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Abstract: A novel numerical scheme is presented for the etatipn and tabulation of the scalar Green
function in bi-anisotropic media and its derivaivdhe main idea in the proposed scheme is to expan
the scalar Green function into Gegenbauer polynismBesides quite naturally yielding a storage sahe
for the scalar Green function, this approach allawsnique trick for computing its derivatives. Thiek

is based on the fact that the polynomial expansafficients for plane waves are analytically knawn
terms of Bessel functions. This allows the numémomputation of polynomial expansion coefficients
that are much smaller than the machine precisibis ifi turn allows the derivatives of the scalae&r
function to be accurately and robustly computethagerivatives of polynomials.
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1. Introduction

Bi-anisotropic media are the most general meditdaa be described using linear constitutive equati
These media have received much attention in thie pesause of the plethora of applications in wegio
microwave components such as depolarizers, polegiand directional couplers [1]. In addition, Hie
anisotropy of materials is of importance in thedgtof metamaterials.

From a computational point of view, however, bismiopic media present many difficulties. The
sheer number of parameters in the constitutive temsallows for many potentially troublesome cases
and no numerical technique can be expected to fewrkll possible materials. Nevertheless, it iheat
straightforward to formally extend the Finite Elethé/ethod (FEM) to bi-anisotropic media [1]. For
Boundary Integral Equation (BIE) techniques, suotegtension is much more difficult because of two
major problems. The first problem is that the Grdgadics of the used medium need to be computed one
way or another. There are four Green dyadics: onedch possible combination of current type (elkect
or magnetic) and field type (also electric or magneThe need for the Green dyadics has resuhed i
much research into the construction of explicitdatas for these Green dyadics [2,3]. Despite dramat
progress, however, the class of media for whicHigkformulas are available is still a small subsé
the full parameter space. The second problem isdhgutation of the impedance integrals required in
the discretization of the integral equation. Sitteere are no analytical expressions for the Greedids
in the general case, mainstream techniques susim@sdarity extraction cannot be used. Arguablgsth
two problems are the prime reasons why BIEs halyesmarcely been applied to bi-anisotropic media.

In this contribution, the first problem will be tded. As has been shown in the literature [4], the
computation of the Green dyadics can be reducede@omputation of one scalar Green function that


https://core.ac.uk/display/55728256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

satisfies a fourth-order partial differential eqoat The Green dyadics can then be obtained fras th
scalar Green function by means of at most fourtteoderivatives. Here, a novel numerical scheme for
the evaluation and tabulation of the scalar Greetfon in bi-anisotropic media is presented. lieseon

the expansion of the scalar Green function into é@bguer polynomials. This approach leads to an
exponentially converging representation of theac@reen function, which means that only a moderate
number of polynomial coefficients need to be storedyet a highly accurate result. In addition, the
properties of the Gegenbauer polynomials can berdeed to allow the numerically stable computation
of the expansion coefficients, even if they are Imamaller than the machine precision (relativehi® t
leading expansion coefficient). In the followinggetestablished theory behind the scalar Greenifumct
will be summarized, followed by the derivation dietGegenbauer polynomial coefficients and some
numerical results.

2. TheScalar Green Function

Maxwell’s curl equations in the frequency domaie given by

V xe(r) = —jwb(r)—m(r), 1)
V xh(r) = jwd(r)+j(r), )
with constitutive equations B
d(r) =£-e(r) + - h(r), ®3)
b(r) =C-e(r)+ji-h(r). (4)

A medium is called anisotropic when the magnetetdtecoupling tensors, i.€. a¢d , are zerohi t
isotropic case, all parameter tensors are scafams.the computation of the fields generated by the
currents, the bi-anisotropic medium is assumed eéohbmogeneous and to extend to infinity in all
directions. A spatial Fourier transform of theseuaiipns then replacev — wit/k . This allows
Maxwell’'s equations to be written in a concise Iixatrm
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Here,s denotes the slowness, definek = ws . SolViagystem of linear equations (5) can be done
by means of the adjugate matrixP>f
L Ad(P) -
Det(P)

The denominator is usually called the HelmholtzdeinantD(s) and defines the scalar Green function
by means of the inverse Fourier transform

G (r) = # /Z /Z /Z T%)dk: — WPG(wr). ®)

A convenient frequency-independent Green functian imtroduced here, which is given by
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Taking the inverse Fourier transform of equationsftows that the fields are basically the convohutf

the inverse Fourier transform P~*  with the curreffiserefore, the inverse Fourier transformP "

can be interpreted as a concatenation of the foeeisdyadics. When studying formula (7), it carséen
that the elements ® ’s adjugate are polynomialslegfree four in the componentskf . The inverse
Fourier transform maps this adjugate matrix to perator containing only spatial derivatives. Theref

it can be concluded that the inverse Fourier t@nsfof P!, i.e. the four Green dyadics, can be
numerically computed if the scalar Green functiord ats derivatives (up to fourth order) can be
computed. This shows why it is important to be ablaccurately compute derivatives of the scalae@r
function.

3. Computing the Gegenbauer Polynomial Coefficients

The Gegenbauer polynomizCi(t)  (sometimes also caﬂiemltraspherlcal ponnomlaIs) are the

family of orthogonal polynomials associated witle teighting functior(1 — ¢ i : on the interval [-
1,1]. These polynomials satisfy the following addittheorem [5]

. 2T (v ;
et = #Z( v+ k)i T, (V) CY(t), Vv # {0, -1, -2, ...}, (10)
k=0
which is valid on the interval [-1,1]. However, ngielementary manipulations, it can be modified to

ivt we 2T (V) - t—c
et =e (wa)? %( 4+ k)i* T,k (va) CF < - > . (11)
This expression is valid on the interval [c-a,c+Bhe parameterr can be freely chosen within the
limitations given in equation (10).

Now, the exponential in the integral representatibthe frequency-independent Green function (9)
can be split into three factors, one for each Gatecoordinate. When each of these factors isrelqzh
into Gegenbauer polynomials using equation (1¥ feHowing is obtained
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with the coefficients
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Expansion (12) is valid in a rectangular regionhwéenterc and siddaz, @y, a:]  in the three Cartesian
coordinate directions.

It is worthwhile to point out that the normal prdoee for expanding a function into orthogonal
polynomials is the computation of inner productéween the function and the polynomials (with the
correct weighting function). In the case of thelac#&reen function, this would mean that a six-fold
integral would have to be computed for each coefiic Thanks to addition theorem (10), howevers thi
prohibitively expensive operation is avoided.

In addition, if the inner products would be computeumerically, their absolute error would be
inherently limited to around the machine precisi@ecause the Bessel functions in equation (13)
converge to zero very quickly once their order exsetheir argument, this would result in largetreda
errors, which would show up in the computation loé derivatives. This problem is solved by using
equation (13), because there exist efficient acdrate computation routines for the Bessel funstitbrat
fully capture this convergence to zero (up till fwnt where underflow occurs). For example, thelada
routines for computing Bessel functions have ndlems producing values that are much smaller than
the machine precision. The fact that this is pdesib crucial for the accurate computation of the



polynomial coefficients that have a small magnitude

Finally, the triple integral in equation (9) hashte evaluated. Since it is easy to show that tbiifa
between square brackets in equation (13) is agtaallentire function, it is possible to do one gnéion
analytically by means of complex contour integnatibhe remaining two integrations can then be done
using adaptive quadrature.

3. Numerical Results

For the numerical testv = 0.5  was chosen. In this ¢hse(Gegenbauer polynomials reduce to the
Legendre polynomials. In [6], closed form expressiare given for various Green functions. Fromehes
results, the frequency-independent scalar Greentitum for a uniaxially anisotropic medium can be
found. For this example, the medium dyadics whaosen as

Et 0 0 Lt 0 0 _ _
e=10 &g O0{,u=10 pu O0f,&=C=0. (14)
0 0 e, 0 0 pu
with the parameters having numerical vale: = 2.0 — 0.014, €. = 1.0 — 0.014, fty = 1.5 — 0.014, jt- = 2.5 — 0.01,

Figure 1 shows a comparison between the numericallyputed scalar Green function and the
analytical expression for points on a line betw§kd,1] and [1,1,3]. The tolerance for the adaptive
integration was set to 1.0e-12, and the highestedegf the Legendre polynomials that were used3@as
Excellent agreement between the curves for the rioally and analytically computed Green function
can be observed. Indeed, the relative error betweetwo is less than 1.0e-13 for this examplshduld
be pointed out that, even though the magnitudé®iGreen function does not change much in the plot,
the phase does change. The relative error on aWadiwes up to fourth order is also shown, again
confirming the accuracy of the approach.
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Figure 1: Comparison of the numerically computed scalar Graarctior (GF) with the
analytical result. Excellent accuracy is obtainedtiie scalar Green function and its derivatives.



7. Conclusions

A novel scheme for the computation and tabulatibthe scalar Green function for bi-anisotropic
media has been developed. Leveraging the uniguyeepies of the Gegenbauer polynomials allows the
accurate computation and tabulation of both thé&as€reen function and its derivatives, therebyripg
the door to the investigation of boundary integnathods in bi-anisotropic media.
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