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ABSTRACT

Due to memory dependencies between functions, it is difficult to parallelize a program. In this pa-
per we propose a profiling technique that characterizes the data behavior of functions to minimize
the memory dependencies by identifying functions that are operating on the same data.
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1 Introduction

In the recent past the increase of sequential speed (i.e. clock speed) has slowed down, while
the parallel throughput keeps increasing. The rise of the multi-core reflects this trend. Unfor-
tunately humans – consequently also programmers – tend to reason sequential, leaving us
with programs which cannot utilize all this parallel power. Although writing parallel pro-
grams is not impossible, it is prone to bugs which are hard to detect. If we want to spare the
software developers from this daunting task and we do not want to change our hardware,
it will be up to the compiler to parallelize the program.

While the final goal is to setup a framework that assists the compiler into paralleliz-
ing a program (perhaps speculatively), we will focus in this paper on a data-driven profil-
ing technique that provides us with information on how different functions are related to
each other. We will only consider dependencies through memory, since registers can be pre-
dicted [Tull99] or precomputated [Coll01]. In a following step this information can be used
to parallelize a program. Previous profiling techniques [Marc02][Quin05] for parallelizing
were mainly control-driven. This technique can also be applied on a Cell processor [Flac06]
to divide a single program over several processing units with their own local storage.
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2 Methodology

Figure 1: Classification of data
behavior.

Figure 1 shows the different ways in which a function
can use data. Producer (writes data, read by other func-
tions), Consumer (reads data, written by other functions),
Constant Consumer (reads data, without traceable origin)
and Private Consumer (reads data, self-written). This can
be done for each function, leading to a graph where some
nodes of data produced by one function, will be con-
sumed by one or more other functions.

During the profiling we register all loads and stores,
together with the function that issued the instruction. For
loads the producer of the loaded value is also recorded.
This information allows us to find all the producer-
consumer relations between the functions.

Memory instructions that are related to stack operations are ignored, because these are
used for passing arguments and local data structures. When we have a read operation of
which there is no previous producer, we will assume that it is constant. This situation occurs
when for example a program reads data from a constant data section. The same behavior
tends to happen with system calls.

Profiling was done with a modified Dynamic SimpleScalar [Huan03], a simulator for the
PowerPC architecture. We used the SPEC CPU2000 benchmarks for evaluation.

3 Evaluation

We will mainly discuss the results of the benchmark bzip2 with reference input program,
because of its simplicity, keeping the results surveyable in this evaluation.
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Figure 2: Classification of data behavior of top-ranked functions of bzip2.



In a first step we want to classify the behavior of the functions according to the classi-
fication introduced in Section 2. We show the functions with the most data dependencies
in Figure 2. Only a small fraction of these functions shows homogeneous behavior. In most
cases pure producers are initialization functions, while pure constant consumers, such as
strlen and __libc_read are library functions. The majority of the other functions contain a mix
of producer, consumer and private consumer data dependencies.

Figure 3 gives the fraction of addresses that are written or read by a number of functions
indicated on the X-axis. For load instructions we make a distinction between loads that have
a known producer and constant loads that have no preceding store operation, and are con-
sidered constant. Figure 3(a) shows that for bzip2 7.5% of all loads are constant loads. About
60% of all addresses are written by at most 2 different functions. This indicates that only a
few functions are responsible for producing each data structure. In this case any data is writ-
ten by at most 4 functions. Also data is read by at most 6 functions. Figure 3(b) shows for
crafty a similar distribution for stores (at most 6), but its data is read by much more functions
(50% by more than 10 functions). This points to data structures shared by many functions.
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Figure 3: Cumulative distribution of accesses by different functions per address

In a following step we build up a data dependency graph (Figure 4), with as nodes the
functions and as edges the dependencies between two functions. A node like f_22 is not
connected to any other nodes, meaning that this node reads no data produced by other
functions. Communication with this function must happen through arguments on the stack
and registers. There are also two separate clusters of functions that do not interact with each
other. In the left cluster we have marked a subcluster of three functions. This subcluster is
responsible for 30% of the execution time of the whole cluster. The large number of memory
dependencies between the functions in the subcluster compared to the limited outgoing
dependencies with the other subcluster, makes it possible to pipeline between those two
subclusters.

4 Conclusions and Future Work

In this paper we proposed a profiling technique that characterizes the data behavior of func-
tions. Apart from a few functions, most functions did not show a homogeneous behavior.



Figure 4: Partial data dependency graph for bzip2.

The evaluation shows that functions and data can in principle be clustered with minimal
memory dependencies.

Future work consists of developing an algorithm to determine clusters of functions op-
erating on common data, based on the introduced classification.

References
[Coll01] J. COLLINS, H. WANG, D. TULLSEN, C. HUGHES, Y. LEE, D. LAVERY, AND J. SHEN. Speculative

precomputation: long-range prefetching of delinquent loads. In ISCA ’01: Proceedings of the 28th
annual international symposium on Computer architecture, pages 14–25, 2001.

[Flac06] FLACHS, B. AND ASANO, S. AND DHONG, S.H. AND HOFSTEE, H.P. AND GERVAIS, G. AND ROY
KIM AND LE, T. AND PEICHUN LIU AND LEENSTRA, J. AND LIBERTY, J. AND MICHAEL, B. AND
HWA-JOON OH AND MUELLER, S.M. AND TAKAHASHI, O. AND HATAKEYAMA, A. AND WATAN-
ABE, Y. AND YANO, N. AND BROKENSHIRE, D.A. AND PEYRAVIAN, M. AND VANDUNG TO AND
IWATA, E.. The microarchitecture of the synergistic processor for a cell processor. IEEE Journal of
Solid-State Circuits, 41(1):63–70, jan 2006.

[Huan03] X. HUANG, J. MOSS, K. MCKINLEY, S. BLACKBURN, AND D. BURGER. Dynamic SimpleScalar:
Simulating Java virtual machines. Technical Report TR-03-03, University of Texas at Austin, Februari
2003.

[Marc02] P. MARCUELLO AND A. GONZÁLEZ. Thread-Spawning Schemes for Speculative Multithreading. In
HPCA ’02: Proceedings of the 8th International Symposium on High-Performance Computer Architecture,
pages 55–64, 2002.

[Quin05] C. QUINONES, C. MADRILES, J. SÁNCHEZ, P. MARCUELLO, A. GONZÁLEZ, AND D. TULLSEN. Mi-
tosis compiler: an infrastructure for speculative threading based on pre-computation slices. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementa-
tion, pages 269–279, June 2005.

[Tull99] D. TULLSEN AND J. SENG. Storageless Value Prediction Using Prior Register Values. In ISCA’99:
Proceedings of the 26th International Symposium on Computer Architecture,, pages 270–279, 1999.


	Introduction
	Methodology
	Evaluation
	Conclusions and Future Work

