
Heuristics for the Traveling Repairman Problem

with Profits

Thĳs Dewilde1, Dirk Cattrysse1, Sofie Coene2, Frits C.R.

Spieksma2, and Pieter Vansteenwegen1

1 Centre for Industrial Management/Traffic & Infrastructure (CIB)

Katholieke Universiteit Leuven, Belgium

Thijs.Dewilde@cib.kuleuven.be

2 Research group Operations Research and Business Statistics (ORSTAT)

Katholieke Universiteit Leuven, Belgium

Sofie.Coene@econ.kuleuven.be

Abstract

In the traveling repairman problem with profits, a repairman (also known as the server) visits a

subset of nodes in order to collect time-dependent profits. The objective consists of maximizing

the total collected revenue. We restrict our study to the case of a single server with nodes located

in the Euclidean plane. We investigate properties of this problem, and we derive a mathematical

model assuming that the number of visited nodes is known in advance. We describe a tabu search

algorithm with multiple neighborhoods, and we test its performance by running it on instances

based on TSPLIB. We conclude that the tabu search algorithm finds good-quality solutions fast,

even for large instances.

1998 ACM Subject Classification I.2.8 Heuristic Methods

Keywords and phrases Traveling Repairman, Profits, Latency, Tabu Search, Relief Efforts

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.34

1 Introduction

Imagine a single server, traveling at unit speed. There are n locations given, each with a

profit pi, 1 ≤ i ≤ n. At t = 0, the server starts traveling and collects revenue pi − ti at each

visited location, where ti denotes the server’s arrival time at location i. Not all locations

need to be visited. The problem is to find a travel plan for the server that maximizes total

revenue. This problem is known as the traveling repairman problem with profits (TRPP)

and forms the subject of this paper. In particular, we perform a computational study of the

TRPP in the Euclidean plane.

Motivation

The TRPP occurs as a routing problem in relief efforts. For example, consider the following

situation. In the aftermath of a disaster like an earthquake, there are a number of villages

that experience an urgent need for medicine. The sooner the medicine gets to a village, the

more people can be rescued. Since the cost of transport is negligible compared to the value

of a human life, rescue teams are only concerned with the total number of people that can

be saved. Assume that at location i there are pi people in need of the medicine, and that

every instance of time, there is one of them dying. Suppose also that we have one truck

available. With ti denoting the arrival time of the truck at location i, the number of people

that will survive equals pi − ti. Thus, the goal of the rescue team is to maximize
∑

i(pi − ti),

© Thĳs Dewilde, Dirk Cattrysse, Sofie Coene, Frits C.R. Spieksma and Pieter Vansteenwegen;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 34–44

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55731063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

T. Dewilde et al. 35

where the sum runs over all the visited locations. This situation is described in [6] and is

equivalent to the TRPP.

Another, more theoretical, motivation concerns the k-traveling repairman problem (k-TRP).

The k-TRP is the problem with multiple servers that need to visit all clients such that the

latency, i.e., the average arrival time, is minimized. Observe that no profits are considered in

this problem. One potential way of solving such a problem is a set-partitioning approach

where an integer programming model is built, using a variable for each set of clients [7].

Next, a branch-and-price approach can be applied to the resulting integer program. Without

going into further details, we observe here that the so-called pricing problem in such a

branch-and-price approach is exactly the TRPP, where the dual variables play the role of

profits.

Other applications of routing problems with time-dependent revenues are described in [7, 9, 13]

and [14], which deals with a problem occurring in “multi-robot routing”.

Literature

Several problems are closely related to the traveling repairman problem with profits (TRPP).

The TRPP has similarities with the traveling salesman problem (TSP) [3]. However, con-

trary to the TSP, in the TRPP not all the nodes need to be visited. Further, an optimal

TRPP-solution is a path which course is influenced by the depot location and may contain

intersections. Notice that the latter is always sub-optimal for the Euclidean TSP.

Also the TSP with profits (TSPP) [10] and the orienteering problem (OP) [20], have some

similarities with the TRPP. In the OP a subset of nodes should be selected in order to

maximize the profit under a time-constraint. As for the TRPP, a solution for the TSPP

may leave some nodes unvisited. Both the total profit and the distance traveled are inserted

in the objective function of both problems; only in the TRPP, however, the revenues are

time-dependent.

Problems with time-dependent revenues are relevant in many cases. See [13] for the time-

dependent traveling salesman problem (TDTSP). In TDTSP, the travel time between two

vertices depends on the arrival time of the server. In the objective function of the TDTSP

only the used travel time is included. This is different from the TRPP where the travel time

between vertices is constant. A related problem that uses latency in the objective function is

the traveling repairman problem (TRP) [5], also known as the minimum latency problem

or the delivery man problem. Here, a single server needs to visit all nodes such that total

latency is minimized. In a classical paper [2], it is shown that the TRP on the line can be

solved in polynomial time by dynamic programming. This result was generalized to the

TRPP on the line by [7]. Since the TRP is NP-hard for more general metric spaces (see the

argument given in [5]), and since the TRPP is a generalization of the TRP, we conclude that

the TRPP for these general metric spaces, among which the Euclidian plane, is NP-hard.

As far as we know, no computational studies have been performed for the TRPP. So far, the

TRPP is only tackled in one paper. In [7] the TRPP on the line is being solved in polynomial

time by a dynamic programming algorithm. No other results are known.

Exact algorithms and approximation algorithms for the TRP have been described in [4, 12,

18, 21]; metaheuristics for the TRP are described in recent contributions [15] and [17]. As

far as we are aware, these are the only studies that present metaheuristics for the TRP. For a

review of the metaheuristics for other related problems we refer to [10, 20] and the references

contained therein. A general description of some metaheuristics, including the ones that are

used in this paper is given in [11, 19].

ATMOS ’10

36 Heuristics for the Traveling Repairman Problem with Profits

This paper is structured as follows. In the next section, the TRPP is described in de-

tail, and a mathematical model is given. A tabu search algorithm is presented in Section 3.

The data sets are introduced in Section 4 and the computational results are discussed in

Section 5. The conclusions of this paper are summarized in Section 6.

2 Mathematical model

Given is a complete undirected graph G = (V,E), where V = {0, 1, . . . , n} is the node set,

and E is the set of edges. Each node i Ó= 0 has an associated profit pi. There is a single

server located at node 0, the depot. The time it takes the server to travel from node i to

node j is defined by di,j . We assume that the time to serve a node is negligible. If the server

arrives at node i at time ti, a revenue of pi − ti is collected. As a consequence, an optimal

tour will not contain a node i with pi ≤ ti. The goal of the TRPP is to select an ordered

subset of nodes such that visiting them one by one maximizes the sum of all the revenues.

This should be achieved under the conditions that each node can only be visited once, and

that at the end, the server does not need to return to the depot.

We now derive a mathematical model for this problem in which the number of visited nodes

is assumed to be given. Define k as this number, i.e., k is the number of nodes whose revenue

is collected. For the ease of notation, we write the set of integers {1, 2, . . . , k} as K.

For each i ∈ V, j ∈ V0 = V \ {0}, and ℓ ∈ K, we define the variable y as follows,

yi,j,ℓ =

{

1 if edge (i, j) is used as ℓth edge,

0 else.

This definition says that if yi,j,ℓ = 1 then (i, j) is the ℓth edge of the path. Hence i is the

(ℓ− 1)th and j is the ℓth node that is visited. The depot is node 0 of the solution. Observe

that if yi,j,ℓ = 1, di,j is counted k + 1− ℓ times in the total latency. Hence
∑

i:visited

ti =
∑

{(i,j,ℓ) | yi,j,ℓ=1}

(k + 1− ℓ) di,j .

Now the mathematical model can be constructed.

Given the number of visited nodes, k, the mathematical model is the following

max
∑

i∈V

∑

j∈V0

∑

ℓ∈K

(pj − (k + 1− ℓ) di,j) yi,j,ℓ (1)

subject to
∑

i∈V

∑

ℓ∈K

yi,j,ℓ ≤ 1 ∀j ∈ V0, (2)

∑

i∈V

∑

j∈V0

yi,j,ℓ = 1 ∀ℓ ∈ K, (3)

∑

i∈V

yi,j,ℓ −
∑

i∈V0

yj,i,ℓ+1 = 0 ∀j ∈ V0, ∀ℓ ∈ K \ {k}, (4)

∑

j∈V0

y0,j,1 = 1, (5)

yi,j,ℓ ∈ {0, 1} ∀i ∈ V, ∀j ∈ V0, ∀ℓ ∈ K. (6)

T. Dewilde et al. 37

The objective function (1) sums the difference between the profit of a node and the number of

times the edge preceding that node is counted in the total latency. The first set of restrictions

makes sure that each node can only be visited once (2). The second set dictates that k

nodes different from the depot must be visited (3); for each ℓ = 1, 2, . . . , k the server has

to travel from a node i ∈ V to a node j ∈ V0. Constraints (4) ensure the connectivity, and

the departure from the depot is arranged by (5). Finally, all yi,j,ℓ must be binary (6). This

model is used in Section 5 for obtaining the optimal solution or the LP-relaxation of the

considered instances using CPLEX.

Notice that in this model we assume that the value of k and hence the set of integers

K is given. However, in the TRPP, k is a decision variable and should be determined by the

model itself. It is not difficult to introduce k as a variable in the model, see [8]. However,

preliminary results in [8] showed that this leads to a much weaker LP-relaxation and hence to

a much worse computational performance compared to solving the LP-relaxation of (1)-(6).

On the other hand, it will be shown next that it is not easy to determine the optimal value

of k apart from solving the above model for each value of k ≤ n.

Before doing so, let us first introduce some notation. Define k∗ as the optimal number of

visited nodes and f∗ = f(k∗) as the global optimal objective value. Define f(k) as the

optimal objective value for which the solution visits exactly k nodes, hence f∗ = f(k∗).

As mentioned above, we will now show that the mathematical model needs to be solved

for each value of k ≤ n in order to find k∗ and hence the global optimum. Therefore we

will demonstrate that (1) f(k) in function of k is not unimodal and (2) an increase in the

number of nodes may result in a decreasing value for k∗. Let us first go into (1). It holds

that when the server is forced to visit one node extra than the k∗ nodes which lead to f∗,

this results in an inferior solution. Intuitively one may think that the further k lies from the

optimal number of visited nodes, k∗, the worse the objective value will be. In other words,

5
r

(-50, 54)

r

1

(-1, 10)

r

0

(0, 0)

r

2

(5, 8)

r

3

(10, 13)

r

4

(20, 23)

-

Figure 1 Network with 6 collinear points

#
#
#
#aaaa B

B
B
B
B
B
B
B
B
B
BB

6

f(k)

- kq q q q q

1

9

13

11

12

-26

2 3

(a)

4 5

q

q

5

10
q

q

q

q

q

6

k∗(Im)

q1

q2

q3

q4

- mq

1
q

2
q

3

(b)

q

4
q

5

q

q

q

q

q

�
�
�
�
�
�
�
��S

S
S
S

Figure 2 Solution results for the network with 6 collinear points

ATMOS ’10

38 Heuristics for the Traveling Repairman Problem with Profits

our intuition may tell us that for any k ≥ k∗ we have that f(k∗) ≥ f(k) ≥ f(k + 1), and

analogue for any k ≤ k∗. However, this is not always true. To show this, consider the network

with 6 collinear points given in Figure 1. The numbers between brackets are respectively the

location along the axis and the profit. So the leftmost node, node 5, has as coordinate -50

and its profit equals 54.

When we solve this instance to optimality for k = 1, . . . , 5, i.e., when we force the solution

to visit exactly k nodes, we find the results depicted in Figure 2(a). It can be seen that

when solving the mathematical model for k = 2, the resulting path is 〈0, 1, 5〉 with total

revenue 13, for k = 3 the optimal path has revenue f(k) = 11, whereas forcing k to be 4, the

solution is 〈0, 1, 2, 3, 4〉 with objective value 12. You can see that k∗ = 2. More importantly,

the non-unimodality of this graph shows that f(k) can have multiple local optima, which

suggests that, in order to find k∗ for a particular instance, model (1)-(6) has to be solved for

each k = 1, . . . , n.

The second property (2) that can be conducted from this example deals with adding a node

to an instance. If an extra node is added to a data set, our intuition may tell us that the

optimal number of visited nodes will be the same or larger than before adding that node.

However, this is not always true. Clearly, by adding a new node to an instance, the optimal

value cannot decrease. But nothing can be said about the optimal number of visited nodes

of this new instance as witnessed by the given example. Define Im : m ≤ n, as the instance

consisting of the first m nodes of the network. The number of nodes in the optimal solution

for instance Im is k∗(Im). The results for the value of k∗(Im) for the network of Figure 1

are given in Figure 2(b). This example indicates that knowing k∗(Im) for a certain value of

m does not give any information about k∗(Im′) with m′ > m. Again, we can only conclude

that, to find k∗, the model (1)-(6) has to be solved for each k = 1, . . . , n. Notice that the

observations above already hold in the case of a line metric.

3 Metaheuristic methods

In this section a metaheuristic for the TRPP is presented. First, we discuss a way to build a

non-trivial solution which will then be systematically improved by a tabu search algorithm.

We define the trivial solution as the path 〈0〉, i.e., the situation in which the server does not

leave the depot. By starting from the trivial solution and adding a node in each step we can

obtain a new solution. This process is called the construction phase and is the subject of the

next section. In Section 3.2 some local search methods are discussed. These methods are

integrated in the second step of the solution procedure, a tabu search metaheuristic.

3.1 Construction phase

Consider a partial path P , and define the set V̄ as the set of all non-visited nodes, V̄ ⊆ V0. In

order to improve the partial path P , a node from V̄ should be added. This process requires

two decisions: which node to insert and where to place it in the path. Naturally two factors

influence these choices: the profit of the nodes and the extra latency incurred by inserting

that node.

We use the following ratio to determine which node to add to our partial path. Let di,j and

pj be as before. Then, for each i ∈ V \ V̄ and j ∈ V̄ we define ratiomi,j as follows:

ratiomi,j =

{ 1
di,j

if m = 0,

pj ·
(

1
di,j

)m

if m = 1, . . . , 10.
(7)

T. Dewilde et al. 39

In this way, the parameter m determines the impact of di,j on the ratio.

The construction method that is used in this paper is based on insertion. In each step the

node j∗ = arg maxj∈V̄ ratio
m
i,j , for an i and m, is selected to insert. The place of insertion is

then determined based on the improvement in score by adding this node. For a more detailed

description and a pseudo-code, we refer to [8].

In preliminary tests, the insertion based method is compared with other construction methods

such as a greedy method, and the use of (7) to select nodes is evaluated [8]. Regarding

objective function value and computation time, the insertion method using (7) turned out to

perform the best on average.

3.2 Improvement phase

This section describes a tabu search metaheuristic for the TRPP. The insertion based

algorithm from the previous section is used as input. A tabu search metaheuristic starts

from a given solution. By searching neighboring solutions, it tries to improve the current

solution. Our algorithm works with multiple neighborhoods. We next define the moves and

corresponding neighborhoods. Then, the tabu search procedure is explained in section 3.2.2.

3.2.1 Neighborhoods

The objective of the TRPP is to maximize total collected revenue, which is based on profits

that decrease over time. Hence, improving a solution can be done by altering the collection

of visited nodes, or by decreasing the total latency by changing the visiting sequence. The

moves that alter the subset of selected nodes are straightforward: deletion, insertion, and

replacement. The other set of moves consists of seven moves, among which the well-known

swap(-adjacent), 2-opt, and or-opt [1]. The choice for or-opt is justified by the fact that the

visiting order of the nodes is not reversed, while the change is large enough to circumvent

local optima where other moves might end up. The last three moves are explained next.

Move-up (down) consists of shifting a node up (down) the path. A special type of a move-up

is the remove-insert. In this move the node with the largest between-distance of a given node

is removed and back inserted at the end of the path.

Although swap-adjacent and remove-insert are special cases of swap and move-up, respectively,

they are used separately. This is because they have linear complexity, while move-up (down)

and swap have a neighborhood of size O(n2). Hence separating these moves can speed up

the algorithm. Note that the same can be said about move-up (down) and or-opt which has

a neighborhood of cubic size.

The hierarchy in which these ten moves are used is shown in Figure 3. First the neighborhoods

that alter the sequence of the path are considered, then those that alter the set of nodes,

and finally or-opt is used to perturb the solution to escape from a local optimum. The

choice for this sequence is justified by the fact that altering the set of selected nodes without

re-optimizing the sequence is useless.

In each iteration of the tabu search algorithm (see below), a move will be selected ac-

cording the principles of a variable neighborhood descend heuristic (VND) [11, 19]. This

means that the neighborhoods will be searched through one by one, in the sequence of

Figure 3. Whenever an improving move is detected, the best solution from the corresponding

neighborhood is chosen as next solution. In the case that there is no better solution in a

neighborhood, the next move will be investigated.

ATMOS ’10

40 Heuristics for the Traveling Repairman Problem with Profits

3.2.2 Tabu search

The metaheuristic used to improve the construction phase solution is tabu search (TS).

The basic idea of tabu search is to avoid repetition of solutions and to use steepest ascend

combined with mildest descend to escape from local optima. Next to the standard extensions

as aspiration and intensification followed by a diversification phase, see [11, 19] for more

details, some specific features are added. For example, the use of multiple neighborhoods

requires several tabu lists, and restricted candidate lists are used for the largest neighborhoods.

In the remaining of this section the main components of the tabu search algorithm are

explained. For a more detailed description, we refer to [8].

First of all, as explained at the end of the previous section, our tabu search uses the principles

of variable neighborhood descend (VND). The neighborhoods are ordered as in Figure 3. In

order to speed up the algorithm some restrictions are used to limit the size of the neighbor-

hoods. For move-up (down), swap, 2-opt, and or-opt the maximum number of visited nodes

in the path between the move-determining attributes is limited to n/2, with n the number of

available nodes. If no improving solution is found in any of the restricted neighborhoods, the

best possible neighbor over all the neighborhoods is chosen as next solution.

When a number of local optima have been reached, the intensification phase starts. It begins

with updating the attribute matrix M . [M]i,j is the number of times that the edge (i, j) was

part of the current local optimum. Next, the current solution is used as start solution for a

full neighborhood VND without tabu moves.

After the intensification phase, the diversification phase starts. First, the tabu lists are cleared.

Then the attribute matrix is used to penalize frequently used attributes; by subtracting from

the score, a given penalty times [M]i,j for each edge (i, j) in the intensification phase solution,

we favor non-used attributes. In order to find a new and diverse solution, we re-initialize the

algorithm, including these penalties for 100 iterations. During this process, the tabu lists are

built up again to prevent a quick return towards the previous solutions. The path that is

returned from the diversification phase is used as input for the main part of the tabu search

algorithm.

After some diversification phases, the current solution may lay in an area of the solution

space far away from the first solutions. By allowing that the penalties become bonuses,

frequently used attributes will be favored. Hence intermediate solutions or new promising

solutions will be used as current path. This enforces the search since it results in paths

that are combinations of very promising solutions. Without this extra feature, the penalties

prevent this, and very good solutions can be missed.

The next component of the tabu search is the use and the composition of the tabu lists.

Due to the use of different neighborhood structures, more than one tabu list is required.

In general, each move is added to exactly one list, but moves of more than one type, for

remove-insert swap-adjacent move-down move-up

swap 2-opt deletion insertion

replacement or-opt

- - -

- - - -

- -

Figure 3 Sequence of the moves

T. Dewilde et al. 41

example insertion and deletion, can belong to the same tabu list.

After each move only the corresponding tabu list is updated, since otherwise after a deletion

and a short re-optimizing, the insertion of that node might already be allowed. By forbidding

this, repetition in the long run is prevented.

The last aspect of the tabu search algorithm for the TRPP to discuss is the stop criterium. A

balance must be made between computation time and efficiency. The number of consecutive

non-improving steps and a maximum computation time determine the stop criterium.

3.3 Upper bound

Since the TRPP in the Euclidian plane is NP-hard, see Section 1, the mathematical model

can only be solved for small instances. However, to assess the quality of the solutions found

by tabu search, an upper bound is required. We informally sketch here a simple bound.

Assume that the number of visited nodes, k, is known. In order to get a lower bound for the

latency in case k nodes are visited, we need the k-minimal spanning tree (k-MST). Since

solving a k-MST is again an NP-hard problem, we use the minimal k-forest to approximate

this. The minimal k-forest of a graph is the subgraph containing the k−1 shortest edges that

do not form a circuit. Each edge of the k-forest is assigned a multiplicity. The longest edge

gets 1, the second longest 2, . . . , until the shortest edge gets k. The sum of the distances

weighted with the corresponding multiplicities is then a lower bound for an optimal solution

to the k-MST.

Next, by summing the k largest profits, we get an upper bound for the collected profits. The

difference of this upper bound and the lower bound for the k-MST gives an upper bound for

the TRPP, under the assumption that k is known. Taking the maximum over k = 1, . . . , n,

leads us to an upper bound for the TRPP.

4 Instances

Two types of data sets are used. The first type is based on data sets obtained from

TSPLIB [16]. To obtain a data set with exactly n nodes and a depot, we selected the first

n + 1 nodes of an instance containing enough nodes. The first node is chosen as depot

and gets a profit of 0. The remaining ones are allocated a profit that is randomly selected

according the uniform distribution in the interval [L,U] with L < U . The values of L and U

are chosen in such a way that in the construction phase solution an acceptable amount of

nodes is visited, i.e., k ≥ 0.60 · n. This is done to obtain interesting data sets.

The data sets of the second type are randomly generated according the uniform distribution.

The nodes are spread out over the Euclidean plane and have integer valued coordinates. As

for the data sets of the first type, the profits are randomly generated and satisfy the following

inequality: d0,i ≤ L < pi < U for each node i Ó= 0.

For each data set, the number of nodes different from the depot (n) is 10, 20, 50, 75, 100,

150, 200, or 500, and for each value of n there are 10 random instances and 5 instances from

TSPLIB. The data sets are available on the following website:

http://www.mech.kuleuven.be/en/cib/trpp.

5 Results

In this section we will discuss the computational results. First, a comparison between the

exact results, the tabu search results and the upper bound from Section 3.3 is given for small

datasets. Second, the latter two are used to measure the performance of tabu search on

ATMOS ’10

42 Heuristics for the Traveling Repairman Problem with Profits

larger instances.

The first results are presented in Table 1. The first column shows the computation time

for the exact solutions, found by solving the mathematical model from Section 2 using

Cplex. The other columns present the average gap with the exact solution and the required

computation time of the LP-relaxation, the construction phase, the tabu search algorithm,

and the upper bound, respectively. The gap is computed as follows:

gapX(%) =

∣

∣

∣

∣

X− (exact solution)

(exact solution)

∣

∣

∣

∣

.

In the case of n = 50, we were not able to compute exact results since solving the mathemat-

ical model for some k ≤ n requested too much computation time. In this case the gap is

computed with respect to the LP-relaxation. When n gets larger, Cplex is not able to find a

solution anymore due to memory restrictions.

From this table it is clear that TS was able to find the optimal solution for all instances

when n = 10 or 20. When n = 50, we see that on average, the gap with the LP-relaxation

is 13.99%. Next, we can see that TS needs much less time than Cplex1. Finally, the upper

bound gives worse results than the LP-relaxation, but it needs much less time.

In Table 2, the improvement that tabu search makes compared to the solution of the

construction phase is presented. This is then compared with the upper bound. In the

first column the computation time for the construction phase is given. Columns 2 and 3

contain, respectively, the improvement of tabu search compared to the construction phase

and the computation time of the tabu search algorithm. The results for the upper bound are

summarized in the last two columns. First the average gap between the tabu search solution

and the upper bound is given, and second, the time, in seconds, needed for computing the

upper bound is presented. We define improv and gap as

improv(%) =
(TS-solution)− (construction solution)

(construction solution)
,

gap(%) =
(upper bound)− (TS-solution)

upper bound
.

We see that tabu search improves the solution from the construction phase considerable.

Also, the gap with the upper bound is only slowly increasing.

6 Conclusion

We have studied the traveling repairman problem with profits (TRPP). In this problem a

server has to visit a subset of nodes in order to maximize the total collected revenues which

are declining in time. After motivating this problem and reviewing the related literature,

we develop a mathematical model in which we make the assumption that the number of

visited nodes is known in advance. Using an example, we find that it is not straightforward

to determine this number optimally. As our main contribution, we propose a tabu search

algorithm with multiple neighborhoods. We have implemented this method, and we tested

1 The tabu search algorithm is programmed in C++, the exact solutions are found with Cplex 10.1. Both
were run on a DELL Optiplex 760, Intel(R) Core(TM) 2 Duo 3.00GHz, 4.00GB RAM, 64-bit Operating
System.

T. Dewilde et al. 43

model (Cplex) LP-relaxation construction phase tabu search upper bound

time gap time gap time gap time gap time

n (s) (%) (s) (%) (s) (%) (s) (%) (s)

10 1 4.91 0 1.26 0 0 2 21.91 0

20 89 6.42 1 2.1 0 0 2 17.15 0

50 154 16.7 0 13.99 14 7.18 0

Table 1 Comparison of the results of the mathematical model (1)-(6)

construction tabu search upper bound

time improv time gap time

n (s) (%) (s) (%) (s)

10 0 1.31 2 16.05 0

20 0 2.21 2 14.20 0

50 0 3.29 14 19.39 0

75 0 4.71 45 19.02 0

100 0 4.33 208 14.09 0

150 0 7.83 545 18.89 0

200 0 6.59 580 20.44 0

500 2 16.02 500 24.81 0

Table 2 Comparison of the results of the metaheuristic

the performance of this metaheuristic, comparing it to a quite crude upper bound. The

computational results show that the tabu search algorithm is able to find optimal solutions

for small instances in a reasonable amount of time. For larger instances the optimal solution

is not known, but the metaheuristic obtains a considerable improvement compared to the

initial solution; even up to an average of 16% compared to the insertion-based construction

phase solution.

Acknowledgements Dr. P. Vansteenwegen is a post-doctoral research fellow of the “Fonds

Wetenschappelĳk Onderzoek - Vlaanderen (FWO)”.

References

1 E. Aarts, J.K. Lenstra (eds), Local search in combinatorial optimization, Wiley-interscience

series in discrete mathematics and optimization, 1997.

2 F. Afrati, S. Cosmadakis, C.H. Papadimitriou, G. Papageorgiou, N. Papakostantinou, The

complexity of the travelling repairman problem, Informatique Théorique et Applications 20

(1986) pp. 79-87.

3 D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The traveling salesman problem: a

computational study, Princeton University Press, 2006.

4 G. Ausiello, V. Bonifaci, S. Leonardi, A. Marchetti-Spaccamela, Prize-collecting traveling

salesman and related problems, in: T.F. Gonzalez (eds), Handbook of Approximation Al-

gorithms and Metaheuristics, CRC Press (2007) pp. 40.1-40.13.

5 A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, M. Sudan, The

minimum latency problem, in: Proceedings of the twenty-sixth annual ACM symposium on

the theory of computing (1994) pp. 163-171.

ATMOS ’10

44 Heuristics for the Traveling Repairman Problem with Profits

6 A.M. Campbell, D. Vandenbussche, W. Hermann, Routing for relief efforts, Transportation

Science 42 (1994) pp. 127-145.

7 S. Coene, F.C.R. Spieksma, Profit-based latency problems on the line, Operations Research

Letters 36 (2008) pp. 333-337.

8 T. Dewilde, Het profit-based latency probleem, Master’s thesis, Katholieke Universiteit

Leuven, 2009 (in Dutch).

9 E. Erkut, J. Zhang, The maximum collection problem with time-dependent rewards, Naval

Research Logistics 43 (1996) pp. 749-763.

10 D. Feillet, P. Dejax, M. Gendreau, Traveling salesman problems with profits, Transportation

Science 39 (2005) pp. 188-205.

11 F. Glover, G.A. Kochenberger (eds), Handbook of metaheuristics, Kluwer Academic Pub-

lishers (2003).

12 M. Goemans, J. Kleinberg, An improved approximation ratio for the minimum latency

problem, Mathematical Programming 82 (1998) pp. 111-124.

13 A. Lucena, Time-dependent traveling salesman problem - The deliveryman case, Networks

20 (1990) pp. 753-763.

14 J. Melvin, P. Keskinocak, S. Koenig, C. Tovey and B.Y. Ozkaya, Multi-robot routing with

rewards and disjoint time windows, in: Proceedings of the IEEE International Conference

on Intelligent Robots and Systems (2007) pp. 2332-2337.

15 S.U. Ngueveu, C. Prins, R. Wolfler-Calvo, An effective memetic algorithm for the cumula-

tive capacitated vehicle routing problem, Computers & Operations Research 37 (2010) pp.

1877-1885.

16 G. Reinelt, TSPLIB, Institut für angewandte Mathematik, Universität Heidelberg (2001).

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

17 A. Salehipour, K. Sörensen, P. Goos, O. Bräysy, An efficient GRASP+VND metaheuristic

for the traveling repairman problem, Working paper, University of Antwerp, Faculty of

Applied Economics (2008).

18 J.F.M Sarubbi, H.P.L. Luna, A new flow formulation for the minimum latency problem,

in: International Network Optimization Conference, Spa (2007).

19 E.G. Talbi, MetaHeuristics: From design to implementation, Wiley, 2009.

20 P. Vansteenwegen, W. Souffriau, D. Van oudheusden, The orienteering problem: A survey,

European Journal of Operational Research (in press) doi:10.1016/j.ejor.2010.03.045.

21 B.Y. Wu, Z.-N. Huang, F.-J. Zhan, Exact algorithms for the minimum latency problem,

Information Processing Letters 92 (2004) pp. 303-309.

