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Abstract

A Perfectly Matched Layer (PML) based formalism is proposed to derive fast converging series expansions for the 1D periodic

3D Green’s functions of layered media. The Shanks transform is applied to accelerate the PML-based series.

1. Introduction

Periodic structures are of great practical use in many applications in antenna systems, microwave electronics and optics.

Efficient modelling techniques rely on the Floquet-Bloch theorem to limit the simulation domain to a single unit cell. Up to

now, little has been published about the 1D periodic 3D Green’s function, especially when also considering the presence of

a stratified dielectric background medium. In [1] the 1D periodic 3D Green’s functions for a microstrip substrate are derived

in the spectral domain first, and the corresponding spatial-domain quantities are obtained through an efficient sum of inverse

Fourier transforms.

We propose a Perfectly Matched Layer (PML) based formalism to derive fast converging series expansions for the 1D

periodic 3D Green’s functions of layered media. The PMLs are used to transform the open layered medium into a closed

waveguide configuration. This results in an efficient expansion for the 3D Green’s function of a point source in the stratified

background medium in terms of a set of discrete modes of the closed waveguide containing the PML, while the PMLs mimic

the open character. As both the spectral and spatial domain series suffer from slow convergence, the Shanks transform is

applied to accelerate the PML-based series.

2. Theory

Figure 1: 1D periodic set of point sources on a PML-terminated microstrip substrate.

Consider a planar multilayered dielectric background medium in which we place a 1-D grid of point sources (Fig. 1),

resulting in a periodic problem in the x-direction with the period given by b; two adjacent point source excitations differ by

at most a phase factor e− jkxb. For a faster evaluation of the 1D periodic 3D Green’s functions, we construct a parallel plate

waveguide by terminating the free space with two perfect electrically conducting plates backed by a Perfectly Matched Layer

(PML) with thickness dPML and with material parameters κ0 and σ0 [2]. This results in a series expansion for the 3D Green’s
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function for a 1D periodic grid of point sources:
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with βn and the expansion coefficients An(βn,z|z′) given in [3]. Applying of the Poisson transform yields following equivalent

series expansion
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By applying the PML formalism, we have replaced the classic time-consuming Sommerfeld integrated series over a

single index m by two equivalent series (1) and (2), over double indices m and n, but for which the terms are easy to evaluate.

First concentrate on the index n, which runs over the different modes in the waveguide formed by the substrate together

with the PMLs. In [4] the convergence of a 2D Green’s function expansion for a line source on a microstrip substrate is

analyzed and it is shown that exponential convergence is obtained provided the distance |y− y′| is not too small. In a similar

way, series (2) converges at a rate ∼ e−nC1|y−y′|, for n large, C1 being constant for m fixed, thus exponentially as a function

of n, yielding a rapidly converging series provided the distance |y− y′| is not too small. Series (1) converges at a rate

∼ e−nC2

√
(x−x′−mb)2+(y−y′)2

, for n large, C2 a constant, thus exponentially as a function of n, yield a fast converging series

provided that either the distance |x− x′| or the distance |y− y′| are not too small. As a function of m, on the other hand,

series (2) converges at a rate ∼ e−m 2π
b
|y−y′|, for m large and for arbitrary but fixed n, thus exponentially as a function of m,

resulting in a rapidly converging series provided the distance |y− y′| is not too small. Yet, in order to obtain exponential

convergence for series (1) as a function of m, it is required that the index n is sufficiently large. For small mode orders n,

series (1) is slowly convergent as a function of m. In [4] the Shanks transform is proposed to accelerate convergence of the

PML-based mode expansion of the 2D Green’s function for a line source on a microstrip substrate. In a similar way, we apply

the Shanks procedure for both series (1) and (2), in order to accelerate convergence as a function of the PML-based mode

index n. Moreover, for each index n, the Shanks transform is applied to accelerate convergence as a function of the periodicity

index m for both series (1) and (2).

All acceleration schemes presented up to now do not allow to calculate the 1D periodic 3D Green’s function accurately

and efficiently when both distances |x− x′| and |y− y′| are very small. Indeed, in [5] it is shown for the 2D case that the

PML-based series does not capture the correct singular behavior of GA at the interface of a non-magnetic (µr = 1) microstrip

substrate. Therefore, we combine part of the PML-based series (1) with one term of the Sommerfeld integrated series to

capture the correct singularity. The following series is proposed in order to evaluate the 1D periodic 3D Green’s function

G
per,1D
A for very small distances |x− x′| and |y− y′| at the interface:
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The evaluation of the Green’s function GA(x,y,z;x′,y′,z′) for a single point source in the stratified medium is then performed

by means of the classical Sommerfeld integration.

3. Examples

Consider a microstrip substrate with thickness d = 9 mm, εr =3 and µr = 1. To obtain an expansion into PML-based modes,

a closed waveguide is formed by adding a perfect electrically conducting plate above the substrate, such that dair = 5 mm,

dPML = 3.5 mm. A strongly absorbing PML is obtained for κ0 = 15 and
σ0

ωε0
= 10. The free-space wavelength at the

operating frequency is chosen to be λ0 = 2 cm. We determine the Green’s function G
per,1D
V (x,y,z;x′,y′,z′) for a 1D periodic

set of point sources with spacing b = 1.5 cm (Fig. 1). Fig. 2 presents the Shanks-transform accelerated series expansions

based on the spatial (1), spectral (2) and hybrid (3) PML modal series for
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with kx = 0, as

a function of k0|y− y′|, which is in excellent agreement with the classic Sommerfeld integrated spectral series, accelerated



following [1]. On a Pentium T7400 Centrino Duo 2.16 GHz machine with 2GB RAM, the evaluation of 200 points based

on the Shanks-transform accelerated spatial series expansion (1) takes 3 s, the Shanks-transform accelerated spectral series

expansion (2) takes 1 s, and the Shanks-transform accelerated hybrid series expansion (3) takes 11 s, whereas the accelerated

classic Sommerfeld integrated spectral series requires 1 min 38 s of CPU time. In Fig. 3 the relative error is plotted as a

function of distance, comparing the different series expansion to the hybrid series expansion, which is generally valid and

thus chosen as a reference solution. All PML-based series expansions for G
per,1D
V exhibit an accuracy better than 0.004%

at distances as small as |y− y′| = λ0
60

. The discrepancy between the hybrid series (3) and the classic Sommerfeld integrated

spectral series, accelerated by the method proposed in [1], is smaller than 0.02%. Fig. 4 shows the Green’s function series
∣
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∣
inside the dielectric substrate, calculated as a function of k0|y− y′| for kx = 0. Again, an

excellent agreement is found between the spatial, spectral and hybrid Shanks-transform accelerated series expansions and

the accelerated [1] classic Sommerfeld integrated spectral series, together with a significant speedup (3 s for the accelerated

spatial series (1), 4 s for the accelerated spectral series (2), 11s for the accelerated hybrid series (3), versus 5 m 47 s). Finally,

Fig. 5 proposes the Green’s function series
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for the excitation at the substrate-air interface and

the observation point inside the dielectric substrate.
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Figure 2: 1D periodic 3D Green’s function
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Figure 3: Relative error of the different expansions for G
per,1D
V (0,y,9mm;0,y′,9mm)|.

 0.01

 0.1

 1

 10

 100

 0  2  4  6  8  10  12  14  16  18  20

|G
Vp

er
,1

D
(0

,y
,7

m
m

;0
,y

’,
7
m

m
)|

k0 |y-y’|

hybrid series (3)
spectral PML series (2), Shanks

spatial PML series (1)
classic series + acceleration following [1]

Figure 4: 1D periodic 3D Green’s function
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Figure 5: 1D periodic 3D Green’s function

∣

∣

∣
G

per,1D
V (0,y,9 mm;0,y′,7 mm)

∣

∣

∣
.



XXIX General 
Assembly

7-16 August 2008
Chicago, USA

Support: If you have problems or questions related to the
installation of this disc, please contact the 3WAIsmen at
FAX: (818) 952-0183 or e-mail: wais3men@yahoo.com

International Union 
of Radio Science

Union Radio Scientifique
Internationale




