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Abstract—The demand for highly dynamic electrical drives,
characterized by high quality torque control, in a wide variety
of applications has grown tremendously during the past decades.
Direct torque control (DTC) for permanent magnet synchronous
motors (PMSM) can provide this accurate and fast torque
control. When applying DTC the change of the stator flux linkage
vector is controlled, based on torque and flux errors. As such the
estimation of the stator flux linkage is essential. In the literature
several possible solutions for the estimation of the stator flux
linkage are proposed. In order to overcome problems associated
with the integration of the back-emf, the use of state observers has
been advocated in the literature. Several types of state observers
have been conceived and implemented for PMSMs, especially
the Extended Kalman Filter (EKF) has received much attention.
In most reported applications however the EKF is only used to
estimate the speed and rotor position of the PMSM in order to
realize field oriented current control in a rotor reference frame.
Far fewer publications mention the use of an EKF to estimate
the stator flux linkage vector in order to apply DTC. Still the
performance of the EKF in the estimation of the stator flux
linkage vector has not yet been thoroughly investigated. In this
paper the performance of the EKF for stator flux linkage is
studied and simulated. The possibilities to improve the estimation
by augmenting the state vector and the consequences of these
alterations are explored. Important practical aspects for FPGA
implementation are discussed.

I. INTRODUCTION

The use of highly dynamic electrical drives in a wide variety

of applications has increased steadily in recent years. Within

this market AC machines, and recently especially permanent

magnet synchronous machines (PMSM’s), have obtained dom-

inance due to their characteristics of high efficiency, high

power density and reliability. These highly dynamic electrical

drives have to provide accurate and fast torque control together

with the highest possible efficiency.

Rotor flux field oriented control has become an industry

standard to control the torque and flux levels of AC machines.

For induction motors (IM’s) direct torque control (DTC) was

proposed as an alternative control strategy in [1] and became

very popular in the past two decades [2]. DTC for induction

machines is inherently motion-state sensorless. In the past

decade several authors [3]–[6] have proposed ways to adapt

DTC to work with PMSM’s.

To derive the principles of Direct Torque Control (DTC) the

equation for electromagnetic torque T of a surface PMSM:

T =
3Np

2Ls

∣∣Ψf

∣∣ |Ψs| sin δ (1)

is considered, where δ denotes the load angle between the

stator flux linkage Ψs and permanent magnet flux linkage Ψf

vectors in the stationary αβ frame. The number of pole pairs is

denoted by Np and Ls is the stator inductance. From (1) can be

seen that for constant stator flux linkage, the torque is changed

by changing the load angle δ. The stator flux vector can be

changed by applying from the inverter the voltage vector with

the most appropriate radial and tangential components.
The switching decision is based on the estimated torque T =

3
2Np(Ψs,αIβ−Ψs,βIα), the stator flux linkage magnitude |Ψs|
and stator flux linkage angle θΨs ; which are all determined by

the estimation of the stator flux linkage components Ψs,α and

Ψs,β . Thus the stator flux linkage estimation is crucial for a

correct operation of the drive, as shown in figure 1.
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Figure 1: Torque and flux estimator schematic for DTC

Several estimation techniques have been reported in the lit-

erature [7]–[14]. Some include improvements on the back-emf

integration such as low-pass-filtering [8] and stabilizing the

integrator with a PI-corrector [12] or current offset [11]. Others

use the current model of the PMSM, which often implies the

use of a position sensor or needs an added, separate position

estimation [14]; both are preferably avoided. State observers,

such as the Extended Kalman Filter (EKF), that estimate the

stator flux linkage vector by using its components as state

variables or by calculating the flux components from other

state components, and estimate rotor speed and position simul-

taneously, are another possibility. The EKF is often discussed

for the sensorless control of PMSM’s, however focused on the

sensorless position estimation needed for field oriented control

in the rotor flux reference frame. Few publications discuss

the EKF for the estimation of the stator flux linkage vector

[9], [10], [15]. Especially a thorough discussion addressing
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the effect of incorrect parameters (resistance, inductance,rotor

flux magnitude) lacks.

The paper is organized as follows: in section II the EKF

is discussed, using two different sets of state variables for an

SPMSM, and it is shown that estimation errors occur with

incorrect motor parameters. In section III both EKF versions

are expanded to include parameter estimations. Simulated

results with these EKF implementations are given in section

IV. Important aspects of the practical implementation for

FPGA are discussed in section V.

II. REDUCED-ORDER EKF FOR STATOR FLUX LINKAGE

ESTIMATION

A. Stator Flux Linkage Estimation

In theory the integration of the back-emf can be used for this

estimation when stator voltages and currents are measured:

Ψs =
∫

0

t

(V s − RsIs)dt + Ψs|t=0 (2)

The use of a pure open-loop integration however has many

disadvantages, as DC-offsets in the measurements make the

integration drift and resistance variations decenter the esti-

mation. Still it is a simple method, relying on only one

parameter Rs and independent of the rotor position. An

overview and comparison of several improved methods based

on this principle is given in [15], where also current model

based methods are discussed and compared.

The current model is defined in the stationary αβ reference

frame for an SPMSM by:

Ψs,α = LsIα + Ψf cos(θ) (3)

Ψs,β = LsIβ + Ψf sin(θ). (4)

As is clear from equations (3-4), these methods are

dependent on the rotor position θ, stator inductance Ls and

permanent magnet flux Ψf . The resulting need for a position

sensor is, especially in DTC which is an inherently position

sensorless method, considered as a major disadvantage. Also

the increased parameter dependence on the inductances is,

considering the saturation, a disadvantage. To reduce the

parameter dependence and to perform the rotor position

estimation needed in the current model a state observer can

be used. Several observers have been proposed in literature, a

short overview is given in [7], [8]. In this paper the extended

Kalman filter is selected for elaboration.

B. Reduced-order EKF

The Kalman filter is a stochastic recursive optimum-state

estimator. For nonlinear systems an extended Kalman filter

(EKF) can be used to obtain unmeasurable states (e.g. speed

and rotor position) by using a model for the dynamical system,

measured states and statistics of the system and measurement

noise. By means of the noise input it is possible to take account

of both measuring errors and modelling errors. The EKF is a

two-step method as shown in figure 2. With the measured

PREDICTION STEP INNOVATION STEP

x̂k+1

ŷk+1

ẋk = f(xk, uk)

yk = h(xk)

uk

zk+1

xk+1

Kk+1 = Pk+1C
T
k+1(Ck+1Pk+1C

T
k+1 + R)−1

P̂k+1 = Pk+1 − Kk+1Ck+1Pk+1

xk+1 = x̂k+1 + K(zk+1 − ŷk+1)
yk+1 = h(xk+1)

Ψk+1 = o(xk+1)

Pk+1 = FPkF
T + Q

Figure 2: EKF scheme

inputs uk and machine model (f(x, u) and h(x)) the next state

of the machine x̂k+1 is predicted (prediction step). From this

state the next output ŷk+1 is calculated and compared to the

measured value zk+1. The error on the output, together with

the covariance values of measurement noise R and system Q
are used to correct the state values in the next step. Often

the covariance matrices are chosen to be diagonal. In this

correction or innovation step the Kalman gain matrix Kk+1

is calculated as well.

In this paper two implementations of the EKF are studied.

The same nonlinear state-space model for the PMSM is

used, the difference between the two methods is based on

the selection of the state variables. In EKFC the current

components in the stationary reference frame are selected as

state variables, as in [7], [9]. In EKFF the stator flux linkage

components in the stationary reference frame are selected as

state variables, as in [10]. This means that for EKFC the state

vector consist of four measurable quantities, however due to

the preference for a motion-state sensorless drive only two

state variables are assumed to be measurable. For EKFF the

state vectors then consists of four unmeasurable quantities.

In both cases the voltage u = [Vα Vβ ]T and current

components in the stationary reference frame y = [Iα Iβ ]T

are selected as input and output respectively. The EKF is of

reduced order as the inertia is assumed to be infinite so that the

mechanical equation is omitted. This is very advantageous as

the load torque and inertia in the mechanical equation typically

are not known. Because the speed ω is in the state vector the

EKF will correct this modelling error if a good value is chosen

for the covariance. More details about the tuning of EKF’s can

be found in [16].

In this paper we define, besides the output function y
that is used to correct the estimation, an additional output

function o(x) which expresses the ’useful’ output (the stator

flux components) as a function of the state components.

1) EKFC: EKF with current components:
The state vector x is chosen with the current components in

the stationary reference frame as state variables as in [7], [9]

x = [x1 x2 x3 x4]T (5)

= [Iα Iβ ω θ]T , (6)

where ω and θ denote rotor speed and position respectively.

The system function f(x, u), output function h(x) and Jaco-

bians F = f(x,u)
∂x and C = h(x)

∂x are:



f(x, u) =

⎡
⎢⎢⎣
−Rs

Ls
x1 + Ψf

Ls
x3 cos x4 + u1

Ls

−Rs

Ls
x2 + Ψf

Ls
x3 sin x4 + u2

Ls

0
x3

⎤
⎥⎥⎦ (7)

h(x) =
[
x1

x2

]
o(x) =

[
Lsx1 + Ψf cos x4

Lsx2 + Ψf sin x4

]
(8)

F =
f(x, u)

∂x
=

⎡
⎢⎢⎣
−Rs

Ls
0 Ψf

Ls
cos x4 −Ψf

Ls
x3 sin x4

0 −Rs

Ls

Ψf

Ls
sin x4

Ψf

Ls
x3 cos x4

0 0 0 0
0 0 1 0

⎤
⎥⎥⎦

(9)

C =
h(x)
∂x

=
[
1 0 0 0
0 1 0 0

]
(10)

2) EKFF: EKF with flux components:
The state vector is chosen with the flux components in the

stationary reference frame as state variables as in [10]

x = [x1 x2 x3 x4]T (11)

= [Ψs,α Ψs,β ω θ]T , (12)

System and output functions are:

f(x, u) =

⎡
⎢⎢⎣
−Rs

Ls
x1 + Rs

Ls
Ψf cos x4 + u1

−Rs

Ls
x2 + Rs

Ls
Ψf sin x4 + u2

0
x3

⎤
⎥⎥⎦ (13)

h(x) =

[
x1−Ψf cos x4

Ls
x2−Ψf sin x4

Ls

]
o(x) =

[
x1

x2

]
(14)

F =
f(x, u)

∂x
=

⎡
⎢⎢⎣
−Rs

Ls
0 0 −RsΨf

Ls
sin x4

0 −Rs

Ls
0 RsΨf

Ls
cos x4

0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ (15)

C =
h(x)
∂x

=

[
1

Ls
0 0 Ψf

Ls
sin x4

0 1
Ls

0 Ψf

Ls
cos x4

]
(16)

When inspecting the equations for EKFC and EKFF it is clear

that the choice of state vector components for EKFF would

appear as the more natural one (this is most obvious in o(x)).
Furthermore it is important to notice that the speed ω is not

needed in the equations of EKFF (its use to estimate θ is

not necessary), this means that we could further reduce the

order of EKFF and omit x3 = ω as a state variable and

estimate θ directly. It is however retained for two reasons.

Firstly because using the same order for EKFC and EKFF

simplifies some practical implementation aspects as we can

reuse matrix manipulations. Secondly because in an DTC

drive the knowledge of the speed is advantageous for different

control purposes (switching over from one voltage vector

selection algorithm to another, select flux reference value).

When inspecting the Jacobians F = f(x,u)
∂x and C = h(x)

∂x it

is obvious that the expression of F is more complicated for

EKFC than EKFF while the reverse is true for C.
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Figure 3: Sensitivity of EKFC and EKFF performance to parameter
deviations

C. Influence of parameter variations

First the effect of an incorrect value for the stator resistance

is evaluated. The simulations are done with the motor data

found in appendix. The SPMSM is Direct Torque-Controlled

and after a run-up it runs at half the rated speed. In figure 3 the

RMS error is shown for the stator flux vector magnitude during

steady state where
Rs,est

Rs
is varied. Clearly the RMS error of

the EKF estimators is very small, even for large deviations

of Rs. In steady-state the RMS errors of the stator flux angle

are also very small [15]. While only the steady state errors

have been considered here, it has to be noted that wrong

parameter values affect the (starting) transients even more,

with errors that are even much larger than in steady state.

The EKFs are methods based on the current model and thus

also dependent on Ls and Ψf . In figure 3 the RMS-values

of the errors are found. As shown in [15], the estimations

with EKFC and EKFF do not yield better results than the

open-loop current model with measured position. This means

that the only remaining advantage is the sensorless fashion

in which the estimation is executed. A thorough comparison

between the performance of the EKFs (EKFC and EKFF) and

several other stator flux estimators (most of them based on

an integrator) is given in [15]. There the effects of parameter

changes in Rs and Ls are discussed in more detail.

Clearly the EKF estimators can cope very well with errors

in Rs, but variations in Ls and Ψf are more troublesome. The

estimators remain stable but show a considerable steady-state

deviation of both flux magnitude and angle, comparable to the

case of on an open-loop current model (although one has to

consider the fact that for an SPMSM the influence of Ls still

is rather small). The correction in the estimation when Rs is

varied is the result of the fact that the EKF estimators can

correct for the modeling inaccuracies by the feedback loop.

For variations in Ls and Ψf however this is not the case

as the parameter Ls and Ψf , unlike Rs, are not only used



Name of EKF Added state x f(x,u) h(x) o(x)

EKFCA1 Ls

2
66664

x1
x2
x3
x4
x5

3
77775 =

2
666664

Iα
Iβ
ω
θ
1

Ls

3
777775

2
66664
−Rsx1x5 + Ψf x3x5 cos x4 + x5u1
−Rsx2x5 + Ψf x3x5 sin x4 + x5u2

0
x3
0

3
77775

»
x1
x2

– 2
4

x1
x5

+ Ψf cos x4
x2
x5

+ Ψf sin x4

3
5

EKFCA2 Ls, Rs

2
666664

x1
x2
x3
x4
x5
x6

3
777775 =

2
6666664

Iα
Iβ
ω
θ
1

Ls
Rs

3
7777775

2
6666664

−x1x5x6 + Ψf x3x5 cos x4 + x5u1
−x2x5x6 + Ψf x3x5 sin x4 + x5u2

0
x3
0
0

3
7777775

»
x1
x2

– 2
4

x1
x5

+ Ψf cos x4
x2
x5

+ Ψf sin x4

3
5

EKFCA3 Ls, Rs, Ψf

2
66666664

x1
x2
x3
x4
x5
x6
x7

3
77777775

=

2
6666666664

Iα
Iβ
ω
θ
1

Ls
Rs
Ψf

3
7777777775

2
66666664

−x1x5x6 + x3x5x7 cos x4 + x5u1
−x2x5x6 + x3x5x7 sin x4 + x5u2

0
x3
0
0
0

3
77777775

»
x1
x2

– 2
4

x1
x5

+ x7 cos x4
x2
x5

+ x7 sin x4

3
5

EKFFA1 Ls

2
66664

x1
x2
x3
x4
x5

3
77775 =

2
666664

Ψs,α
Ψs,β

ω
θ
1

Ls

3
777775

2
66664
−Rsx1x5 + RsΨf x5 cos x4 + u1
−Rsx2x5 + RsΨf x5 sin x4 + u2

0
x3
0

3
77775

"
x5(x1 − Ψf cos x4)
x5(x2 − Ψf sin x4)

# »
x1
x2

–

EKFFA2 Ls, Rs

2
666664

x1
x2
x3
x4
x5
x6

3
777775 =

2
6666664

Ψs,α
Ψs,β

ω
θ
1

Ls
Rs

3
7777775

2
6666664

−x1x5x6 + Ψf x5x6 cos x4 + u1
−x2x5x6 + Ψf x5x6 sin x4 + u2

0
x3
0
0

3
7777775

"
x5(x1 − Ψf cos x4)
x5(x2 − Ψf sin x4)

# »
x1
x2

–

EKFFA3 Ls, Rs, Ψf

2
66666664

x1
x2
x3
x4
x5
x6
x7

3
77777775

=

2
6666666664

Ψs,α
Ψs,β

ω
θ
1

Ls
Rs
Ψf

3
7777777775

2
66666664

−x1x5x6 + x5x6x7 cos x4 + u1
−x2x5x6 + x5x6x7 sin x4 + u2

0
x3
0
0
0

3
77777775

»
x5(x1 − x7 cos x4)
x5(x2 − x7 sin x4)

– »
x1
x2

–

Table I: Equations for EKFC and EKFF with augmented state vector

in f(x, u). For EKFC the state vector x will converge to the

correct values, but due to the use of Ls and Ψf in o(x) to

determine Ψα and Ψβ from x the output is incorrect. For

EKFF Ls is used in h(x) and thus the state vector x will

not converge to the right value.

III. ADDING PARAMETER ESTIMATIONS TO THE EKF

As demonstrated in the previous section, the EKFs fail to

estimate the stator flux linkage vector correctly if certain motor

parameters (those used in h(x) and o(x)) deviate from the

true values. One possibility to overcome this problem is to

estimate the most important motor parameters in the EKF as

well. This can be done by augmenting the state vector with

the parameters to be estimated, where parameter variations are

given no dynamics (i.e. the corresponding row of f(x,u) is 0).

In Table I the expressions are given for EKFC and EKFF

with added parameter estimations. Three cases are considered.

In the first case Ls is added to estimate as this is a parameter

that, due to saturation, can vary strongly during operation of

the drive. Furthermore it is present in either h or o and so errors

in Ls propagate through the estimation. It has to be noted

that in order to take the variation of Ls into account, actually
1

Ls
is added to the state vector. This is advisable because in

f(x, u) (both for EKFC and EKFC) and h(x) (for EKFF) the

stator inductance always is present as 1
Ls

. Choosing Ls as a

state component would thus, due to the partial differentiation,

result in mathematical expressions for the Jacobians F and

C that are much more complex and could be prohibitive for

an actual implementation. In the second case both Rs and

Ls are estimated as Rs can vary greatly with temperature.

Finally, in the third case, the estimation of all three relevant

parameters Ls, Rs, Ψf is performed. The estimated values of

the parameters can be used outside the EKF as well, e.g. in

the control algorithm.

For the sake of brevity, the expressions for the Jacobians F
and C have been omitted in Table I. However it is clear that the

increased complexity of the augmented state vectors is even

more easily seen in the first F and C compared to f(x, u) and

h(x), due to the increased non-linearity of the model. To this

end it is useful to compare the resulting increase in complexity

for the families of EKFCA and EKFFA filters. For EKFCA1

and EKFFA1 F and C are given in Table II.

Obviously every addition of a parameter to estimate (where

we assume no dynamics) first of all results in a row of zeros

for F both in EKFCA and EKFFA. More important however

is the fact that the first two rows of F now contain additional

elements which augment the computational load considerably.

Furthermore some elements of F are now no longer constants,

but are dependent on the added state variable.

The changes in C are very different for EKFCA1 and

EKFFA1: for EKFCA1 only a column of zeros is added, where

the expression for EKFFA1 now contains the added state

variable and a column with elements which again increase

the computational load.

This of course also means that the computation of the

estimation covariance matrix P and the Kalman correction



EKFCA1

F =

2
6664
−Rsx5 0 Ψf x5 cos x4 −Ψf x5x3 sin x4 −Rsx1 + Ψf x3 cos x4 + u1

0 −Rsx5 Ψf x5 sin x4 Ψf x5x3 cos x4 −Rsx2 + Ψf x3 sin x4 + u2

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

3
7775

C =

»
1 0 0 0 0
0 1 0 0 0

–

EKFFA1

F =

2
6664
−Rsx5 0 0 −RsΨf x5 sin x4 Rs(−x1 + Ψf cos x4)

0 −Rsx5 0 RsΨf x5 cos x4 Rs(−x2 + Ψf sin x4)
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

3
7775

C =

»
x5 0 0 Ψf x5 sin x4 x1−Ψf cos x4

0 x5 0 Ψf x5 cos x4 x2−Ψf sin x4

–

Table II: Expressions of F and C for EKFCA1 and EKFFA1 respectively

matrix K become increasingly complex (see figure 2) as

the matrix operations (especially multiplication) become more

computationally demanding with higher matrix sizes. For ns

state variables the size of the matrices is given in Table III. One

important remark however is the fact that the matrix to invert

(needed to calculate the Kalman gain) stays a 2 × 2 matrix

independently from ns. Obviously the computational effort to

calculate the matrix CPCT + R however will strongly depend

on ns.

Matrix or array Size
f(x, u) ns × 1
h(x) 2 × 1

Q ns × ns

R 2 × 2
F ns × ns

C 2 × ns

P ns × ns

CPCT + R 2 × 2
K ns × 2

Table III: Matrix and array size for an EKF with ns state vector
components

IV. RESULTS IN SIMULATION

For the same motor and control scheme as before the

behavior of the augmented EKFs is simulated. In figure 4a

the flux amplitude error is shown for a low-dynamics drive

cycle. The results shown are for EKFFA2 and EKFFA3, both

with an initial 25% error on Rs and Ls and no error on Ψf .

The angular error is shown in figure 4b and the evolution of

the parameters in figure 4c and d. It is clear that EKFFA2

estimates both parameters correctly and results in good flux

estimations. EKFFA3 should be able to cope with the errors in

a similar way, but now also corrects Ψf during the transient

and Rs only to a lesser extent. This leads to the observed

drop in estimated flux magnitude in 4a. Similar observations

��
��
��
�
�

Δ�
�Ψ

	��

�

�

�

��
�
��
�

�
�
�

Δ
θ Ψ

	�
�
��

�

�

�

�
�

��
��

�
�

�

� �
�� �
� �
�� � �
��
�

�
�
�
�

��
��

�
�

�����
	�

������

������

������

������

�	
�	�



�	

�	
�	�




�	

�	
�	�




�	 �	
�	�





�	
Ψ 
Ψ

���	�
�

Figure 4: EKFFA2 and EKFFA3 with 25% error in Rs and Ls.
a) Flux magnitude error b) flux angular error c) estimated

parameters EKFFA2 d) estimated parameters EKFFA3

are obtained with the other formulations of the filter : adding

parameters to the estimation can work, but great care should

be taken as unwanted cross coupling effects of parameter

variations can occur with a poorly chosen covariance matrix

Q. This further complicates the tuning of the EKF, which is

often reported as one of the major drawbacks of this state

observer (see also [16], where the problem for a ’standard’

PMSM EKF is discussed). When implementing an EKF, one

should carefully consider which parameters are the most likely

to vary and at what rate. Clearly it is important to refrain from

putting too little confidence (high values in Q) in the model
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Figure 5: Performance of EKFFA2 with 25% error in Rs and Ls,
dynamic drive cycle. a) Flux magnitude error b) flux angular error

c) estimated parameters d) torque and speed (scaled by 25)

as this could induce overcompensation of the parameters and

thus result in poor performance.

In figure 5 the performance of EKFFA2 with the same

initial errors as before is shown in a highly dynamic drive

cycle. It is clear that with a good choice of covariance matrix

and no additional erroneous parameters EKFFA2 offers good

estimations.

V. PRACTICAL ASPECTS FOR FPGA IMPLEMENTATION

A. Per unit formulation and covariance matrices

Normalizing the state vector and the equations not only

allows an easier conversion to fixed-point format, it also allow

an easier setting of the covariance matrices as discussed in

[16]. A per unit system with base quantities Vb, Ib, ωb, θb is

used here. The base system can be selected in such a way

that the state components always are smaller than 1 so that

purely fractional fixed-point arithmetic can be used for most

operations. However it does not ensure that the intermediate

results (especially those resulting from the matrix inversion)

stay smaller than 1. The flexibility offered by the FPGA and

the Xilinx tools to program it however allow to cope with this.

All of the EKFs are initialized with a zero matrix for

P, while the covariance matrices are for EKFC and EKFF

respectively:

Q = diag(0.0012 0.0012 0.015 0.02) R = diag(0.1 0.1)
(17)

Q = diag(0.0027 0.0027 0.05 0.1) R = diag(0.1 0.1)
(18)

These have been selected based on the method discussed

in [16] and refined by the results from simulation. For the

groups of EKFCA and EKFFA additional elements have to be

selected to estimate the parameters. As said before, this can

be tricky. Up till now they have been used as additional tuning
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Figure 6: Estimation of the stator flux linkage component Ψs,α

with the Matlab algorithm in floating-point and in fixed-point
format by AccelDSP to implement it in the FPGA

parameters, but a method that expands the procedure of [16]

would be desirable.

B. Implementation using AccelDSP

For the digital implementation of the stator flux linkage

estimators two evaluation boards from Digilent Inc. are con-

sidered. As a rather low-cost option the Spartan 3E Starter

Board, based on the Xilinx Spartan 3E FPGA (500K gates)

clocked at 50MHz, is chosen. The Virtex II Pro board based

on the XC2VP30 with a 32 or 100 MHz clock is considered

here as a high-performance option. One goal is to optimize

the implementation of EKFC and EKFF to the degree that it

can easily be implemented on the Spartan 3E with a sampling

frequency of 20kHz and enough resources left to implement

the rest of the control (DTC in this case). Another goal is to

implement the EKFs with augmented state vector. Due to the

higher complexity in this case the specifications of a Spartan

3E board could be too limited (due to the increased degree of

non-linearity it becomes increasingly harder to realize all the

calculations with the 20 dedicated multipliers of the Spartan

3E). For the exploration of the possibilities to implement these

EKFS the Virtex II Pro board is used.

For both options the configuration of the FPGA is pro-

grammed in Matlab/Simulink with the System Generator tool

from Xilinx. Some specific functions are written in VHDL and

interfaced through the Black Box block. The EKF algorithm

is implemented with the AccelDSP tool from Xilinx. Here the

implementation is briefly discussed. The AccelDSP tool takes

a tested Matlab m-file with the algorithm to be implemented
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Figure 7: Estimation of the stator flux linkage component Ψs,β

with the Matlab algorithm in floating-point and in fixed-point
format by AccelDSP to implement it in the FPGA

and assists the programmer during the conversion to a fixed-

point version as a first step, the realisation of an RTL version

as a second step and finally the creation of an HDL module

or System Generator block.

In figures 6 and 7 the results are shown for the AccelDSP

fixed-point implementation of EKFF. The loss of precision

during the transition from floating-point to fixed-point format

can be noticed but is rather small. Most importantly the round-

off errors during the matrix operations do not result in insta-

bility of the EKF. More background on the detrimental effects

of round-off errors on the performance of Kalman filters can

be found in [17]. In this research it was attempted to retain

enough precision to avoid these effects, whilst keeping the data

types small enough to be implemented. Here the strength of

the AccelDSP tool comes into play, as we can adjust the data

type as desired for every mathematical operation.

For a ’naive’ implementation, where little attention is given

to the optimization of the implementation, Table IV gives

the needed clock cycles, FPGA slices and embedded 18x18

multipliers when realized by AccelDSP for the Virtex II Pro.

Given the number of slices needed, this version can not be

implemented on the Spartan 3E board. This EKF can run

in under 15 μs which is sufficiently fast for the proposed

sampling frequency of 20kHz. However faster results can be

obtained as in [18], also on a Virtex II Pro board.

When more attention is given to the optimization (re-using

of calculated values) both a smaller and faster implementation

is obtained, the results are given in Table V. Still the number

of slices and especially the number of embedded multipliers is

too high to be implemented on Spartan 3E (maximum values

Matrix or array no. cycles slices 18x18 mult.
Prediction of state vector 24 3297 5 (4%)
Prediction of covariance matrix 139 1201 12 (9%)
Calculation of the argument 99 1392 12 (9%)
of the matrix invert
Matrix invert 85 2069 18 (13%)
Kalman gain calculation and 90 1372 14 (10%)
update of covariance matrix
Innovation of state vector 84 1283 18 (13%)
clock cycles 521
total slices 8545 (62%)

Table IV: Number of FPGA clock cycles and slices needed per
EKF module for EKFF on Virtex II Pro, ’naive’ implementation

clocked at 32 MHz

Matrix or array clock cycles slices 18x18 mult.
Prediction step 47 2978 23 (17%)
Kalman gain calculation 138 2596 24 (18%)
Innovation of state vector 10 1958 18 (13%)
clock cycles 195
total slices 7532 (55%)

Table V: Number of FPGA clock cycles and slices needed for
EKFF on Virtex II Pro, better implementation

are 4658 and 20 for the Spartan 3E compared to 13696 and 136

for the Virtex II Pro). Clearly an improvement can be made

by rolling some operations (in this implementation matrix

multiplications are fully unrolled).

Besides the Spartan 3E implementation, the implementation

of the augmented EKFs has to be explored. The FPGA

implementation of the matrix invert can be re-used in all

EKFCA and EKFFA versions, as the size of the matrix to

invert is always 2×2. This means that the computational effort

for this particular part of the algorithm will remain the same.

However, the other computational effort needed for the other

parts depends heavily on the value of ns. Due to the increased

non-linearity of the augmented versions the cycle time for

calculations with F (and for the EKFF-family C as well)

increases heavily. This is the result of the fact that not only

the size increases but also more elements within the matrix

F or C will be variable as constants are replaced by state

components at several positions in the matrix. This implies that

more dedicated multipliers will be used and less optimization

by the AccelDSP tool (for example changing multiplications

by constants to shift operations) will be performed.

Given the results in Table IV and V we can expect that

the implementation of augmented extended kalman filters for

Virtex II Pro should be possible, but the feasibility to do this

on the Spartan 3E is not so certain.

C. Improvements for the FPGA implementation

In order to optimize the FPGA implementation (and to fit

the implementation on a Spartan 3E) a further optimization of

the fixed-point data format used in the calculations is required.

Further improvements can be made by assuming that the

Kalman gain K and the covariance matrix P are symmetrical,

resulting in a significant reduction of the elements that need

to be calculated. A further improvement is the use of RAM-

blocks to store the different values during a calculation cycle



instead of calculating them at several positions in separate

matrices. Depending on the resources needed for rest of

the control algorithm and the desired cycle period the EKF

calculations could be further rolled or unrolled in AccelDSP

to optimize either the number of FPGA cells or the number

of clock cycles needed. Especially for the implementation on

a Spartan 3E the number of multipliers used should be kept

under control.

VI. CONCLUSIONS

In this paper it is shown that the Extended Kalman Filter,

although stable in the case of parameter variations, will

produce a stator flux linkage vector estimation that deviates

strongly if incorrect motor parameters are used. Three cases

can be considered. The first case is the one where the wrong

value of a parameter of only Rs is not a large problem as

there are no additional errors in calculating the output, so

that the feedback correction loop is able to handle this. In

the second case, which occurs in EKFF, a wrong value for

Ls or Ψf would, even for a correct state estimate, lead to an

incorrect output y and thus correction. The third case occurs

in the EKFC: state vector x and output y can be correct, but

an incorrect flux estimate is obtained through o(x).
To mitigate this problem several formulations of the EKF

are given where the state vector is augmented with the parame-

ters that need to be estimated. When implementing these, great

care should be taken. It is shown that an uncareful selection of

the parameters to be estimated and their covariance elements

results in strongly divergent EKFs. If a good choice is made

for the covariance, or if additional information about some of

the parameters is available, a high quality estimation can be

obtained.

Some aspects and caveats of the FPGA implementation are

discussed. Specifically the process of translating the floating-

point Matlab algorithm to an HDL or System Generator

module by using the AccelDSP tool from Xilinx is addressed.
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APPENDIX

Rs 2.875 Ω Ls 8.5 mH J 0.008 kgm2

Ψf 0.175 Wb Np 4 F 0.001 Nms

Parameters of SPMSM used in simulation
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