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Abstract To investigate the influence of global plastic deformations on girth weld defect tolerance in 
pipelines, a parametric finite element model has been developed. This paper provides an experimental 
validation of the model. It describes the test setup and instrumentation used for the evaluation of plastic 
strain fields around a notch in a tension loaded non-welded X65 mini wide plate. LVDT measurements and 
digital image correlation (DIC) results are compared to each other and to the results of finite element 
simulations. Whereas some deviation is observed owing to unavoidable experimental uncertainties and 
limitations of finite element modelling, the overall correspondence is more than satisfying. 
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1 INTRODUCTION 

As energy consumption is still increasing, more and more oil and gas sources are exploited in less 
accessible areas like arctic regions. Pipelines, connecting these sources with civilization, need to cross 
harsh environments and are thereby subjected to large deformations, for instance due to earthquakes or 
ground settlements [1]. These deformations exceed the deformations anticipated in stress-based design, 
usually limited to a maximum longitudinal strain of 0.5% [2]. For this reason, a so-called strain-based design 
is preferred over a traditional stress-based design. 

An important aspect of this design methodology is that strain should not be concentrated in certain critical 
regions of the welded pipe. As weld flaws are inevitable, large strains must be avoided in their surroundings 
to prevent crack initiation and (un)stable growth. 

Research at Laboratory Soete is focused on the deformation capacity and defect tolerance of pipeline girth 
welds in the context of strain-based design approach. This experimental based research is performed using 
so-called curved wide plate (CWP) tests. This can be described as a tensile test on a cut-out from a real 
pipeline, including a defective girth weld. 

Recently, a parametric finite element (FE) model was developed, but experimental validation is required. 
Since CWP tests are expensive and large equipment is required, smaller test coupons, further called mini 
wide plates (MWP), offer satisfying accuracy and make tensile testing more convenient. 

In this paper, such a mini wide plate test is thoroughly evaluated. The first section discusses the 
preparation of the specimen, the equipment and instrumentation that was used and the execution of the 
test. Afterwards, different measurement results are interpreted and compared to results of finite element 
simulations. 

2 PREPARATION AND EXECUTION OF THE TEST 

2.1 Specimen 

A mini wide plate specimen was cut from an API 5L [3] X65 flat steel plate of 14.6 mm nominal thickness. A 
25 mm long by 3 mm deep semi-elliptical surface crack was milled in the centre of the MWP. Blocks were 
welded to each specimen end for mounting purposes (Figure 1). The dimensions of the specimen are 
indicated in Figure 2. 
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Figure 1: Test specimen with mounting blocks 

 

2.2 Material 

The stress-strain relation (average of 6 tensile tests) of the pipeline steel in the longitudinal direction is 
shown in Figure 3. The plate material exhibits discontinuous yielding behaviour with a pronounced Lüders 
plateau. The main tensile characteristics are listed in Table 1. Note that the yield-to-tensile stress ratio (Y/T-
ratio) is defined as the ratio between 0.2% proof stress Rp0.2 and ultimate tensile stress Rm. 

Table 1: Mechanical properties of API 5L X65 pipeline steel 

upper yield point Re 455.0MPa  ultimate tensile stress Rm 537.4 MPa 

proof stress Rp0.2 433.5 MPa  uniform elongation em 16.1% 

0.5% strain offset Rt0.5 433.5 MPa  yield-to-tensile ratio Rp0.2/Rm 0.83 

Lüders elongation eLüders 2.62%    

 

 
Figure 2: Geometry and mounting positions of 

measurement devices (figure not to scale) 

 
Figure 3: Longitudinal stress-strain curve of the 

material 

 

For optical strain measurements, a randomly distributed speckle pattern was applied on the notched side of 
the specimen. The speckle pattern was obtained from a uniform layer of white spraying paint covered with 
spots of black lacquer paint. This pattern allows the Digital Image Correlation (DIC)  camera system to track 
different regions of the MWP during the experiment. More information on this system is given in section 
2.3.3. To avoid crumbling of the paint layer during the test, the corrosion layer on the specimen was 
removed in advance. 

2.3 Test rig and measurement equipment 

2.3.1 MTS test rig 

A servo-hydraulic MTS universal test rig was used for this experiment. The system can exert a maximum 
force of 2500 kN and a maximum piston displacement of 150mm. 
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2.3.2 LVDTs and clip gauge 

To measure the deformation at different locations of the specimen, 4 LVDTs were mounted on the backside 
of the specimen according to the UGent guidelines for CWP testing [4]. Two of them with gauge length 108 
mm (K1 and K2) were located in the gross section of the specimen, away from the notch. The two other 
LVDTs (G1 and G2), with gauge length 388 mm, measured the elongation of the full prismatic section, 
traversing the defected section. Their position is indicated in Figure 2. 

A clip gauge was put over the notch to measure the crack mouth opening displacement (CMOD). 

2.3.3 DIC camera system 

Digital Image Correlation (DIC) is an optical method in which the movement of speckle dots is tracked to 
calculate their displacement. From this displacement, strain fields on the surface of the specimen can be 
determined. In this experiment, a setup of two cameras is used to allow 3D vision, so out-of-plane 
deformations (eg. necking) of the specimen can be evaluated as well. Both cameras are synchronized and 
take one picture of 5Mpx every 10 seconds. A laptop with control and processing software also recorded 
the analogous force signal to allow for synchronization of the DIC and LabVIEW measurements. 

A crucial element in the DIC technique is the size of the speckle dots. Dots should not be too small for the 
cameras to detect them. If they are too large, however, calculation accuracy is reduced. The speckle 
pattern shown in Figure 4 and Figure 5 did not introduce any correlation issues. The strain resolution was of 
the magnitude 0.1% strain. 

 

 
Figure 4: View of speckle pattern on half of the 

MWP specimen 

 
Figure 5: Detailed view of Figure 4. 

2.4 Software 

A LabVIEW program was developed to control the test rig. The software defines whether the test rig should 
load or unload the specimen or hold it in a fixed position, based upon measurements of CMOD and applied 
force. In fact, a simple tensile test would suffice to validate the FEM model, but it was opted to follow the 
unloading compliance method [5]. Unloading compliance is a technique whereby the specimen is 
sequentially loaded and unloaded, first in the elastic region, then in the plastic region. In the latter case, the 
unloading decision is based on a constant increment of CMOD. When plotting applied force as a function of 
CMOD, as in Figure 6, different loading and unloading cycles can be seen. From the slope evolution of the 
unloading and reloading cycles, crack size can be determined. 
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Figure 6: Force with respect to CMOD 

 

The software provides a parametric input of characteristics related to the unloading compliance cycles, for 
instance the required CMOD increment between two cycles. When the program is started, it runs through a 
state diagram, defining different cases of how the controller should behave. Depending on the obtained 
force or CMOD, the software deliberately switches between cases. When detecting failure, all case 
decisions are overruled by a safety mechanism and the test specimen is unloaded. The use of a state 
diagram makes the software robust as decisions are not influenced by irrelevant measurements. 

All LVDT displacements, CMOD, force and piston displacement have been monitored in the LabVIEW 
software and logged into a database at a rate of 10 Hz. 

2.5 Execution of the test 

No significant problems were recorded except for some temporary malfunctioning of the hydraulic valves, 
which caused an oscillating force (see Figure 6 around 1.3 mm CMOD). Because of a too small CMOD 
increment setting, as much as 85 cycles were executed. Eventually, it was chosen to end the test when 
CMOD started increasing drastically, announcing a necking phenomenon in the defective section (net 
section collapse). A maximum piston displacement of 77.6 mm and force of 1215 kN were measured. The 
CMOD eventually obtained was 4.8 mm. 

2.6 Post-mortem analysis 

After testing the specimen, a macro section of the notch region was cut out (Figure 7). This section 
indicates a stable crack extension of 2 mm in the through-thickness direction, and confirms necking in the 
defective section. 

 
Figure 7: Macro section of the notch 
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3 FINITE ELEMENT MODEL 

A parametric finite element model of a curved wide plate has been previously developed at Laboratory 
Soete. Mesh density was defined according to an existing mesh convergence study. This resulted in the 
mesh shown in Figure 8 and Figure 9. Clamped boundary conditions were imposed at the end nodes of two 
rigid blocks, attached to the actual wide plate specimen.  

The stress-strain curve before necking was converted from engineering values to true stress and true 
strain. For the curve after necking, the approach recommended in [6] was followed. This method calculates 
a weighted-average of an upper and lower bound. The upper bound is a linear extrapolation, the lower 
bound a power law extrapolation. A weight factor between the two curves should be iteratively defined to 
match experimental results, and was chosen 0.5 in this case.  

 
Figure 8: Global FE model (geometry and mesh) of the specimen 

 
Figure 9: Detailed view of the 

mesh at the notch region 

 

4 DISCUSSION 

4.1 Comparison of DIC and LVDT measurements 

To validate the strain field calculations by the DIC software, engineering strain was compared with the 
strain calculated from the LVDT elongation measurements. Because both datasets described the same 
experiment, displacement of the pistons was chosen as the common basis for the comparison. The plots in 
Figure 10 and Figure 11 display the engineering strain measured at the two small LVDTs, K1 and K2. 

 
Figure 10: Engineering strain calculated by DIC and 

measured by LVDT K1 

 
Figure 11: Engineering strain calculated by DIC and 

measured by LVDT K2 

 

When the piston displacement reached about 45 mm, the boundaries of the LVDTs linear operation range 
were exceeded, so comparison is limited to this area. The small ripples visible on the curves are caused by 
the unloading compliance cycles. It can be seen that both strain measurements are in (very) good 
agreement. The correspondence with the large LVDTs (G1 and G2), which did not saturate, is excellent 
(Figure 12 and Figure 13). The small “hooks” at the right top corner indicate unloading at the end of the 
test. 
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Figure 12: Engineering strain calculated by DIC and 

measured by LabVIEW at LVDT G1 

 
Figure 13: Engineering strain calculated by DIC and 

measured by LabVIEW at LVDT G2 

A detailed view of the K1 and K2 engineering strains at both sides of the notch is shown in Figure 14. The 
large increments of the strain calculated from both LVDT measurements are caused by the Lüders 
behaviour of the material. The first region experiencing Lüders behaviour is the K2 region. Roughly 
between 1000 seconds and 1250 seconds, the material at the K2 side yields while the strain at the K1 
region remains constant. From 2750 seconds to 3000 seconds, the behaviour is opposite. In the interval 
between these periods, the region around the crack yields. Although this is a small region, it took a long 
time before the Lüders yielding ended due to a large number of unloading cycles. If the material around the 
crack is yielding, a CMOD increment is easily obtained, causing the system to hold, unload, hold and load 
again. The CMOD curve in Figure 14 illustrates this behaviour. CMOD increases in steps when the material 
around the crack is yielding, while remaining constant when the K2 and K1 zones yield.  

 
Figure 14: Detailed view of Lüders behaviour at both sides of the specimen 

4.2 Comparison of FEM results with DIC measurements 

Comparison of the numerical and experimental results is far from straightforward. First, the experiment 
followed the unloading compliance procedure with loading and unloading cycles, while ABAQUS simulates 
a monotonically increasing tensile load. Second, the finite element model predicted symmetrical results 
while small natural variations in material and geometrical properties caused an asymmetrical Lüders 
yielding. Third, the specimen’s mounting blocks elastically deform during the test while modelled as rigid 
blocks in ABAQUS. Due to this and initial backlash in the test rig, a comparison based on total (piston) 
displacement is not possible. Fourth, crack growth, and subsequent influence on the strain fields, was not 
modelled in ABAQUS. Because of these reasons, the engineering strain fields of the simulation were 
compared to those of the DIC measurement at frames corresponding to a fixed and limited LVDT strain, 
more specifically the frames corresponding to LVDT strains εK1 of 4% and 7%. With these values, the 
Lüders behaviour is avoided and the ductile crack extension can be assumed negligible. 

Inspection of the contour plots of the first principle strain (Figure 15 and Figure 16) yields a good agreement 
(both qualitative and quantitative) between the calculated and measured results. It should be noted that 
ABAQUS plots logarithmic strain while the DIC-software plots Lagrange strain. However, the difference 
between both is small. An expected X-shaped strain concentration around the notch is visible on both plots. 
Figure 17 and Figure 18 are plots of the strain values along the paths defined in Figure 15 and Figure 16. 
ABAQUS successfully predicted strain hotspots in front of the shoulders, which may harm the capability of 
LVDT measurements to indicate a far-field uniform strain. In the experiment, the hotspot at the right side of 
the notch was more pronounced than the left one. ABAQUS overestimates this hotspot in Figure 17, 
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whereas it is underestimated in Figure 18. This indicates that the experiment is prone to inevitable 
coincidences and natural effects which are not (or even cannot be) accounted for in the simulation. 
Nevertheless, a more than satisfactory overall agreement is observed between the experimental and the 
simulated results. 

 
Figure 15: First principal strain for εK1 = 4% 

 
Figure 16: First principal strain for εK1 = 7% 

 
Figure 17: First principal strain along path for 

εK1 = 4% 

 
Figure 18: First principal strain along path for 

εK1 = 7% 
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5 CONCLUSIONS 

The optical strain measurement (DIC) results show good accordance with the LVDT measurement results. 
Although comparison on the small LVDTs was limited to a maximum strain of 8%, there seems to be a very 
good similarity between the measurements. The major advantage of the DIC system is that it provides 
strain field output of the whole surface of the specimen. A disadvantage is the time-consuming and 
sensitive procedure required to speckle the specimen. 

The ABAQUS finite element model predicts the MWP’s strain fields fairly well for strains higher than the 
maximum Lüders strain. Further, crack growth is not yet implemented in the model, so application of the 
current model at large strains, where ductile crack extension has a significant influence, is discouraged as 
well.  

Although no correlation problems were noted, more accurate DIC results might be obtained when an 
optimized speckle pattern is applied to the specimen. A study on the influence of the speckle size and how 
to create speckles in a controlled manner is suggested. 

6 NOMENCLATURE 

DIC Digital Image Correlation 

CMOD Crack Mouth Opening Displacement 

CWP Curved Wide Plate 

LVDT Linear Variable Displacement Transducer 

MWP Mini Wide Plate 

UC Unloading Compliance 
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