

Spray parameter comparison between diesel and vegetable oils for non-evaporating conditions in a Constant Volume Combustion Chamber

Jonas Galle

ERCOFTAC 13-12-2011 Ghent University

Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be Ghent University – UGent

Overview

- Why this research
- Modeling demands
- Why/Which spray parameters
- Why vegetable oils
- Why non-evaporative conditions
- Presented research goal
- Experimental setup
- Remarks to experiments
- Results & discussion
- Conclusions
- Future work

Why this research: project situation

Why this research: goal

Modeling demands

- Time & place of ignition
- Mixture ratio in space & time
- Temperature (enthalpy) in space & time

Proposal: 1D phenomenological model

Why/Which spray parameters

- Why spray parameters
 - sprays preceed and initiate combustion (premixed & diffused)
 - sprays influence the emissions
- Which spray parameters

(depends on the model assumptions)

- Spray angle (related to air entrainment rate & breakup quality)
- Liquid length (related to evaporation speed)
- Penetration length (related to initial combustion behavior)
- Vapor/liquid concentration (related to evaporation speed)
- [Droplet size distribution (related to breakup quality)]

➔ Good spray prediction = better prediction of combustion process

Why vegetable oils

- Reduced fuel cost compared to biodiesel
- Lack of knowledge (in engines)
- Implementable on medium speed diesel engines
- Interest from the sector (in Belgium: ABCdiesel, Van Wingen)

Why non-evaporative conditions

- The used hypotheses are strongly linked with the breakup behavior:
 - Mixing limited hypothesis:
 - evaporation dominated by air entrainment
 - spray is saturated @ each moment
 - Droplet size hypothesis:
 - · evaporation dominated by droplet size & evaporation
- Current setup limitations

Goal of Presented research

- Qualitative evaluation of physical fuel properties effects on the spray and injection process for 3 fuel types:
 - Conventional diesel
 - Biodiesel (Rapeseed Methylester or RME)
 - Straight oil (Rapeseed Oil or RSO)

	Diesel	RME	RSO	Water
Density@15°C [kg/m³]	835	833	920	998
Kin.viscosity @40°C [mm²/s]	3.2	3.5-5	33.1	0.658
Surface tension @40°C [mN/m]	27	27.7	>33	<mark>69.6</mark>
Bulk modulus [GPa]	1.07-1.5	~1.7	1.6-4	2.2

• Can the "Mixing Limited"-hypothesis be applied?

Experimental setup

Remarks about experiments

Air entrainment in sprays depends on chamber density

Results & discussion: injection system

- Higher bulk modulus causes
 - Higher pressure build-up
 - Faster needle opening

less important for

Common-rail systems

Results & discussion: image processing

Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be Ghent University – UGent

Results & discussion: penetration length

- No significant difference in Liquid penetration for same settings
- Error analysis: standard deviation for more experiments
 - Is more stable
 - Does not decrease

Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be Ghent University – UGent

Results & discussion: spray angle

- Initially higher spray angle RSO (higher injection (rate) pressure)
- Error analysis: standard deviation for more experiments
 - Is more stable, but still high
 - Does not decrease

Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be Ghent University – UGent

Results & discussion: spray structure

- Similar results for lower rpm (~injection pressure)
- Viscosity & surface tension more important than injection pressure for the break-up quality

Conclusions

- Difficult to measure spray angle and strongly depends on used definition
- Constant regime spray angle is reasonable, even for
 - variable injection profiles
 - different type of fuels
- "Mixing limited"-hypothesis needs to be questioned
- Large influence of viscosity on 'Mixing limited' hypothesis
- additional structure parameter needed for the comparison of spray of different fuels

Future work

- Extension to Evaporative conditions:
 - How the structure affects the evaporation
 - influence of supercritical conditions (case for engines)
- 1D-model adaptation:
 - Variable injection pressure
 - Evaporative conditions: diesel hypothesis valid?
- Higher measuring frequency for sensors/camera
- Higher resolution can give more insight on droplet diameters

Thanks for your attention

Appendix: spray angle definition

$$\theta = 2. \tan^{-1} \left(\frac{(A - w.a)/2}{(a/2)^2} \right)$$

Department of Flow, Heat and Combustion Mechanics – www.FloHeaCom.UGent.be Ghent University – UGent

Appendix: liquid length definition

 $real \ liquid \ length = \ \frac{image \ liquid \ length}{sin(45^{\circ})} + \ invisible \ part$

Appendix: image processing

Appendix: injector information

Nozzle hole diameter	440 um	
Opening angle holes	150°	
L/D	2.7	
Nozzle shape	cylindrical	
Amount of nozzle holes	8	
Needle lift	0.65 mm	
Sac diameter	2.8 mm	
Average mass flow (diesel)*	1.45 mg/cycle	
Needle opening pressure	275 bar	
*according to engine measurements @1000rpm, full load		

Appendix: measurement accuracy

Table 5 - Reproducibility of the measured parameters

Camshaft speed	+/-1,2%
Chamber pressure	+/- 5% (@40bar),
	+/-2.5% (@80bar)
Chamber temperature	+/-4%
Injection pressure	+/-1% (during the injection)

Table 6 – Accuracy of the image processed data

Start of injection	+100us (@10000fps)
Spray angle std	+/- 10% (20 measurements)
Liquid Length std	+/- 6%
Injection pressure std	+/-2%

