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ABSTRACT

This contribution deals with phase noise estimation from pi-
lot symbols. The phase noise process is approximated by an
expansion of Discrete Cosine-Transform (DCT) basis func-
tions containing only a few terms. We propose a feedforward
algorithm that estimates the DCT coefficients without re-
quiring detailed knowledge about the phase noise statistics.
We demonstrate that the resulting (linearized) mean-square
phase estimation error consists of two contributions: a con-
tribution from the additive noise, that equals the Cramer-
Rao lower bound, and a noise-independent contribution that
results from the phase noise modeling error. We investigate
the effect of the symbol sequence length and the number of
estimated DCT coefficients on the estimation accuracy and
on the corresponding bit error rate (BER). We propose a pi-
lot symbol configuration allowing to estimate any number of
DCT coefficients not exceeding the number of pilot symbols.
For large block sizes, the DCT-based estimation algorithm
substantially outperforms algorithms that estimate only the
time-average or the linear trend of the carrier phase.

1. INTRODUCTION

Phase noise refers to random perturbations in the carrier
phase, caused by imperfections in both transmitter and re-
ceiver oscillators. Compensation of this phase noise is crit-
ical since these disturbances can considerably degrade the
system performance. The phase noise process typically has
a low-pass spectrum [1]. Discrete-time processes that have
a bandwidth which is considerably less than the sampling
frequency can often be modeled as an expansion of suitable
basis functions, that contains only a few terms. Such a ba-
sis expansion has been successfully applied in the context of
channel estimation and equalization in wireless communica-
tions, where the coefficients of the channel impulse response
are lowpass processes with a bandwidth that is limited by
the Doppler frequency [2–4].

Several methods trying to tackle the phase noise problem
exist:

• Phase noise can be tracked by means of a feedback al-
gorithm that operates according to the principle of the
phase-locked loop (PLL). Such algorithms give rise to
rather long acquisition transients, as such they are not
well suited to burst transmission systems [5,6].

• The observation interval is divided into subintervals, and
a feedforward algorithm is used to estimate within each
subinterval the local time-average (or the linear trend)
of the phase [6, 7]. However, in order that the piecewise
constant (or linear) approximation of the phase noise be
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accurate, the subintervals should be short, in which case
a high sensitivity to additive noise occurs.

• Recently, iterative joint estimation and decod-
ing/detection algorithms have been proposed that
make use of the a priori statistics of the phase noise
process [8, 9]. These algorithms are computationally
rather complex, prevent the use of off-the-shelf decoders
and assume detailed knowledge about the phase noise
statistics at the receiver.

In this contribution, we apply the basis expansion model to
the problem of phase noise estimation from pilot symbols
only, using the orthogonal basis functions from the discrete
cosine transform (DCT). In contrast to the case of channel
estimation, the phase noise does not enter the observation
model in a linear way. Section 2 presents the phase noise
estimation algorithm, based on the estimation of only a few
DCT coefficients. Section 3 contains the performance analy-
sis of the proposed algorithm in terms of the mean-square
error (MSE) of the phase estimate. Analysis results are con-
firmed by computer simulations in section 4, which consider
both the MSE and the associated bit error rate (BER) degra-
dation. Conclusions are drawn in section 5.

2. ESTIMATION ALGORITHM

We consider the transmission of a block of K data symbols
over an AWGN channel that is affected by phase noise. The
resulting received signal is represented as:

r(k) = a(k)ejθ(k) + w(k) for k = 0, ...,K − 1 (1)

where the index k refers to the k-th symbol interval of length
T , {a(k)} is a sequence of data symbols with symbol en-
ergy E[|a(k)|2] = Es, the additive noise {w(k)} is a se-
quence of i.i.d. zero-mean circularly symmetric complex-
valued Gaussian random variables with E[|w(k)|2] = N0,
and θ(k) is a time-varying phase noise process with KxK
correlation matrix Rθ.
The symbol sequence {a(k)} contains KP known pilot sym-
bols at positions ki, i = 0, ...,KP − 1, with constant magni-
tude: |a(ki)|2 = Es. From the observation of the received

signal at the pilot symbol positions ki, an estimate θ̂(k) of
the time-varying phase θ(k) is to be produced. The phase es-
timate will be used to rotate the received signal before data
detection, i.e., the detection of the data symbols is based

on {z(k)} = {r(k)exp(−jθ̂(k))}. The detector is designed
under the assumption of perfect carrier synchronization, i.e.,

θ̂(k) = θ(k). For uncoded transmission, the detection algo-
rithm reduces to symbol-by-symbol detection:

â(k) = arg min
a∈A

|z(k)− a|2, k /∈ {ki, i = 0, ...,KP − 1}
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with A denoting the symbol constellation. The phase θ(k)
can be represented as a weighed sum of K basis functions
over the interval [0,K − 1]:

θ(k) =

K−1∑
n=0

xnψn(k), k = 0, ...,K − 1 (2)

As θ(k) is essentially a lowpass process, it can be well approx-
imated by the weighed sum of a limited number N (<< K)
of suitable basis functions:

θ(k) ≈
N−1∑
n=0

xnψn(k), k = 0, ...,K − 1 (3)

In this contribution we make use of the orthonormal discrete
cosine transform (DCT) basis functions, that are defined as

ψn(k) =

{√
1
K

n = 0√
2
K
cos
(

πn
K

(
k + 1

2

))
n > 0

Hence, from (2), xn is the n-th DCT coefficient of θ(k).
As ψn(k) has its energy concentrated near the frequencies
n/2KT and −n/2KT , the DCT basis functions are well
suited to represent a lowpass process by means of a small
number of basis functions.

In the following, we produce from the observation {r(ki)}
at the pilot symbol positions ki, with i = 0, ...,KP − 1, an
estimate x̂n of the coefficients xn, with n = 0, ..., N−1, using

the phase model (3) with equality. The final estimate θ̂(k)
is obtained by computing the inverse DCT of {x̂n}:

θ̂(k) =

N−1∑
n=0

x̂nψn(k) for k = 0, ...,K − 1 (4)

However, as (3) is not an exact model of the true phase
θ(k), the phase estimate is affected not only by the additive
noise contained in the observation, but also by a phase noise
modeling error. Considering the observations (1) at instants
ki, and assuming that (3) holds with equality, we obtain:

rP = D(x)aP + wP (5)

where, for i = 0, ...,KP − 1; (rP)i = r(ki), (wP)i =
w(ki), (aP)i = a(ki) and D(x) is a KP xKP diagonal ma-
trix with

(D(x))i = ej(ΨPx)i

and (ΨP)i,n = ψn(ki), (x)n = xn, n = 0, ..., N − 1 with
N ≤ KP . The Kp × 1 vectors rP, aP and wP can be viewed
as resulting from subsampling {r(k)}, {a(k)} and {w(k)} at
the instants ki that correspond to the pilot symbol positions.
Similarly, the n-th column of the KP × N matrix ΨP is
obtained by subsampling the n-th DCT basis function ψn(k).
Maximum likelihood estimation of x from rP results in

x̂ML = argmin
x
|rP −D(x)aP|2

As x enters the observation rP in a non-linear way, the ML
estimate is not easily obtained. Therefore, we resort to a
suboptimum ad-hoc estimation of x, which is based on the
argument (angle) of the complex-valued observations. How-
ever, as the function arg(z) reduces the argument of z to an
interval [−π, π], taking arg(r(ki)) might give rise to phase

wrapping, especially when the time-average of θ(k) is close to
−π or π. In order to reduce the probability of phase wrap-
ping, we first rotate the observation r over an angle θavg

that is close to the time-average of θ(k), then we estimate
the DCT coefficients of the fluctuation θ(k)−θavg and finally,

we compute the phase estimate θ̂(k). We select

θavg = arg

(
Kp−1∑
i=0

r(ki)

)

and construct r′ with

(r′)i = r′(ki)

= arg(r(ki)a
∗(ki)exp(−jθavg)) (6)

for i = 0, ...,KP − 1

We obtain an estimate x̂′ of the DCT coefficients of the
fluctuation θ(k) − θavg through a least-squares fit x̂′ =
argminx |r′ −ΨPx|2, yielding:

x̂′ = (ΨP
T ΨP)−1ΨP

T r′ (7)

The estimation of the phase trajectory involves the inver-
sion of the N × N matrix ΨP

T ΨP, which depends on the
pilot symbol positions {ki, i = 0, ...,KP − 1}. In order that
(ΨP

T ΨP)−1 exists, we need N ≤ KP . Now we point out
that the pilot symbol positions can be selected such that
ΨP

T ΨP is diagonal, or, equivalently, that the N columns of
the KP × N matrix ΨP are orthogonal. Such selection of
{ki} avoids the need for matrix inversion in (7). Denoting
by φn(i) the orthonormal DCT basis functions of length KP ,
it is easily verified that selecting {ki} such that

ki =
iK

KP
+
K −KP

2KP
, i = 0, ...,KP − 1 (8)

gives rise to

ψn(ki) =

√
KP

K
φn(i) for n = 0, ...,KP − 1

so that

ΨP
T ΨP =

KP

K
IN (9)

with IN denoting the NxN identity matrix. Equation (7)
then reduces to

x̂′ =
K

KP
ΨP

T r′ (10)

The phase estimate is given by

θ̂ = θavg1 +
K

KP
ΨKΨP

T r′ (11)

where (θ̂)k = θ̂(k), (1)k = 1, (ΨK)k,n = ψn(k), k =
0, ...,K − 1;n = 0, ..., N − 1. Note from (11) that the es-
timation algorithm does not need specific knowledge about
the phase noise process. As r′(ki) from (6) can be viewed

as a noisy version of θ(ki)− θavg, the phase estimate θ̂ from

(11), or, equivalently, the phase estimate θ̂(k) from (4), can
be interpreted as an interpolated version of the subsampled
noisy phase trajectory.
In order that all ki from (8) be integer, K must be an



odd multiple of KP , i.e. K = (2d + 1)KP , yielding ki =
(2d + 1)i + d. The resulting pilot symbol configuration is
suited for estimating any number of DCT coefficients not ex-
ceedingKP . WhenK is not an odd multiple ofKP , rounding
the right-hand side of (8) to the nearest integer gives rise to
pilot symbol positions that still yield an essentially diagonal
matrix ΨP

T ΨP in which case the simplified equations (10)
and (11) can still be used.

3. PERFORMANCE ANALYSIS

As the observation vector rP is a nonlinear function of the
carrier phase, an exact analytical performance analysis is
not feasible. Instead, we will resort to a linearization of the
argument function in (6) in order to obtain tractable results.
Linearization of the argument function yields

(r′i) = arg
(
ej(θ(ki)−θavg)(Es + a∗(ki)w(ki)e

−jθ(ki))
)

≈ θ(ki)− θavg + nP (i) (12)

for i = 0, ...,KP − 1, where {nP (i)} is a sequence of i.i.d.
zero-mean Gaussian random variables with varianceN0/2Es.
Note that (12) incorporates the true phase θ(ki) instead of
the approximate model (3), so that our performance analysis
will take the modeling error into account. In order that
the linearization in (12) be valid, we need |θ(ki) − θavg| <
π (because |arg(z)| < π) and |w(ki)|2 << Es; hence, the
phase noise fluctuations should not cause phase wrapping
and Es/N0 should be sufficiently large. Substituting (12)
into (11) yields

θ̂ =
K

KP
ΨKΨT

P(θP + nP) (13)

=
K

KP
ΨKΨT

PSθ +
K

KP
ΨKΨT

PnP (14)

where (nP)i = nP (i), (θP )i = θ(ki) and the KP ×K matrix
S is such that its i-th row has a ‘1’ at the ki-th column and
zeroes elsewhere (i = 0, ...,KP − 1). The estimation error
resulting from (14) is given by

θ̂ − θ = (
K

KP
ΨKΨT

PS− IK)θ +
K

KP
ΨKΨT

PnP (15)

where IK denotes the K ×K identity matrix. If the model
(3) were exact, we would have θ = ΨKx and θP = ΨPx,
yielding

θ̂ = θ +
K

KP
ΨKΨT

PnP

in which case the estimation error would be caused only by
the additive noise.

As a performance measure of the estimation algorithm we
consider the mean-square error (MSE), defined as

MSE =
1

K
E
[
trace((θ̂ − θ)(θ̂ − θ)T )

]
(16)

Substituting (15) into (16) yields

MSE =
N0

2Es

N

KP
+MSE∞ (17)

where

MSE∞ =
K

K2
P

tr
(
E[θP θT

P ]ΨPΨT
P

)
− 2

KP
tr
(
E[θP θT ]ΨKΨT

P

)
+ E[θ2(k)] (18)

The first term in (17) denotes the contribution from the addi-
tive noise, whereas the second term in (17) constitutes a MSE
floor, caused by the phase noise modeling error. The phase
noise statistics affect the MSE floor through the autocorrela-
tion matrix Rθ. The MSE floor decreases with increasing N
(because the modeling error is reduced when more DCT co-
efficients are taken into account), whereas the additive noise
contribution to the MSE increases with N (because N para-
meters need to be estimated). Hence, there is an optimum
value of N that minimizes the MSE.

From the nonlinear observation model (5), which assumes
that (3) holds with equality, we compute the Cramer-Rao
lower bound on the MSE (16) resulting from any unbiased
estimate x̂ of the DCT coefficients of θ(k) :

MSE ≥ 1

K
trace

(
J−1
)

(19)

In (19), J denotes the Fisher information matrix related to
the estimation of x from (5), which is found to be :

(J)n,n′ =
2Es

N0

K

KP
δn−n′ (20)

Combining (19) with (20) yields the following performance
bound:

MSE ≥ N0

2Es

N

KP
(21)

Expression (21) indicates that the sensitivity to additive
noise increases with the number N of estimated DCT co-
efficients. Comparison of (17) and (21) shows that our ad
hoc algorithm (11) yields the minimum possible (over all un-
biased estimates) noise contribution to the MSE (assuming
that the linearization of the observation model is valid).

4. SIMULATION RESULTS

In this section we assess the performance of the proposed
technique in terms of the MSE of the phase estimate and
the resulting BER degradation by means of computer sim-
ulations. We consider the presence of Wiener phase noise
θ(k), which is described by the following system equation:

θ(k + 1) = θ(k) + ∆(k), k = 0, ...,K − 2 (22)

where the initial phase noise value θ(0) is uniformly distrib-
uted in [−π, π] and ∆(k) is a sequence of i.i.d. zero-mean
Gaussian increments with variance σ2

∆. Hence, θ(k) can be
viewed as the output of an integrator with a white noise in-
put. From (22) it follows that the variance of the Wiener
phase noise increases linearly with the time index k, which
indicates that the process is non-stationary.

First, we assume transmission of a block of length K = 105
symbols, consisting of KD = 90 uncoded QPSK data sym-
bols and KP = 15 constant-energy pilot symbols (η =
KP /K = 1/7) that are inserted into the sequence accord-
ing to (8):

• Figure 1 shows the MSE as a function of Es/N0 for
N = 1, 4 and 10, in the presence of Wiener phase noise
with σ2

∆ = 0.0027 rad2 (which corresponds to σ∆ = 3◦).
We observe a MSE floor in the high-Es/N0 region which
can be reduced by increasing the number N of estimated
coefficients. Figure 1 also confirms that for low Es/N0

the MSE increases when N increases. This high-Es/N0

and low-Es/N0 behavior indicates that for given K, KP

and Es/N0 the MSE can be minimized by proper selec-
tion of N .
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Figure 1: MSE when Wiener phase noise with σ∆ = 3◦ is
present. K = 105, KP = 15.

• Figure 2 shows the Bit Error Rate (BER) as a function of
Eb/N0 for N = 1, 4 and 10 (Eb is the energy per trans-
mitted bit, Es = 2(1 − η)Eb for QPSK). The reference
BER curve corresponds to a system with perfect synchro-
nization and no pilot symbols (η = 0). We observe that
for low Eb/N0, it is sufficient to estimate only the time-
average of the phase (i.e., N = 1). Estimating a higher
number of DCT coefficients can lead to a worse BER per-
formance for low Eb/N0, because the MSE of the phase
estimate due to additive noise increases with N . At high
Eb/N0 a BER floor occurs which decreases with increas-
ing N , so in this region it becomes beneficial to estimate
more than just one DCT coefficient. Hence, the optimal
number of estimated coefficients Nopt will depend on the
operating Eb/N0.

Figure 3 shows the BER degradation1 when (1) η = 20% and
σ∆ = 3◦ and (2) η = 10% and σ∆ = 2◦, for the following
phase noise estimation algorithms:

• The proposed DCT-based algorithm with orthogonal pi-
lot symbol placement (8). The number of estimated co-
efficients N is chosen such that the BER degradation is
minimum for the considered block length K.

• Estimation of only the time-average of the phase noise.

1The BER degradation caused by some impairment is char-
acterized by the increase (in dB) of Eb/N0 (as compared to the
case of no impairment) needed to maintain the BER at a specified
reference level
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Figure 2: BER when Wiener phase noise with σ∆ = 3◦ is
present. K = 105, KP = 15.

Half the number of pilot symbols are arranged at the
beginning of the symbol sequence, the remaining half are
placed at the end of the sequence.

• The method from Luise et al. [7], where again half the
number of pilot symbols are arranged at the beginning
of the sequence and the other half at the end of the se-
quence. The phase noise over the total symbol block is
approximated as a linear interpolation between the av-
erage phase values over the first and the second pilot
symbol cluster.

We observe that estimating only the time-average or the lin-
ear trend of the phase noise yields poor BER performance,
except for small K. For K = 10, the DCT-based algo-
rithm also estimates the time-average only (because N = 1
is optimum for K = 10); we observe that the second algo-
rithm (with pilot symbols at positions 0 and 9) performs
slightly better than the DCT-based algorithm (with pilot
symbols at positions 2 and 7) for K = 10. However, when
the block length is increased, the DCT-based algorithm that
estimates multiple DCT coefficients outperforms both the
time-averaging algorithm and Luise et al.’s algorithm and
leads to a BER degradation that decreases with increasing
K until an optimal value for K is reached.

5. CONCLUSIONS AND REMARKS

In this contribution we have considered an ad hoc feedfor-
ward data-aided phase noise estimation algorithm that is
based on the estimation of only a few (N) coefficients of the
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Figure 3: Comparison of BER degradation for BER = 10−4 as
function of K. (1) η = 20% and σ∆ = 3◦; (2) η =
10% and σ∆ = 2◦ for different estimation algorithms.

DCT basis expansion of the time-varying phase. The algo-
rithm does not require detailed knowledge about the phase
noise statistics. Linearization of the observation model has
indicated that the mean-square error of the resulting es-
timate consists of an additive noise contribution (that in-
creases with N) and a MSE floor caused by the phase noise
modeling error (that decreases with N). The noise contribu-
tion coincides with the Cramer-Rao lower bound.
These analytical findings have been confirmed by means of
computer simulations. The numerical results illustrate that
the MSE and BER degradation can be minimized by a suit-
able choice of K and N . For large K, substantial improve-
ment is obtained as compared to the case where the phase
noise is approximated by its time-average or a linear trend.
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