
Accelerating Virtual Texturing Using CUDA
Charles-Frederik Hollemeersch, Bart Pieters,

Peter Lambert, and Rik Van de Walle

Abstract

Virtual texturing is a promising technique to improve the visual quality of real-time rendering

applications such as simulations and games. By selectively loading parts of the texture dataset,

virtual texturing allows for higher resolution texturing than possible with traditional texturing

techniques. However, virtual texturing also adds a significant overhead to the renderer. First,

there is the task of determining the working set of the current frame. Secondly, there is the need

to upload the streamed data. Furthermore, the data that needs to be uploaded may also not be

available in the desired texture format. Hence, the data will need to be converted to this format.

Although virtual texturing subsystems are expensive, they lend themselves well to data parallel

processing. The fact that much of this data will need to be further processed on the GPU by the

renderer makes implementing these tasks on the GPU even more attractive since the data will

be available close to its end use. In this poster we present how we implemented some of the

components needed for virtual texturing using CUDA. They work together with our OpenGL

based renderer, to offer a complete virtual texturing system.

The first such component we implemented using CUDA is the resolver, the component that

determines the frame’s working set. This subsystem works by analyzing a rendered buffer that

contains the texture pages needed by the corresponding pixel. This buffer is prepared using a

traditional OpenGL based renderer and a special pixel shader. We then analyse this buffer using

a CUDA kernel that determines what pages are present in the buffer and masks the pages used

by the current frame. A second kernel then packs the list of used pages. This way, a compact list

of pages is acquired that can then be asynchronously transferred to the CPU. On the CPU side,

these pages are then presented to a LRU based cache manager who replaces pages and places

new loading requests. Our system allows an efficient working set determination without any

unnecessary CPU to GPU transfers or synchronizations.

The second component of our system implemented in CUDA is the page uploading pipeline.

When pages are loaded by our system, they are decompressed to RGBA data and placed in page-

locked memory by a separate loading thread. They are then asynchronously transferred to the

GPU without further CPU intervention. Once the pages are available on the GPU, mipmaps are

then generated for the uploaded pages. These mipmaps will be used by our renderer to achieve

trilinear texture filtering. After the mipmaps are generated, a second kernel is invoked that

compresses the pages using a real-time DXT encoder. Finally, the pages are transferred to the

OpenGL cache texture for use by our renderer. To optimize the page uploading process even

further, we make use of multiple streams so CPU to GPU uploading and DXT compression can

run in parallel.

From our results, we can conclude that CUDA based working set determination and page

uploading, together with OpenGL based rendering and page translation table generation, allow

high quality, filtered, virtual texturing to be easily and efficiently implemented on today's

hardware.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55732286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

