View metadata, citation and similar papers_at core.ac.uk

brought to you by CORE
provided by Ghent University Academic Bibliograph

VALIDATING CONCEPTS FROM AUTOMATED ACQUISITION SYSTEMS

Albrecht HEEFFER

University of Ghent
Applied Epistemology Lab
Blandijnberg 2, B-9000 Ghent, Belgium

ABSTRACT

Relevant domain features are wused for the
representation of knowledge in production rules
and for the description of examples for rule
induction programs. A concept acquisition CCAS,
induces domain concepts for the description of
middle-game positions in chess, and uses
quantitative measures of information content for
validating the acquired concepts.

I. Introduction

The main problem with the use of production
rules to represent knowledge is the determination
of the relevant features of the domain.
Production system knowledge consists or rules of
the form:

IF features Jzs fas ++ fy
are present in a situation
THEN apply action A

The features fi must be provided to the system for
recogni tion of a situation as relevant for the
firing of rules. However, an enumeration of all
relevant features is a very difficult task.
Therefore, it is desirable and sometimes necessary
to use inductive methods for establishing relevant
features of the domain.

Chess is an excellent domain for experiments
in concept acquisition. Chess players use a large
vocabulary of domain concepts which is accessible
in chess books and by psychological experiments.
A grandmaster has a large library of chunks in LTM
that is wused to encode a chess position and in
this way, reduces the uncertainty. It has been
estimated that some ten thousands of chunks are
necessary to explain the performance of master
players [6].

A convenient method for measuring the amount
of information reduction by chunking is the use of
the binary question experiments. Jongman [2]
proposed a method in which a chess player is
allowed to ask questions about a chess position he
has to reconstruct, that can be answered with only
'yes1 or 'no'. The number of questions necessary
to reconstruct the position correctly gives a good
estimate of the information content of chess
positions. Strong players (above 2200 Elo rating)
require between 50 and 80 bits to reconstruct a
position. For weaker players this amount may grow
to above 100, depending on the type of position.

The intention of the experiment reported in
this paper is to design a method for automated
acquisition of chess concepts, that can be
considered as chunks. These chunks can then be
used as attributes for production rules or for
further rule induction. The validity of the
chunks will be checked by the binary question
experiments.

I'l. THE ACQUISITION SYSTEM
A. Definitions

Attributes are used to describe objects. For
chess positions we use 32 nominal attributes that
categorically describe certain aspects of a chess
position. Attributes represent the mapping of
pieces on square locations:

attributes < with £=1,2,..,9
= [wK,wQ,wqR,wkk,...,bfp,bgp,bhp}
DOH(Uz:) = {31'52383.-uo'h?'h8|-}

The characters represent the well-known
abbreviations of piece names used in chess
notation. Capitals denote pieces, 'w' stands for
white, 'b' stands for black and '-' indicates that
the square is not occupied.

An instance is a description of an object as
a vector of <attribute,value> pairs. In the
experiments to be described, instances are
middle-game positions of master games. The space
of all syntactically correct instances is called
the event space.

Selectors can be expressed in the annotated
predicate calculus [3] as a form ais‘fﬁ‘i in which
, the reference is a disjunction of values of the
domain of attribia.:, and # stands for the
operators Te! or '(HF,

A pattern is a logical conjunction of
selectors. A pattern pat; is present in an
instance if the attribute values of the instance
satisfy all the selectors of the pattern. For
example:

[bK=gh] & [bkBxgT7) & [bfp=T] & [bgpab] & {bhpaT]

A satisfaction factor fs expresses the
degree to which a pattern is satisfied by c¢; ,the
observed set of instances. The value of the
satisfaction factor of a pattern is the proportion

https://core.ac.uk/display/55728627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

614 A. Heeffer

between instances that completely satisfy that

pattern and e

fsfpath = sat(patﬂ,ci)

e

This concept is similar to that of projected
sparseness as defined by Michalski and Stepp [3].

A relevance list is a list of functions that
maps keys onto a set of attributes that are
relevant to form a pattern. It consists of
elements of the following form:

k} .- fdl,ag,. "’a'l:)

Keys are salient attributes of an event
description. A relevance Ilist is supplied by a
domain expert to constrain patterns to
"meaningful” ones.

A nilpattern is an <attribute,value> pair
with a satisfaction factor higher than some
threshold value. Nilpatterns can be detected by
calculating fg(a) for all i, which are in fact
all patterns consisting of one attribute. Events
determined by nilpatterns with a threshold value
equal to that of a single instance form the
projected event space.

B. The induction algorithms.

The intention of an induction algorithm is to
generate patterns with a satisfaction factor above
a certain threshold, using the attributes defined
in the relevance |list. This Involves a search
through a tangled hierarchy of three levels depth:

the keys in the relevance Ilist, attributes
attached to each key and the nilpatterns of each
attribute. As the algorithm uses a backtracking

search for the attributes, the order of attributes
in the relevance list is important. This implies
that the most important attributes should be
listed first. |If no patterns are generated with
the first attributes, no patterns containing the
next attributes in the list will be considered.
For the experiments reported in this paper, a
permutation algorithm was used in which the order
of the attributes is not important. All possible
combinations of attributes in the relevance list,
that include the key attribute, will be tried.
The advantage of the permutation algorithm is that
no relevant patterns will be missed because of
ordering errors.

C. Implementation

The program, named CCAS (Chess Concept
Acquisition System), is written in C-Prolog,
running on a VAX 11-750 under UNIX. It consists of
four basic components:

1. Nilpattern generator

Nilpatterns are the basic building blocks of
chess concepts. They have to be generated from
the set of given instances before the induction
process can begin. Generating all nilpatterns,
required 104 CPU seconds. Nilpatterns are
represented as a functor with two arguments. The

first argument is the attribute name, and the
second is an ordered list of values, the first
value having the largest satisfaction factor. An
example of the generated nilpatterns for the
white king:

nilpattern(wk,[g1,h1,h2]).

2. The satisfaction factor calculator

Both the nilpattern generator and the
induction program rely on satisfaction factors of
patterns. Efficient calculation of satisfaction
factors is therefore important for the overall
performance of the program. Using Prolog's
unification for matching, the calculation of
satisfaction factors is considerably faster than
using other matching strategies. Calculating the
satisfaction factor of a pattern with 10
instantiated attributes takes about 150 msec for a
database containing 54 instances.

3. The induction program

The generation of all patterns for a
relevance list with six attributes attached to a
key takes about 150 CPU seconds for each key.
Execution times grow exponentially with the number
of arguments. For this reason, it is recommended
to use many keys with lesser attributes, rather
than to look for patterns with many attributes.
This strategy is well suited for the domain of
chess, but could be a constraint for other
domains.

4. Binary question generators

Chess concepts induced by CCAS are
operationally defined as valid if they reduce the
information content of a chess position. Although
the validity of generated ooncepts can be
appreciated by a domain expert, the program also
facilitates techniques for quantitative evaluation
of the output. It includes a binary question
generator that is able to reconstruct a chess
position by asking questions about piece-square
relationships. It uses nilpatterns for question
generation.

I'I'l. RESULTS
Using the following relevance list

rel(bK,[bkR,bkB,bep,bfp,bgp,bhp]).
rel(wK,[wkR,wkN,wep,wfp,wgp,whp]).
rel(bdp,[bap,bbp,bcp,bgB,bqgR]).
rel(bdp,[bcp,bep,wcp,wdp,wep,wfp]).
rel(wbp,[wap,wcp,wqR,wgN,wqgB,wkB]).

and 54 instances taken from 21st move positions in
a chess book ([7] games 25 to 75), the system
generated 275 patterns. The number of attributes
per pattern varies from 1, the nilpattern of the
key, to 7, the key and all attributes in the
relevanoe list. The most Important patterns are
the most specific ones, i.e. the patterns using
the largest number of attributes. For each key in
the relevance list, there is at least one such
pattern. Most other patterns are subsets of these
most specific ones.

The binary question experiment was tried for
two types of positions, those included in the list
of instances, and others that are similar, but not
included. The program achieves a reconstruction
performance of 100% for positions included in the
instances, using an average of about 60 questions.
For chess positions not included in the Ilist of
instances 100% reconstruction is not guaranteed

but often reached, within the same average number
of questions. These tests indicate that the
system performs on the level of expert chess
players.

IV. DISCUSSION

The concept acquisition system, described in
this paper, is an attempt to fill a gap in the
current spectrum of automated acquisition systems.

The problem addressed in this project cannot be
approached by any of the existing methods. In
fact, generating concepts for the description of

chess positions is something that is presupposed
by existing learning programs such as ID3 [8] and
CLEAR [4], Taxonomic classification programs such
as CLUSTER [33 that determine hierarchies of
subcategories within a collection of objects are
more- closely related to the problem of concept

acquisition but still not suited. All rule
induction programs require a set of relevant
attributes to describe the domain objects. But
the construction of relevant attributes for

representing instances is a difficult task itself.

The patterns generated by the
very well be considered as
human-intelligible and some even have terms
attached to them that are used in the vocabulary
of domain experts, such as kings fianchetto.

program can
concepts. They are

This work was carried out during a three-
month visit at the Turing Institute [1].
Financial support was provided by the Belgian NPAO
and the ICIWO. | would like to express my thanks
to Prof. F. Vandamme of the University of Ghent,
and to Prof. Donald Michie, Mr John Roycroft and
Dr Tim Niblett of the Turing Institute, for their
helpful suggestions.

REFERENCES

[1] Heeffer A. "Automated acquisition of
concepts for the description of middle-game
positions in chess", Turing Institute
Research Memorandum TIRMO05. December 1984,
Glasgow.

[2] Jongnan H. Het oog van
Gorcum, Asse, 1968.

de meester, Van

[3]

[4]

(5]

[6]

(7]

shows
from the diagram. The
reconstruct the
it had no previous experience with a
d3. Adding this
instances
sessions.

on

A. Heeffer 615

Michalski R. S, Stepp R. "Learning from
observation: Conceptual Clustering", Chapter
11 in Michalski, Carbonell and Mitchell
(eds) Machine Learning: An Artificial
Intelligence Approach, Tioga Publishing Co.,
Palo Alto, 1983.

Niblett T. "An interactive rule induction
system" MINews 2, 1983, 8-15.

Quinlan J. R. "Semi-autonomous acquisition
of pattern-based knowledge", in Hayes,
Michie and Pao (eds) Machine Intelligence
10, Ellis Horwood, Chichester, 159-172,
1982.

Simon H., Gilmartin K. "A simulation of

memory for chess positions", Cognitive

Psychology 5, 1973t 29-46.

Zeuthen S. Modern Benoni: survey of a

structure.Zeuss Transactions, Denmark, 1973.
APPENDIX

A typescript of a binary question session

how CCAS tries to reconstruct the position
program was not able to
position 100% correctly, because
white queen
position to the list of
solve the problem in future
from the problem with the queen,

would
Apart

the reconstruction performance is quite well. The

system

reached a 95% correct reconstruction after

only 46 questions.

1, wk-g1? ¥
2. wQ-f3? n
3. WQR=-A17 n
4, wkR-f17 y
5. WwqgB-c17 n
6. wkB=d3? n
7. wqN-c3? ¥
B, wkNe(—=}7 ¥
9. wap=U? ¥y
10. wbpw2?
11, wep=0?
12, wdp=5?
13, wep=i?
T4, wip-4?
15, wgp=-27
18, whp=27
17. bK-gB?
18, bQ=-da?
19. bqR-aB? ¥y
20. bkE-a8? y
21, bqB=aB? n

Sw D 3D

31, bgp=67 ¥ 44, wkB=(—)7 ¥
32, bhp=77 ¥ 45, wep=i? ¥
33, bkN=£67 n 46, bkN=dT? ¥
3. bgBe(==)? ¥ 47, wQ={==)7 n

22. DkB=gT? ¥ 35, bQwo7? ¥ 48, wQ-f27 n
23, bgi={==)? ¥ 3§, whp-37 ¥ 49, wQ-el? n
24, bkN=(—)7 n 37, wep-37 n 50, wQ=b3? n
25, bap=57 ¥ 38, wop=07 ¥ 5. wQ=d2? n
26. bbp-TT ¥ 39. wkB~clW? n 52, wQ=di? n
27. bop=5% ¥ 40. wqB=d2? ¥ 53, wQ=e2? n
28. bdp-67 ¥ 41, wqR-e1? ¥ 54, wQ=e1? 0
29. bep-0? ¥ 42, wQ=d17 55, wi=bb? n
30, dfp=TT ¥ 43. wQ-c2? n

