
Mining Local Staircase Patterns in Noisy Data
Thanh Le Van∗, Ana Carolina Fierro†, Tias Guns∗, Matthijs van Leeuwen∗, Siegfried Nijssen∗,

Luc De Raedt∗, Kathleen Marchal‡
∗Department of Computer Science, KU Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be
†Department of Microbial and Molecular Systems, KU Leuven, Belgium

Carolina.Fierro@biw.kuleuven.be
‡Department of Plant Systems Biology, VIB, Belgium

Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium
kamar@psb.ugent.be

Abstract—Most traditional biclustering algorithms identify
biclusters with no or little overlap. In this paper, we introduce
the problem of identifying staircases of biclusters. Such staircases
may be indicative for causal relationships between columns and
can not easily be identified by existing biclustering algorithms.
Our formalization relies on a scoring function based on the
Minimum Description Length principle. Furthermore, we pro-
pose a first algorithm for identifying staircase biclusters, based
on a combination of local search and constraint programming.
Experiments show that the approach is promising.

Index Terms—Staircase patterns; pattern sets; constraint pro-
gramming; MDL; biclustering.

I. INTRODUCTION

A bicluster traditionally consists of a subset of attributes
together with a subset of examples in which the data shows a
regularity of interest [4]. For example, in the case of constant
row biclustering, a bicluster identifies a submatrix in which
each row approximately has a constant value. Such biclusters
can be seen as rectangular subsets of a given data matrix, and
are indicative of associations between attributes and examples.
The task of biclustering then usually consists of identifying a
set of non-overlapping biclusters that together characterize a
data set well.

There are limitations to the applicability of this traditional
biclustering model; the following toy example, which is il-
lustrative for a larger number of applications, highlights this.
Let us assume that for a large number of broken electronical
devices (considered to be the rows or examples in our data),
it is recorded which components are no longer working
(components hence correspond to columns in the data). Within
this data, one can expect that for subsets of devices and for
subsets of components, cascades of failures are observed: for
instance, if the power supply of a device breaks down, it is
likely that many other components dependent on the power
supply will fail as well. The result is a cascade of failures.

Characteristic of such failure cascades is that:
• they only apply to a subset of examples and attributes;
• the subset of data within the cascade has a nested

structure: we can order the devices such that the failures
of a device are a subset of the failures of the previous
device. Visually, hence, the cascades look like staircases
instead of rectangles.

Similar tasks can be identified in paleontology (where stair-
cases in presence/absence data of species may reflect a
predators-prey food chain), distribution networks (where stair-
cases reflect distribution channels for certain types of items),
social networks (where staircases reflect cascades of news
distribution for certain types of news), the analysis of gene
expression data (where a staircase can present evidence of the
participation of genes in a perturbed biological pathway), and
the analysis of educational data (where staircases represent
dependencies between courses for certain groups of students).
In some applications, it may be of interest to study data which
is not binary: in bioinformatics, genes may be over-expressed
or under-expressed; in distribution networks, it could be im-
portant to distinguish between variations of a single product
being distributed.

To the best of our knowledge, existing biclustering systems
can not discover such staircases; the main reason is that
staircases can be seen as sets of related, highly overlapping
biclusters; most biclustering algorithms assume no or few
overlap between biclusters [12]. An example is provided in
Figure 1, where a staircase is given consisting of 3 highly
overlapping biclusters. The problem is also different from
the discovery of nested segments [13], as we assume that
the staircases are only local phenomena present in subsets of
instances, and we do not limit ourselves to binary data.

Summarizing, we are interested in discovering biclusters
that satisfy the following requirements:
• they accurately describe a large part of the data matrix;
• each next bicluster in a staircase includes more columns,

and less rows, compared to the previous bicluster;
• each row in a bicluster approximately has a constant

value.
The contribution of this paper is threefold. First, we in-

troduce the problem of finding staircases in non-binary data.
Second, we formalize the quality of a staircase by means of
the Minimum Description Length (MDL) principle. Finally, we
use constraint programming to search for staircases. Both the
MDL score and the constraint programming model take into
account the high-level requirements listed above.

The main computational challenge is that directly finding
staircases that optimize the MDL score is hard. In this paper,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55729083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: An example of a staircase consisting of three fault-tolerant
constant-row biclusters, the first bicluster ranges over columns 7–10
and rows 4–12, the second over columns 4–10 and rows 7–12 the,
third over columns 1–10 and rows 10–12.

we study a two-phased heuristic approach to address this
problem. This approach separates the generation of candidate
staircases from the evaluation of the staircases. During the
generation of candidates we take into account the same high-
level requirements that the MDL score is based on, but we do
not evaluate the MDL score itself.

To model these high level requirements, we propose an
approach using constraint programming (CP) [7], [10]. Con-
straint programming systems find solutions to problems for-
malized as constraint satisfaction problems. In our case, the
constraints are the high-level requirements and the solutions
form candidate staircases.

An important reason for proposing to use CP and the MDL
principle is that both approaches are general and principled
approaches to problem solving. Consequently, we believe
that the methodology presented in this paper is more easily
extended to a wide range of related settings than an adhoc
solution would be.

The rest of the paper is organized as follows: Section II
presents the theoretical problem formulation, Section III
presents the first phase of our method; mining staircases using
constraint programming, while Section IV presents the second
phase: how to select the best staircase using an MDL-based
score. Finally, Section V presents the experiments and related
work and conclusions are discussed in the last two sections.

II. STAIRCASE PATTERN SETS

We will first introduce the constraints that we use to identify
candidate staircases. We do this by first defining a fault-
tolerant bicluster in terms of constraints, and then propose
a formalization of the problem of finding a set of biclusters
that together form a staircase pattern set.

A. Constant-row biclusters

Let σ = {0, a, b, c, . . .} be a finite set of symbols where 0
represents a special neutral value and a, b, c, . . . are arbitrary
symbols. Let dataset D be an m×n matrix with m rows and n
columns. Let M = {1, . . . ,m} and N = {1, . . . , n}. Each cell

in the matrix contains a symbol from σ: ∀i, j : Dij ∈ σ. With
σ+ we will denote the set of symbols without 0: σ+ = σ\{0}.

A bicluster B is a tuple (R,C) where R ⊆ M is a subset
of the rows and C ⊆ N a subset of the columns. The name
biclusters stems from the fact that it can be seen as a cluster
on both the rows and the columns.

Definition 2.1 (Constant-row bicluster): Given a matrix D
over symbols σ, a constant-row bicluster is a tuple B =
(R,C) where for each row in R, on that row all columns
in C have the same (non-zero) symbol:

∀r ∈ R : ∃s ∈ σ+ s.t. ∀c ∈ C,Dr,c = s

In the rest of this paper, when we write bicluster we implicitly
assume a constant-row bicluster.

In case there are only two symbols σ = {0, 1}, the above
definition of a constant-row bicluster matches the definitions
of a tile and an itemset [7]. Similar to itemsets, we can now
define the cover relation between columns and rows:

Definition 2.2 (Cover of a set of columns): Given a set of
columns C and a matrix D over symbols σ, the cover of C
is the set of rows for which the constant row property over C
holds:

ϕD(C) = {r ∈M | ∃s ∈ σ+ : ∀c ∈ C,Dr,c = s} (1)

The above formulation requires that every row consists of
exactly the same symbol. However, many datasets contain
noise, that is, a fraction of the elements have a deviating
symbol. We can cater for this by introducing the concept of
fault-tolerance [2]. A fault-tolerant bicluster is a bicluster that
allows a small amount of noise on the rows and columns. In
the following, we use the Iverson bracket [·] to convert the
truth value of an equation into 1/0, e.g. [8 ≥ 5] = [true] =
1, [5 ≥ 8] = [false] = 0.

Definition 2.3 (Fault-tolerant cover): Given a set of
columns C and a matrix D over symbols σ, as well as a
threshold εR, the fault-tolerant cover of C is the set of rows
in which at least εR percent of the columns in C have the
same symbol:

ϕftD (C, εR) = {r ∈M | ∃s ∈ σ+ :
1

|C|
∑
c∈C

[Dr,c = s] ≥ εR}

(2)

Using the above definition, a fault-tolerant bicluster could
have all its noise grouped into a few columns. A column with
mostly noise should not be considered part of a bicluster, hence
we constrain the noise in the columns as well:

Definition 2.4 (Fault-tolerant columns): Given a matrix D
over symbols σ, a bicluster (R,C) as well as a threshold εC . A
fault-tolerant column is a column in which at least εC percent
of the symbols in R do not deviate from the constant-row
symbol:

Ψft
D (R,C, εC) = {c ∈ C | 1

|R|
∑
r∈R

[Dr,c = Sr] ≥ εC} (3)

where Sr is the constant-row symbol for r, i.e. the symbol
that appears most frequently in row r for columns C:

∀r ∈ R : Sr = arg max
s∈σ+

∑
c∈C

[Dr,c = s] (4)

We can now define a fault-tolerant bicluster as a bicluster
whose rows are the fault-tolerant cover of the columns, and
whose columns are fault-tolerant as well:

Definition 2.5 (Fault-tolerant bicluster): Given a matrix D
over symbols σ and thresholds εR and εC . A fault tolerant
bicluster B = (R,C) satisfies the following properties:

R = ϕftD (C, εR), (5)

C = Ψft
D (R,C, εC) (6)

A frequent fault-tolerant bicluster is a fault-tolerant bicluster
for which |R| ≥ θ, that is, it contains more than θ rows where
θ is a threshold.

B. Staircase of biclusters

As motivated in the introduction, we wish to find a staircase
of fault-tolerant biclusters. Characteristic for a staircase is
that it contains multiple steps. Each step removes part of the
rows, but includes more columns. This intuition leads to the
following definition.

Definition 2.6 (Fault-tolerant bicluster staircase): A stair-
case S is a set of fault-tolerant biclusters S =
{B1, B2, . . . , Bk}, with Bi = (Ri, Ci) such that R1 ⊃ R2 ⊃
. . . ⊃ Rk and C1 ⊂ C2 ⊂ . . . ⊂ Ck.

The cover of a staircase S consists of all elements in matrix
D that fall within any of the biclusters. We identify an element
of the matrix by its row and column index.

Definition 2.7 (Staircase cover): Given a staircase set S
and a matrix D over symbols σ, the cover of S is given as:

coverD(S) = {(r, c) | ∃(Ri, Ci) ∈ S : r ∈ Ri ∧ c ∈ Ci} (7)

For ease of presentation, we will denote with DS that part
of the matrix D that belongs to the cover of S, and with D\S
its complement, i.e. all values in the matrix not belonging to
the cover of S.

The problem that we consider in this paper is that of
mining a staircase that fits the data well. Intuitively, this
means that we want to find a staircase that 1) has a large
cover, 2) has clearly discernible steps, 3) contains as little
noise as possible. The requirement that we wish to find a
staircase with large cover can be formalized as that we wish to
maximize coverD(S). One way to achieve discernible steps is
to require that each step in the staircase covers a sufficiently
large new area compared to the previous step, i.e. to require
that |coverD({B1, . . . , Bi−1, Bi})\coverD({B1, . . . , Bi−1})|
is maximized for each bicluster Bi. Unfortunately, doing this
would have an undesirable side effect. This is illustrated in
Figure 2. Compared to B1 = (R1, C1), bicluster B3 adds
more to B1 than B2 adds to B1; hence B3 would be selected
instead of B2. To control the size of the step, we introduce a
parameter θ and a constraint on the minimum number of rows
that the next step has to cover. The threshold of the constraint

Fig. 2: A staircase pattern set consisting of three biclusters, i.e. B1 =
(R1, C1), B2 = (R2, C2), B3 = (R3, C3). The area that B3 adds to
the staircase (indicated in red) can be calculated by |R3| ∗ |C3 \C2|.

is calculated by |R1| − θ
M i, where M is the total number of

rows and i is incremented at each iteration of the algorithm.
When no bicluster is found, i is incremented as well, thereby
ensuring that steps larger than θ can also be found.

Overall we are looking for a staircase S =
{B1, B2, . . . , Bk} that satisfies:
• each Bi ∈ S is a fault-tolerant bicluster under thresholds
εR and εC ;

• for all 1 ≤ i ≤ k − 1: Ri+1 ⊂ Ri and Ci ⊂ Ci+1;
• |R1| is maximal;
• for each i ∈ {2, 3, . . . , k}: |coverD({B1, . . . , Bi−1,
Bi}) \ coverD({B1, . . . , Bi−1})| is maximal, under the
constraint that |Ri| ≥ |R1| − θ

M i.
The advantage of this formalization, as we will see in the next
section, is that computing staircases becomes more tractable.
However, we should point out that the approach is dependent
on the choice of parameter θ which controls the size of the
steps; for an incorrect parameter size, we may miss parts of
the staircase.

III. FINDING BICLUSTERS

Given our requirements on staircases, a greedy algorithm
in which we first identify B1 and subsequently identify
B2, . . . , Bk is the most logical choice.

Both for finding the first bicluster and the subsequent
biclusters, we will employ constraint-based local search [10].
This search method has a non-deterministic component. We
therefore run the search multiple times. From the staircases
found, we choose one using an MDL-based score; this will be
explained in Section IV.

We are building on the constraint programming for itemset
mining framework proposed by De Raedt et al. [7]. This
framework can more readily be applied on binary {0, 1} data,
hence we first transform the data to binary form.

A. Data transformation

Given a dataset D over σ, we split each row in |σ+| rows,
one for each symbol. Such a row contains a value of 1 where
the row had that symbol in the respective column, and 0
elsewhere:

∀r ∈ {1, . . . ,m} :

∀x ∈ {1, . . . , |σ+|} :

∀c ∈ {1, . . . , n} :

r′ = (x+ (r − 1)|σ+|),

D′r′,c =

{
1 if Dr,c = σ+

x

0 otherwise (8)

By construction of the transformation, an itemset in this
transformed binary database D′ corresponds to a constant-row
bicluster in the original data.

B. Fault-tolerant biclusters in CP

All biclusters in the staircase need to satisfy the fault-
tolerance constraints. To express these constraints, we in-
troduce a Boolean variable for every row D′; ∀t ∈ T =
{1, . . . , |σ+| ∗ m} : Tt ∈ {0, 1} and one for every column
of ∀i ∈ I = {1, . . . , n} : Ii ∈ {0, 1}. An assignment to
the Boolean vectors T and I corresponds to one bicluster, by
indicating the rows and columns that define the bicluster.

We can now express the cover of a set of columns (Defini-
tion 2.3) as a constraint on these variables as follows:

Theorem 3.1 (Fault-tolerant cover constraint): If the fol-
lowing constraint is satisfied:

∀t ∈ T : Tt = 1↔
∑
i∈I

(D′t,i − εR)Ii ≥ 0, (9)

then the fault-tolerant cover set ϕftD (C, εR) can be derived
from T as follows:

ϕftD (C, εR) = {r ∈M | ∃x ∈ {1, . . . |σ+|} : Tx+(r−1)|σ+| = 1}.

The proof is given in the Appendix.
Fault-tolerant columns (Definition 2.4) can be expressed as

a constraint as follows:
Theorem 3.2 (Fault-tolerant columns constraint):

Assuming the constraint in Equation 9 is imposed,
then the following two constraints enforce that
Ii = 1↔ i ∈ Ψft

D (R,C, εC):

∀r ∈M :
∑

x∈{1,...,|σ+|}

T(x+(r−1)∗|σ+|) = 1 (10)

∀i ∈ I : Ii = 1→
∑
t∈T

(D′t,i − εC)Tt ≥ 0 (11)

A key insight here is that if Equation (10) holds then
the s = σ+

x for which T(x+(r−1)|σ+|) = 1 is exactly
arg maxs∈σ

∑
c∈C [Dr,c = s].

The combination of the constraints in Equations (9), (10)
and (11) results in a constraint specification that can be used
to find fault-tolerant biclusters.

a) Mining the first bicluster: In addition to the fault
tolerance constraints, the first bicluster in the staircase should
cover as many rows as possible. Observe that because∑
x∈{1,...,|σ+|} T(x+(r−1)∗|σ+|) = 1 we have that |R| =∑
t∈T Tt. Hence, the first bicluster has to satisfy the con-

straints in equations (9), (10) and (11) while maximizing∑
t∈T

Tt (12)

b) Mining subsequent biclusters: For subsequent biclus-
ters we need to employ a different optimization criterion.
Remember that we want to maximize |coverD({B1, . . . , Bi−1,
Bi}) \ coverD({B1, . . . , Bi−1})|. This corresponds to the red
area in Figure 2. In the example of the figure, the size of
the area is |R3| ∗ |C3 \C2|. In general, the area that bicluster
Bk = (Rk, Ck) adds to a staircase of k − 1 biclusters can be
calculated by |Rk| ∗ |Ck \ Ck−1|.

In the binarised data we want to maximize:

(
∑
t∈T

Tt)(
∑

i∈I\Ck−1

Ii),

where Ck−1 represents the columns selected in bicluster Bk−1,
and T and I are vectors of boolean variables representing
the bicluster Bk. Furthermore, several constraints are applied.
First, the staircase constraints Ci+1 ⊇ Ci and Ri+1 ⊆ Ri need
to be satisfied:

∀i ∈ Ck−1 : Ii = 1

∀r ∈M\Rk−1 : ∀x ∈ {1, . . . , |σ+|} : Tx+(r−1)|σ+| = 0

Also, we need to satisfy the minimum row constraint that
controls the size of the steps. A straight-forward translation
of that constraint is

∑
t∈T Tt ≥ |R1| − θ

M k. However, in
earlier work it was found that a reified constraint often works
better [7], as it provides better pruning of the search space.
We choose to reify the constraint here as well:

∀i ∈ I \ ∪k−1j=1Ij : Ii = 1→
∑
t∈T
D′t,iTt ≥ |R1| −

θ

M
k;

Finally, we need to satisfy the fault tolerance constraints
linking rows and columns. For the columns, we reuse con-
straints (10) and (11). For the rows, we adapt (9) so that it is
only posted on the rows that have previously been covered:

∀t ∈ ∪r∈Rk−1
{1 + (r − 1) ∗ |σ+|, . . . , |σ+|+ (r − 1) ∗ |σ+|} :

Tt = 1↔
∑
i∈I

(D′t,i − εR)Ii ≥ 0

C. Large Neighbourhood Search

Mining a fault-tolerant bicluster is equivalent to finding an
assignment for T and I that satisfies the required constraints
and optimization criteria. The number of possible biclusters
is exponential in the number of columns in the matrix, and
searching for the best fault-tolerant bicluster is very time
consuming. Hence, we use a form of local search to speed
up the search.

Large Neighbourhood Search (LNS) is a hybridization of
local search and constraint propagation in CP. Constraint
propagation is a mechanism that ensures that the domains of
variables are reduced if possible; for instance, in our bicluster-
ing formalization it ensures that row variables are fixed to the
value 0 if the noise in rows is too large. While traditional local
search methods choose a neighbouring solution by making
some changes to a limited number of variables, LNS selects
a subset of the problem (i.e. a random subset of variables)
and performs complete search over these variable to find an
optimal assignment. Two main questions involved with LNS
include a) Which variables should be selected to search over;
b) How to search on these variables. In our implementation,
we use stochastic variable selection and exhaustive search
approach as described in [8]. The stochastic variable selection
randomly selects a subset of variables to search over. This has
the risk of not finding the optimal solution, hence we run the
algorithm multiple times. The next section explains how the
best staircase is selected from this set of found staircases.

IV. STAIRCASE SELECTION BY MDL

After producing multiple candidate staircases by running
the Large Neighbourhood Search multiple times, the main
question is how to pick the one that best fits the data. Since
we are looking for a set of biclusters that together describes
the data as accurately as possible, we employ the Minimum
Description Length (MDL) principle to select the best staircase
among the candidates. With this choice, we follow a recent
trend in pattern mining [18].

The MDL principle states that the best model for given
data is the one that compresses the data best. In the current
context, the best staircase S∗ is the one that minimizes the
total compressed size:

L(D, S) = L(S) + L(D | S), (13)

where L(D | S) is the size (in bits) of D encoded with S, and
L(S) is the size (in bits) of S.

Note that compression should be lossless, and that both the
encoded size of the model and that of the data encoded with
the model are taken into account, ensuring that model and data
complexity are balanced. This way, we avoid ‘overfitting’ on
the data by picking a staircase consisting of many biclusters.
We previously already defined staircases, our models, and how
they cover the data. What remains is that we need to determine
how to encode a staircase S, and how to encode a matrix D
with a staircase S.

A. Encoding a staircase

From the definition of a staircase, i.e. Definition 2.6, we
know that the initial bicluster can be any bicluster, after which
each subsequent bicluster is strongly constrained with regard
to its predecessor. In the following, we exploit this observation
to develop a succinct encoding for staircases.

1) The first bicluster: Given a staircase S, B1 = (R1, C1)
is the initial bicluster and the one that we encode first. For
this we use the n row and m column indexes assigned to
the matrix, i.e. N and M . From these two sets, we encode
those indexes that correspond to the rows and columns in B1.
From information theory, we have that we can encode an index
x ∈ [1, X] in logX bits. (All logarithms are to base 2.)

Apart from encoding the row and column indexes corre-
sponding to the |R1| rows and the |C1| columns, we also need
to encode the number of rows and the number of columns to
ensure that lossless decoding is possible. This adds an extra
logm + log n bits and results in a total encoded size for
bicluster B1, denoted by L(B1), given by:

L(B1) = (|R1|+ 1) logm+ (|C1|+ 1) log n (14)

2) Subsequent biclusters: For a succinct encoding of the
remaining biclusters, we exploit the knowledge that each sub-
sequent bicluster is very similar to the previous one. Instead
of encoding the complete row and column sets, we only
encode the differences with respect to the previous bicluster
in the sequence. To be more precise, each Bi = (Ri, Ci)
with 1 < i ≤ k is encoded relative to Bi−1. For each two
consecutive biclusters, we only need to encode two types of
modifications:
• Remove rows: q = |Ri−1\Ri| rows are removed. Each of

these changes can be encoded in log(|Ri−1|) bits, since
we only need to choose from the previous set of rows
Ri−1.

• Add columns: p = |Ci\Ci−1| columns are added. Each of
these changes can be encoded in log(N − |Ci−1|) bits,
since we only need to choose from all columns not in
Ci−1.

As before, we also need to encode how many changes are
made, to ensure that lossless decoding is possible. Together,
this gives the following encoded size for Bi:

L(Bi) = (q + 1) log(|Ri−1|) + (15)
(p+ 1) log(n− |Ci−1|), 1 < i ≤ k

Finally, the total encoded size of staircase S is given by

L(S) =
∑
i∈[1,k]

L(Bi). (16)

B. Encoding the data

Since we want a staircase to explain as much of the data as
possible, and because MDL requires lossless compression, we
need to encode both the cover of a staircase and the remainder
of the data.

1) Encoding data inside the staircase: The first important
observation to make is that a staircase consists of constant-row
biclusters. Hence, we expect the data within each row in the
staircase to be homogeneous, i.e. each row should consist of
mostly the same (non-zero) symbols. The second observation
is that if we encode the constant-row symbol Sr (see 2.4) for
each row r, what remains is to encode the symbols that deviate
from these defaults.

Since there are |σ+| possible default values, log |σ+| bits
are needed to encode a single default value. One default value
needs to be encoded for each row that occurs in any of the
biclusters in the staircase. The encoded size of all default
values is then given by L(Sdefs | D):

L(Sdefs | D) = |rows(S)| log |σ+| (17)
rows(S) = {r ∈M | ∃Bi ∈ S : r ∈ Ri} (18)

Since the row default values provide a default value for
each position within the staircase, what remains is to encode
all deviations from these defaults. Assuming that there are v
(row,column) pairs within a staircase S, log v bits are required
to uniquely identify one of these pairs. That is, we consider
the concatenated vector of all values within DS and index
into this vector. For each value that deviates from the default,
log(|σ|−1) = log |σ+| bits are needed to encode the deviating
value. If there are u ‘noisy’ values, i.e. values that deviate from
the default, encoding the data within the staircase requires
L(DS) bits, as follows:

L(DS) = log v + u(log v + log |σ+|) (19)

The first term is required to encode u, the number of noisy
values that follow after that.

2) Encoding any remaining data: For the remainder of the
data, D\S , we assume that the data is sparse, i.e. mostly
zero, and all default values are hence 0. With this choice,
staircases with larger covers are potentially rewarded with
smaller compressed sizes.

Again, we encode only the values that deviate from the
default, i.e. all non-zero values in this case. Given that D
contains m × n values and DS contains v values, we have
that D\S consists of w = (m× n)− v values. Assuming that
there are x non-zero values in D\S , the encoded size for the
remainder of the data is given by:

L(D\S) = logw + x(logw + log |σ+|). (20)

Putting everything together, we have that the encoded size
of a dataset D encoded with a staircase S, denoted L(D | S),
is defined as:

L(D | S) = L(Ddefs | D) + L(DS) + L(D\S). (21)

V. EXPERIMENTS

In this section, we perform a number of experiments on
both synthetic data and a real-world dataset to evaluate the
proposed approach.

A. Data generation

We generated a synthetic data matrix of 1000 rows x
120 columns with two symbols in addition to the neutral
zero, that is, σ = {0, g, r}. We sampled noise outside the
staircase (background noise) from a multinomial distribution
µbn = (µbg1 , µ

bg
2 , µ

bg
3) where µbg1 , µbg2 , µbg3 are the probability

of occurrences of g, r and 0 respectively. Within the data
matrix, we planted a staircase of 500 rows x 100 columns
with h bicluster, where h is a parameter. We sampled the

Fig. 3: A heatmap example of the synthetic data.

value of a row in the staircase from a binomial distribution
µh = (µh1 , µ

h
2), where µh1 and µh2 are the probabilities of

rows being homogeneous in r and g respectively. We also
sampled noise within the staircase from a binomial distribution
µsn = (µsn1 , µsn2), where µsn1 and µsn2 are probability of non-
zeroes (i.e. r or g) and zero.

We did experiments with the following parameters,
µbn = (0.05, 0.05, 0.90), µh = (0.7, 0.3) and µsn = (0.9, 0.1)
and h ∈ {5, 10, 20}. Figure 3 shows a heatmap of a synthetic
data with h = 20.

We used COMET [10] to implement the large neigh-
bourhood search. Source code can be downloaded from our
website, http://dtai.cs.kuleuven.be/CP4IM/staircase.

B. Experimental results with synthetic datasets

To evaluate the performance of the algorithm, we run it
with varying values of the parameters (fault tolerance levels
and step size θ). These experiments are used to answer the
following questions:

1) How reliable is the local search procedure?: To this aim,
we ran the staircase discovery algorithm on three synthetic
datasets, using the data parameters given above. On each
dataset, we ran the algorithm with different parameters (fault-
tolerance and step-size) as well, and 6 times per parameter
combination.

We evaluate how the MDL score varies among the runs by
calculating its normalized standard deviation. We first calculate
the standard deviation of the MDL score for the runs having
the same parameter combination and then normalize it by the
mean value. Figure 4a is the histogram of the normalized
standard deviation of the MDL score. The result shows that
most of the values concentrate nearby zero illustrating that the
variation is typically low. In subsequent experiments we hence
use three number of runs.

2) How reasonable is the MDL score?: In this experiment
we consider the dataset with h = 20 biclusters. We vary the
choices of step size θ ranging from 0.005 to 0.5 and fault-
tolerance levels (shared between rows and columns) in the
range of 0.10 to 0.30. For each solution found, we calculate
our unsupervised MDL score. We also measure how well the

(a) Normalized standard deviation in MDL scores (b) Relating F1-Scores to MDL scores (c) Sensitivity analysis
Fig. 4: Experimental results

Fig. 5: Visualization of a staircase of mammals in Europe

staircases found correspond to the implanted staircase, using
the F1 score. We expect that when the MDL score is low
(lower is better), the F1 score reaches a high value. This is
confirmed in Figure 4b (note that the right Y-axis, representing
the MDL score, is inverted for readability). Unfortunately, the
MDL score does not select the right number of biclusters in
the implanted staircase.

3) How sensitive is the mining model to the parameter
values?: Figure 4c shows precision and recall for the same
data and parameter settings used in the previous experiment.
As expected, the algorithm has different performance depend-
ing on the combination of parameter values. With less noise
thresholds, for example 10% as illustrated in this experiment,
most of the area that the algorithm predicts part of the true
implanted staircase is correct (high precision) but it recovers
a small part of the true staircase (low recall). With an appro-
priate choice of parameter combination, we could have both
precision and recall high as in the case of using 30% of noise
thresholds in this experiment. In practice, we have to do many
experiments with different parameter values in order to find
the approximate optimal solution. This is the weakness of the
current method which can be a room for further improvement.

C. Experimental results with real dataset

We used the Mammals dataset [9], which consists of
presence information of European mammals [14] and climate
information for areas of 50× 50 kilometres. Rows in this
dataset correspond to regions, while columns correspond to
species.

We run our staircase discovery algorithm on the Mammals
dataset. The results are visualized in Figure 5, where blue
indicates the last step in the staircase (hence, a region with
many different species) and green indicates regions that strictly
belong to the first step in the staircase (regions with few
different species). The visualization shows that there is a trend
of living of species in Europe. There are some small number
of species can live in many areas of Europe whereas there
are some particular areas that can house a larger number of
species. For example, the green color scatters across the map
(relating the large number of areas where a small number of
species can live) while the blue color concentrates in the center
(relating the area where a larger number of species can live).

VI. RELATED WORK

The problem of biclustering was first introduced in 2000
by the work of [4]. Many solutions have been proposed,
to name just a few, (non-parametric) probabilistic inference
[17], [19], statistical relational models [20]. However, these
studies did not pay attention to the overlapping structure of
the detected biclusters as our work. Frequent itemset mining,
i.e. the discovery of subsets of items in transactional databases,
has been applied in a relatively small number of biclustering
studies as well. Examples include research by Serin and
Vingron, and Blachon et al. [3], [16]. They deal with noise
through a post-processing step; our proposed approach has a
direct way to describe fault-tolerant itemsets in the framework
of CP. Directly mining fault-tolerant patterns has been studied
by Besson et al., also in a constraint programming setting [1],
[2]. In our work, the fault-tolerant frequent itemset formalism
is inspired by the one proposed by Liu et al. [11], which
also imposes relative error constraints on rows and columns.
However, Liu et al. do not consider the problem of finding
staircases.

This works fits within the more general research area of
finding pattern sets. Pattern set discovery has been studied in

a constraint programming setting before [8]; and MDL has
successfully been applied in pattern set mining as well [18].

Conceptually, the structures in data that we are looking for
are similar to nested segments [13]. However, in contrast to
this work of Mannila and Terzi, the structure we propose to
identify does not necessarily have to hold in the complete data.
Finally, the structure we identify is related to that of a banded
matrix [6]; the difference is that a banded matrix is sparse
both above and below an (imaginary) diagonal identified in
the data.

VII. CONCLUSIONS

In this paper we introduced the problem of finding staircases
in data. Our method is based on a strict separation between the
generation of candidate staircases and their evaluation in terms
of the MDL score. Experiments show that the solutions having
low MDL scores have high F1 scores and that the MDL score
finds an implanted staircase with good precision and recall on
artificial data.

There are several possibilities for future work. First, our
current approach only identifies one staircase. Second, the two-
phased approach taken in this work requires a large number
of parametrized constraints; determining the right parameter
values is computationally demanding. To address this problem,
we are exploring approaches in which the MDL score and
the constraints used to identify the staircases are more tightly
integrated. Finally, there is room for improving the MDL score
such that better models are selected.

ACKNOWLEDGMENT

This research was supported by the DBOF 10/044 Project,
the Natural and Artifical Genetic Variation in Microbes project,
a Postdoc grant for SN and project ”Principles of Patternset
Mining” by the Research Foundation – Flanders, a Rubicon
grant for MvL by the Netherlands Organisation for Scientific
Research, and the EU FET Open project ”Inductive Constraint
Programming”.

REFERENCES

[1] J. Besson, J-F. Boulicaut, T. Guns, S. Nijssen, Generalizing Itemset
Mining in a Constraint Programming Setting. Inductive Databases and
Constraint-Based Data Mining, 2010, 107-126.

[2] J. Besson, R. Pensa, C. Robardet, J-F. Boulicaut, Constraint-based min-
ing of fault-tolerant patterns from Boolean data. Knowledge Discovery
in Inductive Databases, 2005, 55-71.

[3] S. Blachon, R. Pensa, J. Besson, C. Robardet, J-F. Boulicaut, O.
Gandrillon, Clustering formal concepts to discover biologically relevant
knowledge from gene expression data. In Silico Biology, 2007, 7:0033.

[4] Y. Cheng, G.M. Church, Biclustering of expression data, International
Conference on Intelligent Systems for Molecular Biology, 2000, 8:93-
103.

[5] Q. Fu, A. Banerjee, Bayesian overlapping subspace clustering, ICDM,
2009.

[6] G.C. Garriga, E. Junttila, H. Mannila, Banded structure in binary
matrices, Knowl. Inf. Syst., 2011, 28(1), 197-226.

[7] T. Guns, S. Nijssen, L. De Raedt, Itemset Mining: a Constraint Pro-
gramming Perspective, Artif. Intell., (2011) 1951-1983.

[8] T. Guns, S. Nijssen, A. Zimmermann, L. De Raedt, Declarative heuristic
search for pattern set mining, Declarative Pattern Mining, 2011.

[9] H. Heikinheimo, M. Fortelius, J. Eronen,H. Mannila Biogeography of
european land mammals shows environmentally distinct and spatially
coherent clusters, J Biogeogr 34(6):10531064, 2007.

[10] P. Van Hentenryck and L. Michel, Constraint-based local search, MIT
Press, 2005.

[11] J. Liu, S. Paulsen, W. Wang, A. Nobel, J. Prins, Mining Approximate
Frequent Itemsets from Noisy Data, International Conference on Data
Mining, 2005, 721-724.

[12] S.C. Maderia, A.L. Oliveira, Biclustering algorithms for biological data
analysis: a survey, IEEE/ACM Trans Comput Biol Bioinform 2004, 1:24-
45.

[13] H. Mannila, E. Terzi, Nestedness and segmented nestedness, Knowledge
Discovery in Databases, 2007: 480-489.

[14] AJ Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, PJH
Reijnders, F. Spitzenberger, M. Stubbe, JBM Thissen, V. Vohralik, J.
Zima, The atlas of european mammals. Academic Press, London, 1999.

[15] S. Nijssen, J. Vreeken, A. Zimmermann, N. Tatti, B. Bringmann, Mining
Sets of Patterns – Next Generation Pattern Mining, Tutorial at the
International Conference on Data Mining, 2011.

[16] A. Serin, M. Vingron, DeBi: Discovering Differentially Expressed
Biclusters using a Frequent Itemset Approach, Algorithms for Molecular
Biology 2011, 6:18.

[17] H. Shan, A. Banerjee, Bayesian Co-clustering, IEEE International
Conference on Data Mining, 2008.

[18] J. Vreeken, M. van Leeuwen, A. Siebes, Krimp: mining itemsets that
compress, Data Mining and Knowledge Discovery, 2011, 23(1), 169-
214.

[19] P. Wang, K.B. Laskey, C. Domeniconi, M. Jordan, Nonparametric
Bayesian Co-clustering Ensembles, in Proceedings of the SIAM Interna-
tional Conference on Data Mining, Mesa, Arizona, April 28-30, 2011.

[20] H. Zhao, L. Cloots, T.V.D. Bulcke, Y. Wu, R. De Smet, V. Storms,
P. Meysman, K. Engelen and K. Marchal, Query-based biclustering
of gene expression data using Probabilistic Relational Models, BMC
Bioinformatics 12(Suppl 1): S37, 2011.

APPENDIX
Theorem A.1 (Fault tolerant cover constraint): The fault-tolerant cover
set ϕftD (C, εR) can be derived from T if the following constraint is
satisfied:

∀t ∈ T : Tt = 1↔
∑
i∈I

(D′t,i − εR)Ii ≥ 0, (22)

and equals

ϕftD (C, εR) = {r ∈M | ∃x ∈ {1, . . . |σ+|} : Tr|σ+|+x = 1}.

Proof:

∀t ∈ T : Tt = 1↔
∑
i∈I

(D′t,i − εR)Ii ≥ 0 (23)

⇐⇒∀t ∈ T : Tt = 1↔
∑
i∈I
D′t,iIi ≥ εR

∑
i∈I

Ii (24)

using Ii = 1↔ i ∈ C and
∑
i∈I Ii =

∑
i∈I [i ∈ C] = |C|:

∀t ∈ T : Tt = 1↔
∑
i∈I
D′t,i[i ∈ C] ≥ εR|C| (25)

⇐⇒∀t ∈ T : Tt = 1↔
1

|C|
∑
i∈C
D′t,i ≥ εR (26)

using D′
r′,c = 1↔ Dr,c = σ+

x for r′ = (r ∗ |σ+|+ x):

∀r ∈M, ∀x ∈ {1, . . . , |σ+|} :

T(r∗|σ+|+x) = 1↔
1

|C|
∑
i∈C

[Dr,i = σ+
x] ≥ εR. (27)

Going back to Definition 2.3 (Equation (2)) we have that:

r ∈ ϕftD (C, εR)↔ ∃s ∈ σ+ :
1

|C|
∑
c∈C

[Dr,c = s] ≥ εR (28)

⇐⇒r ∈ ϕftD (C, εR)↔ ∃x ∈ {1, . . . , |σ+|} : T(r∗|σ+|+x) = 1

(29)

which concludes the proof.

