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Abstract: In this paper, a two-and-a-half dimensional exact forward solver, based on a volume integral
equation, is used to simulate three-dimensional millimeter wave scattering of a dielectric object hidden un-
der clothing. Since a three-dimensional Gaussian beam only illuminates a spatially limited region of the
human body, we can assume invariance of the electromagnetic properties ofthe abdomen in the longitudinal
direction (vertical for a standing person). This way, the human body canbe modelled as an infinitely long
inhomogeneous (lossy) dielectric cylinder with arbitrary cross-sectionalshape. A complex source formu-
lation is used to implement this three-dimensional Gaussian beam, which may be oblique, and the human
body is further reduced to a simple model, containing four different layers: clothing, air, human skin and
body fat.

Keywords: 2.5D scattering, millimeter waves, contrast source integral equation, 3D Gaussian beam, simple
human body model.

1. Introduction

For security applications, the detection of hidden objects under clothing is animportant research area [1]-
[3]. Millimeter waves (mm-waves) have ideal characteristics for this purpose since they are non-ionizing
and penetrate clothing, while being absorbed and reflected by the human skin [4]. Moreover, the relatively
small wavelength yields good resolution possibilities. For the development of such systems it is important
to study the mm-wave scattering behavior of the human body. This could be done by full three dimensional
(3D) electromagnetic simulation tools [5], but since the dimensions of the hiddenobject and the human body
are several to many wavelengths and a fine discretization is needed due to the relatively high permittivity
of the skin, this would yield a huge amount of unknowns. However, when mm-waves are used in active
imaging systems, the incident field is usually a 3D Gaussian beam which only illuminates a spatially limited
region. Since the size of the illuminated body region is only a few centimeter in the longitudinal direction
(vertical for a standing person), it follows that we can assume invariance of the electromagnetic properties of
the human abdomen along this direction. Therefore it can be modelled as an infinitely long inhomogeneous
(lossy) dielectric cylinder with arbitrary cross-sectional shape.
For such configurations, we use a 2.5D full-wave forward solver [6],based on a Volume Integral Equation
(VIE), to calculate the 3D electromagnetic scattered field. This way, objects with cross-sectional dimensions
of several to many wavelengths can be handled with a reasonable computational effort, while maintaining
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the full 3D character of the incident field. A similar technique is proposed in [7] for modeling geophysical
low-frequency (diffusive) electromagnetic scattering in cross-well logging.
In this paper, we use a simple model for the cross-section of the human bodyto compare the mm-wave
scattering behavior of the human body with and without hidden dielectric object. In section 2, the 2.5D
forward solver is presented, as well as the implementation of the 3D Gaussianbeam. Section 3 deals with
the obtained simulation results.

2. 2.5D Forward Solver

A. Contrast Source Integral Equation

Consider an inhomogeneous, possibly lossy, dielectric cylinder with arbitrary cross-sectional shape and
with axis along thez-direction in a 3D cartesian coordinate systemρ = r + zuz, with r = xux + yuy the 2D
position vector. This object is surrounded with free space and has a complex permittivity ǫ(r) = ǫr(r)ǫ0.
We formulate the problem in the frequency domain and omit the time dependence exp(−iωt) . The scat-
tering object is illuminated with a 3D incident fieldEi(r, z) and the resulting scattered field is defined as
Es(r, z) = E(r, z) − Ei(r, z), with E(r, z) the total field.
A contrast source integral equation (CSIE) in the 2D space-spatial frequency domain (r; kz) is obtained from
performing a spatial Fourier transform with respect to thez-coordinate, defined as ˆg(r, kz) =

∫ ∞
−∞

g(r, z)e−ikzzdz,
on the Maxwell equations:

Êi(r, kz) =
D̂(r, kz)
ǫ(r)

−
(
k2

0I + ∇̂∇̂
)
· Âs(r, kz). (1)

The electric flux densityD(r, z) is chosen as the unknown of the scattering problem [5] and the vector
potentialÂs(r, kz) is defined as

Âs(r, kz) =
1
ǫ0

∫

S
Ĝ(r, r′; kz)χ(r′)D̂(r′, kz)dr′, (2)

where∇̂ = (∂x, ∂y, ikz) and

χ(r) =
ǫ(r) − ǫ0
ǫ(r)

(3)

is the normalized permittivity contrast. Because of this contrast, the integration in(2) can be limited to the
object domainS , where the permittivity of the objectǫ(r) differs fromǫ0. The Green’s function is given by

Ĝ(r, r′; kz) =
i
4

H(1)
0

(√
k2

0 − k2
z |r − r′|

)
. (4)

We discretize the object domainS in square cells with cell size∆ and expand the 3D fields using rooftop
basis functions. The complex permittivity takes a constant value within each cell. A Method of Moments
with Galerkin weighting is applied to discretize the CSIE and the resulting linear set of equations is solved
iteratively with a stabilized biconjugate gradient Fast Fourier Transform method.

24th Annual Review of Progress in Applied Computational Electromagnetics March 30 - April 4, 2008 - Niagara Falls, Canada  '2008 ACES

64



B. 3D Gaussian Beam As Incident Field

The implementation of a Fourier transformed 3D Gaussian beam, under the paraxial approximation, is based
on the complex-source beam formulation proposed in [8] for a beam-type wave object which corresponds
with the classic formulation within the paraxial approximation. We consider a beam that is propagating along
a ui-direction, with the beam center located atρ0 = (x0, y0, z0) and beam waistw0. A 3D complex source
beam is obtained by evaluating the 3D Greens’ function,G(s) = 1

s exp(ik0s), with respect to a complex
source-pointρc = ρ0 + ibui . This complex source point is a combination of the real source pointρ0 — the
beam waist center — on the one hand, and beam parameters, as the beam collimation distanceb = w2

0k0/2
and the beam directionui on the other hand. A complex distance functions(r) is defined as

s(r) = ((x − xc)
2 + (y − yc)

2 + z2
c)1/2, (5)

with Im(s(r)) ≤ 0. We obtain the Fourier transform of this beam by replacing the 3D Greens’ function with
the 2.5D Greens’ function:

Êi(r, kz) = Ĝ(s; kz)upol =
i
4

H(1)
0

(√
k2

0 − (kc − kz)2 s
)

upol, (6)

wherekc = k0 ui · uz.

3. Scattering Of Objects Hidden On A Human Body

The 2.5D solver described above is used to study mm-wave scattering from aquasi-2D object that is hidden
on an adult human body and which is illuminated by a 3D TM-polarized incident Gaussian beam —upol =

uz — at 100 GHz. A simple model for the human body cross-section is shown is Fig. 1, where the limited
penetration of mm-waves into the human body [4] as well as the finiteness of theilluminated region in the
x-direction has allowed us to consider only a small part of the abdomen cross-section. The 3D Gaussian
beam is propagating along they-axis with a waistw0 = 8 mm and its beam centerr0 is chosen at the exterior
surface of the skin inx = y = 0.
In this restricted model we distinguish 4 layers: clothing, air, dry skin and fat. The thicknessd and relative
permittivity ǫr for each layer are chosen as follows:d = 2 mm andǫr = 4.0+ i 0.1 for clothing [4],d = 3
mm andǫr = 1 for air,d = 2 mm andǫr = 5.60+ i 7.09 for dry skin [9] andd = 10 mm andǫr = 2.89+ i 0.64
for fat [9]. A rectangular dielectric object with width 15 mm, thickness 2.5 mm and relative permittivity
ǫob j = 2, representing certain explosives, is placed between the clothing and skin. The computational domain
has dimensions of 110 mm in thex-direction and 40 mm in they-direction and is discretized into 1120×416
cells with cell size∆ = 0.1 mm, yielding a total of 1.397760 million unknowns. The simulation without
hidden object proves that the dimensions of the restricted model are large enough since no remarkable field
values appeared on the upper and lower boundaries of Fig. 1, as well as inside the abdomen. The incident
field is calculated using the complex-source beam formula for five differentkz values.
Simulations, with and without hidden object were computed in 2h. 43 min. and 2h.35 min., respectively.
Fig. 2 shows the amplitude and phase of the difference between the total field with and without object and
clearly reveals the presence of the hidden object.
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Figure 1: Configuration.
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Figure 2: Amplitude (left) and phase (right) of the difference between the total field with hidden dielectric
object and the total field without hidden object.
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4. Conclusion

We have used a 2.5D exact forward solver to simulate three-dimensional millimeter wave scattering of a
hidden dielectric object on a simplified human body model, which was illuminated by a3D Gaussian beam.
This beam has been implemented using a complex source formulation. Gaussianbeam and millimeter
wave properties have been used to reduce the abdomen cross-section tothe presented simple model. The
introduction of a hidden dielectric object has led to a noticeable change in the total field, as could be seen in
a figure of the difference between the total field with and without object.
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