
Memory in reservoirs for high dimensional input

Michiel Hermans and Benjamin Schrauwen

Abstract— Reservoir Computing (RC) is a recently intro-
duced scheme to employ recurrent neural networks while cir-
cumventing the difficulties that typically appear when training
the recurrent weights. The ‘reservoir’ is a fixed randomly
initiated recurrent network which receives input via a random
mapping. Only an instantaneous linear mapping from the
network to the output is trained which can be done with linear
regression. In this paper we study dynamical properties of
reservoirs receiving a high number of inputs. More specifically,
we investigate how the internal state of the network retains
fading memory of its input signal. Memory properties for
random recurrent networks have been thoroughly examined
in past research, but only for one-dimensional input. Here
we take into account statistics which will typically occur in
high dimensional signals. We find useful empirical data which
expresses how memory in recurrent networks is distributed over
the individual principal components of the input.

I. INTRODUCTION

A. Memory in recurrent networks

A significant body of research in machine learning fo-
cuses on recurrent neural networks. These networks have
for instance been studied for their ability to store patterns
(the so-called Hopfield networks [1]). More recently how-
ever, recurrent networks are being used to process temporal
information; due to internal feedback, these networks have
an intrinsic ability to retain information about past input for
a certain time, which allows for the processing of signals
that are explicitly coded in time. This property is often
called ‘fading memory’, ‘short term memory’ or the ‘echo
state property’. Though training algorithms for recurrent
neural networks exist which can be quite successful (most
notably backpropagation through time [2]), some problems
like slow convergence and limited applicability due to high
computational costs remain [3].
An alternative approach is generally known as Reservoir
Computing (RC), discovered independently by Jaeger [4] for
analog hyperbolic tangent neurons, and by Maass [5] for
spiking neurons, where the networks are called ‘Echo State
Networks’ and ‘Liquid State Machines’ respectively. In these
systems, the “reservoir” is a randomly initiated recurrent
neural network with fixed interconnection weights, excited by
the input which needs to be processed. The readout mech-
anism consists of a single layer of linear nodes observing
the reservoir nodes, which are usually trained using linear
regression. This approach is very fast and easy to implement,
and does not suffer from common problems found in other
training algorithms such as fading error gradients or slow
convergence.

ELIS at Ghent University, Sint Pietersnieuwstraat 41, 9000 Ghent,
Belgium (phone: +32 9 264 3368; email: michiel.hermans@ugent.be, ben-
jamin.schrauwen@ugent.be).

As a rule of thumb, good performance requires the number of
network nodes to be significantly higher than the number of
input channels. Intuitively this is due to the fact that the input
signal (which can be considered to exist in feature space)
needs to have space in which to be nonlinearly expanded
to form a representation (which can be considered to exist
in ‘reservoir space’) which retains both temporal and spatial
information on the input signal. For many tasks however,
this will quickly prove difficult due to the high-dimensional
nature of input data, e.g. sound (preprocessed speech [6],
echolocation [7]) and image processing (handwriting recog-
nition [8], automated surveillance cameras etc.) and one
commonly resorts to dimensionality reduction techniques.
In this paper we will research memory properties for these
kinds of input signals. Past research has focused on one-
dimensional signals to quite some detail [9], [10], [11], [12].
The main conclusions found in this area of study are the
following.
• Memory capacity (which will be formally defined in

Section I-C) of a neural network cannot exceed the
number of neurons in the network [9], [11].

• A saturating nonlinearity has necessarily a detrimental
effect on memory [9].

• Noise robustness depends on the eigenvalue spectrum
of the linearized system [10], [12].

• Noise robustness is best when the spectral radius of the
linearized system is equal to or close to one [11], [12].

Before elaborating on the main bulk of our research we shall
discuss the network model, then we introduce the measures
commonly used to quantify memory in RC and the way we
use them.

B. Network model

We shall work with standard discrete time hyperbolic
tangent networks which evolve according to

a(k + 1) = tanh (Wa(k) + Vs(k)) , (1)

where a(k) and s(k) are respectively the network state and
the input signal at the k-th time step, and W and V are the
connection matrices for respectively the internal connections
and the connections from the input to the reservoir.
Input weights and internal connection weights are initially
drawn from a normal distribution with unit standard deviation
and zero mean. W is then scaled such that its spectral radius
equals ρ.
Usually, V is scaled with an input scaling factor which does
not depend on the input signal dimensionality or energy.
We would however want a useful scaling factor for these
connections like the spectral radius for W. More specifically,
we wish that this scaling factor expresses the degree of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55732184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nonlinearity in the reservoir. A measure that we use to
express this is the mean standard deviation of the reservoir
states, as this quantifies how strongly the nonlinearity acts
upon them. It is not easy to come up with a general
estimator for the mean standard deviation of the reservoir
states since this will depend on many factors such as the
spatiotemporal correlation of the input signal and the exact
connection matrix. However, it is nevertheless possible to
find a relatively simple scaling factor that approximately
reaches this goal. We derive and empirically test this measure
in Appendix IV-B. We shall denote this scaling factor φ and it
has the physical meaning that it roughly expresses the mean
standard deviation for linearized networks.

C. Measures of memory

In order to study the temporal processing ability of re-
current networks, one needs to know how much information
on past input is linearly coded in the immediate spatial state
of the system. This property is represented by the memory
function (MF) [11], which measures the ability to linearly
reconstruct the input signal from a past time τ from the
immediate state of the system. In the one-dimensional case,
the input consist of a signal s(i), i ∈ N that takes on a
random value from a normal distribution at each time step.
The MF is then defined as

m(k) =
〈s(i− k)uk(i)〉2i
σ2(s)σ2(uk)

, (2)

in which 〈· · · 〉i is the mean over all values i, and uk(i) =
y(k)Ta(i), the output trained to reconstruct the signal from
k time steps ago, with y(k) optimized output weights and
a(i) the reservoir state at the i-th time step, and σ denotes
standard deviation. The MF is strictly between zero and one.
Typically it is close to one for k < N (corresponding to
good memory) and drops to zero when k > N , with N the
number of neurons in the network. Memory capacity (MC),
denoted by M , is then simply the area under the memory
function: M =

∑∞
k=0m(k).

Both definitions can be readily expanded to a multi-
dimensional input signal, simply by applying it on the
individual input channels. The total memory capacity is then
the sum of the memory capacities of the individual signals.
To avoid an artificial overestimation of the total memory
capacity we will need to make sure that the input channels
on which we define the memory function are uncorrelated.
One could for instance define two, highly correlated input
signals and measure their respective memory capacities. As
the two signals are almost identical, both memory capacities
will be close to N , giving a total memory capacity exceeding
the number of neurons in the network. For this reason, we
define the MF and MC on the principal components of the
input signal, which are uncorrelated by definition. If s(i)
represents the vector with the input at time step i, we denote
the principal components as s̃(i) = Qs(i), where Q is the
matrix with the eigenvectors of the covariance matrix of s
on its rows. The principal components also have so called
‘energies’ (their individual variances), which are equal to the

eigenvalues of the covariance matrix of s. We shall denote
these by γn. Finally, we can define the MF and MC for the
n-th principal component:

mn(k) =
〈s̃n(i− k)uk,n(i)〉2i

γnσ2(uk,n)
(3)

Mn =
∞∑

k=0

mn(k) (4)

M =
Nin∑
n=1

Mn, (5)

where uk,n is the optimal reconstruction of s̃n. If one
calculates the expression of the optimal readout weights, one
can rewrite1 equation 3 to a more useful expression:

mn(k) =
xT

n(k)A−1xn(k)
γn

, (6)

where xn(k) = 〈a(i)s̃n(i− k)〉i and A =
〈
a(i)aT(i)

〉
i
.

This allows us to calculate the MF without having to explic-
itly train readout weights.
Measuring the MC has one small but important difficulty.
Due to the finite number of samples and the fact that the
memory function is strictly positive, there will exist a positive
bias in the measured MF. This will generally be small but it
is nevertheless important when one measures M since this
error is then multiplied with the width of the measured MF
and the number of input channels. In the appendix we derive
that the bias for the MF is approximately equal to N

T , with
T the number of samples. We shall subtract this bias when
calculating the memory capacities of the individual channels
and the total MC.
In this paper, we shall always use 105 samples for mea-
suring the MF. Results shown are always averaged over 10
reservoirs, but apparently only small differences between
individual networks exist for the MF and MC.

II. UNCORRELATED INPUT

A. Total memory capacity

The first situation we consider is when all the principal
components of the input channels have the same energy. We
look at the total memory capacity M as a function of the
spectral radius and the number of input channels. As input
signals, we used white noise with unit standard deviation and
zero mean and we used reservoirs with 100 nodes. Figure 1
shows the results for three different input scaling factors. In
the quasilinear regime (left window), M is mostly equal to
the number of reservoir nodes, virtually independent of the
spectral radius or number of input channels. Only when both
Nin and the spectral radius are small, M drops significantly
below N . This is due to the fact that the spectral radius of
a reservoir will determine the speed at which its transient
dynamics fade. If the number of input channels is low,
the MFs of the principal components can extend far to the
past. However, if the transients are quenched too quickly,

1see for instance [11]

0.5
1

0.1
50

100

10

0

50

100

ρNi n

0.5
1

0.1
50

100

10

0

50

100

ρNi n

0.5
1

0.1
50

100

10

0

50

100

ρNi n

φ = 0.1 φ = 1φ = 0.01

Fig. 1. Total MC M for different input scaling factors. On the left the reservoir is in the quasilinear regime, in the middle moderately nonlinear and on
the right highly nonlinear.

recovering the past input from the current states becomes
more difficult, resulting in lower M . When the number of
input channels increases, this effect becomes less severe since
the memory of the principal components will extend less far
in the past (see next paragraph).
Increasing the input scaling factor aggravates the memory
deterioration described above. This is due to the fact that the
reservoir states are pushed into the saturating parts of their
activation function, which decreases the ‘effective’ spectral
radius (the spectral radius of the Jacobian [13], [14]).

B. Shape of the memory function

To get a good idea of exactly what the reservoir remembers
of the input, it is useful to take a look at the MF itself.
Figure 2 shows the memory functions (averaged over all
input channels) in different situations. One obvious fact is
clearly that - as Nin increases - the amount of memory
capacity available for each individual input channel becomes
smaller. The next interesting fact is that the spectral radius
will greatly determine the shape of the MF. If ρ is small, the
reservoir will have a good memory of only a few steps back
in the past, and if it is close to one, the reservoir memory
extends further but is less precise. This means that tasks
with high input dimensionality which need short but precise
memory may in fact benefit from choosing a small spectral
radius.

III. GENERALIZED SIGNALS

Typically, high dimensional input data will consist of
principal components with widely varying energies. Usually,
only a few principal components contain the bulk of the
variance and a large fraction of principal components have
low energies and contain less meaningful features or noise.
In this section we will consider the impact of the energy
contained in each component on its memory capacity. We
use a reservoir with N = 100, Nin = 50, and φ = 0.1. The
input signal consists of 50 white noise channels with variance
γi = xi, where we choose x = 0.8. This allows us to measure
memory capacity in function of signal energy for about 5
orders of magnitude. Figure 3 shows the results measured for
three reservoirs with different spectral radii. When ρ is close

0 5 10 15
0

0.2

0.4

0.6

0.8

1

k

m
(k

)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

m
(k

)

k
0 5
0

0.2

0.4

0.6

0.8

1

m
(k

)
k

Ni n = 100Ni n = 60

Ni n = 30

Fig. 2. Average memory functions for different Nin. The spectral radius
varies from 0.1 (black line) to 1 (light gray line). Horizontal axis have the
same scale in each window. The input scaling φ is equal to 0.01. Results
are averaged over 10 runs.

to zero, all principal components are given roughly the same
amount of memory by the reservoir. This makes sense if one
considers the extreme case where ρ = 0, and thus W = 0.
Then, the ‘reservoir’ just acts as a random linear mapping,
followed by a static nonlinear transformation. If we disregard
the hyperbolic tangent, each separate input channel then can
be recovered by an inverse linear mapping.
If the spectral radius increases, more memory is given to the
channels with higher energy. When ρ = 1, Mi is roughly
proportional to

√
γi. This means that ‘energy of principal

components’ might not be a useful way to describe the way
a reservoir deals with high dimensional input. Consider for
instance a signal which consists of 10 useful channels with
the same energy, and 90 noise channels, where the sum of
the energies of the noise equals that of one useful channel,

10 5 10 4 10 3 10 2 10 1 100

10 2

10 1

100

101

γ i

M
i

ρ = 0.1

ρ = 0.5

ρ = 1

Mi ∼ √γ i

Fig. 3. Individual memory capacities per channel versus the corresponding
energy (shown on logarithmic scale). Results are averaged over 10 runs.

i.e., only one eleventh of the total signal energy is devoted
to noise. If Mi ∼ √γi we can calculate that the memory for
the useful channels is equal to about N/20, i.e only half of
the optimal value N/10. Indeed, we empirically verified this
result to be correct with N = Nin = 100 where we found
that the memory capacity for the useful channels is roughly
equal to 5.
This result suggests that RC might benefit greatly from only
presenting the first few principal components to the reservoir,
rather than the full signal. Another potential method would be
to multiply each principal component of the input signal with
its energy in order to get Mi ∼ γi which might give a more
‘fair’ distribution of reservoir memory to the different signal
components. Indeed, we repeated the experiment mentioned
above after rescaling the input signal components and got
a significant increase in memory for the useful channels
(equal to about 9). It is also interesting to remark that PCA
also can be linked to Hebbian learning [15], and that signal
compression and feature selection plays a major role in the
human brain.

IV. CONCLUSIONS

In this paper we investigated the memory properties for
high dimensional input signals in random recurrent neural
networks (reservoirs). We explored the impact of correla-
tions in the input signal and how these affect the networks
ability to store temporal information. We defined measures
to quantify memory for high dimensional signals, which act
on its principal components and are variations on the typical
measure found in literature called the memory function and
the memory capacity. We considered network setups with
different degrees of nonlinearity and different spectral radii.
We found that the total memory capacity (signifying the
sum of the memory capacities of the different principal
components) in the best case equals the number of neurons
in the network, which was already a well established fact
for one dimensional input signals. The available memory is
distributed over the principal components of the input signal.

The nature of the memory depends on the spectral radius of
the network. If it is small (close to zero), the network will
have a very good memory of the input but only for a few
steps back in time. If the spectral radius is close to one, the
memory stretches further back in the past but is significantly
less precise.
Typically, the principal components of a high dimensional
signal have widely varying energies, where the first few
components carry the bulk of useful information, and the
smaller components carry noise or less meaningful features.
For this reason we tested how signal energy relates to its
corresponding memory capacity. We found that a network
with a spectral radius equal to one, spends an amount
of memory capacity to each principal component roughly
proportional to the square root of the corresponding energy
(i.e. the standard deviation of the principal component). If
the spectral radius drops, memory capacities become less
dependent on energy. This result implies that reservoirs will
lose a large part of memory to principal components which
might carry only little useful information. For this reason it
seems that PCA - which is known to be a valuable form of
preprocessing for high dimensional signals - can also be used
in Reservoir Computing. Other, more advanced techniques
for variable selection could also be readily applied on the
input mapping to only excite the reservoir with useful data
features, such as not to congest the reservoirs memory.
It is a known fact that RC has difficulty to get good results
when input dimensionality is close to that of the number
of neurons, which can partially be explained by the results
found in this paper. In future research it might be interesting
to investigate ways to decrease signal redundancy by e.g.
PCA based dimensionality reduction, or to find unsupervised
or supervised techniques to adapt the random input mapping
to improve the spatiotemporal representation of the input
signal in the reservoir. Also it would be desirable to find
an underlying mathematical framework which can confirm
the empirically found results from this paper.

APPENDIX

A. Bias for the memory function

Here we will explain that the measured MF will approxi-
mately have a positive offset of N

T . We start by considering
the principal components of the reservoir activation a. If we
write the eigendecomposition of the covariance matrix A =
UΨUT, the principal components are given by ã = UTa.
Using this expression and the fact that A−1 = UΨ−1UT,
we can rewrite equation 6 as

mn(k) =

〈
sn(i− k)ãT(i)

〉
i
Ψ−1 〈sn(i− k)ã(i)〉i
γn

(7)

=
1
γn

N∑
j=1

ψ−1
j 〈sn(i− k)ãj(i)〉2i , (8)

with ψj the variance of the j-th principal component of
the reservoir state. If the number of samples by which
the covariances 〈sn(i− k)ãj(i)〉i are estimated are finite,

there will always be a positive overestimation of the mem-
ory function; We start by splitting the principal compo-
nents of the reservoir states: ãj(l) = āj(l) + âj(l), where
āj(l) = 〈sn(i− k)ãj(i)〉i sn(l − k), i.e. āj(l) is the part of
ãj(l) that is fully correlated with the delayed signal, and
âj(l) is completely uncorrelated with the signal. Generally
〈sn(i− k)ãj(i)〉i will be very small for each individual delay
and principal component, especially if Nin is high. Therefore
we approximate that σ2(âj(l)) ≈ σ2(ãj(l)). Equation 8 then
reduces to

mn(k) =
1
γn

N∑
j=1

ψ−1
j (〈sn(i− k)āj(i)〉2i

+ 〈sn(i− k)âj(i)〉2i + 2 〈sn(i− k)āj(i)âj(i)〉i).
The third term in this equation will be very small and
therefore we shall neglect it (this is especially valid since
its expectance value is equal to zero). The first term is the
actual measurement of the memory function, the second term
is always positive and leads to the systematic overestimation,
since it will always be positive with a finite sample size.
The central limit theorem states that the expected value of
the second term will be 1

T σ
2(sn(i − k)âj(i)), with T the

number of samples. When we assume that sn(i−k) and âj(i)
are statistically independent, the variance of their product
is equal to the product of their variances. This, and the
assumption that σ2(âj(l)) ≈ σ2(ãj(l)) allows us to work
out the second term to be approximately equal to N

T .

B. Approximating the standard deviation for linear neural
networks

To quantify the amount of nonlinearity in a reservoir,
we will form an estimation of the standard deviation of a
linear reservoir. It is possible to exactly calculate the standard
deviations of the states for any given linear network, but
the resulting formula is highly convoluted and does not give
insight into its dependence on general parameters such as
spectral radius and number of input channels. Therefore we
shall have to make some broad assumptions to simplify this
formula.
In a linear reservoir, the states have an analytical expression
in function of the input signal [12]:

a(i) =
∞∑

k=0

WkVs(i− 1− k). (9)

Using this, we can calculate the average variance of the
reservoir states:〈

aT(i)a(i)
〉

i
=

〈 ∞∑
k=0

∞∑
l=0

sT(i− 1− k)Pkls(i− 1− l)
〉

i

,

with
Pkl = VT(WT)kWlV.

Writing this out as an explicit sum this becomes

〈
aT(i)a(i)

〉
i

=
∞∑

k,l=0

Nin∑
m,n=1

P kl
mn 〈sn(i− 1− k)sm(i− 1− l)〉i.

If we assume that 〈sn(i− 1− k)sm(i− 1− l)〉i =
γmδnmδlk, i.e. no spatial or temporal correlation exists in
the input signal, this expression simplifies to

〈
aT(i)a(i)

〉
i

=
Nin∑
m=1

γm

∞∑
k=0

P kk
mm.

The term
∑∞

k=0 P
kk
mm can be calculated analytically for

individual reservoirs, but it doesn’t give a general idea of
how it relates to Nin and the spectral radius of the reservoir.
For this reason we make the following strong simplification:
we only consider orthogonal connection matrices, such that
WWT = ρ21. With these assumptions we can then calculate
that

∞∑
k=0

P kk
mm =

∞∑
k=0

ρ2k
[
VTV

]
mm

=
1

1− ρ2
|Vm|2 ,

where Vm signifies the m-th column of V. To come to a
useful final result, we can make further assumptions. If the
elements of Vm are chosen from a normal distribution with
unit standard deviation and zero mean, then its square norm
has a Chi-square distribution and its mean is equal to the
number of elements (i.e. N). Using this, we can finally write
down the mean variance of the reservoir states:

1
N

〈
aT(i)a(i)

〉
i

=
∑Nin

m=1 γm

1− ρ2
. (10)

We now have a formula that gives an estimation of the
variance of the network states with a very clear relation to
the signal energy and ρ: the state variance is proportional to
the total signal energy, and increases when ρ increases. In the
special case that all energies γm are equal to one (whitened
data), this gives us

1
N

〈
aT(i)a(i)

〉
i

=
Nin

1− ρ2
. (11)

We will check whether the approximations we made still
can be generalized for regular (i.e. non-orthogonal W).
Therefore, we simulate linear networks with the conditions
described above (i.e the elements of V have unit standard
deviation and zero mean). We study this for two types of
input signals: one with γi = 1 (using Equation 11), and
one where γi = 10−5 i

Nin (using Equation 10), which is
comparable to the signal used in Section III. We measure
the average standard deviation in relation to ρ and Nin and
compare this with our estimation. We used 10000 input sam-
ples and averaged over 10 reservoir initializations with 100
neurons. Figure 4a and 4b shows the comparison between
our estimation and the measured value of the mean standard
deviation of the network activations. Clearly there is a good
correspondence between our formula and the actual result.
When ρ gets closer to one, it appears we systematically
overestimate the standard deviation. This is likely due to
the fact that the eigenvalues of orthogonal matrices all have
the same absolute value, which corresponds to the same

0.1
0.5

0.9

10
50

100
0

10

20

30

ρNi n

σ
(a

)

0.1
0.5

0.9

10
50

100
0

2

4

6

8

ρNi n

σ
(a

)
0.51 0.150100

10
0

0.2

0.4

0.6

0.8

1

ρNi n

σ
(a

)

0.51 0.150100
10
0

0.2

0.4

0.6

0.8

1

ρNi n

σ
(a

)

(a) (b) (c) (d)

Fig. 4. (a,b): Comparison between the mean standard deviation of reservoir states measured empirically (black) and the estimated value (grey) for principal
components with the same energy (a) and an energy spectrum as described in the text (b). (c,d): Empirically measured standard deviations in hyperbolic
tangent reservoirs for different corrected input scaling factors: from light grey to black, φ = {0.2, 0.4, 0.8, 1.6, 3.2}, for principal components with
the same energy (c) and an energy spectrum as described in the text (d)

amplification for all its oscillatory modes. Random matrices
have their eigenvalues more or less uniformly spread over
the area of the disk with radius ρ, such that many of its
oscillatory modes will decay more quickly.
It is now easy to define an input scaling φ which signifies
the amount of nonlinearity of the network states. We choose
the initial input weights from a normal distribution with unit
variance and zero mean, and next we multiply this with

φ

√
1− ρ2∑Nin

m=1 γm

, (12)

where φ is the desired standard deviation of the reservoir
states. One major drawback of the above formula is the fact
that it goes to zero when ρ approaches one (and becomes
even imaginary when ρ > 1). Obviously there is no real
issue using a reservoir with spectral radius equal to or slightly
higher than one, exactly because the effective spectral radius
will always drop under one when the states are pushed far
enough in the nonlinear part of the hyperbolic tangent. We
will replace ρ with an estimate of the spectral radius of the
Jacobian J of the system, which is defined as

Jij(k) =
∂ai(k)

∂aj(k − 1)
= (1− a2

i (k − 1))Wij .

Disregarding individual differences between the reservoir
states, we estimate the average spectral radius of J as

ρJ = (1− 1
N

〈
a(k)Ta(k)

〉
k
)ρ.

We now have to estimate the variance of the states for a
nonlinear reservoir, which is very hard indeed. However,
since our goal is to give a rough input scaling factor which
also works for ρ ≈ 1, we found an ad hoc solution which
works quite well. Since we ‘impose’ the standard deviation
φ upon the linearized reservoirs, we expect that the standard
deviation in the nonlinear reservoir will be roughly equal
to the hyperbolic tangent of φ. This gives us the above
correction for equation 12:

φ

√
1− ρ2(1− tanh(φ)2)2∑Nin

m=1 γm

. (13)

We tested these assertions by measuring the standard de-
viation of reservoir states in hyperbolic tangent reservoirs,
and see how much the actual mean standard deviation of the
network states still depends on ρ and Nin after rescaling.
Figure 4 shows the result for mildly to very nonlinear
reservoirs (i.e. with mean standard deviation close to one).
It appears that our result generally holds quite well, and the
mean standard deviation only depends little on ρ and Nin in
the tested ranges.

ACKNOWLEDGMENTS

The research leading to the results presented here has
received funding from the European Community’s Seventh
Framework Programme (EU FP7) under grant agreement
n. 231267 “ Self-organized recurrent neural learning for
language processing (ORGANIC)” and the Photonics@be
Interuniversity Attraction Poles program (IAP 6/10), initiated
by the Belgian state, Prime Minister’s Service, Science Policy
Office. This work was partially funded by a Ph.D. grant of
the Institute for the Promotion of Innovation through Science
and Technology in Flanders (IWT-Vlaanderen).

REFERENCES

[1] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities.” Proc Natl Acad Sci U S A, vol. 79,
no. 8, pp. 2554–2558, Apr 1982.

[2] D. Rumelhart, G. Hinton, and R. Williams, Learning internal repre-
sentations by error propagation. MIT Press, Cambridge, MA, 1986.

[3] B. Hammer and J. J. Steil, “Perspectives on learning with recurrent
neural networks,” in Proceedings of the European Symposium on
Artificial Neural Networks (ESANN), 2002.

[4] H. Jaeger, “The “echo state” approach to analysing and training
recurrent neural networks,” German National Research Center for
Information Technology, Tech. Rep. GMD Report 148, 2001.

[5] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[6] D. Verstraeten, B. Schrauwen, and J. Van Campenhout, “Recognition
of isolated digits using a liquid state machine,” in Proceedings of SPS-
DARTS 2005, April 2005, pp. 135–138.

[7] B. Fontaine, H. Peremans, and B. Schrauwen, “Bat echolocation
modelling using spike kernels with Support Vector Regression,” in
Proceedings of the 15th European Symposium on Artificial Neural
Networks, 2007, pp. 367–372.

[8] A. Graves and J. Schmidhuber, “Offline handwriting recognition
with multidimensional recurrent neural networks,” in Advances in
Neural Information Processing Systems 21, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds., 2009, pre–publication.

[9] S. Ganguli, D. Huh, and H. Sompolinsky, “Memory traces in dynami-
cal systems.” Proceedings of the National Academy of Sciences of the
United States of America, November 2008.

[10] M. Hermans and B. Schrauwen, “Memory in linear recur-
rent neural networks in continuous time,” Neural Networks,
(doi:10.1016/j.neunet.2009.08.008), 2009.

[11] H. Jaeger, “Short term memory in echo state networks,” German
National Research Center for Information Technology, Tech. Rep.
GMD Report 152, 2001.

[12] O. L. White, D. D. Lee, and H. Sompolinsky, “Short-term memory
in orthogonal neural networks,” Physical Review Letters, vol. 92, p.
148102, 2004.

[13] M. C. Ozturk, D. Xu, and J. C. Principe, “Analysis and design of echo
state networks,” Neural Computation, vol. 19, pp. 111–138, 2006.

[14] D. Verstraeten and B. Schrauwen, “On the quantification of dynamics
in reservoir computing,” in Proceedings of the International Con-
ference on Analog Neural Networks (ICANN), 2009, pp. 985–994,
(submitted).

[15] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of Mathematical Biology, vol. 15, no. 3, pp. 267–273, 1982.

