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ABSTRACT

In this paper, we present a new method for High Dynamic Range

(HDR) reconstruction based on a set of multiple photographs with

different exposure times. While most existing techniques take a

deterministic approach by assuming that the acquired low dynamic

range (LDR) images are noise-free, we explicitly model the photon

arrival process by assuming sensor data corrupted by Poisson

noise. Taking the noise characteristics of the sensor data into

account leads to a more robust way to estimate the non-parametric

camera response function (CRF) compared to existing techniques.

To further improve the HDR reconstruction, we adopt the split-

Bregman framework and use Total Variation for regularization.

Experimental results on real camera images and ground-truth data

show the effectiveness of the proposed approach.

Index Terms— High dynamic range imaging, denoising

I. INTRODUCTION

Digital photographs are acquired by exposing the camera sensor

to incident light (also called radiance) for a specified period of

time, called the exposure time. During the exposure, the electrical

charge of the sensor builds up and finally, the charge is converted

to a digital number using an analog-to-digital converter (ADC).

However, because the sensor has a limited working range, it is

not always possible to capture the full dynamic range of a natural

scene: underexposed regions in the image will be mapped to the

lowest intensity value while overexposed regions are mapped to the

highest intensity value. Low dynamic range (LDR) images are then

obtained.

The goal of HDR reconstruction is to compute the radiance

map of a real scene, based on several LDR images taken at

different exposure times. In the past decade, several methods have

been proposed for this task: the method of Debevec and Malik

[1] jointly recovers a non-parametric camera response curve from

image pixels and the corresponding radiance map. Because every

pixel corresponds to an equation in a linear system, in practice,

only a small number of pixels are used (e.g. 256) to compute

the actual response curve and this curve is then used to directly

compute the radiance map. The method of Mann and Picard [2]

uses a parameteric function for photometric calibration of the

different images. One difficulty is choosing a proper parametric

function for a given camera, because a simple model is often

too restrictive. Mitsunaga and Nayar [3] further improve this
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work by proposing a more realistic polynomial model, for which

linear regression can be used. The method of Robertson et al. [4]

iteratively updates the estimation of the camera response function

(CRF) and the irradiance values, until convergence. Their technique

assumes an additive sensor noise model. Finally, (joint) histogram-

based methods have been proposed for estimating the CRF [5],

[6], these techniques can then for example be used in combination

with the reconstruction from Debevec and Malik [1]. In [7], we

proposed a different HDR weighting function to yield higher

reconstruction SNR in presence of camera noise. Moreover, we

presented a solution to the algorithmic complexity issue of [1] such

that all image pixels can be taken into account, resulting in better

estimation of the CRF and a better overall reconstruction quality.

A problem with many of these techniques is that they do not

explicitly take sensor noise into account, and as a consequence

these methods reconstruct images with noise. In this paper, will

integrate denoising in the HDR reconstruction. First, we will show

that estimation for a Poisson sensor model leads to a different

but more effective weighting scheme than in [1], [7]. Then, we

also reformulate the HDR reconstruction itself based on this noise

model. Our approach is then integrated in the Split-Bregman

[8] or SALSA [9] optimization framework (both frameworks are

equivalent in our case) to include spatial regularization (and hence

denoising). In this paper, we will use Total Variation [10] for

regularization as a proof of concept.

The remainder of this paper is as follows: in Section II we present

the image and noise model that we will use throughout this paper.

The estimation of the CRF is explained in Section III. In Section IV

we describe the HDR reconstruction method (i.e. the estimation of

the radiance map). Results and a discussion are given in Section V.

Finally, Section VI concludes this paper.

II. IMAGE AND NOISE MODELING

We start from a set of P digital photographs of a static scene

taken from a fixed camera position, and we assume that illumination

changes can be ignored. Let zij ∈ [0, 1, ..., 255] denote the

captured pixel intensities of each LDR image, where i = 1, ..., N
is a one-dimensional position index in the image (e.g., using raster

scanning) and where j = 1, ..., P is the photograph index. The

exposure time for shot j is given by ∆tj and is assumed to be

known. We are interested in reconstructing the radiance map Ei of

the scene based on the measurements zij . As in [1], we start from

the following “ideal” relationship between Ei and zij :

zij = f (∆tjEi) , (1)



where Ei is first integrated over a time period ∆tj and then

subjected to the CRF f . The CRF models various nonlinear

operations in the digital camera such as gamma correction, ISO

setting, gain control, white balancing, contrast enhancement and

is camera/manufacturer dependent. We further assume that f is

monotonic on its domain and smooth (such that small relative

changes in Ei result in small relative changes with the same sign

in zij).

Due to the stochastic nature of the photon arrival process, (1)

is never exact in practice. Therefore, let xij denote the measured

signal intensity for exposure j at position i, then xij is Poisson

distributed:

xij ∼ P (∆tjEi) and zij = f (xij) . (2)

Because working with densities of nonlinear functions of Poisson

distributed random variables is highly complicated and often not

analytically tractable, we will seek for good probability density

function (PDF) approximations. In the following, we will consider

log xij , which has the following statistical moments:

E [log x|E] =e−E
+∞X
k=1

log (k/E)Ek

k!
+ log E ≈ log E,

Var [log x|E] =e-E
+∞X
k=1

log2 (k/E)Ek

k!
-e-2E

 
+∞X
k=1

log (k/E) Ek

k!

!2

≈ E−1, (3)

where we used E = ∆tjEi to shorten the notation. The accuracy

of the approximations in (3) improves when E becomes larger (i.e.,

for higher SNRs). Consequently, by defining g(z) = log f−1(z) as

the logarithm of the inverse CRF (see [1]), we have:

E [g (zij) |Ei] ≈ log ∆tj + log Ei

Var [g (zij) |Ei] ≈ (∆tjEi)
−1 . (4)

This gives the following approximative Gaussian (but signal-

dependent, i.e., the noise variance depends on the signal intensity)

model for g (zij):

g (zij) ∼ N
�
log ∆tj + log Ei, (∆tjEi)

−1� . (5)

Hence, the higher the exposure time, the lower the noise variance

becomes. This Gaussian model has the great advantage that the

estimation of the CRF and radiance map becomes considerably

easier compared to exact PDF models, as we will show next.

III. ESTIMATING THE CAMERA RESPONSE FUNCTION

Because the CRF f (or alternatively, g) is often not known

in advance (this would require deep knowledge of the internal

processing in the camera and sensors being used), we wish to

estimate the CRF from the set of LDR images as well. Fortunately,

the CRF can easily be estimated through joint histograms of zij and

zij′ for j 6= j′ . Therefore, relying on the statistical independence

of zij and zij′ , the difference g (zij)− g (zij′) has the following

PDF:

g (zij)− g (zij′) ∼ N

�
log

∆tj

∆tj′
,

1

Ei

∆tj + ∆tj′

∆tj∆tj′

�
.

Next, maximizing the likelihood function would amount to mini-

mizing:

min
g

X
i,j,j′

j 6=j′

Ei

∆tj∆tj′

∆tj + ∆tj′

�
g (zij)− g (zij′)− log

∆tj

∆tj′

�2

, (6)

with respect to the unknown parameters. However, there are some

issues with this approach which need to be solved first:

1) The estimation of g(z), z = 0, ..., 255, which is a discrete

function. To estimate the values of this function, we treat

g(0), ..., g(255) as unknown variables (as in [1]).

2) The parameter Ei in (6) is unknown. We may choose to

replace Ei by exp g (zij) /∆tj and then solve iteratively for

g(z), as in iteratively reweighted least squares approaches.

However, in our experiments we noted that a simpler and

faster technique (which consists of dropping the pre-factor

Ei in (6)) yields results that are already very good.

3) g(0) and g(255) are undefined, due to clipping of the

intensity values. Moreover, the clipped LDR images zij are

often stored in a compressed format (e.g. JPEG) on the

camera memory. Therefore, as in [1], [7], we will use a

weighting function w(z) that determines the importance of

the samples g (z) of a given intensity.

4) To deal with scenarios with a low number of samples for

certain value z (in this case the histogram of zij contains

zero-bins), we also include the smoothness regularization

term from [1].

5) Due to the assumption of noise presence, including a non-

smoothness penalty does not guarantee that the estimated

g (z) is monotonic. Therefore, we include the conditions

g (z) > g(z−1), z = 1, ..., 255 as constraints to the problem,

yielding a quadratic programming (QP) problem.

Taking all these factors into account, the problem can be stated as:

min
g

X
i,j,j′

j 6=j′

∆tj∆tj′

∆tj+∆tj′
w (zij)w (zij′)

�
g (zij) -g (zij′) - log

∆tj

∆tj′

�2

+ν
��w(z)g′′(z)

��2 subject to g (z) ≥ g(z − 1) + ǫ, z = 1, ..., 255,

where ǫ is a very small positive constant (e.g., ǫ = 10−8), ν is

chosen in [0, 1] and where a numerical second derivative is used to

compute g′′(z). The problem can then be efficiently solved using

standard QP solvers [11] (quadprog in MATLAB).

One point that we still need to address is the choice of the

weighting function. On the one hand, the weighting function w(z)
should be maximally flat, to minimize the statistical errors due to

noise in the estimation [7]. On the other hand, w(z) should allow

the algorithm to be resilient to clipping and JPEG artifacts near the

boundaries of the dynamic range of z. Experimentally, in presence

of noise we found that a good trade-off is given by:

w(z) = exp

 
−
�
1.1

����z − 127.5

127.5

�����20! . (7)

We remark that the particular choice of the numerical constants in

(7) is not of big importance, we want to ensure that w(z) ≈ 0 for

z = 0 and z = 255 and w(z) = 1 for a large part of the dynamic

range.

IV. ESTIMATING THE RADIANCE MAP

To estimate the radiance map Ei, we can select again a ML type

of approach (based on (5)):

min
Ei>0

X
j

Ei∆tjw(zij) (g (zij)− log Ei − log ∆tj)
2 , (8)



Algorithm 1 The proposed split-Bregman (or SALSA) HDR

reconstruction algorithm, solving (11).

initialize d
(0) = 0, b

(0) = 0, E
′(0) = Ê

′

WLS, n = 0
repeat

E
′(n+1) = arg minE′

λ
2
H(z,E′) + µ

2




E′-DH
�
d

(n)-b(n)
�


2

d
(n+1) = arg mind |d|1 + µ

2




d−DE
′(n+1) − b

(n)



2

b
(n+1) = b

(n) +
�
DE

′(n) − d
(n)
�

n← n + 1
until




E′(n) −E
′(n−1)





2

< tolerance

where, for similar reasons as in Section III, we also included the

weighting function w(z). Noting that Ei in (8) is a constant factor

that can be dropped, we obtain the weighted mean estimate in

E
′

i = log Ei:

Ê
′

i,WLS =

P
j
∆tjw(zij) (g (zij)− log ∆tj)P

j
∆tjw(zij)

. (9)

This is a pointwise estimate (i.e., it is applied to every position i of

the image without taking neighbors into account). Compared to the

reconstruction in [1], the exposure times ∆tj play a more important

role and now also determine the weights. However, there are two

scenarios in which (9) may not yield the desired result: 1) in case

the number of LDR images, P , is small and the exposure times ∆tj

are also relatively small, 2) when the weights w(zij) for a given i
are all small. In both cases, the denominator becomes very small

resulting in a noisy or even unstable reconstruction. This problem

can be solved by including some prior knowledge about the ideal

radiance map Ei. We will explain this in the next Subsections.

IV-A. Reconstruction using split-Bregman

We will use some vector notation: let z denote all intensities

zij stacked into a row vector, and let E
′ represent a row vector

containing the logarithms of the radiance map values E
′

i = log Ei.

We consider the following data fitting function:

H(z,E′) =
X
i,j

Ei∆tjw(zij)
�
g (zij) -E

′

i - log ∆tj

�2

. (10)

Then the regularized reconstruction can be expressed as an uncon-

strained problem:

Ê
′ = arg min

E′

��DE
′
��
1

+
λ

2
H(z,E′), (11)

where |DE
′|1 is the Total Variation (TV) norm [10]. In this

notation, D is a block matrix that consists of the horizontal

and vertical discrete derivative operators. For generality, to allow

different matrices D to be used as well (e.g. curvelets, shearlets)

and later to solve the problem jointly with demosaicing, we use

a more general solver than the gradient descent used in TV

minimization. Examples of such a solver are the split-Bregman

[8] method and the SALSA method [9]. In our application, both

formulations give the same algorithm, shown in Algorithm 1.

All steps of this algorithm amount to simple and fast point-wise

operations, such as weighted averaging and soft-thresholding. To

have a quadratic data fitting function, we use the radiance map

value Ei from previous iteration, E
(n)
i , as weight in (10).

Table I. Comparison of the MSE of the inverse CRFs compared

to the ground-truth.
(noise-free) (simulated Poisson noise)

Exposure 1s, 2.5s, 1s, 2.5s, 2s, 5s, 3s, 7.5s,
times ∆tj 5s, 10s 5s, 10s 10s, 20s 15s, 30s

Debevec [1] 8.75 39.48 40.30 39.58
De Neve [7] 9.94 17.89 17.89 17.87

Proposed 10.15 17.43 17.53 17.41

IV-B. Dealing with color images

To reconstruct color images, we apply the CRF estimation and

HDR reconstruction in RGB color space to each color channel

individually. However, because the CRF can be estimated up to a

constant scale factor, it is necessary to calibrate the scale factor for

the different color channels. A common assumption [1] is that the

RGB value (255/2, 255/2, 255/2) has equal radiance values for

R, G, B, such that the pixel is achromatic. This directly yields the

different scale factors.

We found that, next to this, a much more faithful reconstruction

with less color artifacts can be obtained by fixing the values of

the weighting function across color channels. Instead of computing

the weights for each channel individually, we compute the weights

based on the luminance intensities 0.2126zij,R + 0.7152zij,G +
0.0722zij,B .

V. RESULTS AND DISCUSSION

To evaluate our technique, we acquired real camera images,

containing real CCD sensor noise. We captured two sets of LDR

images: the first set in bright conditions (Figure 1) and a second set

in a more dark environment (Figure 3). Consequently, the images in

set 1 do not suffer from the influence of noise, while the images in

set 2 have a low SNR, especially in the dark regions in the image.

HDR reconstruction results are given in Figure 2 and Figure 4. We

compare to Debevec and Malik [1], for their method we use 2048
sampling points, randomly selected in the image. For our method,

the parameters µ and λ are chosen experimentally as µ = 300 and

λ = 1. In Figure 2 it can be seen that the color artifacts in the

sun region has been remedied, this is partly by fixing the weights

across color channels as explained in Subsection IV-B. In Figure

4, we observe that for our method, noise is well suppressed, while

numerical instabilities (due to a denominator that becomes zero)

are completely avoided.

To have an indication of the objective quality of our method, we

also perform an experiment using the ground-truth image from [7].

First, the HDR image is multiplied by pre-specified exposure times

and subsequently corrupted with Poisson noise. Next a fictious

camera response function f(x) ∼ √x and clipping of the dynamic

range are applied to the resulting image. In Table I, we compare the

mean square error (MSE) of the estimated g(z) compared to the

ground-truth g(z) = log f−1(z) = 2 log z, for different settings of

exposure times. We use ν = 0.5 as smoothing parameter for the

CRF estimation for all methods. It can be seen that in the Poisson

noise case (this is the scenario we are interested in, the noise-free

case is shown as reference), the proposed CRF estimation method

performs the best, due to the modified weighting scheme that takes

the exposure times into account.



1/4000 s 1/2000 s 1/1000 s

1/500 s 1/250 s 1/125 s

Fig. 1. A first set of LDR images used of the experiments, with

corresponding exposure times. Images were captured using a Nikon

D90 camera at ISO 200.

(a) (b)

Fig. 2. HDR synthesis results (after the tone mapping from [12]): (a)

Debevec and Malik [1], (b) Proposed method. Images are cropped due

to space limitations.

1/20 s 1/10 s 1/5 s

Fig. 3. A second set of LDR images used of the experiments, with

corresponding exposure times. Images were captured using a Canon

Powershot S5 camera at ISO 80.

VI. CONCLUSION

We presented a new CRF estimation and HDR reconstruction

method that is based on a Poisson noise model for the sensor

data. We showed how the CRF estimation needs to be modified in

order to take the noise characteristics into account and have a better

estimation. Furthermore, we extended the HDR reconstruction by

integrating it into a more general split-Bregman framework for

image restoration, offering denoising and solving some instability

problems of non-regularized reconstruction methods. In our future

work, we wish to combine this approach with shearlet-based

regularization and demosaicing, and this can all be done within

the presented framework.

(a) (b)

Fig. 4. HDR synthesis results (after the tone mapping from [12]): (a)

Debevec and Malik [1], (b) Proposed method. Images are cropped due

to space limitations.
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