Computational Rationalization of the Ring Transformation of 3-hydroxy-4-(1,2dihydroxyethyl)-β-lactams

H. Goossens¹, <u>S. Catak</u>^{1,2}, K. Mollet³, N. Piens³, M. D'Hooghe³, N. De Kimpe³, M. Waroquier¹, V. Van Speybroeck¹

¹Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
²Bogazici University, Chemistry Department, 34342, Istanbul, Turkey
³Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

Presenting author: saron.catak@boun.edu.tr

The reactivity of 3-hydroxy-4-(1,2-dihydroxyethyl)- β -lactams with regard to the oxidant sodium periodate was evaluated, unexpectedly resulting in the exclusive formation of new 2-hydroxy-1,4-oxazin-3-ones through a C3C4 bond cleavage of the intermediate 4-formyl-3-hydroxy- β -lactams followed by a ring expansion. This peculiar transformation stands in sharp contrast with the known NaIO4-mediated oxidation of 3-alkoxy- and 3-phenoxy-4-(1,2-dihydroxyethyl)- β -lactams, which exclusively leads to the corresponding 4-formyl- β -lactams without a subsequent ring enlargement. In addition, this new class of functionalized oxazin-3-ones was further evaluated for its potential use as building blocks in the synthesis of a variety of differently substituted oxazin-3-ones, morpholin-3-ones and pyrazinones. Furthermore, additional insights into the mechanism and the factors governing this new ring-expansion reaction were provided by means of density functional theory calculations.

References

1. K. Mollet, H. Goossens, N. Piens, S. Catak, M. Waroquier, K. W. Tornroos, V. Van Speybroeck, M. D'Hooghe and N. De Kimpe, Chemistry – Eur. J. **19**, 3383 (2013).