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Abstract—Scattering of time-harmonic fields by chiral
objects can be modeled by a second kind boundary integral
equation, similar to Müller’s equation for scattering by
nonchiral penetrable objects. In this contribution, a mixed
discretization scheme for the chiral Müller equation is
introduced using both Rao-Wilton-Glisson and Buffa-
Christiansen funtions. It is shown that this mixed dis-
cretization yields more accurate solutions than classical
discretizations, and that they can be computed in a limited
number of iterations using Krylov type solvers.

I. INTRODUCTION

Scattering by homogeneous objects often is modeled
using boundary integral equations (BIEs), which can be
solved numerically using the boundary element method.

Until recently, the numerical solution of second-kind
BIE’s, such as the magnetic field integral equation
(MFIE) and the Müller equation, was plagued by an
inaccurate discretization of the unit operator. This prob-
lem has been solved by a mixed discretization scheme
using curl-conforming Buffa-Christiansen (BC) testing
functions [1]. This scheme greatly increases the accuracy
of both the MFIE [2] and the Müller equation [3].

In this contribution, the mixed discretization scheme
is applied to the chiral Müller equation [4] describing
scattering by chiral media. Numerical experiments show
that the resulting system is well-conditioned, and that
the accuracy of the solution is comparable to that of the
chiral PMCHWT equation.

II. DISCRETIZATION OF THE MÜLLER EQUATION

A. The Chiral Müller equation
Electromagnetic fields in homogeneous chiral media

are modeled by the Maxwell equations

∇× e = −jωµh+ κω
√
εµe, (1a)

∇× h = jωεe+ κω
√
εµh, (1b)

where ε and µ are the usual permittivity and perme-
ability, respectively, and κ is the dimensionless chirality
parameter. Scattering by homogeneous chiral bodies can
be described by the chiral extensions of either the
PMCHWT equation [5] or the Müller equation [4].
The latter is obtained by combining the internal and
external representation formulas in such a way that all
hypersingular operators cancel out. This results in an
equation of the following form:

(U + C)
(
−n̂× e
n̂× h

)
=

(
ε0 0
0 µ0

)(
−n̂× ei

n̂× hi

)
, (2)

where

U =
1

2

(
ε0 + ε j

√
εµκ

−j√εµκ µ0 + µ

)
,

n̂ is the exterior normal vector and C is a compact
operator. The integral operator on the left hand side of
(2) therefore is of the second kind if detU 6= 0, which
holds true for realistic materials. In this sense, the chiral
Müller operator has the same spectral properties as the
nonchiral Müller operator and the MFIE operator.

B. Discretization

In order to obtain accurate results, the unknown tan-
gential traces n̂ × e and n̂ × h must be expanded in
divergence-conforming basis functions, such as the Rao-
Wilton-Glisson (RWG) functions f i. Then, the BIE must
be tested using curl-conforming basis functions such as
the rotated RWG functions n̂× f i.

When applied to the unit operator, this approach yields
an ill-conditioned system matrix Oij =

(
n̂× f i,f j

)
.

A well-conditioned system can be obtained by testing
with div-conforming RWG functions f i, but this non-
conforming scheme produces inaccurate results.
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Fig. 1. Infinity norm of the error of the RCS w.r.t. the Mie series.

Fig. 2. Relative H
−1/2
div norm of the error of the surface currents

w.r.t. the projection of the Mie series onto the RWG basis.

However, the curl-conforming rotated Buffa-
Christiansen (BC) functions n̂ × gi [1] can be used as
testing functions to obtain a well-conditioned overlap
matrix Oij =

(
n̂× gi,f j

)
. This mixed discretization

scheme greatly improves the accuracy of both the MFIE
[2] and the nonchiral Müller equation [3].

As the chiral Müller operator has the same structure
as its nonchiral counterpart, it is to be expected that the
accuracy of its numerical solution will also be improved
by the mixed discretization.

III. NUMERICAL RESULTS

Consider a chiral sphere of radius 66 cm, permittivity
ε = 2ε0, permeability µ = µ0 and chirality parameter
κ = 0.5, illuminated by a linearly polarized plane wave
at a frequency of 150 MHz. The scattered fields are
computed numerically using the following simulation
techniques:

• PMCHWT: the chiral PMCHWT equation, tested
using curl-conforming rotated RWG functions;

• Muller: the chiral Müller equation, tested using div-
conforming RWG functions;

• MxMuller: the chiral Müller equation, tested using
curl-conforming rotated BC functions.

For every simulation type, the mesh parameter (i.e. the
minimum edge length) is varied between 9 and 25 cm.

The accuracy of the radar cross section (RCS) is
assessed by means of the infinity norm of the error

Fig. 3. Condition number of the system matrix.

with respect to the RCS predicted by the Mie series [6]
(Fig. 1). The accuracy of the surface currents (n̂×e and
n̂× h) is measured using the H−1/2

div norm of the error
with respect to the projection of the currents predicted
by the Mie series onto the RWG basis (Fig. 2).

The mixed discretization scheme significantly reduces
the discretization error of the chiral Müller equation.
Indeed, in terms of accuracy MxMuller is compara-
ble to PMCHWT, and superior to Muller. In contrast
to PMCHWT, which requires preconditioning at small
mesh parameters [5], MxMuller yields well-conditioned
system matrices (Fig. 3) and can be solved efficiently
using Krylov iterative methods.

IV. CONCLUSION

A mixed discretization scheme has been applied to the
chiral Müller equation. For any given mesh, the solution
yielded by this scheme is as accurate as the chiral
PMCHWT equation’s solution. In contrast, it does not
suffer from dense discretization breakdown and therefore
does not require preconditioning.
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