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Abstract—While the number of Wireless Sensor Network
(WSN) protocols steadily increases, the evaluation methods
have largely remained the same. Although experimentally-
supported research is gaining popularity, protocol evalua-
tion and comparison remains difficult due to a lack of
performance analysis methodologies. This work introduces
a wireless-benchmarking workflow that is designed to sup-
port experimentally-driven analysis of WSN protocols. This
methodology and the accompanying benchmark concepts are
designed to increase the value of experimental performance
evaluation compared to the current ad-hoc approaches applied
by many researchers. Finally, we present a proof of concept
implementation used to perform experiments based on the
proposed workflow.
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I. INTRODUCTION

Wireless Sensor Networks (WSNs) are evolving into a
more mature research field, with more and more proto-
cols being developed and publicly released. The use cases
for WSNs are equally fast expanding into new domains,
such as Wireless Building Automation [1] and Cognitive
Networks [2]. Recently, the interest of the research com-
munity in experimentally-driven research in wireless net-
works is increasing. This observation is reflected in the top-
ics of international conferences that increasingly welcome
experimentally-driven research, and the recent interest of the
European Commission in experimental facilities [3]. Still,
when WSN protocols are developed, research efforts are
often focused on the isolated programming of single layer
protocols with little regard for other layer functionality or
restrictions. This leads to protocols that exist in a vacuum
and perform well on a theoretical basis, but have problems
when deployed under real-life circumstances [4], [5]. Many
of these protocols are furthermore validated using ad-hoc
created experimental tests, specifically aimed at the strengths
of a specific protocol, leaving little room for objective
comparison with other protocols.

Currently, there exists no fixed set of accepted testing
methods, scenarios, parameters or metrics to be applied on a
protocol under test. This lack of standardization significantly
increases the difficulty for a developer to assess the relative
performance of their protocols compared to the current state
of the art. As a solution to these problems, we introduce a

benchmarking methodology for WSN research to increase
the value of performance evaluations.

We define WSN benchmarking as the measurement and
evaluation of wireless sensor protocols, devices and net-
works, relative to a reference evaluation, under well doc-
umented conditions. As a result, benchmarking differs from
traditional ad-hoc experiments by following a commonly
accepted methodology that covers the entire experiment
life cycle, making experiments reproducible and the results
directly comparable with other research results. In WSN
research, this requires not only evaluating the device or
protocol under test, but also measuring or modeling the
wireless environment.

We have used the presented workflow in our previous
work [6], where the real-life performance of five popular
MAC and routing protocols for TinyOS [7] was evaluated.
While [6] focuses on the results, this papers complements
it by focusing on the used experimentation methods and the
developed implementation to reach these results.

Our methodology is specifically aimed at real-life experi-
mentation and testbeds. Simulations can reduce the duration
of tests dramatically. Unfortunately, the real-life value of
the obtained results does not necessarily increase [8]. To
truly know the performance and characteristics of a net-
work protocol, it should be benchmarked in multiple real-
life environments under various realistic conditions. Within
the European seventh Framework Programme, the CREW
(Cognitive Radio Experimentation World) project [9] targets
the development of an open federated test platform, facil-
itating experimentally-driven research on cognitive radio,
cognitive networking, and spectrum sensing. An important
aspect of CREW is the creation of a wireless benchmarking
framework, which should allow fair comparison of wireless
(cognitive) solutions, by creating a reproducible test envi-
ronment, as well as traffic and interference models needed
for emulating realistic applications and interference sources,
eventually establishing a methodology for the evaluation of
cognitive radio concepts.

After first reviewing the related work, the benchmarking
workflow is presented in section III, together with the con-
cepts that drive it. Next, the proof of concept implementation
of our WSN benchmarking methodology is discussed in IV,
before presenting our future work in section V.
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Figure 1. Benchmarking workflow

II. RELATED WORK

Although benchmarking of (wireless) networks is cur-
rently a research topic in multiple European research projects
such as CREW [9], BonFIRE [10], or OneLab(2) [11],
few benchmarking frameworks for wireless network protocol
design are currently found in literature. Among the work
that can be found, TinyBench [12] focuses solely on the
internal metrics of a single sensor node; In the work of
Kim et. al. [13], only a single layer in the protocol stack
per benchmark execution is observed. Similarly, in [14],
the authors explore black-box benchmarking of application
protocols in network protocol stacks. As their focus is only
on the performance of the application, they choose not to
measure the performance of individual networking proto-
cols. Benchmarks of individual characteristics of WSNs are
furthermore also found in [15], where the authors develop
a benchmarking methodology to evaluate the performance
of sensor processors. To this end, the authors compose
different basic benchmarking applications based on modular
application building blocks.

In contrast with our presented benchmarking approach,
the works cited above analyze only a single protocol layer.
While this simplifies analysis and benchmark execution,
the approach cannot provide information on layer incom-
patibilities between different sets of protocols, nor gives
information on the overall performance of a network which
is built based on the protocols under test. Benchmarking on
a larger scale and scope by evaluating a complete protocol
stack while observing an entire sensor network delivers
a better insight into the real-life performance of a WSN
application.

In other studies such as [16] and [17], the term ‘bench-
marking’ is used to evaluate the performance of a network
as a whole. In the former technical note, the authors give
an overview of do’s and don’ts and hints for the perfor-
mance analysis of Wireless LAN access points in terms
of throughput and rate vs. range performance. In the latter
document, the authors note that no third-party benchmarking
solutions seem to be available and then resort to an ad-hoc
benchmarking approach to compare the three wireless mesh
networking platforms, mainly in function of throughput and

coverage predictability. Unfortunately, while these authors
do compare the overall performance of different wireless
solutions, the lack of generic benchmarking solutions makes
that their approach can only be used for their specific cases.
Ad-hoc benchmarking solutions may lead to faster results
when only needing to compare a fixed set of wireless proto-
cols or wireless devices once, however, the reproducibility
and level of details obtained through these tests is generally
limited.

To the best of our knowledge, none of the related works
present a sustainable benchmarking workflow, fully and
flexibly supporting the benchmarking of wireless sensor
solutions on testbeds. In the next sections, we present
our generally applicable benchmarking solution, which was
successfully used to reliably evaluate the performance of
multiple full wireless networking stacks [6].

III. BENCHMARKING WORKFLOW

In Figure 1 we propose a benchmarking workflow re-
sponsible for defining, executing and analyzing individual
experiments. By incorporating the entire experiment life cy-
cle in our methodology, benchmark integrity and correctness
is enforced. We describe the separate components in further
detail to indicate their individual importance.

A. Benchmark scenario

A benchmark is fully defined by a scenario. A scenario is
the global description of a benchmark and is based on real-
life use cases or artificial test environments. For example,
a scenario could describe the specific traffic patterns and
network load of an intrusion detection use case. Such
scenario properties are defined using three different scenario
components: (i) criteria, (ii) parameters and (iii) metrics. It
is the detailed description of these scenarios that can form
a baseline for benchmark standardization.

A criterion defines the focus of a benchmark, and the
characteristics to be examined. To establish a broad view
on the performance of a sensor network, it is generally
necessary to combine multiple criteria in the evaluation,
depending on the requirements of a specific deployment or
comparison. If the scenario is based on a real-life use case,
the criteria should be chosen to reflect the most important



characteristics of the use case. For example, when node
lifetime in a battery powered network is important, energy
efficiency is an appropriate criterion.

A scenario contains a number of parameters, allowing
fine grained control over the execution of a benchmark.
Depending on the scope of a parameter, two categories are
distinguished, i.e. internal and external parameters. External
parameters control the node behavior, e.g. the amount of
data it sends, to whom, and at what rate. The scenario
dictates in what range the external parameters can vary
while staying in the same scenario, e.g. for a building
automation temperature monitoring scenario the reporting
interval can vary between five seconds and ten minutes.
External parameters are also responsible for defining the
environment, emulating interference or background traffic.

Internal parameters on the other hand affect the settings of
the evaluated protocols, e.g. route table size, sleep interval,
queue size. Internal parameters are most often used for
protocol optimization, where a designer wants to increase
the performance of his own protocol for a specific use case.

Each internal or external parameter can additionally be a
function of the time, changing depending on the progression
of the benchmark if the scenario requires it. This can be
useful to simulate the dynamic behavior of the evaluated
protocols or the environment.

Finally, the metrics are the aspects from the benchmark
execution that are logged and evaluated. The chosen metrics
should reflect the focus of the benchmark criterion and
provide information to form well supported conclusions.
These metrics are performance metrics and are dependent
on the execution of the benchmark, e.g. throughput, packet
error rate. In a final phase, all metrics are translated to a
single benchmark score using appropriate weights defined
in the scenario. This can also be a combination of the mea-
sured performance metrics with predefined business metrics,
e.g. cost or operational complexity.

In Table I an example of the relationship between criteria
and metrics is given, with examples of external parameters.

These scenarios should be standardized so that they define
which benchmarks should be applied for different use cases.
This includes topology and environment information to com-
plete the external parameters of a specific benchmark. Both
internal and external parameters should be well defined so
that a repeated benchmark delivers the same node behavior,
regardless of the specific framework implementation. A
common format for benchmark definition and result descrip-
tion is essential to obtain relevant evaluations across different
platforms. These efforts will increase the adoption and value
of a benchmarking solution.

B. Scheduling

The scheduling component is responsible for executing
a benchmark with the correct parameters on the WSN
testbed. A benchmark performed in isolation rarely provides

delivery 
rate

application
throughput

energy use experiment
duration

footprint end-to-end
delay

energy X X

reliability X X X

delay X X

throughput X X

stability X X

scalability X X

memory X

metrics

criteria

parameters

communication broadcasting single sink multiple sinks point-to-point hybrid

traffic packet size % sending nodes packet interval event impact variance

network network size topology node density interference channel

Table I
EXAMPLES OF CRITERIA, PARAMETERS AND METRICS
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Figure 2. Parameter space reduction with three iterated benchmark series

enough information to form well-founded conclusions. For
a full protocol analysis multiple benchmarks are needed,
varying parameters to form a global view. There often exists
a correlation between groups of benchmarks scanning a
parameter space, e.g. when evaluating the delay metric by
adjusting the radio duty cycle, packet interval and network
size the three parameters will be correlated. If this cor-
relation is exploited the amount of required experiments
can be drastically reduced, while increasing the value of
the performed benchmarks. The scheduling and analysis
components form a tightly coupled feedback loop to enhance
these effects present in many benchmarks and use result
feedback to adjust benchmark parameters. We consider two
types of benchmark relationships:

Iterative benchmarks: are correlated by the common
parameter space that is scanned. The results of a series of
benchmarks can be used to tighten the parameter space in
subsequent benchmarks. A series of sampling benchmarks
can help to define the result space, so that new benchmarks
can be selected to focus on interesting parameter intervals.
This concept is illustrated by Figure 2, where the parameter
space defined by three parameters is tightened around two
phenomena by iterating a series of benchmarks, changing
the parameter granularity and range. The dots represent
individual experiments.

Conditional benchmarks: present a different type of
coupling, where the successful execution of a certain bench-
mark is required before the coupled benchmark can be
executed. This occurs when a relationship between two
benchmarks is strict, i.e. a benchmark has no value if a



previous benchmark did not yield the required result. To
cope with sequential benchmarks a hard decision relation-
ship is modeled between consecutive benchmarks. If these
hard choices are implemented, insignificant benchmarks can
be canceled or altered, saving evaluation time.

C. Analysis

The analysis component is responsible for processing
measurement data during and after the experiment using the
predefined metrics of the benchmark scenario. An important
factor of benchmarking is the level of visibility required to
perform a correct analysis. Visibility is defined in [18] as the
energy cost of diagnosing the cause of a failure or behavior.

A high visibility grants insight in the internal metrics of
the protocol or device under test, e.g. queue depth, pro-
cessing delay and processor load. The higher your visibility
requirements are, the more difficult it is to obtain that insight
in a real-life testbed without altering the behavior of the
protocol under test. This is also known as the Heisenbug
problem [19], based on the Heisenberg uncertainty principle,
where the internal observation of the program under test
changes its behavior compared to an unmonitored execution.

A low visibility is the most straightforward to obtain in
a testbed since no in-depth metrics are monitored when
the sensor node is seen as a black-box. But if little or no
information is available on the internal metrics of a protocol
or sensor node, then the analysis is limited in its scope.

Visibility in benchmarking is additionally considered as
the complexity cost of the diagnosis. A benchmarking frame-
work should be capable of regulating the visibility of each
benchmark to minimize the complexity of the analysis, but
still achieve the desired results.

Monitoring is the live analysis of the environment and
meta information of a WSN experiment, and a crucial
component of any benchmarking system. To detect unwanted
effects such as node crashes, clock drift and external in-
terference, monitoring the benchmark and its environment
should be an important part of a benchmarking framework.
Without this feature, the quality of benchmarking results
decreases as the nondeterminism of a benchmark increases.
A benchmarking system should not only anticipate this
nondeterminism, but instantly decrease its influence [20].
This can be done by adjusting the run length of each
benchmark, depending on the measured stability and vari-
ance of the recorded metrics and the environment while
repeating a given benchmark multiple times to compensate
for outliers. This implies that not only the WSN devices
itself should be monitored, but also the wireless medium. For
this purpose a number of WSN nodes or specialized devices
should be deployed to scan the environment and model the
external interference to the benchmark, so that a complete
coverage of the experiment area is obtained. If the measured
environment does not map to the defined environment in

the benchmark scenario, the results should be discarded or
decreased in value, depending on the measured deviation.

D. Evaluation

In our benchmarking workflow, two forms of evaluation
are identified. The first evaluation is the most straightfor-
ward, where the metrics results are translated to one or more
easy to understand benchmark scores. A second evaluation
is the parameter evaluation that occurs in the feedback loop
between the analysis and the (re)scheduling of a benchmark,
where the original parameters of a benchmark are adjusted.

Benchmark score: is the result of an additional process-
ing of the performance metrics to more directly comparable
scores. This process is always a reduction of the metrics data,
so that a reliable intuitive comparison is possible between
benchmarks, only based on the benchmark score. Depending
on the type of benchmark a capped score can be presented
in the form of a percentage or an uncapped score as a
real number. For uncapped scores, the reference benchmark
metrics results are mapped to a designated score, e.g. 0, 1000
or 10000.

Parameter evaluation: uses the result feedback from
the analysis to refine the chosen parameters of a benchmark.
This form of evaluation enables the use of correlation effects
in the scheduling step as described in III-B. From the
metrics of a series of previously executed correlated bench-
marks interesting parameter sets are identified and additional
benchmarks are scheduled with adjusted parameters to refine
the benchmark results.

IV. PROOF OF CONCEPT IMPLEMENTATION

In order to validate the concepts of the described bench-
marking workflow, we implemented a proof of concept
benchmarking system, enabling the automated performance
evaluation of multiple protocol implementations. While the
benchmarking framework is implemented on a specific
wireless test environment, it is very loosely coupled and
therefore applicable to multiple testbed environments with
minor adjustments.

The specific benchmark implementation in this paper is
built on the IBBT w-iLab.t testbed [21]. With a capacity
of 200 sensor nodes, deployed across three floors of an
office environment, the testbed provides ample measurement
accuracy and size. Each Tmote Sky sensor node [22] is
connected to a central database, so that every action and state
of the entire sensor network can be monitored centrally.

The implemented framework consists of four cooperating
components, given schematically in Figure 3. The main
components are (i) the TinyOS code, (ii) the configuration
software, (iii) the testbed and (iv) the result analysis. These
components are briefly discussed below, and shown how they
address the needs of our benchmarking system and map to
the proposed workflow.



clusters 

p2p/sink 

send and 
payload 

info 

TinyOS 
code 

measure 
energy 

start 
interrupt 

stop 
interrupt 

Benchmark control Results 

individual 
configuration 

online 
nodes 

TinyOS 
wrapper 

Scheduling WSN testbed Analysis 

Benchmark scenario 
Result 

feedback 

Figure 3. Components of the implemented benchmarking framework

The TinyOS benchmarking code: is the enabling factor
of our framework, built on the popular operating system for
wireless sensor nodes. This component allows the selection
of MAC and routing protocols at compile time, with minimal
requirements on the protocol implementation. This code
has to be included in the WSN firmware so that the other
components of the framework are able to communicate with
the individual nodes. The code largely consists of generic
timers and components, so little execution logic is embedded
in the static code for the sensor nodes. Since control and
execution is very loosely coupled it is straightforward to port
our code to other operating systems, hardware or platforms.

The configuration software: centralizes the logic and
control of our benchmarking system. This component trans-
lates the formal benchmark scenarios defined in III-A to
specific configuration messages for the individual sensor
nodes. It also has full connectivity through the testbed infras-
tructure to the WSN nodes and fulfills the functions of the
scheduling component of our workflow. Each sensor node in
the network only receives local configuration details and has
no global knowledge of the network, corresponding with a
real-life situation. Each individual configuration message is
stored in a central repository, so that a benchmark can be
executed multiple times with exactly the same configuration.
This enhances the comparability and since the source code is
written in Java, the same benchmarking logic and algorithms
can easily be distributed to other systems.

The testbed: enables the execution of a benchmark on
the available hardware and provides an important monitoring
and control component with the “Environment Emulator”
(EE). The EE is connected through a USB interface with
the sensor nodes of the testbed and allows the emulation of
battery level, the measurement of external metrics such as
power consumption and the generation of accurate interrupts.
For these features, a direct connection is made with the
general purpose pins of the Tmote Sky node, allowing
communication and measurement without using the blocking
functions of the UART. The inclusion of the EE allows the
synchronization of the benchmark and the sensor nodes. The
sensor nodes connected to the testbed are configured with

a management IP address. This way, each sensor node can
receive a series of configuration packets at the start or during
the benchmark, controlling the exact execution of the node
during the benchmark.

Result analysis: is performed on the result set gener-
ated by the TinyOS component during or after the bench-
mark. The analysis component is fully decoupled from the
rest of the framework and can work on any result set as long
as the data format is provided before the analysis. The proof
of concept application is provided with two analysis tools,
one written in Java for real-time experiment monitoring and
another composed of MATLAB scripts to generate graphs
for each active metric.

Evaluation: is not yet an automated process in the
current proof of concept. Both forms of the described
evaluation are supported, but must be done manually. The
evaluation of the metric results is aided by the automatic
generation of graphs based on the types of metrics in a
scenario, after which an analyst can draw the correct con-
clusions. The parameter evaluation after the result feedback
is also a manual process, where based on the Design of
Experiments [23] a parameter space is scanned, starting from
coarse parameter choices to fine variations, based on the
areas of interest identified by the analyst.

The benchmarking framework implementation is currently
used in our research department to evaluate protocol com-
patibility and real-life performance. The proof of concept
does currently not include all advanced features, nevertheless
some interesting results are already achieved with the frame-
work. An in depth analysis of the results obtained using this
benchmarking framework is available in [6].

V. FUTURE WORK

The current proof of concept implementation is to be
expanded with the more advanced monitoring and cou-
pling aspects. An important improvement would be the
further automation of the benchmarking framework, where
benchmarks are automatically scheduled and refined based
on previous runs. This could drastically shorten the time
spent on evaluating and analyzing the raw data from the
experiments, while also increasing accuracy and reducing
the time needed to achieve reliable results [24].

The final results of the performed benchmarks are cur-
rently aggregated in easy to understand graphs of different
scope, allowing a complete overview of the measured per-
formance characteristics. Although complete, this method
still requires an analyst to draw conclusions from the metric
data. These conclusions are not always straightforward and
require a certain familiarity with the subject. It would make
the benchmarking system more practical if the results could
be translated in a series of scores on different criteria, lead-
ing to straightforward conclusions about the performance of
the evaluated system.



We are also looking to create a full integration of our
configuration software in the web management system of
the IBBT testbed. This will enhance the usability of the
framework, while also drastically expanding the user base.
This transition and the usage of a central database for all
framework users will allow the possibility of easy bench-
mark sharing. Specific configurations and updates can easily
be disseminated throughout the user community, improving
the standardization and comparability.

VI. CONCLUSION

In this work it was argued that common problems exist
in the development and evaluation of WSN protocols and
applications, that lead to difficult deployments and real-life
performance confusion.

The proposed benchmarking workflow tries to solve these
experimentation problems, based on the methods used in our
experimentally driven research. This methodology focuses
on benchmark correctness and comparability, starting from
a rigorous benchmark definition by scenarios. Next, the
scheduling step in tandem with benchmark monitoring is
responsible for the correct and most efficient execution of a
benchmark. Finally, the analysis and evaluation give a clear
and comparable view of the benchmark results. This has
led to a benchmarking workflow that enables the qualitative
comparison of WSN solutions in the least restrictive way.

By using the presented methodology, experimenters will
reach more reliable results that are comparable with the
results of others using this benchmark workflow. It is shown
how this benchmarking methodology can be translated to
a proof of concept implementation, realizing an essential
subset of the proposed benchmarking concepts, capable
of evaluating and analyzing network protocols and their
combinations in a real-life environment.

We hope this work will be a first step to a standardized
benchmarking system, assisting protocol developers and
users in the selection and optimization of many existing and
future protocols.
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