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Abstract: This paper investigates the costs of rolling out an Intelligent Transportation System (ITS). Our cost model 
uses a set of possible technologies and applications, and can be further tailored to the most relevant 
scenarios. Unlike other research, this model investigates a joint roll-out, instead of separate applications. 
The reuse of existing infrastructure is also taken into account. This results in a more realistic cost 
estimation. Our model provides a cost break-up to identify the most crucial parts of the system in terms of 
costs. The case of the Belgian highways is used as a practical example. 

1. INTRODUCTION 

In essence, the concept of Intelligent Transportation 
Systems (ITS) implies the addition of information 
and communication technology to transport 
infrastructure and vehicles. A wide range of 
applications can run on this platform. For example, 
emergency services could automatically and 
immediately be informed when an accident happens 
(eCall application). Obstacle and Collision Warning 
can warn drivers for imminent collisions. More 
examples are discussed in the next chapter. In 
general, the intended benefits are increased traffic 
safety and efficiency and hence a positive impact on 
the environment through less traffic congestion. 

The roll-out of such a system may require 
substantial investments in infrastructure. Moreover, 
many parties are involved, such as car 
manufacturers, network operators and traffic 
regulators. They need to be able and willing to 
cooperate and fairly allocate all costs and revenues. 
Here, we try and get detailed information on the 
required costs. There is little economic research on 
ITS costs so far, and it often focuses on a specific 
application (e.g. [1], [2]). A lot of this work is 
included on the Research and Innovative 
Technology Administration ITS overview site [3], 
but it provides building blocks rather than a 
complete picture. Some costs can be shared by many 

applications, which lowers the cost per application. 
Offering many services could also increase the 
users’ willingness to pay (an important issue, 
according to [4]). Therefore, it is useful to consider a 
joint roll-out for a set of applications. To our 
knowledge, eIMPACT is the only (publically 
available) research project in which a similar 
investigation is made [5], though little information is 
given on what costs they have calculated and how. 
Thorough and complete cost information on the roll-
out of an ITS appears scarce. 

In this paper, we focus on cooperative 
applications, which require communication with 
infrastructure, unlike autonomous applications, 
which can be developed by manufacturers 
independently and are already on the market in 
different forms (e.g. ABS, ESP). We limit the roll-
out to highways, thus omitting urban environments. 
This way, we group a set of applications that rely on 
a common infrastructure (the network) and we can 
investigate the impact of sharing general costs 
amongst all applications. To make our cost 
estimation more realistic, we will take re-use of 
existing network infrastructure into account. As a 
practical case, we’ve used the information of the 
Belgian highways and mobile networks. 

In the next chapter, we define our roll-out 
scenario by selecting technologies and applications. 
Chapter 3 elaborates on our cost-model. In chapter 
4, the results are discussed and we present our 
conclusions in the final chapter. 
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For broadcast we consider two options: MBMS 
or DVB-T. MBMS is a broad- and multicasting 
technique that can be used on top of UMTS and 
HSPA hardware. With Terrestrial Digital Video 
Broadcasting (DVB-T), traffic information could be 
sent to all vehicles using the DVB specifications for 
IP datacasting [10]. DAB was omitted, because it is 
far more limited in bandwidth, while the transceivers 
appear considerably more expensive. The use of a 
broadcast technology is optional (the medium-to-
long range unicast network can also send messages 
to each vehicle). 

Finally, for medium- to long-range unicast, we 
consider HSPA, mobile WiMAX and LTE. Older 
technologies would only support the most basic of 
applications, while HSPA is currently rolled out by 
almost all network operators that provide UMTS 
[11]. We assume HSPA will be the standard by the 
time an actual ITS roll-out takes place. 

For the broadcast and local communication 
technologies, we used the standard specifications 
performance indicators, because it is unlikely that 
the ITS’ requirements will exceed its capabilities. 
For the medium to long-range unicast technologies, 
we must take into account that the standard 
specifications are often not realizable in practice. 
The Erceg C path loss model shows that the realistic 
communication range for unicast technologies is a 
lot smaller than the standard indicators. For 
example, for mobile WiMAX, we take a range of 
450m into account (inter-site distance 900m). 

2.3 Other Building Blocks 

Other relevant factors in determining the scenario 
are the adoption rate, the roll-out speed and the 
required availability of the services. 

The adoption of the system is difficult to 
estimate, as there has never been an actual roll-out to 
compare with. Also, it is unclear whether the system 
should be enforced (e.g. obligatory integration in all 
new cars) or not. We’ve considered three possible 
adoption rates (Figure 2). Enforced adoption is 
based on the sales of new cars. The other options are 
modelled by a typical Compertz-curve; one version 
assuming a high acceptance, the other a low one. 

We should also determine the speed of the roll-
out. When an ITS is launched, it will not be used by 
everyone at all times right from the start. There can 
be a (long) transition period. There is an opportunity 
to save costs by postponing parts of the installation 
until the initial infrastructure is no longer sufficient. 
In Figure 2, a three-phased roll-out is assumed and 
indicated by the vertical bars. The initial installation 

is sufficient to cover an adoption rate of 30%, in 
case of enforced adoption. After three years, an 
additional installation is done to cover 60%. Finally, 
in year 8, the infrastructure is expanded to cover an 
adoption rate of 100%. Up to five phases can be 
defined in the model. 

 
Figure 2: adoption scenarios, with indication of a three-
phased roll-out for the enforced option. 

The amount of bandwidth required in a base 
station will depend on the number of connected 
vehicles to it, and thus on the traffic situation. The 
worst case is one where there is a traffic jam in both 
directions. The odds of this happening, depends 
greatly on the exact location and it may not be 
necessary that the system can handle such extreme 
traffic circumstances everywhere. We distinguish 
five traffic circumstances with an increasing vehicle 
density and thus increasing communication 
requirements: (i) no traffic, (ii) sparse traffic, (iii) 
regular traffic, (iv) a one-way traffic jam and (v) a 
two-way traffic jam. The model allows defining the 
percentage of the highway that is equipped for each 
circumstance. This can be different for each phase, 
i.e. to allow an incremental increase. 

3. COST MODEL 

3.1 Capacity Demand 

For any scenario, we need to know how much 
bandwidth and how many connections are required. 
Based on the application set and its parameters, we 
can calculate the average bandwidth consumed by 
one vehicle. In order to calculate the network load, 
we also need to know the vehicle density. We 
calculate the density for each of the five traffic 
situations. In case of no or sparse traffic, the network 
load is irrelevant, because the equipment is 
independent of the bandwidth usage (none in case of 
no traffic, just enough to have full coverage in case 



 

of sparse traffic). For regular traffic, we calculate the 
number of vehicles on one lane by making a few 
simplifying assumptions. We consider all vehicles to 
drive exactly the maximum speed, with two second 
intervals (based on the rule of thumb for safe 
driving). In this case a simple formula calculates the 
number of vehicles with average length a and with 
an average of v meters per second on one lane of a 
piece of highway with length L: 
 

2.v+a
L=vehiclesofNumber

 
 

This is then multiplied by the number of lanes. 
In the model, this is slightly enhanced by also taking 
into account the percentage of trucks, their lower 
maximum speed and higher average length. While 
this model obviously simplifies reality, the 
calculated 150 vehicles/km on a 6-lane highway are 
in line with previous work that determined vehicle 
density by traffic measurements provided by the 
Flemish government [12]. 

In case of traffic congestion, a different model is 
used. Here we assume that vehicles move in waves: 
one vehicle fills the empty spot in front of itself, 
followed by the next vehicle. This way, only a 
percentage p of vehicles is moving. Non-moving 
vehicles have a small distance dstill between each 
other, while moving vehicles are driving when there 
is a larger distance ddrive in front of them. Again, a 
simple formula follows (which is again corrected for 
the percentage of trucks on the highway): 

 

drivestill dpd+a
L=vehiclesofNumber

.+  
 

This leads to an estimate of 631 vehicles/km on a 
6-way highway in case of a two-way traffic jam. In 
case of a one-way traffic jam, we combine three 
lanes of regular traffic and three lanes of congested 
traffic, or 390 vehicles/km. 

 The network load on the highway is then simply 
the number of vehicles on that part, times the 
average bandwidth required. 

3.2 Network Dimensioning 

The network needs to be designed such that it can 
meet the capacity demand at the lowest cost. The 
input information is: (a) the capacity demand, (b) the 
distribution of existing sites and to what extent they 
can be reused, and (c) the technological parameters. 
Dividing the available bandwidth by the capacity 

demand gives us the required site density. However, 
the highway is not uniform and neither is the 
existing network site distribution. Information on 
traffic jams and base station locations is publicly 
available in Belgium. A visual check reveals that the 
densest regions of existing sites mostly overlap with 
the busiest parts of the highway. We assume that the 
overlap is complete, as this greatly simplifies the 
calculation. The total number of sites available next 
to the highway can be obtained by combining GIS-
data of the highways and the network sites. There 
are about 650 sites located within 200m of the 
highway. Conceptually, the model calculates the 
number of new sites as follows. First, we split the 
highway into many small parts (the model works 
continuously, not discrete), and sort these from least 
to most busy. The busiest parts of the highway will 
also require equipment to handle the heaviest traffic 
situations. The capacity demand we calculated 
before can thus also be sorted from low to high and 
mapped on each part of the highway. Similarly, we 
also map the existing site distribution on it. 
Basically, we now have the number of required sites 
and the number of existing sites, for each part of the 
highway. Subtracting one from the other gives us the 
number of new base stations and the required 
equipment to connect them. 

3.3 Cost Overview 

In order to get a view on all costs, we consider the 
different phases in the life of the project and the 
different aspects of each (Figure 3). 

 
Figure 3: Overview of phases in ITS life cycle. 

The planning and research phase can be a bit 
hard to differentiate from each other. Moreover, 
research costs by private companies will be 
integrated in the price of the final products and 
services they offer. Therefore, we only take into 
account the cost of planning the locations of new 
sites and transceivers. This is calculated by using the 
number of network planners as a cost driver.  

The installation and material costs are part of the 
launch of the system, but they are spread in time due 
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