure is having a distinction on the first level between
the different types of multimedia, such as audio, video and
pictures. Within each of those containers several different
sublevels can be found, e.g. artist followed by album for audio
items.

In this performance assessment, measurements have been
performed comparing aggregation on a per-leaf basis or by
enabling batching of aggregation requests. In Fig. 4 it is shown
how per-leaf aggregation is performed, every leaf node gets
pushed through the pipeline right after discovering it.

A first batching scheme is shown in Fig. 5, leaf nodes get
cached until a new container is seen. The next possibility is
to cache all content items that reside on the same level in the
content item tree, this batching scheme can be seen in Fig. 6.
Lastly, it is possible to cache every content item that is present
on a device on the network, this just means all leaf nodes will
be added to the data manager at once.

Tests were performed using a dummy implementation of
a UPnP MediaServer to serve multimedia content metadata.
Three different multimedia collections were used:

• small
– 10 audio items

• medium
– 100 audio items
– 10 images
– 1 video

Fig. 5. Per-container aggregation

Fig. 6. Per-level aggregation

• large
– 1000 audio items
– 200 images
– 20 videos

For each collection, the four different techniques discussed
before were tested. The time to browse the collection (without
network delay), as well as the time to parse the returned
DIDL-Lite structures [7] where measured. However, these
times were negligible when compared to the time needed to
persist the aggregated items. In Fig. 7 the time measurements
for persisting the different multimedia collections are shown.
Several conclusions can be drawn from this graph, first of all,
from the perspective of the DataManager component, it is clear
that as much items as possible should be added at the same
time. With regard to the size of the multimedia collection, the
method to add a single item at a time, proves not to be scalable
since its execution time explodes for the large collection. It is
clear that adding content items in bulk outperforms individual
additions.

A disadvantage of batching aggregation requests is the need
for more temporary memory. Furthermore, adding content
items earlier might improve user perceived performance since
preliminary results will be visible more quickly.

V. CONCLUSIONS

In this paper we presented a system that presents an
aggregated view of all the content a user owns including
content stored in the cloud. This is achieved by allowing
pluggable data providers to add content to the system. A UPnP
MediaServer plugin was developed to show local content
discovery and a YouTube plugin was developed to show the
user’s multimedia content on the Internet can be added to his
unified collection.



Fig. 7. Persistence performance

When multimedia content gets added to the system, it
will go through a pipeline in order to get integrated in the
unified collection. This pipeline removes duplicates, merges
the metadata of the content item being added with existing
metadata and performs metadata completion by using external
information sources.

Performance measurements were performed on the system
as a whole using different strategies to add content items. This
shows that some kind of batching technique needs to be used
since adding content items one at a time becomes needlessly
slow when reaching large collections items (over 1000 items).

VI. FUTURE WORK

The system discussed in this paper acted as a proof of
concept to show it is possible to provide a non-trivial service
to end users using devices in the user’s home network and
services on the Internet. It succeeded to do so. However,
it still has some shortcomings. It is tailored to one specific
use case, namely the aggregation and integration of a users
multimedia content. Currently we are working to make the
system more generic so as to be able to interact with a variety

of different device types independent of the technology spoken
by the device/service. Obviously, the use case presented in
this paper should still be possible using the more generic
approach, but additional benefits arrive when it is possible to
use new device/service types. True integration of the complete
home network is possible, state changes of devices can act as
triggers for user specified actions and applications can take
into account the current context.

ACKNOWLEDGMENT

The authors would like to thank the students Jeroen De
Meyst, Jeroen De Ridder, Sam Govaert, Thijs Mergaert, Niels
Nuyttens, Daan Raman, Thomas Roelens, Xavier Smet and
Pieter Van Lysebetten for their effort in designing, implement-
ing and testing the system discussed in this paper.

REFERENCES

[1] IEC, IEC 62481-1 ed1.0: Digital living network alliance (DLNA) home
networked device interoperability guidelines - Part 1: Architecture and
protocols, 2007.

[2] ——, IEC 62481-2 ed1.0: Digital living network alliance (DLNA) home
networked device interoperability guidelines - Part 2: DLNA media
formats, 2007.

[3] A. Presser et al., “UPnP Device Architecture,” 15 Oct. 2008. [Online].
Available: http://www.upnp.org/resources/documents.asp

[4] J. Ritchie, T. Kühnel, J. Kang, and W. van der Beek,
“UPnP AV Architecture:1,” 30 Sep. 2008. [Online]. Available:
http://www.upnp.org/specs/av/default.asp

[5] K. Mets, J. Nelis, D. Verslype, P. Leroux, W. Haerick, F. De Turck, and
C. Develder, “Design of a context aware multimedia management system
for home environments,” in Future Computing, Service Computation,
Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD
’09. Computation World:, 2009, pp. 49 –54.

[6] J. Park and S. Kim, “A transparent contents sharing service with virtual
media server,” in Convergence Information Technology, 2007. Interna-
tional Conference on, 2007, pp. 764 –767.

[7] “XML Schema for ContentDirectory:3 Structure and Metadata
(DIDL Lite),” UPnP Forum, September 2008, latest version:
http://www.upnp.org/schemas/av/didl-lite-v2.xsd.


