-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Ghent University Academic Bibliography

Automatically designing robot controllers and
sensor morphology with genetic programming

Bert Bonte* and Bart Wyns

Ghent University, Deptartment of Electrical Energy, Systems and Automation,
Technologiepark 913, 9052 Zwijnaarde, Belgium
Bart.Wyns@UGent.be,Bert.Bonte@gmail.com
http://www.UGent .be

Abstract. Genetic programming provides an automated design strat-
egy to evolve complex controllers based on evolution in nature. In this
contribution we use genetic programming to automatically evolve effi-
cient robot controllers for a corridor following task. Based on tests exe-
cuted in a simulation environment we show that very robust and efficient
controllers can be obtained. Also, we stress that it is important to pro-
vide sufficiently diverse fitness cases, offering a sound basis for learning
more complex behaviour. The evolved controller is successfully applied
to real environments as well. Finally, controller and sensor morphology
are co-evolved, clearly resulting in an improved sensor configuration.

Key words: Genetic Programming, Evolutionary Robotics, Corridor
Following, Sensor Morphology, EyeBot

1 Introduction

Robots are mainly used for relatively easy and repetitive tasks. Fully autonomous
robots in realistic applications still are exceptions [16]. This is mainly caused by
the highly complex design of such systems. More specifically, the development
of robust controllers for real mobile robots is challenging.

In nature however, very powerful processes that are able to combine basic
elements in a robust way resulting in very efficient and sometimes ingenious so-
lutions exist. Using the concept of survival of the fittest, robot controllers and
robot systems can be evolved just like organisms in nature. In this way, using
natural processes, robust robot controllers can be automatically designed with-
out complexity burden for human developers and even without programming.

The main objective of this contribution is developing robust controllers for
corridor following using genetic programming [7]. The robot must navigate in a
corridor system from start to end as efficiently as possible and without collisions.
Unlike some other work in literature [17], we will not use a highly simplified
simulation environment. The evolved mobile robot controllers must be robust
enough to navigate successfully in corridor systems on which the robot was

* Presenting author

https://core.ac.uk/display/55728637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 B. Bonte and B. Wyns

trained during the evolutionary process as well as new and unseen environments.
Furthermore, the controller evolved in simulation must be transferable to the
real robot preserving its behaviour learned in simulation. Finally, we also assess
simultaneous evolution of controllers and sensor morphology using GP.

The remainder of this paper is as follows. Section 2 gives a brief overview
of selected related work in literature. Then, Section 3 provides an introduction
to GP, the standard parameters and the most important techniques used in the
experiments. After that, in Section 4 the experimental setup is set out, including
the simulation environment and the robot platform. Next, Section 5 discusses the
evolution of robot controllers in simulation and the transfer to reality. Finally,
Section 6 handles the combined evolution of controller and morphology.

2 Literature Overview

Evolutionary robotics in general [12] is a relative young discipline within the
robotics research community, providing room for further improvement and ad-
vances. In this section we will give a brief literature overview closely related to
the goals of this paper.

Most of the experiments are conducted in simplified simulation environments.
The resulting controllers are limited to specific simulation parameters and con-
ditions. Therefore, a lot of work in literature is devoted on the use of simulation
environments or real robots [1,4,6,11,12,17,18]. Only using simple simulation
environments without verifying on real robots afterwards is criticized a num-
ber of times [11,12]. Indeed, there are significant differences between controllers
performing well in simulation versus reality.

An example of a basic simulation environment is found in [8]. GP is used for
evolving wall following-behaviour, which is part of many higher level robot skills.
Successful programs were evolved, clearly exhibiting the desired behaviour. The
simulation consisted of a grid environment were the “robot” is on one of the
cells. The robot can directly move to neighbouring cells. Sensors simply indicate
whether a certain cell contains an obstacle or not. Similar experiments provide
some basic proof for using GP in robotics but their practical use is questionable.

In [17] a simplified but noisy simulation environment for evolving corridor
following behaviour with steady-state GP was used. In this simulation, the robot
moves forward with a constant speed, the controller only determines the direc-
tion. Moreover, the corridors are just small enough to let the robot pass, so
turning in the wrong direction is impossible. Mostly short corridor systems were
used. By adding noise to sensors and actuators Reynolds evolved more or less
robust controllers.

In [3], a vision-based line-following controller was evolved in simulation by
incrementally improving the visual model in the simulation. In simulation, suc-
cessfull controllers using mostly basic functions were evolved. Mainly caused by
some oversimplifications in the simulator, the authors were not able to success-
fully transfer this behaviour to the physical robot.

Evolving robot controllers for corridor following 3

Some experiments were conducted directly on real robots. An example is in
[14], where an obstacle avoidance controller for the Khepera-robot is evolved,
again using steady-state GP. The population size was only 50 individuals. Two
different training environments were tested. Using simple operations, in 200-
300 generations the desired behaviour was achieved in both environments. The
resulting program was robust, as it was successful in other environments as well.

3 Genetic Programming

Genetic programming uses a population of computer programs encoding a robot
controller and was introduced by John Koza in the early nineties [7]. Each gen-
eration, only the best performing programs are selected for breading and have
their offspring added to the population of the next generation. The selection of
the best programs is based on the fitness function, which is defined to model
how well the desired behaviour is matched. A detailed explanation on the fitness
function used in this study is given in Section 3.2.

3.1 Standard Parameters

GP requires various parameters to be set. Our GP uses a population size equal
to 500 and is allowed to run for 100 or 200 generations. Crossover (90%) and
reproduction (10%) are used. As selection algorithm, tournament selection with
seven individuals is used. The function set contains two functions: IfLess (arity
4), and PROGN2 (arity 2), both well known. Terminals to move forward and
backward over a distance of 10 cm are also included. Turn left and right makes
the robot turn 15 degrees in place. Three infrared distance sensors are used:
front, left and right, each perpendicular on the robot. Finally, three threshold
values are available: low, medium and high, respectively 75, 150 and 300 mm.

3.2 Fitness Function

At each generation all individuals are tested in three environments and can
perform 500 movements in each environment. The fitness function is averaged
over all three tested environments and consists of three components:

— As a first component, the distance in bird’s eye perspective the robot has
covered so far is measured. This distance can be easily calculated by applying
the rule of Pythagoras to the coordinates of the starting and ending position
of the robot. This basic component mainly differentiates between controllers
in initial generations.

— The second component punishes every collision detected using either sensor
on each side of the robot. A collision occurs when the robot’s sensor return
a reading smaller than 50mm. The penalty consists of substracting a fixed
value (3) to the number of movements so far.

4 B. Bonte and B. Wyns

— Finally, a bonus component is added when the robot reaches the end of the
corridor system (robot’s position equals top right corner of the simulation
environment). This consists of a fixed part (3) and a variable part. The
variable part is relative to the number of spare movements and thus rewards
efficient controllers. The scalar used in this study equals to 4. This component
mainly differentiates between better controllers in later generations.

While evaluating fitness on a single environment most likely leads to brittle
strategies, averaging over multiple fitness cases results in more general solutions.
Here, three different enviroments are used for evaluation. To select these three
environments, we use a variant of the layered learning approach [5]. Two en-
vironments belong to one category, while the third belongs to a more difficult
category. As the number of generations increases, the overall difficulty level of
these three fitness cases also increases. However, changing the composition of the
set of fitness cases at each generation has detrimental effects on the evolved con-
troller quality. Therefore, some time (i.e. generations) is left for the evolutionary
process to optimize the individuals towards the presented set of environments.

4 Experimental Setup

We use the EyeBot-platform for our experiments [1]. The evolutionary process is
carried out entirely in the EyeSim, the simulation environment of the platform.
Main advantage is that programs for the EyeSim can be transferred immediately
for execution on the real EyeBot. Hence we realise a major speedup and cost
reduction by evolving the controllers in simulation. To gain realism, we add
our own additive noise component (Gaussian distributed noise), which can be
manipulated easier. The standard deviation we use is 3 for sensor noise and 2 for
motor noise. Combined with this noise, the simulation environment facilitates the
evolution of controllers for real applications, which is impracticable in simplified
and naive simulation environments.

The GP process was handled by ECJ !, a research platform supporting mul-
tiple evolutionary algorithms in Java. ECJ constructs controllers of which the
fitness is evaluated in the EyeSim and returned back to ECJ, which performs all
evolutionary computations.

Since GP is a probabilistic method, we consider three different runs of each
experiment. This relatively low number is justified because we are interested in
the best controller, not some mean value. Moreover, when considering too many
runs, the computational cost becomes too high.

5 Evolving Robot Controllers

As stated before in literature, noise can improve simulation results and lead
to more robust controllers. Main argument is that with noise, evolution is no

! http://www.cs.gmu.edu/ eclab/projects/ecj/

Evolving robot controllers for corridor following 5

longer able to exploit coincidences in fitness cases only valid in simulation and
therefore leads to more robust controllers. Next to the noisy sensor values, noise
is added to the steering mechanism as well. Two experiments with a population
of 500 individuals were run, resulting in very high mean fitness values. The first
one, using 100 generations lead to an extremely robust solution, performing well
on five verification environments (not seen during training). Significant further
improvement is possible since the entropy of 2.08 is extremely high. However, the
second experiment using 200 generations, was slightly more efficient and fluent in
turns. Though, this controller was not as robust as the first, presumably caused
by premature convergence, in turn caused by too long training on preliminary
categories. An example trail of both controllers is depicted in Figure 1. Further
real life experiments will only use the first controller.

An interesting remark is that the underlying strategy of nearly all successful
controllers of the experiments is wall following. Mostly, the left wall is followed,
navigating to the end of the corridor system without turning and proceeding
in the wrong direction. This general strategy is a nice example of evolutionary
processes to come up with simple yet general and efficient solutions.

Fig. 1: Some example navigation trails. (a) The robot trail from the controller
evolved in 100 generations. (b) The robot trail from the controller evolved in
200 generations. (¢) The EyeBot with controller from (a) in a test environment.
The white line denotes the robot trajectory.

When transferring the best controller to reality, performance slightly de-
creased. This was mainly caused by the fact that the real PSD sensors return
increasing values when approaching a wall from a certain distance. After in-
creasing the lowest threshold from 75 to 100 (the distance under which the sen-
sor values become unreliable), this problem was solved. The robot was able to
navigate efficiently through previously unseen environments. The robot success-
fully drives straight ahead, adjusts where necessary and most curves are taken
smoothly. Nevertheless we noted slightly more collisions than in simulation. Fig-
ure 1(c) shows the real robot in a test environment. Remark that the left wall
following is illustrated by omitting some right walls, yet resulting in a successful
navigation.

6 B. Bonte and B. Wyns

6 Simultaneous Evolution of Controller and Sensor
Morphology

6.1 Situation

In nature, both the controller and the body of an organism are evolved simul-
taneously. The analogy can be made to evolve controllers (software) and robot
morphology (hardware), hopefully resulting in better suited robots and con-
trollers for a given task. In this work, we will co-evolve the controller and sensor
morphology [2,17,9,10]. Again in simulation and with noise added to the sensor
values. The standard simulation environment was extended to support the use
of an arbitrary number of sensors.

Because sensors are the main source of information on many robots, inves-
tigating their placement and quantity is an interesting task. Moreover, sensors
can be moved easily on existing robots. However, the most important reason for
examining sensor placement was found in preliminary experiments. Some — oth-
erwise robust — controllers struggled with the detection of vertical walls. Since
the frontal PSD-sensor measured parallel with the vertical wall, the latter was
not detected and the robot repeatedly caused collisions. Therefore, the controller
can be made more robust and general by better configuring sensor placement.
Evolving sensor morphology can thus be advantageous.

6.2 Experimental Results

An experiment with 8 possible sensor locations, each addressed by a unique ter-
minal leads to both a good controller and sensor configuration. In order to reach
a minimal sensor suite, the fitness function awarded every successful controller
according to the number of unused sensors. Note that the evolutionary process
didn’t reduce the number of sensors to evolve a simpler and more usable sensor
morphology without this stimulus. The evolutionary process clearly omits the
sensors one by one during evolution, starting with those that are least useful for
the task. This is illustrated in Figure 2. In this case, these are the sensors that
are placed orthogonal on the robot. Indeed, they only offer limited coverage (e.g.
walls parallel with the sensor placement). Therefore the evolutionary process se-
lects almost exclusively non perpendicular sensors, especially at the front of the
robot. This is an important design issue that was not taken in account when
designing the real robot, which only has perpendicular sensors.

A similar experiment with 35 sensors resulted in a good sensor configuration
as well, again with non perpendicular sensors on the front. However, the resulting
controller was not robust enough. Here we reached a complexity barrier for the
evolutionary process; too many terminals lead to an explosion of the search space
resulting in a problem that is too hard to solve with a standard general purpose
PC in an acceptable time span. This is a concern that is shared by other authors
in the field as well [15].

Another approach with one generic function for all possible sensor positions
accepting three parameters (x and y position and angle on the robot) defining

Evolving robot controllers for corridor following 7

(a) Generation 0 (b) Generation 15 (c) Generation 25 (d) Generation 30

Fig.2: The sensor usage during the evolutionary process. Sensors with limited
ranges in terms of the measured surface are omitted during initial generations.

the sensor placement was investigated as well. Again we found that the fitness
function must reward the limited use of sensors, otherwise too many sensors are
used. This results in unnecessary complex controllers. However, more research
is needed for quantifying the difference in result and computation time between
a number of strictly defined terminals or a more generic function which is more
flexible.

7 Conclusions

We demonstrated that, even with a basic PC and limited computation time,
GP is able to evolve controllers for corridor following in a simulation environ-
ment by using a gradual form of layered learning. Moreover, this controller was
transferred successfully to reality. Secondly, we also co-evolved controller and
sensor morphology of the robot. This resulted in a significantly improved sensor
configuration.

References

1. Bréaunl, T. (2006). Embedded Robotics: Mobile Robot Design and Applications With
Embedded Systems. Springer-Verlag, 2nd edition edition.

2. Buason, G., Bergfeldt, N., and Ziemke, T. (2005). Brains, bodies, and beyond: Com-
petitive co-evolution of robot controllers, morphologies and environments. Genetic
Programming and Evolvable Machines, 6(1):25-51.

3. Dupuis, J. and Parizeau, M. (2006). Evolving a Vision-Based Line-Following Robot
Controller. In Proceedings of the The 3rd Canadian Conference on Computer and
Robot Vision, page 75. IEEE Computer Society Washington, DC, USA.

4. Goosen, T., Brule, R., Janssen, J., and Haselager, W. (2007). Interleaving Simu-
lated and Physical Environments Improves Evolution of Robot Control Structures.
In Dastani, M. and de Jong, E., editors, BNAIC 2007: Proceedings of the 19th
Belgium-Netherlands Artificial Intelligence Conference, November 5-6, Utrecht, the
Netherlands, BNAIC 19, pages 135-142. Utrecht University.

5. Gustafson, S. and Hsu, W. (2001). Layered Learning in Genetic Programming for a
Cooperative Robot Soccer Problem. Lecture Notes in Computer Science, 2038:291—
301.

8 B. Bonte and B. Wyns

6. Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The
use of simulation in evolutionary robotics. Lecture Notes in Computer Science,
929:704-720.

7. Koza, J. (1992). Genetic Programming: On the programming of computers by Means
of natural selection. MIT Press, Cambridge, Massachusetts.

8. Lazarus, C. and Hu, H. (2001). Using Genetic Programming to Evolve Robot
Behaviours. In Proceedings of the 3rd British Conference on Autonomous Mobile
Robotics & Autonomous Systems.

9. Lee, W. (2000). Evolving Autonomous Robot: From Controller to Morphology.
IEICE Transactions on Information and Systems, 83(2):200-210.

10. Lund, H., Hallam, J., and Lee, W. (1997). Evolving robot morphology. In IEEE
International Conference on Evolutionary Computation, pages 197-202.

11. Nelson, A., Grant, E., Galeotti, J., and Rhody, S. (2004). Maze exploration be-
haviors using an integrated evolutionary robotics environment. Robotics and Au-
tonomous Systems, 46(3):159-173.

12. Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines. MIT Press Cambridge.

13. Nordin, P. and Banzhaf, W. (1995a). Complexity compression and evolution. In
Eshelman, L., editor, Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 240-245. Morgan Kauffman.

14. Nordin, P. and Banzhaf, W. (1995b). Genetic programming controlling a miniature
robot. In Working Notes for the AAAI Symposium on Genetic Programming, pages
61-67.

15. Ok, S., Miyashita, K., and Nishihara, S. (2000). Improving performance of gp by
adaptive terminal selection. In PRICAI 2000 Topics in Artificial Intelligence: Gth
Pacific Rim International Conference on Artificial Intelligence, volume 1886, pages
435-445. Springer.

16. Pollack, J., Lipson, H., Ficici, S., Funes, P., Hornby, G., and Watson, R. (2000).
Evolutionary techniques in physical robotics. In Evolvable Systems: From Biology to
Hardware: Third International Conference, ICES 2000, Edinburgh, Scotland, UK,
April 17-19, 2000: Proceedings. Springer.

17. Reynolds, C. (1994). Evolution of corridor following behavior in a noisy world.
In CIliff, D., Husbands, P., Meyer, J.-A., and Wilson, S., editors, From Amnimals
to Animats 3: Proceedings of the third International Conference on Simulation of
Adaptive Behavior, pages 402-410. MIT Press.

18. Urzelai, J. and Floreano, D. (2000). Evolutionary Robotics: Coping with Envi-
ronmental Change. In Proceedings of the Genetic and Evolutionary Computation
Conference.

