Recent developments in understanding and modeling of defects in Czochralski germanium

J. Vanhellemont¹, P. Spiewak², E. Gaubas³, J. Lauwaert¹, H. Vrielinck¹, P. Clauws¹, E. Simoen⁴ and I. Romandic⁵

¹Ghent University, Krijgslaan 281 S1, B-9000 Ghent, Belgium
²Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
³Vilnius University, Sauletekio al 10, LT-10223 Vilnius, Lithuania
⁴Imec, Kapeldreef 75, B-3001 Leuven, Belgium
⁵Umicore EOM, Watertorenstraat 33, B-2250 Olen, Belgium

Content

- Introduction
- COP's on polished Ge wafer surfaces
- Intrinsic point defects properties: experimental
- Calculation of intrinsic point defect properties
- Simulation of void formation in Cz germanium
- Conclusions

Introduction

- Today main application of Ge substrates for GaAs epitaxy: highly doped, 100 mm diameter. Also for optical components (mirrors, lenses) and HR Ge for detectors.
- Renewed interest to use Ge in nano-electronics due to high carrier mobility.
- Limited reserves, high cost \rightarrow GeOI.
- Development of electronics grade Cz Ge "donor" wafers:
 - grown-in lattice defects
 - metallic impurities
 - geometry.

Bonded GeOI wafer

• XTEM of implanted Ge (a); after thermal treatment (b); after bonding and cleaving (c) and after CMP (d).

C.J. Tracy et al. Journ. Electron. Mater. **33**, 887 (2004)

Department of Solid State Sciences

Cz germanium for nano-electronics

- 200 mm Ge wafers commercially available.
- Ge wafers fulfilling 300 mm wafer geometry specs demonstrated.
- Dislocation free; metals below detection limit.

Department of Solid State Sciences

Surface pits on Cz germanium wafers

• Optical micrographs showing surface pits occasionally observed with the naked eye on Cz Ge wafer surfaces.

COP'S on Cz silicon wafers

• AFM images of a typical double COP after 4h SC1 delineation. Left: top view. Right: 3D-view.

COP'S on Cz germanium wafers?

• Image obtained with a SURFSCAN surface inspection tool, revealing the presence of large COP's on a polished germanium wafer.

SEM after coordinate transfer of COP positions

• SEM images of surface pits on Ge wafer surfaces, corresponding with and octahedral (left) and truncated octahedral void (right).

Department of Solid State Sciences

Void formation in Czochralski germanium

- Schematic view of a growing Ge crystal as a solid-state reactor for point defects.
- Tweet JAP 30, 2002 (1959):
 - pit size depending on thermal history;
 - pit density reduction when pulling slower or post-heating the crystal in the puller;
 - density reduction accompanied by size increase;
 - vacancy clustering mechanism.

Self-diffusion and vacancy transport capacity

• Self-diffusion coefficient (left) and vacancy transport capacity (right) in Si and Ge as a function of temperature normalized with respect to the melt temperature.

Vacancies in germanium: quenching experiments

• Thermal equilibrium concentration of different charge states of the vacancy.

Department of Solid State Sciences

Quenching experiments: DLTS

• DLTS spectra measured in quenched samples. No known Curelated deep levels are observed.

Ge vacancy formation energy: impact of Fermi level

• Formation energy of the vacancy calculated ab initio with LDA+U as a function of the position of the Fermi level in the bandgap and of the charge state.

Charged vacancies in Ge

• Calculated vacancy formation energies in eV ($E_F = 0.305 \text{ eV}$).

Charge state	2—	1-	0	1+	2+
LDA+UPAW 3d	2.00	2.05	2.33	2.97	4.01
Quenching	2.19 +/- 0.11	1.98 +/- 0.11	2.35 +/- 0.11		

• Acceptor levels in eV for the Ge vacancy.

Reference	0/1-	1-/2-	Method
This work	0.02	0.26	DFT LDA
This work	0.02	0.26	DLTS
Konorova (1969)	0.025 +/- 0.005	0.15 +/- 0.05	Hall effect
Hiraki (1965)	0.03-0.05	0.15 - 0.20	Hall effect
Zhidkov (1961)	0.04	0.25	Hall effect

Multiscale model for defect dynamics during Cz growth

Department of Solid State Sciences

Simulation of intrinsic point defect clustering

• Simulations illustrating the one order of magnitude larger void size in Ge and the four orders of magnitude lower volume density compared to Si.

Simulation of vacancy clustering in Cz Ge

Department of Solid State Sciences

Jan Vanhellemont

GEN1

2D unsteady-state simulations: decreasing pull rate

• Temperature, vacancy concentration, vacancy cluster concentration and size distributions for increasing pull rate.

2D unsteady-state simulations: full crystal

• 2D distributions of T, V concentration, V cluster concentration and size distribution in a 8" Ge crystal grown with constant pull rate.

Department of Solid State Sciences

Epilogue: grown-in dislocations in HR-Ge

Optical micrograph of preferentially etched HR-Ge crystal slice revealing dislocation lineage and mosaic structures as well as isolated dislocations.

Van Sande et al, Appl.Phys. A 40, 257 (1986).

Department of Solid State Sciences

Grown-in dislocations

• HVEM of lineage dislocations (Class 1) in a HR germanium crystal. Top) Tilted about 35° away from the [001] crystal pulling axis. Bottom) The same area viewed along the [001] axis. Dislocations are seen end-on.

Epilogue: grown-in dislocations in HR-Ge

- HR-Ge is grown with well defined dislocation density to suppress V₂H and void formation:
 - 90° (class 1) dislocations form low angle grain boundaries showing up as lineage or mosaic structures of etch pits;
 - -60° (class 2) dislocations: few thousand per cm²;
 - -30° (class 3) and 90° (class 4) difficult to avoid and radial distribution.
- Dislocation and impurity specs HR Ge crystals:

Deep Levelsp-typeTotal Cu concentration, as measured by DLTS : $Cu_{tot} \le 4,5 \ 10^9 \ cm^{-3}$ n-typeDeep level point defects as measured by DLTS : $< 5 \ 10^8 \ cm^{-3}$

Crystallo-		p-type	n-type
graphic	Dislocation density (EPD,cm ⁻²)	≤ 10000	≤ 5000
perfection	Lineage (unit length = slice radius)	≤ 3	≤ 2
	Mosaic structures (unit surface = 100mm ²)	≤5	≤ 2
	Saucers (cm ²)	≤ 500	≤ 500
<u></u>			

Jan Vanhellemont

24

Conclusions

- The (negatively charged) vacancy is the dominant intrinsic point defect in germanium.
- Quantitative simulation of vacancy introduction and clustering during Czochralski pulling is possible.
- Further work:
 - impact of extrinsic point defects on vacancy thermal equilibrium concentration;
 - experimental data on vacancy and self-interstitial formation energy, diffusivity and recombination;
 - (impact of dislocations).

