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Abstract: A novel numerical scheme is presented for the computation and tabulation of the scalar Green 
function in bi-anisotropic media and its derivatives. The main idea in the proposed scheme is to expand 
the scalar Green function into Gegenbauer polynomials. Besides quite naturally yielding a storage scheme 
for the scalar Green function, this approach allows a unique trick for computing its derivatives. The trick 
is based on the fact that the polynomial expansion coefficients for plane waves are analytically known in 
terms of Bessel functions. This allows the numerical computation of polynomial expansion coefficients 
that are much smaller than the machine precision. This in turn allows the derivatives of the scalar Green 
function to be accurately and robustly computed as the derivatives of polynomials.  

  
Keywords: Bi-anisotropic Media, Scalar Green Function, Derivatives, Accurate Computation, Tabulation 

  
 

1. Introduction 
 
Bi-anisotropic media are the most general media that can be described using linear constitutive equations. 
These media have received much attention in the past, because of the plethora of applications in various 
microwave components such as depolarizers, polarimeters and directional couplers [1]. In addition, the bi-
anisotropy of materials is of importance in the study of metamaterials.  

From a computational point of view, however, bi-anisotropic media present many difficulties. The 
sheer number of parameters in the constitutive equations allows for many potentially troublesome cases, 
and no numerical technique can be expected to work for all possible materials. Nevertheless, it is rather 
straightforward to formally extend the Finite Element Method (FEM) to bi-anisotropic media [1]. For 
Boundary Integral Equation (BIE) techniques, such an extension is much more difficult because of two 
major problems. The first problem is that the Green dyadics of the used medium need to be computed one 
way or another. There are four Green dyadics: one for each possible combination of current type (electric 
or magnetic) and field type (also electric or magnetic). The need for the Green dyadics has resulted in 
much research into the construction of explicit formulas for these Green dyadics [2,3]. Despite dramatic 
progress, however, the class of media for which explicit formulas are available is still a small subset of 
the full parameter space. The second problem is the computation of the impedance integrals required in 
the discretization of the integral equation. Since there are no analytical expressions for the Green dyadics 
in the general case, mainstream techniques such as singularity extraction cannot be used. Arguably, these 
two problems are the prime reasons why BIEs have only scarcely been applied to bi-anisotropic media. 

In this contribution, the first problem will be tackled. As has been shown in the literature [4], the 
computation of the Green dyadics can be reduced to the computation of one scalar Green function that 
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satisfies a fourth-order partial differential equation. The Green dyadics can then be obtained from this 
scalar Green function by means of at most fourth-order derivatives. Here, a novel numerical scheme for 
the evaluation and tabulation of the scalar Green function in bi-anisotropic media is presented. It relies on 
the expansion of the scalar Green function into Gegenbauer polynomials. This approach leads to an 
exponentially converging representation of the scalar Green function, which means that only a moderate 
number of polynomial coefficients need to be stored to get a highly accurate result. In addition, the 
properties of the Gegenbauer polynomials can be leveraged to allow the numerically stable computation 
of the expansion coefficients, even if they are much smaller than the machine precision (relative to the 
leading expansion coefficient). In the following, the established theory behind the scalar Green function 
will be summarized, followed by the derivation of the Gegenbauer polynomial coefficients and some 
numerical results. 
 

2. The Scalar Green Function 
 

Maxwell’s curl equations in the frequency domain are given by 
(1) 

 

(2) 
 

 

with constitutive equations 
 

(3) 
 

(4) 

A medium is called anisotropic when the magneto-electric coupling tensors, i.e.  and  , are zero. In the 
isotropic case, all parameter tensors are scalars. For the computation of the fields generated by the 
currents, the bi-anisotropic medium is assumed to be homogeneous and to extend to infinity in all 
directions. A spatial Fourier transform of these equations then replaces  with . This allows 
Maxwell’s equations to be written in a concise matrix form 

 
(5) 

 
 

with 
 

 (6) 
 

Here,  denotes the slowness, defined by . Solving the system of linear equations (5) can be done 
by means of the adjugate matrix of : 

 
(7) 

 
The denominator is usually called the Helmholtz determinant  and defines the scalar Green function 
by means of the inverse Fourier transform 

 
(8) 

 
 

A convenient frequency-independent Green function was introduced here, which is given by 
 

(9) 
 

 
 



Taking the inverse Fourier transform of equation (5) shows that the fields are basically the convolution of 
the inverse Fourier transform of  with the currents. Therefore, the inverse Fourier transform of  
can be interpreted as a concatenation of the four Green dyadics. When studying formula (7), it can be seen 
that the elements of ’s adjugate are polynomials of degree four in the components of . The inverse 
Fourier transform maps this adjugate matrix to an operator containing only spatial derivatives. Therefore 
it can be concluded that the inverse Fourier transform of , i.e. the four Green dyadics, can be 
numerically computed if the scalar Green function and its derivatives (up to fourth order) can be 
computed. This shows why it is important to be able to accurately compute derivatives of the scalar Green 
function.  
 
 

3. Computing the Gegenbauer Polynomial Coefficients 
 
The Gegenbauer polynomials  (sometimes also called the ultraspherical polynomials) are the 

family of orthogonal polynomials associated with the weighting function  on the interval [-
1,1]. These polynomials satisfy the following addition theorem [5] 

 
(10) 

 
which is valid on the interval [-1,1]. However, using elementary manipulations, it can be modified to 

 
(11) 

 
This expression is valid on the interval [c-a,c+a]. The parameter  can be freely chosen within the 
limitations given in equation (10). 

Now, the exponential in the integral representation of the frequency-independent Green function (9) 
can be split into three factors, one for each Cartesian coordinate. When each of these factors is expanded 
into Gegenbauer polynomials using equation (11), the following is obtained  

 
(12) 

 
with the coefficients 

(13) 
Expansion (12) is valid in a rectangular region with center  and sides  in the three Cartesian 
coordinate directions.  

It is worthwhile to point out that the normal procedure for expanding a function into orthogonal 
polynomials is the computation of inner products between the function and the polynomials (with the 
correct weighting function). In the case of the scalar Green function, this would mean that a six-fold 
integral would have to be computed for each coefficient. Thanks to addition theorem (10), however, this 
prohibitively expensive operation is avoided.  

In addition, if the inner products would be computed numerically, their absolute error would be 
inherently limited to around the machine precision. Because the Bessel functions in equation (13) 
converge to zero very quickly once their order exceeds their argument, this would result in large relative 
errors, which would show up in the computation of the derivatives. This problem is solved by using 
equation (13), because there exist efficient and accurate computation routines for the Bessel functions that 
fully capture this convergence to zero (up till the point where underflow occurs). For example, the Matlab 
routines for computing Bessel functions have no problems producing values that are much smaller than 
the machine precision. The fact that this is possible is crucial for the accurate computation of the 



polynomial coefficients that have a small magnitude.  
Finally, the triple integral in equation (9) has to be evaluated. Since it is easy to show that the factor 

between square brackets in equation (13) is actually an entire function, it is possible to do one integration 
analytically by means of complex contour integration. The remaining two integrations can then be done 
using adaptive quadrature. 
 
 

3. Numerical Results 
 
For the numerical tests,  was chosen. In this case, the Gegenbauer polynomials reduce to the 

Legendre polynomials. In [6], closed form expressions are given for various Green functions. From these 
results, the frequency-independent scalar Green function for a uniaxially anisotropic medium can be 
found. For this example, the medium dyadics where chosen as 

    
 

(14) 
 

with the parameters having numerical values  
Figure 1 shows a comparison between the numerically computed scalar Green function and the 

analytical expression for points on a line between [1,1,1] and [1,1,3]. The tolerance for the adaptive 
integration was set to 1.0e-12, and the highest degree of the Legendre polynomials that were used was 36. 
Excellent agreement between the curves for the numerically and analytically computed Green function 
can be observed. Indeed, the relative error between the two is less than 1.0e-13 for this example. It should 
be pointed out that, even though the magnitude of the Green function does not change much in the plot, 
the phase does change. The relative error on all derivatives up to fourth order is also shown, again 
confirming the accuracy of the approach. 

 
 

 
 
 

 
 
 
 

Figure 1:  Comparison of the numerically computed scalar Green function (GF) with the 
analytical result. Excellent accuracy is obtained for the scalar Green function and its derivatives. 



 
7. Conclusions 

 
A novel scheme for the computation and tabulation of the scalar Green function for bi-anisotropic 

media has been developed. Leveraging the unique properties of the Gegenbauer polynomials allows the 
accurate computation and tabulation of both the scalar Green function and its derivatives, thereby opening 
the door to the investigation of boundary integral methods in bi-anisotropic media. 
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