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Abstract: Metamaterials are electromagnetically complex structures. In this contribution we
present a technique that allows for a detailed analysis of a finite sample of metamaterial incor-
porating all electromagnetic interactions. To this end we use a full-wave T-matrix formalism.
To accelerate the simulations we use the Stable Plane Wave Multilevel Fast Multipole Method.
We also present a direct method to dervive the effective material parameters from the T-matrix
of a spherical sample of metamaterial.
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1. Introduction

Metamaterials consist of a large number of constituents embedded in a host medium. Each
constituent can have a complex structure and e.g. consist of printed ring resonators and dipoles.
When considering a finite piece of metamaterial one is interested in the overall effective medium
parameters of this piece. These effective parameters are usually estimated from the polarizabil-
ities of a constituent using homogenization formulas such as Maxwell-Garnett or Bruggeman
[2].

In this paper we want to use another approach. We aim at performing a full-wave numerical
simulation of a finite sample of metamaterial and then derive the effective parameters from
these scattering simulations by comparison with a homogeneous sample of material with the
same geometry. In this way all the electromagnetic interactions are taken into account. This
approach allows us to check the validity of the homogenization formulas. Such formulas fail
when the densitity of the constituents become high and these formulas also assume a material
of infinite extent. This also means that the dependence of the geometry of the sample on the
effective parameters only can be estimated using a full-wave simulation.

To solve the scattering problem we will use the T-matrix approach [1]. We will first de-
termine the T-matrix of each constituent and then considering the interactions between all the
T-matrices. If there areN constituents, and if each T-matrix containsM2 elements then this re-
quires the solution of a linear system ofNM unknowns. SinceN will be large it is not possible
to use a direct or even an iterative solution of this system. The constituents are small compared
to wavelength, although the sample can be several wavelengths in size. This means that the
numerical problem is at the same time a low- and high-frequency problem. The solution of the
linear system can be accelerated using a multilevel fast multipole technique but this technique
needs to be valid for high as wel as low frequencies. For this purpose we opted the use of
the Stable Plane Wave Method as derived by [3]. In this way it becomes possible to obtain
a computational and memory complexity ofO(NM). We also use an acceleration to convert
multipoles into evanescent plane waves as has been derived recently in [4].

To derive the effective parameters of a metamaterial we will consider a spherical sample.
From the T-matrix of the individual constituents we can derive the T-matrix of the entire sample
using the Stable Plane Wave Method. Then we compare this T-matrix with the T-matrix of a
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homogeneous sphere to identify the effective material paramaters. It turns out this can be done
in a very elegant way using a recurrence relation of Bessel functions.

2. Analysis

The examples will consider a spherical sample consisting of spherical inclusions. Spherical
inclusions have an analytical T-matrix. We will show the validity of the Maxwell-Garnett and
Bruggeman formula and show the possibility to derive a negative index material for an example
proposed in [5]. First we determine the T-matrix of the constituents of the metamaterial. This
starts from the illumination of the constituent by incoming fields of the following forms

Einc,1
lm (r) =

L̂ [jl(kr)Ylm(r)]√
l(l + 1)

Einc,2
lm (r) =

1

k
∇× Einc,1

lm (r), (1)

wherek is the wavenumber,Ylm(r) are the scalar spherical harmonics and whereL̂ is the
angular momentum operator

L̂ = −jr ×∇ = j

[
eθ
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d
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]
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The resulting scattered fields can be decomposed into functions similar to (1), but with spher-
ical Hankel functions instead of spherical Bessel functions. The coefficients arising in this
decomposition can be interpreted as entries of the T-matrix of the constituent. All scattering
information of the constituent is contained in the T-matrix.

In the next step the T-matrix of the entire spherical sample is determined. This is done
using the Stable Plane Wave Method as developed in [3]. We will not go into the details of
this multilevel fast multipole technique but suffice to say that the method remains stable at
low frequencies by also incorporating evanscent plane waves in addition to propagating plane
waves. In the desaggregation and aggregation steps it is necessary to transform the vectorial
spherical harmonics expansion of the T-matrix into plane waves. For the evanscent plane waves
this requires 6 different expansions along the±x-, ±y- and the±z-axis. Recently [4] a new
method was derived to reduce the workload of this process by a factor of 6.

In the final step the T-matrix of the entire sample is matched to the analytical T-matrix of
an homogeneous sphere. This T-matrix is diagonal and the diagonal elements are given by
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Here,Jl(x) = 1
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]
. The unknowns areZi andki, the

impedance and wavenumber inside the sphere. The left hand sides of both of these equations
are known as are the radius of the piece of metamaterial and the parameters of the surrounding
host medium. Therefore these equations can be solved for the two quantitiesZo

Zi
(thus yielding

Zi) andAl = Jl(kia)
jl(kia)

. From the latter, a unique value forkia is not easily found, but since this
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Figure 1: A spherical sample with500 spheres.

quantity is known for a whole series ofl, the recurrences of the Bessel functions can be used to
obtain the following quadratic equation which can be solved easily

−
(

l + 1

kia

)2

+ (Al − Al+1)
l + 1

kia
+ AlAl+1 + 1 = 0. (5)

Determining which one of the two roots to choose is done by calculating these roots for various
l and checking which one is consistent.

3. Numerical example

As an example we consider a spherical sample with radiusR = 1.477m at a frequency
of 25MHz, hence the spheres have a diameter of about one quarter of a wavelength in free
space. The host medium has a relative permittivityεr = −1.5 + j and a relative permeability
µr = 2.0 + 1.2j. In the host medium spheres with a radius ofr = 0.1m are embedded. These
spheres have a relative permittivityεr = −6+0.9j and a relative permeabilityµr = 1.5+0.2j.
By varying the number of spheres we vary the volume fraction of the inclusions. To obtain high
volume fractions we invert the medium by interchanging the material parameters of the spheres
and the host medium. Figure 1 shows a volume fraction of 16% obtained by randomly placing
500 spheres in the spherical host medium.

Figures 2 and 3 respectively show the real and imaginary part of the effective relative per-
mittivity. The result predicted in [5] using the Bruggeman homogenization formula (indicated
as ”Mackey” on the figures)are also shown as well as the results of the Maxwell-Garnett for-
mula. As can be seen the Maxwell-Garnett formula is more accurate than the Bruggeman
formula. Similar conclusions can be drawn from the real and imaginary part of the effective
permeability as shown in Figures 4 and 5.

For each volume fraction we only considered one realization of the medium. Nevertheless
the simulated results show a very smooth behavior indicating that the medium really can be
considered homogeneous. Using (5) we can derive the effective medium parameters also for
various values ofl. It turns out that our results are independent ofl again confirming previous
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Figure 2: Real part of the effective permittivity.
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Figure 3: Imaginary part of the effective permittivity.
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Figure 4: Real part of the effective permeability.
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Figure 5: Imaginary part of the effective permeability.
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Figure 6: Negative phase velocity parameter.

conclusion. This conclusion will be less evident if one considers higher frequencies. Then the
effective parameters will depend on the radius of the spherical example and different realiza-
tions will yield different effective parameters.

For the example considered here we also calculated the negative phase velocity parameter
ρNPV given by [5]

ρNPV =
<[εeff ]

=[εeff ]
+

<[µeff ]

=[µeff ]
. (6)

For a negative index medium this parameter has to be negative. The curve in Figure 6 indeed
shows a region of volume fractions corresponding to a negative index medium.

4. Conclusions

It is shown that using a multilevel fast multipole method including evansecent and prop-
agating plane waves such as the stable plane wave method allows for the accurate simulation
of a finite piece of metamaterial. These simulations allow to check the validity of the homog-
enization assumption as well as of homogenization formulas. We also presented a new direct
method to obtain the effective parameters from a spherical sample.
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