Abstract

In this paper, the heat transfer from a single heat fin to the air flow in the wake of
a piezoelectric fan (piezofan) is optimised. Both the heat fin and the piezofan are po-
sitioned in a channel, which has a significant influence on the flow field. The design
variable is the frequency of the voltage applied to the piezofan. The heat transfer for
different excitation frequencies is calculated using unsteady fluid-structure interaction
simulations. To obtain a modular simulation environment, the flow equations and
the structural equations are solved separately. However, the equilibrium on the fluid-
structure interface is not satisfied automatically in this partitioned approach. There-
fore, the interface quasi-Newton technique with an approximation for the inverse of
the Jacobian from a least-squares model (IQN-ILS) is used to perform coupling iter-
ations between the flow solver and the structural solver in each time step. With the
unsteady fluid-structure interaction model, a surrogate model is constructed. The op-
timization of the surrogate model yields a frequency close to the first eigenfrequency
of the structure.

Keywords: piezofan, fluid-structure interaction, partitioned solution, IQN-ILS, opti-
mization, heat fins.

1 Introduction

In the last decade, the simulation of fluid-structure interaction has gained interest.
With the currently available simulation techniques, also a piezoelectric fan (or piezo-
fan) can be simulated. Figure 1 depicts a bimorph piezofan [1]. Such a piezofan
consists of a thin, passive plate which is clamped at one end. The top and bottom of
this plate are partially covered by a thin patch of piezoelectric material. By apply-
ing alternating voltages with a phase shift of 180 degrees to the patches, one of the



Figure 1: A sketch of a bimorph piezofan with the definition of the parameters L, Lo
and L. The passive plate is white, the piezoelectric patches are cross-hatched and the
clamping is hatched.

patches expands in the direction parallel to the plate while the other one contracts in
that same direction. Due to these small but opposite deformations of the patches on
its top and bottom, the elastic plate bends, resulting in a significant motion of the free
end in the y-direction. If the excitation frequency is close to the resonance frequency
of the plate, the oscillation amplitude is relatively large. The interaction between the
piezofan and the surrounding air induces an air flow from the clamped end towards
the free end. Consequently, piezofans can be used to cool electronic components.
Piezofans are an alternative to conventional rotating fans as their power consumption
is an order of magnitude smaller [2]. Moreover, they produce less noise, given that
the eigenfrequencies lie well outside of the hearing range [3].

In this paper, a fluid-structure interaction model for a piezofan with a single heat
fin in its wake is used in an optimization study. The fluid-structure interaction is cal-
culated in a partitioned way, which means that the flow equations and the structural
equations are solved separately. Nevertheless, the equilibrium of the velocity and
stress on the fluid-structure interface is enforced in each time step of the unsteady
simulations by performing coupling iterations between the flow solver and the struc-
tural solver. For the coupling iterations, the interface quasi-Newton technique with an
approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS)
is used [4].

Although piezofans have been optimised before without any confinement [5] or
enclosed in a box [3], a piezofan has never been optimised in a channel as presented in
this paper. The model with a piezofan and a heat fin in a channel is a simplification of
a piezofan embedded in a device that contains electronic components. Moreover, the
complete fluid-structure interaction is taken into account in the unsteady simulations
for the optimization, so without neglecting the influence of the fluid on the structure.
In the optimization, the design variable is the frequency of the alternating voltage that
is applied to the patches of the piezofan and the objective is the time-averaged heat
transfer from the left-hand side of the fin towards the surrounding air.

The remainder of this paper is organised as follows. In Section 2, the model for the
structural deformation and for the flow field are described and validated, followed by



a summary of the coupling technique in Section 3. The optimization and its results are
given in Section 4.

2 Description and validation of the models

2.1 Structural model

The linear constitutive equations between the strain .5, the stress 7, the electric field
E and the electric charge density displacement D in a piezoelectric material are given
by

S =sF.T+d"-FE
D —d-T+é-E

(1a)
(1b)

with ¢ denoting a transpose. s” is the short-circuited (i.e. £ = 0) elastic compliance
and €’ is the free (i.e. T = 0) dielectric permittivity. The mechanic and electric
variables are coupled by the electro-mechanical coupling d. In matrix-vector notation,
Equations (1) are given by
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The structure is discretised using the finite element method (FEM). The structure
is meshed using 114 quadratic 8-node plane stress continuum elements with reduced
integration. The mesh nearby the clamped end of the piezofan is shown in Figure 2.
The dimensions and material properties are listed in Table 1.

Geometric nonlinearity is taken into account during the solution process and the
stress on the fluid-structure interface follows the rotation of the structure during the
time step. Unconditionally stable implicit Hilber-Hughes-Taylor time integration [6]
is used with a small numerical damping parameter o, = —0.05. If Ly = 22mm,
the first eigenfrequency is 138Hz which corresponds with a period of 7.2ms. As the
excitation frequency will be close to the first eigenfrequency, the time step is set to
72us, which is divided into increments of 1us.



Figure 2: A detail of the structural mesh with the definition of the parameters i and

h,. The leftmost edge is clamped.

Symbol Value Symbol Value
h 0.178mm Vpiezo12 | -0.372
hy, 0.0508mm Upiezol3 0.372
Ppassive 8400kg/m3 Vpiez023 -0.3
Epassive 100GPa Gpiezo12 20GPa
Ly 0.5mm Gpiezo13 | 23.646GPa
L 27.424mm Gpiez023 20GPa
Ppiezo 7800kg/m? ds; -0.19nC/N
Epiezo 3800C/Vm dss 0.32nC/N
FEpiczo1 62GPa dss 0.19nC/N
Epiezo2 62GPa doy 0.58nC/N
Epiezo3 62GPa d15 0.58nC/N

Table 1: The dimensions and properties of the passive and piezoelectric material in

the structural model [5].




Lo \ 7mm \ 14mm \ 21mm ‘
Analytical | 122Hz | 191Hz | 164Hz
First | Numerical | 121Hz | 187Hz | 161Hz
Error 08% | 2.1% 1.9%
Analytical | 600Hz | 494Hz | 1269Hz
Second | Numerical | 593Hz | 490Hz | 1245Hz
Error 12% | 0.8% 1.9%

Table 2: The open-circuited first and second eigenfrequency for different values of L.
The error is the relative difference compared to the analytical results from Biirmann
et al. [5].

Figure 3: The fluid mesh of the channel with the piezofan (left) and a heat fin (right).

To validate the structural model, the first and second eigenfrequency for different
values of L, are calculated and compared with analytical results from Biirmann et
al. [5]. In these calculations, the voltage on the piezoelectric patches is generated
naturally by the bending (open-circuited or OC). The result of this comparison can
be found in Table 2. The maximal difference between the numerical results and the
analytical results is 1.9%.

2.2  Fluid model

The piezofan and the heat fin in its wake are located in a channel of 500mm long and
45mm high. The heat fin of 50mm long and Imm thick [7] is positioned 30mm behind
the piezofan. The air is considered as an incompressible fluid. For the turbulence, the
one-equation vorticity based Spalart-Allmaras model [8] is used. The mesh initially
contains 9090 triangular cells (see Figure 3). The cell size is small in the neighbour-
hood of the piezofan and the heat fin and it increases towards the inlet and outlet of
the channel. The top and bottom of the channel are no-slip walls. Zero pressure, a
temperature of 300K and a modified turbulent viscosity of 0.001m?/s are imposed at
the left and right end of the channel.

The boundary of the heat fin is a no-slip wall at 333K. The temperature of the fin is
imposed instead of the heat flux as a constant heat flux over the fin is unphysical. The
mean temperature of the thermal boundary layer will increase in the direction of the
flow, so that the heat flux to the flow decreases. By contrast, a constant temperature of
the fin is possible, if the material of the heat fin is assumed to be ideal in terms of heat



conductivity.

The equations for the conservation of mass, momentum and energy together with
the equation for kinematic turbulent viscosity are discretised in arbitrary Lagrangian-
Eulerian (ALE) formulation using the finite volume method (FVM). Scalars are stored
in the cell centres and a power law is used to obtain momentum variables at the faces.
Gradients at the cell centres are calculated from the face values using the Green-Gauss
theorem. The face values for the gradient calculations are the arithmetic average of
the node values, which are in turn the weighted average of the values in the cells
around the node. The pressure interpolation at the faces is performed with a staggered
approach. The flow equations are solved using the pressure-implicit with splitting of
operators (PISO) scheme with skewness and neighbour correction. Algebraic multi-
grid (AMG) is employed to accelerate the convergence.

The mesh of the fluid domain in a box around the piezofan is deforming, driven by
the deformation of the fluid-structure interface. The displacement « of the fluid mesh
in the z- and y-direction is determined by solving Laplace equations

Au, =0 (3a)
Au, =0, (3b)

On the outer boundaries of the box around the piezofan, the boundary condition u, , =
0 is applied while u, , is prescribed by the coupling algorithm on the boundaries of
the piezofan. After this displacement of the mesh, smoothing with fictitious springs
between the mesh nodes is performed. Cells which have either become too skewed or
which fall outside the range of desired cell sizes are eliminated once in each time step.
As a result, the number of cells varies slightly during the simulation. The implicit
finite difference time discretisation is first-order accurate on the moving mesh. The
flow field is initially at rest and at a temperature of 300K. The same time step as for
the structure is used, namely 72 us.

3 Fluid-structure interaction

In this section, the structural model and the flow model are coupled using the IQN-
ILS algorithm [4]. The coupling technique is called IQN-ILS because it calculates the
interface position using quasi-Newton iterations with an approximation for the inverse
of the Jacobian from a least-squares model. The coupling technique will be described
below, after some definitions.

3.1 Definitions

The function

y = F(z) 4)
is referred to as the flow solver. The vector x is the displacement of the fluid-structure
interface and the vector y is the stress distribution on the interface. The structural



solver is represented as
x=38(y). (5)

These abstract definitions of the flow solver and structural solver emphasize that they
are treated as black boxes. The solvers calculate the solution of the flow equations and
the structural equations in the entire fluid and structural domain. However, the input
and output of the solver is limited to the fluid-structure interface. The dependence on
information from previous time steps is omitted. The FSI problem is reformulated as

x=3SoF(x) (6)

or equivalently
R(x)=SoF(x)—x=0 (7)

with R the residual operator.

In the remainder of this section, all values and functions are at the new time level
n + 1, unless indicated otherwise with a left superscript. A right superscript indicates
the coupling iteration in the time step. Capital letters are matrices and bold lower case
letters are vectors. Approximations are indicated with a hat. The output of the solvers
F and S is indicated with a tilde because this is only an intermediate value that is not
passed on to the next coupling iteration. This tilde is dropped once the final value that
will be used in the next iteration has been calculated. The equality sign can be both an
assignment or an equality. The coupling iterations begin from an extrapolation

wn—i—l = Zp" — an_l 4 CCn_2 (8)
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of the interface’s displacement.

3.2 Coupling technique

Equation (7) is a set of nonlinear equations in the interface displacement, which can
be solved by means of Newton-Raphson iterations

solve R"FAzF = —p* (9a)

= 2F + AxF (9b)
with R'* the Jacobian of R atz*. The residual is calculated as
r* = R(x") = So F(x") — ¥ = " — x". (10)

The convergence criterion for the Newton-Raphson iterations is ||7*||s < ¢, with ¢,
the convergence tolerance. However, the exact Jacobian of ‘R is unknown because the
Jacobians of F and S are unavailable. Moreover, the linear system in Equation (9a)
with as dimension the number of degrees of freedom in the displacement of the fluid-
structure interface has to be solved in every Newton-Raphson iteration.



Degroote et al. [4] developed an approximation for the product of the inverse of
the Jacobian with a vector, based on the least-squares technique of Vierendeels et al.
[9]. With this approximation, Equation (9a) becomes

—

= a4 () (—rb) . (11)

The matrix-vector product is calculated from data obtained during the previous quasi-
Newton iterations. At the end of coupling iteration k, the vectors ¢ and the corre-
sponding vectors Z' (i =0,..., k) are known. The IQN-ILS-algorithm calculates the
differences between vectors from consecutive coupling iteration

Apil = pi — pi-l (12a)
AT =g — ! (12b)

This results in a set of differences Ar? and a corresponding set of differences A&
(¢ =0,...,k—1), which grow in each coupling iteration. These vectors can be stored
as the columns of the matrices

VE=[Ar"1 Ark=2 0 Art Arf] (13a)
wk=[Az"" AzF? 0 Azt Az (13b)

The vector Ar = 0 —rF is approximated as a linear combination of the known Ar?

in V¥
Ar ~ Ve (14)
with ¢* the decomposition coefficients. Equation (14) is an overdetermined set of
equations because the number of rows of V'* is typically larger than the number of
columns (if this is not the case, the rightmost columns V* and WP are discarded).
Therefore, the least-squares solution to Equation (14) is calculated using the QR-

decomposition of V*
Vh=Q"RF, (15)

which is calculated using Householder transformations [10]. The time required for this
calculation is small in comparison to the time required for S and F. Subsequently, the
vector c¥ is obtained by solving the system

R = (Q) Ar. (16)

The AZ corresponding to Ar is now calculated by making a linear combination of
the known A&’ in W, analogous to Equation (14).

AZ = Wk (17)
From Equation (10), it follows that

Ar = Ax — Ax. (18)



Figure 4: A scheme of the IQN-ILS coupling iterations within one time step.

Together, Equations (17) and (18) yield
Ax = WFer — Ar, (19)

the approximation for Az. As c* is a function of 7, this is an approximation for the
product of the inverse of the Jacobian with the vector Ar = —r¥. This procedure
requires less memory and is faster than the explicit construction of the inverse of the
Jacobian. The complete coupling scheme is shown in Figure 4. In this work, the
convergence tolerance for the coupling iterations is defined as a fraction of the initial

residual, namely €, = 1072||r°||,.

4 Optimization

The design variable in the optimization is the frequency f of the alternating voltage
that is applied to the patches of the piezofan. The objective function that needs to be
maximised is the time-averaged heat transfer h from the left-hand side of the fin to-
wards the surrounding air. As the evaluation of the heat transfer for a given frequency
requires a time-consuming unsteady FSI simulation, a surrogate model ﬁ( f) is first
constructed, as will be explained below. This surrogate model is subsequently used
for the actual optimization (see Figure 5).

The data set for the surrogate model is created by performing a simulation for
f =75,100, 150, 175Hz. As these simulations are independent, they are run simulta-
neously, each on a different cluster node. In each of these simulations, the flow solver
performs its calculation on 4 cores. The mesh of the structure proved to be too small
to benefit from a parallel simulation. Figure 6 depicts the evolution of the heat transfer
as a function of time, for the different excitation frequencies.
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Figure 5: A scheme of the optimization process. First, a data set is constructed. Sec-

ondly, a surrogate model ﬁ( f) is constructed and, finally, this surrogate model is opti-
mised.
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Figure 6: The heat transfer from the left-hand side of the fin towards the surrounding
air as a function of time, for different excitation frequencies.
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Figure 7: The data points and the surrogate model for the time-averaged heat transfer
from the left-hand side of the fin towards the surrounding air as a function of the
excitation frequency.

The time-averaged heat transfer /A during the last 0.8s is calculated for each exci-
tation frequency f, resulting in N + 1 = 4 data points (f;, h;). Then, a surrogate
model fL( f) is constructed using a cubic spline curve through these data points. The
cubic spline interpolation consists of /V cubic polynomials ilz( f) with coefficients ﬁi,j
0=<j<3.

3
W(F)=hi(f) =D haj(f = fiY Vfelfifin,0<i<N—1  (20)
j=0

The coefficients are determined by the interpolation conditions, continuity conditions
and continuity of the first and second derivative at the data points.

W(fi) = hi 0<i<N (21a)
hi(fiv)) = hia(fin) 0<i<N =2 (21b)
h/(fz+1) = hi(fir1) 0<i<N-2 (21¢)
W (fiy1) = iLg,—i—l(fi—H) 0<i<N-2 (21d)

Both the data points and the surrogate model are depicted in Figure 7.

The maximum of the surrogate model is calculated by searching the frequency for
which its gradient equals zero.

W (f)=0 (22)

This equation is solved by performing Newton steps, using a central difference ap-
proximation to the gradient and Broyden-Fletcher-Goldfarb-Shanno (BFGS) updating
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Figure 8: The temperature contours after 1.2s for f = 138Hz.
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Figure 9: The velocity vectors after 1.2s for f = 138Hz.

of the hessian. The convergence of the optimization is determined by the criteria

|Ah

—4
(L 7)) < 10 (23a)

|Af] »
max(LIf) (230
|| < 107° (23¢)

which are all satisfied after 5 iterations, yielding f = 134.62Hz and h = 6.39W.
However, in an additional FSI simulation with the excitation frequency equal to the
first eigenfrequency of the piezofan, i.e. f = 138Hz, the time-averaged heat transfer
was h = 7.57W. Hence, the frequency resulting from the optimization is close to the
first eigenfrequency, but the resolution of the surrogate model should be refined to
obtain a frequency closer to the first eigenfrequency.

Figures 8 and 9 depict temperature contours and velocity vectors, respectively, after
1.2s in the simulation with f = 138Hz. From these figures, it can be seen that the top
and bottom wall of the channel constrain the vortices shed of by the piezofan. The
flow over the heat fin is relatively uniform.
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5

Conclusions

Unsteady fluid-structure interaction simulations of a piezofan with a heat fin in its
wake have been performed. The time-averaged heat transfer has been optimised as
a function of the excitation frequency. The optimization is performed on a surrogate
model of the actual simulation, using a number of precomputed data points.
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