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As the price of rare earth magnets increases, permanent magnet synchronous motors (PMSM)
with small amount of magnets become interesting, on condition that their efficiency and power
density remains high. In electric vehicles, a wheel drive with a reduction needs less magnetic
material than a direct drive configuration. Therefore, we design a lighthigh speed PMSM with
outer rotor. We investigate the impact of the magnetic material and the amount of magnets on the
torque and efficiency. The machine has 80 mm outer diameter, 12 concentrated stator windings,
2 kW power and 4500 rpm nominal speed. The number of polesNp is optimized.

An analytical reluctance network model is made [1], and the copper and iron losses are
computed. The iron losses are computed based on the loss separation theory. The coefficients in
the loss equation are fitted by using Epstein frame measurements on the different materials.

The analytical model computes the efficiency for a wide range of operatingpoints, so that
an efficiency map can be made: fig. 1a. The average efficiency over thisrange is shown in fig.
1b, for several magnet thicknesses and several soft magnetic materials. As the air gap is fixed
(0.55 mm), very thin magnets are not optimal because the air gap induction is too low. As the
outer machine diameter is fixed, very thick magnets are not optimal either because the increased
rotor thickness causes a smaller air gap diameter, hence a bad torque-per-Ampere ratio.

Concerning the material influence, the M250-50A results in lower efficiency than the M330-
35A, because of the high nominal frequency (525 Hz ifNp=14). The optimal number of poles is
14 except for the ’high loss’ M600-50A material: a lowerNp causes a lower frequency and lower
iron loss, but the average efficiency remains about 3% lower than for machines with M235-35A.
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Figure 1: (a) Efficiency map of a PMSM with M250-50A andd = 1.5 mm; (b) Average efficiency
of a PMSM in the speed range 0.25–1.50×Nnom and torque range 0.25–1.50×Tnom, as a function
of the magnet thicknessd and the material grade. The number of poles is optimized.
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