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1. Introduction

Loop-Star and Loop-Tree decompositions have been widely used to cure the low-frequency
breakdown of the Electric Field Integral Equation (EFIE) which is due to an unfavorable scaling
of the solenoidal and non solenoidal branches of the EFIE spectrum. Loop-Star and Loop-Tree
decompositions solve the breakdown by enabling the rescaling of the EFIE spectrum branches [1-
4]. Despite this, these decompositions are not able to change the shape of each branch [5]. EFIE
ill-conditioning that can be traced back to the shape of EFIE spectrum branches can be referred
as “dense discretization breakdown”. In addition to these two breakdowns, when dealing with
Loop-Star and Loop-Tree decompositions, there is an additional problem pertaining the condi-
tioning of Loop, Star, and Tree associated Gram matrices (a Gram matrix of a basis function set
{f i, i = 1, . . . , N} is the matrix ¯̄G so that ( ¯̄G)i,j =

〈

f i,f j

〉

=
∫

f i · f jdr, where the integral is
computed over the functions’ domain). The Loop, Star, and Tree Gram matrices condition number
is contributing to the overall condition number of the (decomposed) EFIE. Moreover when the
Loop-Star,-Tree bases are used in conjunction with second kind integral equations (such as the
Magnetic Field Integral Equation, MFIE, or the Calderón preconditioned EFIE), the Gram ma-
trix condition number is the sole responsible for the overall condition number of the decomposed
equation. This work will analyze the Gram matrix conditioning of Loop, Star, and Tree bases and
it will quantify the effects on the conditioning of the decomposed EFIE and second kind operator
matrices. The analysis will give a theoretical explanation of the slower convergence of Loop-Star
decompositions with respect to Loop-Tree decompositions which has been observed in literature
[2, 4, 6]. In addition the theoretical framework will provide a strategy for inverting the Loop-Star
decomposition and for regularizing the Loop-Star Gram matrix. From this, a regularization to be
used in conjunction with the Loop-Star decomposed Calderon EFIE [6] will be obtained.

Among several integral equations for analyzing radiation and scattering by perfect electrically
conducting (PEC) objects, the Electric Field Integral Equation (EFIE) and the Magnetic Field
Integral Equation (MFIE) are the most prominent ones.

The EFIE is ill-conditioned when either the frequency or the discretization density goes to zero



leading to the dense-discretization or to the low-frequency breakdown respectively. The high con-
dition number results in a high number of iterations when the discretized EFIE is solved iteratively
that renders the EFIE solution difficult in several real case scenarios. These breakdowns can be
solved by Calderon preconditioning.

The MFIE, instead, is traditionally known to give rise to less accurate solutions, when compared to
the EFIE, and recent studies have established that the reason for that resides in the inaccuracy of
traditional MFIE discretizations. A solution to this problem has been recently proposed and lever-
ages on the use of mixed discretizations, i.e. a judicious choice of source and testing discretization
spaces that accurately matches the operator mappings of the continuous MFIE.

When the structure of the scatterer under consideration is closed, both the EFIE and MFIE suffers
from internal resonances, i.e. spurious null-spaces appearing when the wavenumber corresponds
to a resonance of the internal problem. The presence of these resonances can severely jeopardize
accuracy and solution time of both EFIE and MFIE. A solution to this problem is the use of the
Combined Field Integral Equation (CFIE). The CFIE is a linear combination of EFIE and MFIE
and can be proved to be resonance free. On the other hand, being a linear combination of EFIE
and MFIE, inherits part of the ill-conditioning of the first and part of the inaccuracy of the second.

To solve the ill conditioning of the CFIE, the equation can be modified into the Yukawa-Calderón
CFIE (YC-CFIE), proposed in [7, 8], i.e. a linear combination of the MFIE and of a modified
Calderón preconditioned EFIE. However, with standard discretizations of the YC-CFIE, the inac-
curacy is still inherited by the MFIE.

This work will solve this problem, by presenting a mixed discretized YC-CFIE that is stable and
regularized till very low frequencies and independent of the discretization density. In addition we
will prove the resonance free behavior of the equation and we will present a complete low-frequency
stability and preconditioning analysis.

Numerical results will show the effectiveness of the proposed scheme and its applicability on real
case scenarios. Preliminary results on this topic have been presented in [9].

2. Formulation

Consider the surface Γ of an orientable PEC object residing in a space of permittivity ǫ and
permeability µ. Denote with n̂r its outward pointing unit normal at r. Denote with Ω+ and Ω−

the exterior and interior regions of Γ respectively. An incident electromagnetic field
(

Ei(r),H i(r)
)

is impinging on Γ inducing a surface current density J(r). The current J(r) can be retrieved by
solving the Electric Field Integral Equation (EFIE)

T (J) = −n̂r ×Ei (1)

where T (J) = ik Ts(J) + 1

ik
Th(J) with

Ts(J) = n̂r ×
∫

Γ

eik|r−r
′|

4π |r − r′|J(r
′) dr′, (2)

Th(J) = −n̂r ×∇
∫

Γ

eik|r−r
′|

4π |r − r′|∇s · J(r′) dr′, (3)



and k = 2π/λ = ω
√
ǫµ. Alternatively, if Γ is closed, J(r) can be retrieved by solving the Magnetic

Field Integral Equation (MFIE)
(I
2
+K

)

(J) = η
(

n̂r ×H i
)

(4)

where

K(J) = −n̂r ×
∫

Γ

∇ eik|r−r
′|

4π |r − r′| × J(r′) dr′ (5)

and η =
√

µ/ǫ. Note that with these definitions the current J(r) represents the jump over Γ of
the total magnetic field multiplied by the medium characteristic impedance.

Both the EFIE and the MFIE can be solved by using boundary elements, Γ is approximated by a
mesh of planar triangles with average edge length h, and J(r) is approximated as

J(r) ≈
N
∑

n=1

Infn(r) (6)

where fn(r), n = 1, . . . , N are Rao-Wilton-Glisson (RWG) div-conforming basis functions defined
on the mesh’s N internal edges [10]. To simplify the notation in what follows the RWGs are taken
without the edge length normalization. To solve the EFIE, (6) is substituted into (1) and the
resulting equation is tested with the functions fn yielding the N ×N discretized EFIE system

¯̄T Ī = V̄ (7)

where ( ¯̄T)i,j =
〈

n̂r × f i,T (f j)
〉

, (V̄)i = −
〈

n̂r × f i, n̂r ×Ei
〉

, and (Ī)j = Ij. Here and in the
following 〈a, b〉 =

∫

Γ
a · bdΓ. By solving (7), Ī is recovered and an approximation of J is obtained

via (6).

In a standard approach, the MFIE can be solved in a similar way, (6) is substituted into (1) and
the resulting equation is tested with the functions fn yielding the N ×N discretized MFIE system

(

¯̄G

2
+ ¯̄K

)

Ī = V̄H (8)

where ¯̄K =
〈

f i,K(f j)
〉

, (V̄H)i = −
〈

f i, η
(

n̂r ×H i
)〉

, and

(

¯̄G
)

i,j
=
〈

f i,I(f j)
〉

=
〈

f i,f j

〉

(9)

is the Gram matrix of the RWG basis. The MFIE is the sum of the identity and of an operator
(K) which is compact when Γ is smooth. Operators that are the sum of the identity and of a
compact operator are called second kind operators and matrices arising from their discretization
are well-conditioned. For this reason the condition number of the linear system matrix in (8) is
usually much better than the conditioning of the linear system matrix in (7). A left multiplication
of (1) by T gives the Calderón preconditioned EFIE

T 2 (J) = T
(

n̂r ×Ei
)

. (10)

The Calderón identity

−T 2 =
I
4
−K2 (11)



and the fact that also K2 is a compact operator, show that the Calderón preconditioned EFIE
operator is a second kind operator and thus, upon discretization, gives rise to well-conditioned
linear system matrices.

When the surface Γ is closed and when k corresponds to an internal resonance, i.e. to an eigenvalue
of the Laplacian on Γ’s interior region, both the EFIE and MFIE are not univocally solvable [11].
When k is approaching such a resonant value, the linear systems arizing from the discretization
of the EFIE and of the MFIE become almost singular and difficult to solve. A similar problem is
plaguing the Calderón preconditioned EFIE. A classical solution is represented by the use of the
Combined Field Integral Equation (CFIE) [12] which is a linear combination of EFIE and MFIE

αT (J) +

(I
2
+K

)

(J) = −αn̂r ×Ei + η
(

n̂r ×H i
)

(12)

where α is real and α 6= 0. The CFIE can be proved to be uniquely solvable for any value of k. On
the other hand, the presence of the EFIE operator T results in an ill-conditioning that, althoght
milder than the ill-conditioning of the EFIE, still renders the equation difficult to be solved in
many real case scenarios. One could think that, to obtain a resonance-free and well-conditioned
equation, one could linearly combine the MFIE and the Calderón preconditioned EFIE

αT 2 (J) +

(I
2
+K

)

(J) = −αT
(

n̂r ×Ei
)

+ η
(

n̂r ×H i
)

(13)

Unfortunately this choice does not lead to a resonance-free equation since

T 2 = −I
2
+K2 = −

(I
2
−K

)(I
2
+K

)

(14)

so that the null space of T 2 contains the null space of
(

I
2
+K

)

and so does (13). A way to solve
this problem is to precondition the EFIE operator T not with the operator T itself, but with a
localized counterpart of it. This localization can be obtained either by a space windowing of the
Green’s function or by using, in the leftmost operator T , a purely complex wavenumber obtaining

C (J) = −αT loc
(

n̂r ×Ei
)

+ η
(

n̂r ×H i
)

(15)

where

C (J) = αT locT (J) +

(I
2
+K

)

(J) (16)

T loc(J) = −k T loc
s (J)− 1

k
T loc
h (J) with

T loc
s (J) = n̂r ×

∫

Γ

e−k|r−r
′|

4π |r − r′|J(r
′) dr′ (17)

T loc
h (J) = −n̂r ×∇

∫

Γ

e−k|r−r
′|

4π |r − r′|∇s · J(r′) dr′ (18)

The remaining of the paper will be devoted to the analysis the properties of (15) and of its stable
and conforming discretization.



3. Mapping properties and uniqueness of the solution

Denoting by Hm
div (Γ) the divergence Sobolev space on Γ of regularity m [13], for the operators T

and K we have

T : H
m− 1

2

div → H
m− 1

2

div and K : H
m− 1

2

div → H
m+

1

2

div (19)

[13]. Similarly

T loc : H
m− 1

2

div → H
m− 1

2

div (20)

then

C : H
m− 1

2

div → H
m− 1

2

div (21)

We will now prove the uniqueness of the solution of (15). For doing this we will adapt to our case
the demonstrative approach of Bruno et al. [14].

Given an operator A, call AT the adjoint operator with respect to 〈. , . 〉. In other words, AT is the
operator such that

〈I,A (J)〉 =
〈

AT (I) ,J
〉

∀I,J ∈ H
− 1

2

div (Γ) (22)

Since the operators T , T loc, I
2
+K are Fredholm operators of order 0 [11], we get that so is C and

that, by the Fredholm alternative and the non degeneracy of 〈., .〉, C is invertible if and only if CT

is is injective, i.e. if
CT (J) = 0 ⇒ J = 0 (23)

The following properties

T T = n̂r × T (n̂r×) (24)
(

T loc
)T

= n̂r × T loc (n̂r×) (25)

(I
2
+K

)T

= −n̂r ×
(I
2
−K

)

(n̂r×) (26)

holds [13]. Then

(

T locT
)T

= n̂r × T
(

n̂r × n̂r × T loc (n̂r×)
)

= −n̂r × T T loc (n̂r×) (27)

and

CT (J) =

[

−αn̂r × T T loc − n̂r ×
(I
2
−K

)]

(n̂r × J) . (28)

Define the operators

n̂r × K̃(J) = ∇×
∫

Γ

eik|r−r
′|

4π |r − r′|J(r
′) dr′ r ∈ Ω+ ∪ Ω− (29)

and

n̂r × T̃ (J) = −ik

∫

Γ

eik|r−r
′|

4π |r − r′|J(r
′) dr′ +

1

ik
∇
∫

Γ

eik|r−r
′|

4π |r − r′|∇s · J(r′) dr′ r ∈ Ω+ ∪ Ω− (30)



By denoting the exterior and interior trace operators [11] by τ+ and τ− and defining

C̃T (J) =
[

−α
(

n̂r × T̃
)

T loc + n̂r × K̃
]

(n̂r × J) (31)

we have that
CT (J) = τ+

(

C̃T (J)
)

(32)

so that the condition CT (J) = 0 and the fact that C̃T solves the Helmholtz equation with outgoing
radiation condition we get

CT (J) = 0 ⇒ τ+C̃T = 0 ⇒ C̃T = 0 ∀r ∈ Ω+ ⇒ τ+
(

∇× C̃T
)

= 0 (33)

From the jump relationships of single and double layers we get

τ−C̃T (J) = τ+C̃T (J)− n̂r × n̂r × J = J (34)

τ−
(

n̂r ×∇× C̃T (J)
)

= τ+
(

n̂r ×∇× C̃T (J)
)

+ ikαT loc (n̂r × J) = ikαT loc (n̂r × J) (35)

Thus

ikα

∫

Γ

n̂r × J∗ · n̂r × T loc (n̂r × J) dr′ = ikα

∫

Γ

J∗ · T loc (n̂r × J) dr′

=

∫

Γ

(

CT
)∗ · n̂r ×∇× CT dr′ (36)

= −
∫

Γ

(

n̂r × CT
)∗ · ∇ × CT dr′

=

∫

Γ

k2
∣

∣CT
∣

∣

2 −
∣

∣∇× CT
∣

∣

2
dr′

Since
∫

Γ
n̂r × J∗ · n̂r × T loc (n̂r × J) dr′ is purely real, it follows that ikα

∫

Γ
n̂r × J∗ · n̂r ×

T loc (n̂r × J) dr′ is purely imaginary, while
∫

Γ
k2
∣

∣CT
∣

∣

2 −
∣

∣∇× CT
∣

∣

2
dr′ is purely real. Then the

equality in (36) is satisfied only if

∫

Γ

n̂r × J∗ · n̂r × T loc (n̂r × J) dr′ = 0 (37)

from which J = 0, which terminates the proof.

4. Mixed discretization

It has been shown that the standard discretization (8) of the MFIE leads to incorrect results at
low frequencies [15]. The standard discretization of the MFIE uses the div-conforming RWGs
both as source and testing functions. On the other hand, the mapping properties of the MFIE
operator (equation (19)) suggests that the MFIE testing functions should be curl-conforming basis
functions. For this reason the mixed discretized MFIE has been proposed in [16] and further
analyzed in [17, 18, 19, 20]. In the mixed discretized MFIE, the testing functions are the Buffa-
Christiansen (BC) or the Chen-Wilton (CW) basis functions defined on the barycentric refinement.
In [19] and [20], in particular, it has been shown that that the mixed MFIE does not suffer from
the low-frequencies inaccuracies observed in [15] for the standard MFIE.



At very low frequencies, the inaccuracies of a standardly discretized MFIE could jeopardize also the
accuracy of the YC-CFIE. However, since the mapping properties of the Yukawa-Calderón CFIE
are the same of the MFIE (equation (21)), this suggests that a mixed discretization will solve the
inaccuracy problems of the equation.

The mixed discretized YC-CFIE that we propose reads

(

α ¯̄Tloc ¯̄G−1
mix

¯̄T+
¯̄Gmix

2
+ ¯̄Kmix

)

Ī = α ¯̄Tloc ¯̄G−1
mixV̄ + V̄mix

H (38)

where
( ¯̄Gmix)i,j =

〈

n̂r × f i,f
BC
j

〉

(39)
(

¯̄Kmix

)

i,j
=
〈

n̂r × fBC
i ,K(f j)

〉

(40)

(V̄H)i = −
〈

n̂r × fBC
i , η

(

n̂r ×H i
)〉

(41)

¯̄Tloc = ¯̄Tloc
s + ¯̄Tloc

h (42)

and
(

¯̄Tloc
s

)

i,j
=
〈

n̂r × fBC
i ,T loc

s (fBC
j )

〉 (

¯̄Tloc
s

)

i,j
=
〈

n̂r × fBC
i ,T loc

h (fBC
j )

〉

. (43)

The functions fBC
i are the Buffa-Christiansen basis functions [21] defined on the barycentric re-

finement. These functions, similarly to the RWGs, are div-conforming and defined on the mesh’s
N internal edges, however they are also quasi-curl-conforming in the sense that the mixed gram
matrix is well-conditioned. The reader may also refer to [5] for further details on the shape and
definition of these functions.

The low frequency behavior of this equation can be analyzed by using a Loop-Star decomposition [3].
Denote with ¯̄Λ and ¯̄Σ the Loop and Star-to-RWGs transformation matrices respectively [3]. Denote

with ¯̄H =
[

¯̄Λ, ¯̄Σ
]

the Loop-Star-to-RWG transformation matrix. The Loop-Star decomposed

MFIE presents the following block dependence of the frequency [19]

¯̄HT
D

(

¯̄Gmix

2
+ ¯̄Kmix

)

¯̄H =





¯̄ΣT
(

¯̄
Gmix

2
+ ¯̄Kmix

)

¯̄Λ ¯̄ΣT
(

¯̄
Gmix

2
+ ¯̄Kmix

)

¯̄Σ

¯̄ΛT
(

¯̄
Gmix

2
+ ¯̄Kmix

)

¯̄Λ ¯̄ΛT
(

¯̄
Gmix

2
+ ¯̄Kmix

)

¯̄Σ



 (44)

=

(

O(ω2) O(1)
O(1) O(1)

)

(45)

A similar behavior is valid for the matrices ¯̄Tloc ¯̄G−1
mix

¯̄T, in fact

¯̄HT
D

(

¯̄Tloc ¯̄G−1

mix
¯̄T
)

¯̄H =





¯̄ΣT
(

¯̄Tloc
s

¯̄G−1

mix
¯̄Ts

)

¯̄Λ ¯̄ΣT
(

¯̄Tloc
s

¯̄G−1

mix
¯̄T
)

¯̄Σ

¯̄ΛT
(

¯̄Tloc ¯̄G−1
mix

¯̄Ts

)

¯̄Λ ¯̄ΛT
(

¯̄Tloc ¯̄G−1
mix

¯̄T
)

¯̄Σ



 (46)

=

(

O(ω2) O(1)
O(1) O(1)

)

(47)

It can be shown that
¯̄HT
D
¯̄Vmix
H =

(

O(ω)
O(1)

)

(48)



and that
¯̄HT ¯̄V =

(

O(ω)
O(1)

)

(49)

[19]. Moreover, notice that

¯̄HT
D
¯̄Tloc ¯̄G−1

mixV̄ = ¯̄HT
D
¯̄Tloc ¯̄HD

(

¯̄HT ¯̄Gmix
¯̄HD

)−1 ¯̄HT V̄ (50)

=

(

O(ω) O(ω)
O(ω) O(1)

)(

O(1) ¯̄0
O(1) O(1)

)(

O(ω)
O(1)

)

(51)

=

(

O(ω)
O(1)

)

(52)

Finally, the equation

¯̄HT
D

(

α ¯̄Tloc ¯̄G−1
mix

¯̄T+
¯̄Gmix

2
+ ¯̄Kmix

)

¯̄H
(

¯̄H−1Ī
)

= ¯̄HT
D

(

α ¯̄Tloc ¯̄G−1
mixV̄ + V̄mix

H

)

(53)

has the structure
(

O(ω2) O(1)
O(1) O(1)

)

(

¯̄H−1Ī
)

=

(

O(ω)
O(1)

)

(54)

from which
(

¯̄H−1Ī
)

=

(

O(1)
O(ω)

)

(55)

which is a physical scaling in accordance to the continuity equation

∇ · J (r) = O(ω). (56)

Preconditioning of the Loop-Star decomposed YC-CFIE

Equations (53) and (54) shows that the mixed discretized YC-CFIE (38) is stable till statics when
infinite precision is used. In practice, however, finite precision requires that (53) instead (38) is
actually solved at very low-frequencies. Unfortunately, the use of the Loop-Star decomposition
introduces an additional h-dependenent ill-conditioning that needs to be regularized [22]. Since up
to compact operators

(

α ¯̄Tloc ¯̄G−1
mix

¯̄T+
¯̄Gmix

2
+ ¯̄Kmix

)

≍ ¯̄Gmix (57)

we get that

¯̄HT
D

(

α ¯̄Tloc ¯̄G−1
mix

¯̄T+
¯̄Gmix

2
+ ¯̄Kmix

)

¯̄H ≍ ¯̄HT ¯̄Gmix
¯̄H (58)



So that we can use as a left regularizer for the Loop-Star decomposed YC-CFIE the matrix

¯̄P = ¯̄H−1

D

(

¯̄HT
)−1

=
[

¯̄Σ, ¯̄Λ
]−1

[

¯̄Λ
¯̄Σ

]−1

(59)

=





(

¯̄ΣT ¯̄Σ
)−1 ¯̄ΣT

(

¯̄ΛT ¯̄Λ
)−1 ¯̄ΛT





[

(

¯̄ΛT ¯̄Λ
)−1 ¯̄ΛT ,

(

¯̄ΣT ¯̄Σ
)−1 ¯̄ΣT

]

(60)

=





¯̄0
(

¯̄ΣT ¯̄Σ
)−1

(

¯̄ΛT ¯̄Λ
)−1

¯̄0



 (61)

Note that the inverses required by the definition of ¯̄P can be obtained by using a preconditioned
scheme for inverting the Laplacian (matrix ¯̄ΛT ¯̄Λ) and a direct inversion scheme (matrix ¯̄ΣT ¯̄Σ) as
explained in [22]. Finally, the preconditioned Loop-Star decomposed YC-CFIE reads

¯̄P ¯̄HT
D

(

α ¯̄Tloc ¯̄G−1
mix

¯̄T+
¯̄Gmix

2
+ ¯̄Kmix

)

¯̄H
(

¯̄H−1Ī
)

= ¯̄P ¯̄HT
D

(

α ¯̄Tloc ¯̄G−1
mixV̄ + V̄mix

H

)

(62)

to be solved in the unknown
(

¯̄H−1Ī
)

.

Numerical results
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