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Abstract:
Pattern recognition plays an important role and has great potential in fusion data analy-
sis. However, a drawback is that individual measurements are usually represented as un-
structured points in a Euclidean data space. We argue that a fundamentally probabilistic
approach offers significant advantages. It allows representing the data in a non-Euclidean
probabilistic space, wherein the patterns of interest are much more distinct, simply because
they are based on more information. In this work, we address the identification of confine-
ment regimes and the establishment of a scaling law for the energy confinement time, using
data from the International Global H-mode Confinement Database. We propose a single-
level and a Bayesian multilevel model for capturing the statistical data uncertainty. We
then show that pattern recognition operations working in the associated probability space
are considerably more powerful than their counterparts in a Euclidean data space. This
opens up new possibilities for analyzing confinement data and for fusion data processing in
general.

1 Introduction

Pattern recognition can be used in nuclear fusion data analysis for uncovering data struc-
tures, such as clusters and regression surfaces, that provide insight into the underlying
physical processes. This complements physics studies and contributes to real-time plasma
control.

Measurements obtained in fusion experiments can be affected by a considerable uncer-
tainty, which is usually regarded as a nuisance for pattern recognition operations. How-
ever, the probability distribution associated to data uncertainties is in fact a very useful
piece of information. We here advocate the point of view that the fundamental object
resulting from the measurement process is a probability distribution. This probability
distribution may contain significantly more information than a measurement value and
an error bar alone. Moreover, the probabilistic model can be chosen to embody any infor-
mation regarding the underlying physics generating the data, the experimental conditions
under which the data were collected and the uncertainties affecting the measurements and
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model parameters. This additional information can and should be exploited in any further
processing of the data, such as pattern recognition. In this paper we apply pattern recog-
nition in probability spaces for the identification of confinement regimes (classification)
and for the derivation of a confinement time scaling law (regression).

2 A geometric-probabilistic pattern recognition frame-

work

We briefly sketch the principles of a new pattern recognition framework that was in-
troduced in [1] and [2]. Basically, we apply pattern recognition methods directly in a
probabilistic data space, i.e. a space of probability distributions. To this end, we employ
the mathematical framework of information geometry, wherein a probability distribution
function (PDF) is interpreted as a point on a manifold [3]. The PDF parameters provide
a coordinate system on the manifold and the Fisher information plays the role of a metric
tensor. This permits calculating the geodesic distance (GD) as a natural and theoretically
well-motivated similarity measure between probability distributions [1]. In this paper we
discuss applications that are based on a univariate Gaussian model N (µ, σ), parameter-
ized by its mean µ and standard deviation σ. A closed-form expression exists for the
associated GD, permitting fast and accurate computations [1].

3 Classification and regression for confinement data

We apply pattern recognition on probabilistic manifolds to confinement data obtained
from the International Tokamak Physics Activity (ITPA) Global H-mode Confinement
Database (henceforth referred to as ‘the ITPA database’), version DB3 13f [4]. We first
briefly introduce the database and then propose two probabilistic models (single-level and
multilevel) describing the database entries. We then apply pattern recognition methods
on the corresponding probabilistic manifolds by calculating geodesic distances.

3.1 ITPA database

The data in the ITPA database have been used extensively for determining scaling laws for
the energy confinement time, mainly as a function of a set of eight plasma and engineering
variables: plasma current (Ip), vacuum toroidal magnetic field (Bt), total power loss from
the plasma (Ploss), central line-averaged electron density (n̄e), plasma major radius (R),
inverse aspect ratio (ε), effective atomic mass (Meff) and elongation (κ). We will refer
to these variables by the designation xλ, with λ = 1, . . . , 8. Furthermore, we will use
the notation xλ,ijk for the individual measurement value of variable xλ, corresponding to
database entry j obtained at tokamak k. The index i in principle allows the possibility
of multiple measurements (e.g. a time series) for a single database entry. However, in the
present case there is only one measurement value per database entry, so i can take only
the single value 1 (the notation including i will be useful in the following, nevertheless).
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In our experiments we used essentially the same eight variables xλ to discriminate
between, roughly, L- and H-mode plasmas (the minor radius a was chosen instead of ε).
Specifically, all database entries with a confinement mode labeled as H, HGELM, HSELM,
HGELMH, HSELMH and LHLHL were considered to belong to the H-mode class, while
discharges labeled with L, OHM and RI were assigned to the non-H-mode class, or L-mode
for brevity.

3.2 Single-level model

Throughout our analysis we assumed that the relative error estimates in the ITPA database
pertain to a pure statistical error from which a standard deviation can be calculated. Ac-
cording to the principle of maximum entropy the underlying probability distribution of
every measurement xλ,ijk is Gaussian with as its mean µλ,jk the measurement itself and
standard deviation σλ,jk the error bar. Hence, the likelihood of the data point xλ,ijk is
given by:

xλ,ijk ∼ N (xλ,ijk|µλ,jk, σλ,jk), (1)

where, trivially, the maximum-likelihood (ML) estimate of µλ,jk is xλ,ijk. The ML estimate
of σλ,jk is obviously zero, since we have only a single measurement per database entry.
However, in our treatment we will exploit the prior information that tells us that the
standard deviation is actually given by the error bar quoted in the database.

In addition, although our framework can perfectly handle multivariate distributions,
we here suppose that all variables are statistically independent, so their joint distribution
factorizes. It should be noted that this does not exclude at all a deterministic dependence
between the variables.

3.3 Bayesian multilevel model

Apart from prior information on the standard deviations, there is also useful information
available on the means due to additional structure in the database. Indeed, at the min-
imum we know for each measurement at which tokamak it was obtained. This yields a
priori information on the typical range of a variable that is to be expected at a certain
machine, just by studying the statistics of the measurements in the database from that
machine. Likewise, we can determine statistics concerning the entire database. The multi-
level structure of the database can be ideally captured by a hierarchical model, specifically
a multilevel model, wherein at several levels the data are assumed to be distributed follow-
ing a specific probabilistic model. Combining these submodels into a single probabilistic
model via the standard rules of probability theory, one can subsequently estimate the
model parameters via traditional frequentist techniques or Bayesian methods. We here
adopt the latter approach because it agrees with our point of view that all measured
and estimated quantities are fundamentally uncertain (see [5] for an overview of Bayesian
methods and [6] for an accessible account in the context of fusion data analysis).

The first level of our model has already been specified in (1), governing the distribu-
tion of the measurements. At the second level, we exploit prior information about the
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distribution of the means µλ,jk. Specifically, we put a prior distribution on the parameters
µλ,jk, which, in turn, is characterized by a set of hyperparameters. Indeed, for fixed k we
may consider each µλ,jk as a value drawn from a distribution characterizing the variability
of µλ,jk at tokamak k. Thus, the variability is considered fully ‘stochastic’ (or ‘random’)
by nature, although it is more accurate to state that, at this point, we do not have—or we
choose to neglect—further information that could be used to describe the data-generating
mechanism in more detail.

In addition, it is important to note that in a fully Bayesian treatment, no data is
to be used for constructing the prior distribution or for estimating its parameters, in
order to avoid circular arguments. Nevertheless, although in the same spirit one should
also consider a prior distribution on the standard deviation parameter σλ,jk, in this work
we make an approximation by first estimating all parameters representing a standard
deviation and keeping them fixed throughout the analysis. From the Bayesian viewpoint,
this means that in our analysis standard deviations are not considered as parameters, but
are constants.

Various principles exist that assist in the selection of a prior distribution, but in a
multilevel analysis the concept of conjugacy of prior distributions with respect to the
likelihood is a popular criterium. The advantage is that the posterior distribution is then
part of the same family of probability distributions as the prior, so the mathematics remain
tractable. The conjugate distribution of the normal distribution with known standard
deviation is again normal. Hence, each µλ,jk is assumed to be distributed according to
a normal distribution with a certain mean µλ,k and standard deviation σλ,k. Again, we
make an approximation by taking σλ,k constant for a given λ and k, namely the sample
standard deviation of the set of measurements xλ,ijk = µλ,jk, for all j at tokamak k, which
is in fact the ML estimate of σλ,k.

Similarly, we model a third level, where each µλ,k is normally distributed with mean
µλ,0 and standard deviation σλ,0, the latter estimated by the sample standard deviation
of all measurements of the variable xλ over the complete database.

At the fourth level we assume a normal distribution for µλ,0, characterized by a mean
parameter φλ and standard deviation τλ. A fifth and final level cuts off the hierarchy by
assuming that φλ is uniformly distributed, while τλ is defined as a fixed percentage of φλ
(here we chose 10%). We can be vague about these parameters since they are high up the
hierarchy and it can be proved that a uniform prior leads to a proper posterior distribution
in a Gaussian hierarchy [5]. The complete hierarchical model has been summarized in
Table I.

The joint posterior distribution related to the variable xλ for the complete set of
parameters that are to be estimated is then given by the following proportionality relation:

p(µλ,jk, µλ,k, µλ,0, φλ|xλ,ijk,∀j, k)

∼
∏
j,k

N (xλ,ijk|µλ,jk, σλ,jk)N (µλ,jk|µλ,k, σλ,k)N (µλ,k|µλ,0, σλ,0)N (µλ,0|φλ, τλ). (2)

Among the various ways to simulate (sample) from this distribution, we chose a simple
Gibbs sampling procedure, first establishing the posterior distribution for each individual
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TABLE I: A MULTILEVEL BAYESIAN STRUCTURE USED FOR MODEL-
ING THE ITPA DATA FOR VARIABLE xλ (λ = 1, . . . , 8).

Level Model

1 xλ,ijk ∼ N (xλ,ijk|µλ,jk, σλ,jk)
2 µλ,jk ∼ N (µλ,jk|µλ,k, σλ,k)
3 µλ,k ∼ N (µλ,k|µλ,0, σλ,0)
4 µλ,0 ∼ N (µλ,0|φλ, τλ)
5 φλ ∼ U(−∞,+∞), τλ = 0.1φλ

parameter, conditional on all others [5]. Summarizing the complete data set corresponding
to variable xλ in the data vector xλ, this leads for the normal model to simple and intuitive
expressions. Each parameter is fully determined by the parameters with the same indices
j and k at the level below, as well as by the constant standard deviations. Hence, we
have:

µλ,jk|µλ,k, µλ,0, φλ,xλ ∼ N (µ̂λ,jk, σ̂λ,jk), µ̂λ,jk =

µλ,k
σ2
λ,k

+
njk
σ2
λ,jk

x̄λ,·jk

1
σ2
λ,k

+
njk
σ2
λ,jk

, σ̂2
λ,jk =

1
1

σ2
λ,k

+
njk
σ2
λ,jk

,

µλ,k|µλ,jk, µλ,0, φλ,xλ ∼ N (µ̂λ,k, σ̂λ,k), µ̂λ,k =

µλ,0
σ2
λ,0

+ nk
σ2
λ,k
µ̄λ,·k

1
σ2
λ,0

+ nk
σ2
λ,k

, σ̂2
λ,k =

1
1

σ2
λ,0

+ nk
σ2
λ,k

,

µλ,0|µλ,jk, µλ,k, φλ,xλ ∼ N (µ̂λ,0, σ̂λ,0), µ̂λ,0 =

φλ
τ2λ

+ nm
σ2
λ,0
µ̄λ,·

1
τ2λ

+ nm
σ2
λ,0

, σ̂2
λ,0 =

1
1
τ2λ

+ nm
σ2
λ,0

,

φλ|µλ,jk, µλ,k, µλ,0,xλ ∼ N (φ̂λ, τ̂λ), φ̂λ = µλ,0, τ̂ 2
λ = τ 2

λ .

Here, the notation of an index that is replaced by a dot, accompanying a quantity with
an overbar, refers to an averaging process over all measurements or parameters in the
range of that index. For example, x̄λ,·jk is just the measurement xλ,1jk and µ̄λ,·k is the
parameter obtained by taking the average of all parameters µλ,jk, running over all j for a
fixed k. In addition, njk denotes the number of samples per database entry (only one for
every variable), nk is the number of database entries for machine k and nm is the number
of machines in the database (i.e. 19). According to the expressions above, the posterior
mean parameter at each level is given by an average of the information provided by the
data and by the prior distribution, weighted by the respective inverse variances.

Given the Gaussian posterior conditionals, the Gibbs sampling procedure is very sim-
ple. Starting from some initial values of the parameters (e.g. the ML estimates), one
samples from the posterior conditionals a new value for each of the parameters in series,
given the current values of the other parameters. Carrying out this process iteratively, it
can be proved that, after convergence has been reached, this algorithm generates samples
from each of the marginal posterior distributions (and from the joint posterior as well) [5].
As soon as a sufficiently large sample size has been reached, one can estimate the posterior
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TABLE II: CORRECT CLASSIFICATION RATES (%) OF CONFINEMENT
REGIMES USING A KNN CLASSIFIER FOR EUCLIDEAN AND GEODESIC
DISTANCE MEASURES.

Mode Euclidean Euclidean GD GD
w/o errors with errors single-level multilevel

L 89.7 91.2 91.9 93.2
H 89.1 90.5 93.3 94.3

mode (leading to maximum-a-posteriori parameter estimates) moments (mean parameter
estimates, variance), credible intervals (the Bayesian analog of confidence intervals), etc.

In the confinement mode classification problem described below, we will calculate
GDs on the combined probabilistic manifold corresponding to the posterior distribution
parameterized by the µλ,jk, µλ,k, µλ,0 and φλ, given in (2). For each database entry
we use the posterior mean of each of the parameters, estimated from the Gibbs sampling
procedure, together with the assigned standard deviations, as coordinates on the manifold.

3.4 Confinement mode classification

We now apply a classification algorithm for the automated identification of confinement
regimes, basically L-mode and H-mode. This has important applications in plasma control
and will be an powerful tool for ITER. Another application to disruption prediction was
described in [1].

We performed a series of classification experiments with two classes (L- and H-mode)
using 1% of the data for training. We carried out k-nearest neighbor (kNN) classifica-
tion with k = 1, effectively assigning a point to be classified to the class that its nearest
neighbor belongs to. The experiments were performed once without and once with con-
sideration of the measurement error. In the latter case, we applied both the single-level
and multilevel model introduced above.

The results are shown in Table II. The correct classification rates for both the L-mode
and H-mode data are clearly better if the measurement error is considered, even using
the Euclidean distance. The GD performs better than the Euclidean distance, since the
GD properly takes into account the geometry of the probabilistic manifold. Finally, the
multilevel model is seen to provide an advantage compared to the single-level model.

3.5 Confinement time scaling law

We next consider regression in the ITPA database, with the purpose of obtaining a scal-
ing law for the global energy confinement time τE, as a function of the eight variables
introduced in Section 3.1. Our method is based on geodesic regression (GR), which was
described in [2]. Basically, instead of minimizing the sum of Euclidean distances between
the data points and the values predicted by the regression model, in GR the sum of
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TABLE III: COEFFICIENT OF DETERMINATION R2 FOR SEVERAL RE-
GRESSION METHODS.

OLS TLS GR single GR multi OLS in GR single TLS in GR single

0.94 0.97 0.71 0.78 0.44 0.52

GDs is minimized between the data probability distributions and the predicted distri-
butions assuming a linear regression model. At this point we do not attempt to verify
existing scaling laws for τE. Rather, we aim to show that our method, which minimizes
geodesic distances, yields an enhanced goodness-of-fit of the regression function on the
probabilistic manifold, compared to regular regression based on the minimization of Eu-
clidean distances. To do this, we calculated the well-known coefficient of determination
R2. In order to evaluate GR, we adapted the definition for R2 by using GDs and geodesic
centroids [2].

We applied several methods in a regression analysis for τE on the so-called ‘standard’
set of the ITPA data. The methods with which we compare geodesic regression are
ordinary least squares (OLS) and total least squares (TLS) (errors in variables) using
singular value decomposition, which allows errors on the independent variables as well.
The GR was carried out once with the single-level data model and once with the multilevel
model.

The results of this study are summarized in Table III, mentioning the coefficients of
determination R2 resulting from the various regression methods. It should be noted that
the R2 values of GR cannot simply be compared to those found with OLS and TLS, since
different objects are fitted with the respective regression functions (structureless points
vs. PDFs). However, we can demonstrate that GR better takes into account the intrinsic
uncertainty on each measurement, by substituting the values of the coefficients resulting
from OLS and TLS into the calculation of R2 based on the GD with the single-level
model. The resulting values are reported in Table III as well, and are labeled by ‘OLS in
GR single’ and ‘TLS in GR single’. The R2 value obtained with GR and the single-level
model (‘GR single’) is indeed significantly higher compared to the ‘OLS in GR single’ and
‘TLS in GR single’ values. The best fit, however, is provided by GR in conjunction with
the multilevel model, proving again that the additional database structure embodied by
this model is very relevant to the regression problem.

4 Conclusions and outlook

We have argued that a fundamentally probabilistic modeling of the data is required and
beneficial in pattern recognition applications for fusion data. This approach is very dif-
ferent from the traditional modeling of data as structureless points in a Euclidean space,
in that the probabilistic structure (including the error bars) of the data actively helps
determining the data patterns (clusters, regression functions, etc.), from the very start of
the analysis.
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We wish to stress that in these experiments very little information was used regarding
the structure of the database, physical interpretation of the data, experimental condi-
tions at each machine and the data probability distribution. The performance differences
between the various methods are relatively small, yet it is remarkable that such little dif-
ferences in knowledge states can make a noticeable difference in classification rates. While
our two simple models (single-level and multilevel) capture only the broad outlines of the
data structure, there is an enormous amount of additional information that one can intro-
duce into the probabilistic model describing the data. For instance, one may encode prior
information regarding the experimental conditions during the discharges from which the
ITPA database entries were sampled, include predictions and trends from existing the-
oretical models, etc. Especially in the case of the regression problem for scaling laws,
such an approach could make a substantial difference compared to some of the traditional
approaches, where the data are simply regarded as a ‘cloud’ in the data space, without
much memory of the underlying physics that generated the data in the first place. The
additional information is available and extremely relevant, and the best way of making
use of it is by modeling the data with a probability model that includes this informa-
tion. Future work will mainly explore this exciting possibility, with further applications
to various pattern recognition problems in fusion science.

References

[1] G. Verdoolaege, G. Karagounis, A. Murari, J. Vega, G. Van Oost, and JET-EFDA
Contributors. Modeling fusion data in probabilistic metric spaces: Applications to the
identification of confinement regimes and plasma disruptions. Fusion Sci. Technol.,
62(2):356–365, 2012.

[2] G. Verdoolaege, G. Karagounis, M. Tendler, and G. Van Oost. Pattern recognition in
probability spaces for visualization and identification of plasma confinement regimes
and confinement time scaling. Plasma Physics and Controlled Fusion, in press, 2012.

[3] S. Amari and H. Nagaoka. Methods of information geometry, volume 191 of Transac-
tions of mathematical monographs. American Mathematical Society, New York, 2000.

[4] D.C. McDonald et al. Recent progress on the development and analysis of the ITPA
global H-mode confinement database. Nucl. Fusion, 47(3):147–174, 2007.

[5] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian data analysis. Chapman &
Hall/CRC, Boca Raton, second edition, 2004.

[6] G. Verdoolaege, R. Fischer, G. Van Oost, and JET-EFDA Contributors. Potential
of a Bayesian integrated determination of the ion effective charge via bremsstrahlung
and charge exchange spectroscopy in tokamak plasmas. IEEE Trans. Plasma Sci.,
38(11):3168–3196, 2010.


	Introduction
	A geometric-probabilistic pattern recognition framework
	Classification and regression for confinement data
	ITPA database
	Single-level model
	Bayesian multilevel model
	Confinement mode classification
	Confinement time scaling law

	Conclusions and outlook

