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Abstract: This paper introduces a strategy for patient-individualized control of induction phase during 
general anaesthesia. A down-to-earth, pragmatic (and possibly provocative) approach has been used. The 
core of the paper is the idea to avoid the direct use of the Bispectral Index signal (BIS) as a feedback 
signal, since it introduces artificial delays, it is noisy and in the initial stage of the induction it contains no 
useful information for control purposes because it hardly varies and it introduces nonlinearity. The effect 
site concentration (Ce) of the drug in the patient is instead used as the controller’s feedback signal.  Of 
course the BIS measurement is still indirectly used in our proposed control strategy, in order to adapt the 
parameters of the Hill curve - which relates BIS to Ce - resulting in a patient-individualized closed loop 
control of anesthesia. These ideas are validated on 12 virtually generated patients varying significantly in 
sensitivity to the drug effect, using a simple PID control. The control of the induction phase is split into 
two phases: the initial phase where no useful BIS feedback signal is available, hence target controlled 
infusion (TCI) with a fixed setpoint is temporarily applied; and the secondary phase when a useful BIS 
feedback signal becomes available and the TCI setpoint is adapted based on the estimated Hill-curve 
steepness. The approach is simple and excellent simulation results combined with theoretical insights 
indicate that the strategy looks promising for future clinical practice. 
Keywords: estimation, adaptation, PID control, linear control, anaesthesia 

 

1. INTRODUCTION 

Optimal sedation using a combination of hypnotics and 
analgesics has become an integral part of critical care 
medicine. However, standard dosing guidelines in the 
operation theatre often result in an inappropriate under- or 
over-sedation due to huge inter-patient pharmacological 
variability. Both under- and over-sedation can lead to 
increased morbidity and mortality (Kress et al, 2002). 
Manual patient-individualization of dosing schemes is 
actually not accurately applied due to lack of care resources.  
In order to individualize patient’s sedation trajectory, 
pathways to apply automation technology in order to better 
take into account and control pharmacological variability 
among critical ill patients can improve the efficiency of 
delivery of care and can reduce resource utilization.  
Several SISO control algorithms have been developed to 
control drug administration during anaesthesia, the first 
attempt being made as early as 1951 (Kiersey et al, 1951). 
The earliest anesthesia controllers use three-term controllers 
such as PID (Ritchie et al, 1987), which are by far the most 
commonly used type of fixed-gain controllers. In these cases 
it is assumed that all patients have similar response to the 
drug input, while the more recent work in this area (Gentilini 
et al, 2001) employs more sophisticated modelling 
approaches including multiple linear models and detailed 
non-linear compartment models of the patient. Due to the fact 
that PID controllers cannot anticipate to the response of the 
patient and do not have any knowledge of the drug 

metabolism, stability problems are present. Therefore, 
strategies using adaptive (Haddad et al, 2003; Yelneedi et al, 
2009; Dumont et al, 2009), predictive (Nunes et al, 2007; 
Ionescu et al, 2008; Nino et al, 2009) and bayesian-based (De 
Smet et al, 2008; Struys et al, 2004; Mortier et al, 1998) 
closed-loop control algorithms have been suggested. Most of 
these controllers use the Bispectral Index (BIS) signal as a 
feedback signal for control. BIS is an indirect measure of the 
EEG activity of the brain and provides insight into the degree 
of hypnosis induced in the patient. When compared against 
target controlled infusion, which is in fact manual control 
(i.e. the clinical nurse makes changes in the desired effect site 
drug concentration based on the BIS readings), the closed 
loop control using BIS signal performed better in terms of 
drug efficiency (Struys et al, 2004).   

However, the direct use of BIS as feedback signal poses 
some drawbacks from control engineering point-of-view: i) it 
is an indirect measure which introduces artificial and often 
varying time-delays into the system, originating from the 
signal processing algorithms used to extract the BIS values 
from the raw EEG signal (Ionescu et al, 2011); ii) it is a noisy 
signal; iii) it introduces a nonlinearity in the system and iv) 
during the initial phase of the induction it does not vary 
significantly, due to the sigmoid shape of the Hill curve.  

This paper presents an alternative approach to computer 
control during the induction phase of general anaesthesia, 
such that the BIS signal is not directly used as a feedback 
signal. The solution proposed in this paper is to use the effect 
site concentration (Ce) of the drug in the patient as a feedback 
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signal and to estimate the steepness of the Hill curve (relating 
the BIS and Ce) during the induction phase, resulting in a 
patient-individualized closed loop control of anaesthesia. 
These ideas are validated on 12 virtually generated patients 
varying significantly in sensitivity to the drug effect (i.e. the 
parameters of the Hill curve) with a simple PID control 
whose information is based on variations in the effect site 
concentration. 

The paper is organized as follows: the second section 
presents the structure of the patient compartmental model and 
the Hill curve parameters. The third section presents the 
proposed control strategy for the induction phase, along with 
the estimation algorithm of the required Hill curve 
characteristic parameters in order to obtain a patient-
individualised control. The fourth section presents the results 
of the simulation analysis on the 12 patients and discusses the 
extreme patient cases: very sensitive or very resistant to drug 
effect. A conclusion section summarises the main outcome of 
this paper and motivates the applicability of this strategy into 
clinical practice.  

2. MODEL OF THE PATIENT FOR PROPOFOL 
INFUSION AND BIS EFFECT 

Propofol is a hypnotic agent, whose pharmacologic properties 
have been well described and studied in different kind of 
patients (Struys et al, 2004; Mortier et al, 1998).  Propofol is 
used as a sedative agent in ICU, as well as the agent of choice 
for most short surgical procedures requiring transient 
unconsciousness. Propofol rate is the input of the model and 
the output is the Bispectral Index (BIS), a signal derived from 
the electroencephalogram (EEG). BIS values lie in the range 
of 0-100; whereas 90-100 range represents fully awake 
patients; 60-70 range and 40-60 range indicate light and 
moderate hypnotic state, respectively. For patient safety and 
fast recovery time, BIS should not decrease below 30. The 
patient model is a compartmental model, known as the 
pharmacokinetics - pharmacodynamics (PK-PD) model. 
Compartmental models are used to represent the distribution 
of drugs in the body based on mass balance concepts. The 
transport rate that leaves the compartment is assumed to be 
proportional to the drug concentration. The PK-PD model 
most commonly used for Propofol is the 4th order 
compartmental model described by Schnider (Schnider et al, 
1998, 1999), with the structure depicted in Figure 1. 
The PK-PD model is represented by the following equations: 
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where 1x  [mg/ml] denotes the drug concentration in the 
central compartment. The peripheral compartments 2 and 3 
model the drug exchange of the blood with well and poorly 
diffused body tissues. The concentrations of drug in fast and 
slow equilibrating peripheral compartments are denoted by 

2x  and 3x , respectively. The parameters kji for i≠j, denote 
the drug transfer frequency from the jth to the ith compartment 

and u(t) [mg/s] is the infusion rate of the anesthetic drug into 
the central compartment. It is common practice to define an 
additional (virtual) effect compartment in order to represent 
the lag between plasma drug concentration and drug 
response. The concentration of drug in this compartment is 
represented by xe. The effect compartment receives drug from 
the central compartment by a first-order process and it is 
regarded as a volumeless additional compartment. Therefore, 
the drug transfer frequency from the central compartment to 
the effect-site compartment is equal to the frequency of drug 
removal from the effect-site compartment: 456.010 == ee kk  
[min-1]. The parameters ijk of the PK models depend on age, 
weight, height and gender and can be calculated for Propofol: 
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where 1Cl  is the rate at which the drug is cleared from the 
body, and 2Cl and 3Cl are the rates at which the drug is 
removed from the central compartment to the other two 
compartments by distribution. The lean body mass (lbm) for 

women and men are:
 

2

2
1281.1

height
weightweightlbm ⋅−⋅= and

2

2
14807.1

height
weightweightlbm ⋅−⋅= respectively.  

The relation between the effect site concentration and the BIS 
is given by a nonlinear sigmoid Hill curve: 
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where E0 is the BIS value when the patient is awake; Emax is 
the maximum effect that can be achieved by the infusion of 
Propofol; C50 is the Propofol concentration at half of the 
maximum effect and γ is a parameter which together with the 
C50 determines the patient sensitivity to the drug. E0 and Emax 
are usually considered equal to 100. A (varying) dead-time 
added to (4) takes into account the time-delay introduced by 
the BIS-measurement as explained earlier. 
 

 
Figure 1: Compartmental scheme of the PK-PD model. 



 
 

     

 

3. PROPOSED CONTROL STRATEGY DURING 
INDUCTION PHASE OF GENERAL ANAESTHESIA 

The strategy proposed here is summarized in Figure 2 below. 
The control of the induction phase is split into two phases: 
the initial phase where no useful BIS feedback signal is 
available, hence target controlled infusion (TCI) with a fixed 
setpoint is temporarily applied; and the secondary phase 
when a useful BIS feedback signal becomes available and the 
TCI setpoint is adapted based on the estimated Hill-curve 
steepness.  

3.1  First Part of Induction: Target Controlled Infusion 

One may observe in figure 2 the typical sigmoid shape of the 
Hill curve (4) relating the BIS values to the effect site 
concentration Ce, which starts with a flat plateau (i.e. also 
called dead-zone).  
Claim: during this time, no closed loop feedback control can 
be applied since there is no useful feedback signal available 
– the Propofol drug is infused into the patient while BIS 
values do not vary significantly; moreover in practice the 
little variation is hidden in noise.  
The only solution is to apply target controlled infusion (TCI) 
until BIS values show a certain variation ΔBIS. TCI is 
currently applied in clinical practice using a target effect 
concentration (setpoint 𝐶𝑒∗) which ideally should be close to 
C50 if the desired BIS=50. Unfortunately C50 is unknown and 
patient-dependent. For safety reasons, it is logical to use the 
minimum expected C50 (=5 in our experiments, ref. Table 1).  

 
Figure 2: Schematic representation of the proposed control strategy during 
induction phase 

 
Figure 3: schematic of the proposed control strategy 

3.2  Second Part of Induction: Closed loop PID control 

At the moment that a variation of ΔBIS is achieved, then one 
can switch from TCI to closed loop control. A first intuitive 
choice is to use the measured BIS value as feedback 
information. However, this choice implies some dis-
advantages from control engineering point of view: i) it 

introduces nonlinearity in the loop (through the Hill curve); 
ii) it introduces variable time-delays originating from the 
signal processing of the raw EEG signal – this challenges the 
stability of the closed loop; and iii) it is a noisy signal which 
will increase the control effort through the derivative action – 
this can be avoided by filtering techniques, with the 
undesired side-effect of introducing phase lags in the loop.  
 
It is therefore meaningful to continue to use the estimated 𝐶𝑒� 
from the 4th order PK-PD model given in (1)(2). The 
advantages of using it as a feedback signal are i) it is not 
noisy; ii) it does not introduce artificial time delays; iii) it is 
linear and iv) the transfer function of the ‘controlled process’ 
is known (the PK-PD patient model) which makes it rather 
straightforward to tune the PID controller. Notice that in our 
experimental results of section 4, only 1 nominal PK-PD 
model and 1 corresponding PID controller was used for the 
control of all 12 patients in Table 1. The mean values of the 
PK-PD models in Table 1 were used as nominal model, so no 
a-priori individualized patient information is needed. The 
general control scheme corresponding to this reasoning is 
depicted in Figure 3 below. In this scheme, the PID controller 
is denoted by the block C and the block F is a low pass filter 
which avoids the effects of the derivative kick when the 
reference for Ce

* is changing (i.e. smooth transition).  

3.3  Estimation of  some Hill curve characteristics for 
patient-individualized anaesthesia control 

Until the switching moment, the target effect concentration 
𝐶𝑒∗ is fixed at a safe value (5 in our experiments). After the 
switch, this value is adapted based on the following ideas. 
Since the most important challenge for control is the inter-
patient variability, it makes sense to estimate some useful 
parameters of the actual patient’s Hill curve. Observing 
Figure 2 again it is clear that around the target value BIS=50, 
the Hill curve can be approximated by a linear model (i.e. a 
straight line). The available measured BIS values (denoted by 
BISm in Figure 3) and the calculated 𝐶𝑒� from the 4th order 
PK-PD model are related by the linear approximation and a 
time delay: 

𝐵𝐼𝑆𝑚(𝑡) = 𝐾 ∗ 𝐶𝑒�(𝑡 − 𝜏) + 𝑑                  (5) 
where the K, d and τ are estimated at every sampling instant. 
An easy procedure to do so consists of: 1) preselect a set of 
plausible time-delay values τ; 2) estimate for every time-
delay value the corresponding parameters K and d with a 
least-squares algorithm; 3) compare the variance of the 
estimation errors to select the best set [K, d, τ]. 
The target effect concentration 𝐶𝑒∗ is then adapted according 
to: 

𝐶𝑒∗ = (𝐵𝐼𝑆∗ − �̂�)/𝐾�             (6) 
with BIS* the target BIS value. In fact, for BIS*=50, this is 
nothing else than the estimation of the patient’s C50.  
Notice that the adaptation of the K and d parameters allows 
also for some errors in the used PK-PD model. Indeed any 
error in its static gain will be corrected intrinsically by the 
estimation of the Hill curve steepness. Errors in the 
dynamical parameters however have to be tackled by the 
robustness of the PID controller.   
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3.4  Analysis of the Hill curve parameters 

Consider again the form of the sigmoid Hill curve from (4). 
Introducing 𝑋 = 𝐶𝑒

𝐶50
, we have that 𝑋𝛾 = 𝐸0−𝐸

𝐸𝑚𝑎𝑥−𝐸0+𝐸
, with E 

the effect of the drug (i.e. BIS). The derivative, i.e. the slope 
of the nonlinear curve, is given by: 

𝑑𝐸
𝑑𝑋

= −𝐸𝑚𝑎𝑥 �
𝛾𝑋𝛾−1

1+𝑋𝛾
− 𝑋𝛾𝛾𝑋𝛾−1

(1+𝑋𝛾)2
� = −𝐸𝑚𝑎𝑥𝛾

𝑋𝛾−1

(1+𝑋𝛾)2
 (7) 

Using 𝑋𝛾

1+𝑋𝛾
= 𝐸0−𝐸

𝐸𝑚𝑎𝑥
, it follows that the derivative with respect 

to Ce can be written as: 
𝑑𝐸
𝑑𝐶𝑒

= 𝑑𝐸
𝑑𝑋

𝑑𝑋
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1
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2
                (8) 

and using 𝑋 = 𝐶𝑒
𝐶50

 we obtain: 
𝑑𝐸
𝑑𝐶𝑒

= −𝛾
𝐶𝑒

(𝐸𝑚𝑎𝑥−𝐸0+𝐸)(𝐸0−𝐸)
𝐸𝑚𝑎𝑥

                     (9) 
For the case 𝐸𝑚𝑎𝑥 = 𝐸0 = 100 it follows that 

 𝑑𝐸
𝑑𝐶𝑒

= −𝛾
𝐶𝑒

𝐸(100−𝐸)
100

 
and for the case BIS=E=50 we have that the slope is 
proportional to  − 𝛾

𝐶50
 . 

The slope at BIS=100 is zero and it is easy to show that the 
slope of the flat plateau in Fig. 2 near BIS=100 is 
proportional to − 𝛾

𝐶50
𝛾   (e.g. take a small value for Ce). These 

slopes are depicted in Figure 4 as a function of  𝛾 and  𝐶50 . 

Figure 4: Slopes of the Hill curve. 

3.5  PID Control Design 

The PID tuning algorithm is based on imposing a user-
specified robustness to the control loop (De Keyser et al, 
2012). The robustness specification can be translated as a 
circle with a specified radius r around the critical point -1 in 
the Nyquist plane (r=modulus margin; 0<r<1; r=0.5 in the 
experiments of Section 4). In order to obtain a fluent curve 
for the frequency response of the controller and the process 
(C*P), going smoothly around the specified circle, we impose 
that at the critical frequency ωc of the process (i.e. where the 
phase lag is  -180°), the C*P curve will be tangent to the 
robustness circle in a point A. This results in: 

𝑀𝐴 ∗ 𝑒𝑗𝜑𝐴 = 𝑀𝑃∗𝐶(𝑗𝜔𝑐) ∗ 𝑒𝑗𝜑𝑃∗𝐶(𝑗𝜔𝑐) 
 �𝑑𝑀
𝑑𝜑
�
𝐴

= �𝑑𝑀𝑃∗𝐶
𝑑𝜑𝑃∗𝐶

�
𝜔=𝜔𝑐

                             (10) 

That is: the modulus and the phase at point A should be equal 
to the modulus and the phase of the process plus controller at 
ωc. Also, the value of the derivative to the circle in A should 
be equal to the derivative of the C*P frequency response at 
ωc. The vector from the critical point -1 to the tangent point 
A has length r and an angle α with the negative real axis. In 
(De Keyser et al, 2012) an algorithm has been described to 

find the angle α* for which the error  ��𝑑𝑀
𝑑𝜑
�
𝐴
− �𝑑𝑀𝑃∗𝐶

𝑑𝜑𝑃∗𝐶
�
𝜔=𝜔𝑐

� is 

minimum. The PID parameters are then: 
𝐾𝑝 = 1−𝑟 𝑐𝑜𝑠𝛼∗

𝑀𝑝(𝑗𝜔𝑐)
,   𝑇𝑑 = 𝑀𝐴(𝛼∗)+𝑟 𝑠𝑖𝑛𝛼∗

2𝜔𝑐(1−𝑟𝑐𝑜𝑠𝛼∗)
,   𝑇𝑖 = 4𝑇𝑑           (11) 

The necessary process information such as the critical 
frequency ωc, the value of the process modulus 𝑀𝑝(𝑗𝜔𝑐) and 
phase 𝜑𝑝(𝑗𝜔𝑐), the value of the derivatives at ωc, can be 
obtained from the process transfer function (which is in this 
case a nominal version of the patient model (1)(2)). 
Notice that other compartmental mixing models than (1)(2) 
have been described in literature. Our proposed patient-
individualized control strategy described in sections 3.1, 3.2, 
3.3 is equally valid for such alternative models. 

4. SIMULATION RESULTS 

In all experiments, the sampling period has been 1 second. 
For illustrating the proposed strategy, the virtual patients 
from (Ionescu et al, 2008) have been used as presented in 
Table 1. A nominal patient model is defined by using the 
mean value of all these parameters; only the mean values for 
‘Age, Length, Weight, Gender’ are used to design the PID 
(i.e. the values of 𝛾 and 𝐶50 are never used in our control 
strategy). For safety, a low value Ce

*=5 mg/mL is used during 
the initial TCI strategy. At the switching moment (i.e. when 
BIS=90), the adaptation strategy adapts the setpoint Ce

* in 
order to converge to the true C50 value for each patient.  
The Hill curves of all patients are given in Figure 5. The C50 
values as well as the values of − 𝛾

𝐶50
 and − 𝛾

𝐶50
𝛾  are given in 

Figure 6; these last values are proportional to the slopes of 
the Hill curve around BIS=50 and BIS=100.  

Table 1.  Patient Parameters 
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Figure 5: Hill curves for all patients from Table 1. See text for comments. 

 

Figure 6: C50 values and Hill slopes around BIS=50 and BIS=100. 

 
Figure 7: Closed loop response for all patients from Table 1. In all time 
signals, 1 sample corresponds to 1 second. 

4.1  Detailed results for patient 7 

Let us now look at the convergence of the K, d and the error 
during the estimation interval, depicted in Figure 8. The K 
and d parameters which give the lowest error are selected and 
used in the closed loop control, as depicted in Figure 9. 
Based on these, the setpoint Ce

* is adapted and Propofol 
values updated, as illustrated in Figure 10. It can be observed 
that the BIS values are converging to the desired value of 50 
without undershoot and in very short period of time (about 3 

minutes). The dashed vertical line in Figure 10 indicates the 
switching moment. The real time-delay used in the 
experiments was 30s. Notice that the Ce

* setpoint value 
depicted in Figure 10 is the filtered signal from Figure 9, thus 
avoiding unwanted effects from possible estimation jumps. In 
Figure 10 can also be observed the convergence from the 
nominal value of Ce

*=5 to the true C50=8 (Patient 7, Table 1). 
It is also important to check the robustness against a 
significant amount of noise present in the BIS signal. The 
results for Patient 7 in the presence of noise (+-10% BIS) are 
given in Figures 11-12. It can be observed that the adaptation 
algorithm converges very well to the true values. Because the 
noisy BIS signal is not directly used in the feedback loop - 
rather indirectly via the setpoint Ce

* - the Propofol and Ce 
signals are almost noise-free!  

 
Figure 8: Illustrative example of the estimation of the K and d parameters  
for different values of the delay. The error is calculated and the minimum 
error will indicate which parameters to be used in the control scheme.  

 
Figure 9: End-result of the adaptation procedure for the K and d parameters 
and the consequent adaptation of the setpoint. 

4.2  Further insights 

Some of the patients (2, 3, 8, 9) suffer from some undershoot 
in the BIS (Figure 7). Although not being a real problem 
from practical point-of-view, a theoretical explanation would 
nevertheless be welcome. A small slope around BIS=100 (i.e. 
a long flat plateau in Figure 2) results in a Ce-value which is 
already rather big at the moment of switching. If this 
phenomenon is accompanied with a C50-value which is not 
much bigger, it may result in undershoot because there is not 
much time for good estimation (as is well-known, good 
parameter estimation requires a sufficient amount of data). 
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Figure 10: The Propofol infusion rate, the filtered setpoint Ce

*, the calculated 
Ce from the nominal PK-PD model used in the control and the BIS value.  

 
Figure 11: Estimation in the presence of noise: end-result of the adaptation 
procedure for the K and d parameters and the consequent adaptation of the 
setpoint. 

 
Figure 12: Control in the presence of noise: the Propofol infusion rate, the 
filtered setpoint Ce

*, the calculated Ce from the nominal PK-PD model used 
in the control and the BIS value.  

A small slope around BIS=100 is produced by a big value of 
γ (Figure 4, lower part).  Such γ then also results in a big 
slope around BIS=50, unless C50 is large (Fig. 4, upper part), 
and this then leads to a fast transfer to low BIS values with 
little time for estimation. This can also be observed in Figure 
5, e.g. patient 9. Figure 6 shows that patients 2,3,6,8,9 are 
indeed characterized by such small slope around BIS=100. 
Patient 6 however has a big C50, which explains why the BIS 
does not have undershoot. This diagnosis of the problem also 
produces the remedy: if the Ce-value at the moment of 
switching is already high, then be cautious and change only 

gradually the target effect concentration 𝐶𝑒∗ that is produced 
by the estimator. This can be easily done by using a 1st-order 
𝐶𝑒∗-filter with time constant depending on the value of Ce at 
the switching moment. On the other hand, this problem is 
probably more of academic than of practical interest, because 
the values of γ which have been published in literature are not 
as high as the ones used in our experiments (Dumont et al, 
2009; Yelneedi et al, 2009). 
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