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The short-wave and mid-infrared wavelength region, often referred to as the molecular 

fingerprint region, has an enormous potential for spectroscopic applications. Silicon’s 

transparency from 1.1 um up to 7 um could potentially be used to make a platform for a 

whole new class of compact devices for gas trace sensing, environmental monitoring 

etc. By using the large effective χ
(3)

 nonlinearity, light generation by nonlinear mixing  

in this new wavelength region is demonstrated. We present both a silicon broadband 

supercontinuum spanning from the telecom window into the mid-infrared as well as a 

silicon-based widely tuneable optical parametric oscillator.         

Introduction 

Many molecules have distinct absorption features in the short-wave and mid-infrared 

wavelength range. These absorption features resulting from the molecular vibrational 

states of the molecules are specific and act as a fingerprint for these molecules. For now, 

silicon has been used primarily to construct planar lightwave circuits in the telecom 

wavelength range. However due to its transparency up to 7 um, silicon waveguides can 

be used as a platform to guide this mid-infrared light. This would enable to integrate 

complex functions on a compact silicon chip and enable a whole new set of applications 

for spectroscopic sensing. However, to probe these absorption features tuneable sources 

or broadband sources need be integrated on these chips. The integration of such sources 

with a silicon chip is not straightforward. However, the high intrinsic nonlinear χ
(3)

  

nonlinearity can be used to generate new wavelengths. Indeed by combining the high 

intensities obtained by the high confinement in silicon wire waveguides with the 

enormous nonlinearity of the material, low-threshold nonlinear effects can be obtained. 

The nonlinear interactions can be further enhanced by using dispersion engineered wire 

waveguides. In these dispersion engineered waveguides phase matching between the 

optical waves in the nonlinear optical process is satisfied. Here we demonstrate the use 

of nonlinear optics in silicon waveguides to generate a broadband supercontinuum light 

source as well as a widely tunable silicon based optical parametric oscillator.  

Nonlinear optics in silicon nanowire waveguides in the mid-infrared 

At telecommunication wavelengths silicon suffers from two-photon absorption, which 

limits the efficiency of nonlinear processes in silicon wire waveguides. Given the 1.12 

eV bandgap of silicon, this two-photon absorption process disappears at wavelengths 
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beyond 2.2 µm. In this work, 900 nm wide and 220 nm thick silicon strip nanowire 

waveguides with an air top cladding are pumped close to 2.2 um to achieve efficient 

nonlinear interactions. The waveguide cross-section is shown in the inset of Figure 1. 

Using a cut back technique, the TE mode waveguide propagation loss is found to be 

approximately 2.5 dB/cm across the 2050-2450 nm wavelength range. In Figure 1 the 

higher order dispersion terms of the waveguide are shown. These waveguides are 

designed to have a negative second order dispersion and positive fourth order dispersion 

to achieve phase matching in the four wave mixing process.  

Indeed, efficient phase matching in the four wave mixing occurs when [4] 
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in which pumpk , sk  and ik  are the linear propagation constants of the pump, signal and 

idler wave respectively. The term 2γP, in which γ is the effective nonlinear parameter of 

the waveguide and P is the peak power of the pump pulse, accounts for the self-phase 

and cross-phase modulation of the interacting waves. Using a Taylor expansion of the 

waveguide dispersion relation around ωpump and taking into account the conservation of 

energy in the four wave mixing process, this results in a phase matching condition  
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in which Δω is the frequency detuning between pump and signal (and also between 

pump and idler), β2 the second order and β4 the fourth order dispersion. By averaging 

the nonlinear susceptibility of bulk Si over the electric field of the fundamental TE 

polarized waveguide mode, the real part of the nonlinearity parameter is estimated to be 

γ = 150 (W·m)
-1 

in the silicon nanowire being used. 

 
 

Fig. 1: Dispersion of the silicon photonic wire, simulated using a commercial finite element solver (RSoft 

FemSIM). The inset shows a cross section of the silicon wire waveguide. 

 

Supercontinuum generation  

The supercontinuum generation experiments are conducted using a picosecond pulse 

train at a center wavelength of 2120 nm as the pump (Coherent Mira-OPO, FWHM = 2 

ps, repetition rate = 76 MHz). Figure 2 illustrates the evolution of the waveguide output 



spectrum as the input coupled peak pump power is gradually increased from 3.1 W 

(green trace) to 12.7 W (black trace). These spectra reveal that a number of different 

nonlinear processes ultimately combine to produce the broadband supercontinuum. At 

an input power of 3.1 W, a series of sidebands are generated in the vicinity of the pump 

at 2120 nm. Closest to the pump, two broad sidebands (labeled as MI(1)) are generated 

near wavelengths of 1990 nm and 2250 nm. Further away from the pump, a pair of 

narrowband peaks (labeled as MI(2)) appear at wavelengths of 1870 nm and 

approximately 2510 nm. Both the broad and narrow sideband pairs originate from 

modulation instability, i.e. the amplification of background noise at wavelengths for 

which the phase matching condition in Eq. (2) is satisfied. At a pump power of 7.9 W, 

several new spectral components are observed, peaked near 1700 nm and 1600 nm 

respectively. The term at 1700 nm is generated through cascaded four wave mixing 

(FWM), where the original MI(2) peak at 1890 nm serves as the degenerate  pump and 

the input pulse at 2120 nm acts as the signal. At maximum power the supercontinuum 

was inspected with an FTIR, this revealed that the supercontinuum [1] spans from 1.53 

um up to 2.55 um.  

 

 
Fig. 2. Measured output spectrum for increasing values of coupled input peak power: 3.1 W (green), 4.3 

W (blue), 7.9 W (red) and 12.7 W (black).  

 

Widely Tuneable Silicon Mid-Infrared Optical Parametric Oscillator 

 

The broadband on-chip parametric gain demonstrated by the modulation instability 

sidebands [3] can be combined with optical feedback in order to achieve optical 

parametric oscillation over a broad wavelength range [4]. The synchronously pumped 

fiber optic loop configuration employed to construct the mid-IR OPO is illustrated in 

Figure 3. The mid-IR pumped photonic wire waveguide serves as the core gain element 

within the fiber loop. The cavity of the OPO is formed by a loop of standard single 

mode fiber, along with a variable free-space delay element, which facilitates temporal 

synchronization of the re-circulating amplified pulses with successive pump pulses. Due 

to the absence of special purpose wavelength multiplexers/demultiplexers within the 

mid-IR wavelength range of operation, a 90/10 coupler is used to combine the cavity 

pulses with successive pump pulses after each round-trip. Polarization controllers are 

used to align both the pump and cavity pulses to the quasi-TE-mode at the input of the 

photonic wire.  The output of the silicon-fiber OPO is monitored by a mid-infrared 



optical spectrum analyzer (OSA). The high dispersion of the single mode fiber feedback 

loop at wavelengths beyond 2000 nm allows for wavelength selective feedback. By 

adjusting the round-trip time using the free-space variable delay line, a particular 

temporal “slice” of the circulating amplified pulse is selectively synchronized with the 

pump pulse train. The dispersion in the fiber loop likewise ensures that only one 

particular wavelength within the silicon parametric gain spectrum can be synchronized 

with the pump pulses, and thus enables broadband tuneability of the oscillator 

wavelength via delay tuning. The energy of the output pulses as a function of the output 

wavelength for pump pulses with an energy of 48 pJ at 2175 nm is shown in Figure 4. It 

was demonstrated that the OPO is tuneable over a 75 nm-wide band centered around the 

gain peak at 2075 nm. 

 
Fig 3. Configuration of the synchronously-pumped silicon-fiber OPO. 

 

 
Fig 4 Output spectrum of the silicon-fiber OPO for different pump pulse energies, when the fiber cavity is 

tuned to an output wavelength of 2075 nm. (b) On-chip output pulse energy versus the coupled input 

pump pulse energy. 

 

Conclusion 

 

Nonlinear optics has a huge potential for integrating tuneable or broadband sources in 

the mid-infrared on a silicon chip. A broadband supercontinuum spanning from the 

telecom wavelength range into the mid-infared was demonstrated as well as a tuneable 

silicon-based optical parametric oscillator. 

 
[1] B. Kuyken, et al., “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear 

silicon-oninsulator wire waveguides” ,Optics Express, 19, p.20172-20181, 2011 

[2] B. Kuyken, et al., “Frequency conversion of mid-infrared optical signals into the telecom band using 

nonlinear silicon nanophotonic wires”, OFC, 2011 

[3] B. Kuyken, et al., “50 dB Parametric Gain in Silicon Photonic Wires”, Optics Letters, 2011 

[4] B. Kuyken, et al., “Widely Tunable Silicon Mid-Infrared Optical Parametric Oscillator”, Group IV 

Photonics, 2011.  

 

http://photonics.intec.ugent.be/publications/publications.asp?ID=2775
http://photonics.intec.ugent.be/publications/publications.asp?ID=2775
http://photonics.intec.ugent.be/publications/publications.asp?ID=2653
http://photonics.intec.ugent.be/publications/publications.asp?ID=2653
http://photonics.intec.ugent.be/publications/publications.asp?ID=2782
http://photonics.intec.ugent.be/publications/publications.asp?ID=2773

