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Abstract: We have applied a state-of-the-art env. sustainability assessment to an energy positive sewage 

treatment plant, its supply chain and resource recovery: electricity production out of biogas from sludge 

digestion and the associated stabilized digestate, applied as agricultural fertilizer, production. Prominent aspects 

of our study are: a holistic environmental impact assessment, measurement of greenhouse gas emissions 

(including N2O), and accounting for infrastructure, toxicity of metals present in the digestate and replacement of 

conventional fertilizers and electricity. The impact of latter products is prevented. Overall, the system leads to a 

prevention of resource extraction from nature and a potential prevention of ecosystem diversity loss (though for 

some impact categories this cannot be quantified) but it also leads to a damaging effect on human health, mainly 

via climate change (dominated by N2O) and heavy metal (mainly Zn) toxicity of digestate. Resource recovery 

plays a crucial role in the environmental sustainability though the assessment methodology needs improvement. 
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Introduction 

Although the main aim of the wastewater treatment plant (WWTP) is to decrease harmful 

emissions towards water bodies, recently more attention is paid to energy efficiency, resource 

recovery and even broader to overall environmental sustainability (Verstraete and Vlaeminck, 

2011). The WWTP in Strass (Austria), studied in this work, has been put forward as energy 

self-sufficient and is one of the pioneer plants in this aspect (Nowak et al., 2011) (Figure 1.1).  

 
Figure 1.1 Schematic overview of the foreground system of the studied life cycle of the sewage treatment plant. 

AD: anaerobic digestion; CHP: combined heat and power; AS: activated sludge. 
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The latter WWTP is based on a two-stage activated sludge system (A/B system; (Wett et al., 

2007)) as mainstream treatment and on sludge digestion. In the studied configuration, the 

energy-saving combination of partial nitritation and anammox (Kartal et al., 2010), DEMON 

/OLAND, is implemented to remove nitrogen out of the reject water of the digester and some 

co-substrate (kitchen waste and fat) is added to increase digester biogas production. The 

WWTP recovers following resources out of the wastewater and its co-substrate: electricity 

(the produced heat is not exported as a product) via burning of the biogas, and composted 

digestate that can be applied on land as a (C, N & P-)fertilizer. As a role model for other 

WWTP, the questions remain how environmentally sustainable this WWTP is overall 

(compared to direct disposal of the sewage) and what the benefits of resource recovery in this 

matter are. To address these questions, one should not only evaluate the WWTP on its own 

but also all the auxiliary processes needed to support it, such as production of chemicals 

added during the treatment, and further processing/application of its products, e.g. sludge 

disposal. To do so, life cycle assessment (LCA) is a fitting tool as it allows one to assess the 

environmental sustainability of a product or service (e.g. wastewater treatment) over its life 

cycle (ISO, 2006). LCA has been numerously applied to WWTPs (Corominas et al., 2013). 

However some main aspects should in general be dealt with (in a better manner) in LCA: (1) 

production and disposal of the infrastructure of the wastewater treatment plant (Corominas et 

al., 2013), (2) the effect of land application, especially heavy metal toxicity, of biosolids that 

optionally replace conventional fertilizers and (3) measurement of greenhouse gas emissions, 

with a focus on CH4 and N2O, at the plant. In our study all three matters were accounted for. 

Additionally, we have assessed resource consumption in a broader manner by applying a 

method which covers all types of resources, better highlighting resource recovery benefits. 

Material and Methods 

In this research, an LCA of the Strass WWTP (Figure 1.1) was performed. Added sodium 

aluminate, wastewater and co-substrate were waste flows and hence no environmental 

impacts were attributed to them. The impact of displaced products (electricity and fertilizers) 

were subtracted from the total impact of the life cycle. Impact on human health and 

ecosystems was assessed and expressed as loss in healthy human life years (disability 

adjusted life years; DALY) and biodiversity loss (species*yr), respectively. For some impact 

categories that cover diversity loss, no quantitative modeling of diversity loss is available and 

the impact at midpoint of the cause-effect chain is presented. Resource consumption was 

assessed in MJex as the cumulative exergy (usable share of energy) extracted from the natural 

environment. For more information, read the work of Schaubroeck et al. (2015). 

Results and Conclusions 

Results are shown in Figure 1.2. A full elaboration is given by Schaubroeck et al. (2015). The 

complete system prevented the net-extraction of 2.5 MJex m
-3

 treated wastewater, i.e. this 

amount of natural resources was saved. If sodium aluminate had to be obtained from the 

regular market, this amount would drop to 0.6 MJex. More greenhouse gases were prevented 

from being emitted than there were emitted; the global warming potential is negative at -0.002 

kg CO2 equivalents. However, the heavy metals (mainly Zn) in the stabilized digestate were 

estimated to have led to considerable loss in human health. Using another method for heavy 

metal toxicity estimated the human health damage a factor 10-100 higher. Hence, we need to 

find and use means to lower the metal, especially Zn, content of the stabilized digestate. 



          

Figure 1.2 Environmental impact of the treatment of 1 m
3
 sewage comprising the Strass wastewater treatment 

plant, its supply chain and valorization of the byproducts. A positive value represents damage caused, a negative 

value damage prevention, via displacement of products and water purification. For some impact categories no 

final damage to natural systems expressed as diversity loss cannot be quantified, hence the respective normalized 

midpoint impacts are presented. 100% corresponds to 0.0477 kg N equivalents for marine eutrophication, 1.85E-

08 kg trichlorofluoromethane equivalents for ozone depletion and 0.00187 kg non-methane volatile organic 

compounds equivalents for photochemical oxidant formation. DALY: disability adjusted life years.  

Regarding ecosystem damage, there is most probably a prevention of damage. Overall, 

production of electricity and stabilized digestate were both of equal and high relevance. 

Resource recovery is thus estimated to play a crucial role in obtaining an environmentally 

sustainable WWTP in this case. Keep though in mind that the LCA tool needs improvement.  
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