
High-level Synthesis for Data-intensive Applications

Harald Devos and Dirk Stroobandt∗
Electronics and Information Systems Department (ELIS)

Ghent University, Belgium
Harald.Devos@elis.UGent.be

1. INTRODUCTION
Most high-level synthesis tools focus on exploiting parallelism.

However, for data-intensive applications the memory bandwidth or
latency may become a bottleneck and improving data access pat-
terns becomes as important as exploiting parallelism. To minimize
the number of accesses to off-chip memory, a memory hierarchy
is needed to reuse data in on-chip memories. The resulting perfor-
mance heavily depends on the locality of the data accesses. Loop
transformations are a means to improve this locality but also may
have a large impact on the loop control complexity and thus on the
control hardware. A close integration of loop transformations and
hardware generation is needed to tackle this problem.

We present a methodology, supported by tools, to explore loop
transformation variants and study their impact on both data ac-
cess patterns and generated control hardware. The construction of
an application-specific memory system is supported, which offers
more than solely a reduction of bandwidth requirements.

2. LOOP TRANSFORMATIONS
A part of a program where the control flow is independent of the

processed data is called a SCoP (Static Control Part), and can be
represented in a polyhedral model [6]. Loop transformations are
now reduced to matrix and vector operations. This representation
overcomes a lot of limitations of syntactic representations and fa-
cilitates the composition of a long sequence of transformations [6].

For guiding the composition of loop transformation sequences
we make use of SLO (Suggestions for Locality Optimizations) [2,
4]. This tool investigates the data reuses within a program execu-
tion and gives hints for potential optimizing loop transformations.

3. LOOP CONTROLLER VARIANTS
We have extended CLooG [1], a library generating software code

from a polyhedral representation of a SCoP (without statement in-
formation), towards CLooGVHDL generating synthesizable VHDL
descriptions of hardware controller blocks.

∗This research is supported by the I.W.T. grant 060068 and the
F.W.O. grant G.0475.05.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC HLS workshop ’08 Anaheim, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

CLooG has a number of code generation optimization options
which also have a large influence on the generated hardware con-
trollers. Next to this, the generated architecture offers several op-
tions to trade off area, clock frequency and cycle count of an im-
plementation as demonstrated in [3].

4. APPLICATION-SPECIFIC MEMORY
SYSTEM

For processors, optimizations are done for a fixed memory hi-
erarchy, while on FPGAs or ASICs the memory structure can be
made application-specific. Furthermore, buffer memories not only
reduce the number of off-chip accesses or hide the external mem-
ory latency but can also augment the on-chip bandwidth through
parallel access of multiple buffers or simplify address expressions
by remapping data [5]. The final target, i.e. fully automatic gener-
ation of the optimal memory system for a given application, with
data mapping and scheduling of burst transfers, will probably not
be reached in the near future. However, many useful techniques
have been developed in the context of software but are not inte-
grated yet with HLS tools. In the mean time, we offer a step-by-
step methodology to construct such a memory system directed by
the user. Special care is taken of the reusability of design modules
and the simplification of addresses to improve the performance.

5. REFERENCES
[1] C. Bastoul. Code generation in the polyhedral model is easier

than you think. In PACT’13 IEEE International Conference on
Parallel Architecture and Compilation Techniques, pages
7–16, Juan-les-Pins, September 2004.

[2] K. Beyls. SLO – Suggestions for Locality Optimizations.
http://slo.sourceforge.net/.

[3] H. Devos. Loop Transformations for the Optimized
Generation of Reconfigurable Hardware. PhD thesis, Ghent
University, February 2008.

[4] H. Devos, K. Beyls, M. Christiaens, J. Van Campenhout, E. H.
D’Hollander, and D. Stroobandt. Finding and applying loop
transformations for generating optimized FPGA
implementations. Trans. on High Performance Embedded
Architectures and Compilers I, LNCS, 4050:159–178, 2007.

[5] H. Devos, D. Stroobandt, and J. Van Campenhout. Building an
application-specific memory hierarchy on FPGAs. In 2nd
HiPEAC Workshop on Reconfigurable Computing, pages
53–62, Göteborg, Sweden, January 2008.

[6] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory
hierarchies. Int. J. Parallel Program., 34(3):261–317, 2006.

