A new method for learning imprecise hidden Markov models

Arthur Van Camp and Gert de Cooman

Ghent University, SYSTeMS

```
Arthur.VanCamp@UGent.be, Gert.deCooman@UGent.be
```


Imprecise hidden Markov models

Imprecise hidden Markov model

graphical representation

Imprecise hidden Markov model

random variables

state variables: HIDDEN

Imprecise hidden Markov model

random variables

state variables: HIDDEN

Imprecise hidden Markov model

random variables

state variables: HIDDEN

output variables: OBSERVABLE

Imprecise hidden Markov model

random variables

state variables: HIDDEN

output variables: OBSERVABLE

Imprecise hidden Markov model

 We consider stationary imprecise hidden Markov models

Imprecise hidden Markov model

 We consider stationary imprecise hidden Markov models

Imprecise hidden Markov model

Imprecise hidden Markov model

local uncertainty models in terms of coherent lower previsions

Imprecise hidden Markov model

local uncertainty models in terms of coherent lower previsions

imprecise transition models

Imprecise hidden Markov model

local uncertainty models in terms of coherent lower previsions

imprecise transition models

imprecise emission models

Imprecise hidden Markov model

local uncertainty models in terms of coherent lower previsions

 imprecisemarginal model

imprecise emission models

Imprecise hidden Markov model

We consider stationary imprecise hidden Markov models

Imprecise hidden Markov model

We consider stationary imprecise hidden Markov models

Imprecise hidden Markov model

We consider stationary imprecise hidden Markov models

Imprecise hidden Markov model

We consider stationary imprecise hidden Markov models

Imprecise hidden Markov model

We consider stationary imprecise hidden Markov models

What do we want to do?

Our problem of interest

Our problem of interest

Suppose we know the output sequence

Our problem of interest

Suppose we know the output sequence: $O_{1: n}=o_{1: n} \in \mathscr{O}^{n}$

Our problem of interest

Suppose we know the output sequence: $O_{1: n}=o_{1: n} \in \mathscr{O}^{n}$, we want to estimate the unknown local uncertainty models.

How could you learn the local models if the state sequence were known?

An easier problem

We know the output sequence: $O_{1: n}=o_{1: n} \in \mathscr{O}^{n}$.

An easier problem

We know the output sequence: $O_{1: n}=o_{1: n} \in \mathscr{O}^{n}$.
Suppose we know in addition also the state sequence: $X_{1: n}=x_{1: n} \in \mathscr{X}^{n}$

An easier problem

We know the output sequence: $O_{1: n}=o_{1: n} \in \mathscr{O}^{n}$.
Suppose we know in addition also the state sequence: $X_{1: n}=x_{1: n} \in \mathscr{X}^{n}$, how can we learn local models now?

Solution

Solution

Suppose $\mathscr{X}=\{a, b\}$ and $\mathscr{O}=\{\boldsymbol{o}, \boldsymbol{p}, \boldsymbol{q}\}$.

Solution

Suppose $\mathscr{X}=\{a, b\}$ and $\mathscr{O}=\{o, p, q\}$.

Solution

Suppose $\mathscr{X}=\{a, b\}$ and $\mathscr{O}=\{o, p, q\}$.

Solution

Suppose $\mathscr{X}=\{a, b\}$ and $\mathscr{O}=\{o, p, q\}$.
With (known) hidden state sequence $x_{1: n}$ and output sequence $o_{1: n}$ $(x, y \in \mathscr{X}$ and $z \in \mathscr{O})$:
n_{x} : number of times a state x is reached,
$n_{x, y}$: number of times a state transition from x to y takes place,
$n_{x, z}$: number of times a state x emits an output z.

Solution

Suppose $\mathscr{X}=\{a, b\}$ and $\mathscr{O}=\{o, p, q\}$.
With (known) hidden state sequence $x_{1: n}$ and output sequence $o_{1: n}$ $(x, y \in \mathscr{X}$ and $z \in \mathscr{O})$:
n_{x} : number of times a state x is reached,
$n_{x, y}$: number of times a state transition from x to y takes place, $n_{x, z}$: number of times a state x emits an output z.

Here:

$$
\left.\begin{array}{r}
n_{a}=8, n_{b}=4 \\
n_{a, a}=4, n_{a, b}=4, n_{b, a}=3, n_{b, b}=0 \\
n_{a, o}=5, n_{a, p}=3, n_{a, q}=0, \\
n_{b, o}=0, n_{b, p}=1, n_{b, q}=3
\end{array}\right\}
$$

Solution

Suppose $\mathscr{X}=\{a, b\}$ and $\mathscr{O}=\{o, p, q\}$.
With (known) hidden state sequence $x_{1: n}$ and output sequence $o_{1: n}$ $(x, y \in \mathscr{X}$ and $z \in \mathscr{O})$:
n_{x} : number of times a state x is reached,
$n_{x, y}$: number of times a state transition from x to y takes place,
$n_{x, z}$: number of times a state x emits an output z.
Here:

$$
\left.\begin{array}{r}
n_{a}=8, n_{b}=4 \\
n_{a, a}=4, n_{a, b}=4, n_{b, a}=3, n_{b, b}=0, \\
n_{a, o}=5, n_{a, p}=3, n_{a, q}=0, \\
n_{b, o}=0, n_{b, p}=1, n_{b, q}=3
\end{array}\right\} \begin{aligned}
& \text { With these counts, how } \\
& \text { can we build local } \\
& \text { models? }
\end{aligned}
$$

Imprecise Dirichlet model

We use the imprecise Dirichlet model (IDM) to compute estimates for the local models. If $n(A)$ is the number of occurences of an event A in N experiments, then the lower and upper probability of A according to an IDM are defined as

$$
\underline{P}(A)=\frac{n(A)}{s+N} \quad \text { and } \quad \bar{P}(A)=\frac{s+n(A)}{s+N}
$$

$s>0$ is the number of pseudo-counts, which is an inverse measure of the speed of convergence to a precise model.

Imprecise Dirichlet model

We use the imprecise Dirichlet model (IDM) to compute estimates for the local models. If $n(A)$ is the number of occurences of an event A in N experiments, then the lower and upper probability of A according to an IDM are defined as

$$
\underline{P}(A)=\frac{n(A)}{s+N} \quad \text { and } \quad \bar{P}(A)=\frac{s+n(A)}{s+N}
$$

$s>0$ is the number of pseudo-counts, which is an inverse measure of the speed of convergence to a precise model.
Now, we use the quantities $n_{x}, n_{x, y}$ and $n_{x, z}$ (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) to estimate the imprecise transition and emission models:

Imprecise Dirichlet model

We use the imprecise Dirichlet model (IDM) to compute estimates for the local models. If $n(A)$ is the number of occurences of an event A in N experiments, then the lower and upper probability of A according to an IDM are defined as

$$
\underline{P}(A)=\frac{n(A)}{s+N} \quad \text { and } \quad \bar{P}(A)=\frac{s+n(A)}{s+N}
$$

$s>0$ is the number of pseudo-counts, which is an inverse measure of the speed of convergence to a precise model.
Now, we use the quantities $n_{x}, n_{x, y}$ and $n_{x, z}$ (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) to estimate the imprecise transition and emission models:

$$
\begin{gathered}
\underline{Q}(\{y\} \mid x)=\frac{n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}} \quad \text { and } \quad \bar{Q}(\{y\} \mid x)=\frac{s+n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}} \\
\underline{S}(\{z\} \mid x)=\frac{n_{x, z}}{s+n_{x}} \quad \text { and } \quad \bar{S}(\{z\} \mid x)=\frac{s+n_{x, z}}{s+n_{x}} .
\end{gathered}
$$

Example

(with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$):
$\underline{Q}(\{y\} \mid x)=\frac{n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}}, \bar{Q}(\{y\} \mid x)=\frac{s+n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}}, \underline{S}(\{z\} \mid x)=\frac{n_{x, z}}{s+n_{x}}, \bar{S}(\{z\} \mid x)=\frac{s+n_{x, z}}{s+n_{x}}$.

Example

(with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$):

$$
\underline{Q}(\{y\} \mid x)=\frac{n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}}, \bar{Q}(\{y\} \mid x)=\frac{s+n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}}, \underline{S}(\{z\} \mid x)=\frac{n_{x, z}}{s+n_{x}}, \bar{S}(\{z\} \mid x)=\frac{s+n_{x, z}}{s+n_{x}} .
$$

Here, with $s=2$:

$$
\begin{array}{llll}
\underline{Q}(\{a\} \mid a)=2 / 5, & \bar{Q}(\{a\} \mid a)=3 / 5, & \underline{Q}(\{b\} \mid a)=2 / 5, & \bar{Q}(\{b\} \mid a)=3 / 5, \\
\underline{Q}(\{a\} \mid b)=3 / 5, & \bar{Q}(\{a\} \mid b)=1, & \underline{Q}(\{b\} \mid b)=0, & \bar{Q}(\{b\} \mid b)=2 / 5, \\
\underline{S}(\{\boldsymbol{o}\} \mid a)=1 / 2, & \bar{S}(\{\boldsymbol{o}\} \mid a)=1 / 10, & \underline{S}(\{o\} \mid b)=0, & \bar{S}(\{\boldsymbol{S}\} \mid b)=1 / 3, \\
\underline{S}(\{\boldsymbol{p}\} \mid a)=3 / 10, & \bar{S}(\{\boldsymbol{p}\} \mid a)=1 / 2, & \underline{S}(\{\boldsymbol{p}\} \mid b)=1 / 6, & \bar{S}(\{\boldsymbol{p}\} \mid b)=1 / 2, \\
\underline{S}(\{\boldsymbol{q}\} \mid a)=0, & \bar{S}(\{\boldsymbol{q}\} \mid a)=1 / 5, & \underline{S}(\{\boldsymbol{q}\} \mid b)=1 / 5, & \bar{S}(\{\boldsymbol{q}\} \mid b)=3 / 5 .
\end{array}
$$

But the state sequence is hidden...

We are almost there

We are almost there

We are almost there

The state sequence $x_{1: n} \in \mathscr{X}^{n}$ is hidden, so it is a random variable $X_{1: n}$.

We are almost there

The state sequence $x_{1: n} \in \mathscr{X}^{n}$ is hidden, so it is a random variable $X_{1: n}$. (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) $n_{x}, n_{x, y}$ and $n_{x, z}$ are random variables $N_{x}, N_{x, y}$ and $N_{x, z}$.

We are almost there

The state sequence $x_{1: n} \in \mathscr{X}^{n}$ is hidden, so it is a random variable $X_{1: n}$. (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) $n_{x}, n_{x, y}$ and $n_{x, z}$ are random variables $N_{x}, N_{x, y}$ and $N_{x, z}$.
Idea: instead of using real counts, use estimates:

$$
\begin{gathered}
\hat{n}_{x} \\
\hat{n}_{x, y} \\
\hat{n}_{x, z}
\end{gathered}
$$

We are almost there

The state sequence $x_{1: n} \in \mathscr{X}^{n}$ is hidden, so it is a random variable $X_{1: n}$. (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) $n_{x}, n_{x, y}$ and $n_{x, z}$ are random variables $N_{x}, N_{x, y}$ and $N_{x, z}$.
Idea: instead of using real counts, use expected counts:

$$
\begin{aligned}
\hat{n}_{x} & =E\left(N_{x} \mid o_{1: n}, \theta^{*}\right), \\
\hat{n}_{x, y} & =E\left(N_{x, y} \mid o_{1: n}, \theta^{*}\right), \\
\hat{n}_{x, z} & =E\left(N_{x, z} \mid o_{1: n}, \theta^{*}\right) .
\end{aligned}
$$

We are almost there

The state sequence $x_{1: n} \in \mathscr{X}^{n}$ is hidden, so it is a random variable $X_{1: n}$. (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) $n_{x}, n_{x, y}$ and $n_{x, z}$ are random variables $N_{x}, N_{x, y}$ and $N_{x, z}$.
Idea: instead of using real counts, use expected counts

$$
\begin{aligned}
\hat{n}_{x} & =E\left(N_{x} \mid o_{1: n}, \theta^{*}\right), \\
\hat{n}_{x, y} & =E\left(N_{x, y} \mid o_{1: n}, \theta^{*}\right), \\
\hat{n}_{x, z} & =E\left(N_{x, z} \mid o_{1: n}, \theta^{*}\right) .
\end{aligned}
$$

$o_{1: n}$ is the known output sequence, and θ^{*} represents the model parameter.

We are almost there

The state sequence $x_{1: n} \in \mathscr{X}^{n}$ is hidden, so it is a random variable $X_{1: n}$. (with $x, y \in \mathscr{X}$ and $z \in \mathscr{O}$) $n_{x}, n_{x, y}$ and $n_{x, z}$ are random variables $N_{x}, N_{x, y}$ and $N_{x, z}$.
Idea: instead of using real counts, use expected counts

$$
\begin{aligned}
\hat{n}_{x} & =E\left(N_{x} \mid o_{1: n}, \theta^{*}\right), \\
\hat{n}_{x, y} & =E\left(N_{x, y} \mid o_{1: n}, \theta^{*}\right), \\
\hat{n}_{x, z} & =E\left(N_{x, z} \mid o_{1: n}, \theta^{*}\right) .
\end{aligned}
$$

$o_{1: n}$ is the known output sequence, and θ^{*} represents the model parameter. We can calculate θ^{*} with the Baum-Welch algorithm, so the idea makes sense.

Estimated local models

With known state sequence $x_{1: n}(x, y \in \mathscr{X}$ and $z \in \mathscr{O})$:

$$
\begin{gathered}
\underline{Q}(\{y\} \mid x)=\frac{n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}} \text { and } \bar{Q}(\{y\} \mid x)=\frac{s+n_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} n_{x, y^{*}}}, \\
\underline{S}(\{z\} \mid x)=\frac{n_{x, z}}{s+n_{x}} \text { and } \bar{S}(\{z\} \mid x)=\frac{s+n_{x, z}}{s+n_{x}} .
\end{gathered}
$$

Estimated local models

With unknown state sequence $X_{1: n}(x, y \in \mathscr{X}$ and $z \in \mathscr{O})$:

$$
\begin{gathered}
\underline{Q}(\{y\} \mid x)=\frac{\hat{n}_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} \hat{n}_{x, y^{*}}} \text { and } \bar{Q}(\{y\} \mid x)=\frac{s+\hat{n}_{x, y}}{s+\sum_{y^{*} \in \mathscr{X}} \hat{n}_{x, y^{*}}}, \\
\underline{S}(\{z\} \mid x)=\frac{\hat{n}_{x, z}}{s+\hat{n}_{x}} \text { and } \bar{S}(\{z\} \mid x)=\frac{s+\hat{n}_{x, z}}{s+\hat{n}_{x}} .
\end{gathered}
$$

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states λ_{1}, λ_{2} and λ_{3},

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states λ_{1}, λ_{2} and λ_{3},
- occurrence of earthquakes in a year depends on the seismic state in that year,

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states λ_{1}, λ_{2} and λ_{3},
- occurrence of earthquakes in a year depends on the seismic state in that year,
- Earth in state λ emits O earthquakes in a year.

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states λ_{1}, λ_{2} and λ_{3},
- occurrence of earthquakes in a year depends on the seismic state in that year,
- Earth in state λ emits O earthquakes in a year.

We model our problem as an imprecise hidden Markov model.

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states: $\mathscr{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$,
- occurrence of earthquakes in a year depends on the seismic state in that year,
- Earth in state λ emits O earthquakes in a year.

We model our problem as an imprecise hidden Markov model.

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states: $\mathscr{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$,
- occurrence of earthquakes in a year depends on the seismic state in that year,
- Earth in state λ emits O earthquakes in a year: $\mathscr{O}=\mathbb{N} \cup\{0\}$ and emission model $S(o \mid \lambda)$ is a Poisson process, represented by the precise probability mass function $p(0 \mid \lambda)=\frac{e^{-\lambda} \lambda^{0}}{0!}$.

We model our problem as an imprecise hidden Markov model.

Example: predicting future earthquake rates

We want to predict future earthquake rates, based on number of earthquakes in previous years.

Assumptions:

- Earth can be in 3 possible seismic states: $\mathscr{X}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$,
- occurrence of earthquakes in a year depends on the seismic state in that year,
- Earth in state λ emits O earthquakes in a year: $\mathscr{O}=\mathbb{N} \cup\{0\}$ and emission model $S(o \mid \lambda)$ is a Poisson process, represented by the precise probability mass function $p(0 \mid \lambda)=\frac{e^{-\lambda} \lambda^{0}}{0!}$.

We model our problem as an imprecise hidden Markov model.
Our observation: number of earthquakes from 1900 to 2006

Example: learned model

Based on the data, we learn the (imprecise) transition model.

Example: learned model

Based on the data, we learn the (imprecise) transition model.

$s=20$
$\square \underline{Q}\left(\cdot \mid \lambda_{1}\right)$
$\square \quad \underline{Q}\left(\cdot \mid \lambda_{2}\right)$
$\square \quad \underline{Q}\left(\cdot \mid \lambda_{3}\right)$

Example: predicting earthquake rates

With the learned imprecise hidden Markov model, we predict future earthquake rates. We use the MePiCTIr algorithm (de Cooman et al., 2010).

Example: predicting earthquake rates

With the learned imprecise hidden Markov model, we predict future earthquake rates. We use the MePiCTIr algorithm (de Cooman et al., 2010).

\square
$s=2$
$\square s=5$

