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Abstract

In this paper we consider the clustering of
text documents using the Chinese Restau-
rant Process (CRP) and extensions that take
time-correlations into account. To this pur-
pose, we implement and test the Distance
Dependent Chinese Restaurant Process (DD-
CRP) for mixture models on both generated
and real-world data. We also propose and im-
plement a novel clustering algorithm, the Av-
eraged Distance Dependent Chinese Restau-
rant Process (ADDCRP), to model time-
correlations, that is faster per iteration and
attains similar performance as the fully dis-
tance dependent CRP.

1. Introduction

Non-parametric clustering algorithms have been used
often in the classification of text documents. These al-
gorithms exist in plenty of variations, that are gener-
ally referred to through some metaphor with a restau-
rant where exotic cuisine is served. The simplest of
them is the Chinese Restaurant Process, and it will
provide a starting point for the discussions in this pa-
per.

However, these algorithms generally assume that the
data is independent and identically distributed (iid).
Such an assumption is questionable in many cases. To-
day’s newspaper articles show a high correlation with
what was in the news yesterday, and scientific papers
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tend to be generated in areas were researchers see in-
terest, generally through what was written earlier by
their colleagues.

Recently a new clustering algorithm, the Distance De-
pendent Chinese Restaurant Process, was proposed
(Blei & Frazier, 2011), that drops this assumption of
iid-draws by including a dependence on the distance
between data points. Note that the DDCRP can be
used for many applications. In this work we restrict
ourselves to document clustering with documents that
have a time stamp and are assumed to exhibit time-
correlations. We test and compare this algorithm with
the normal CRP and also propose a novel variation to
it, the Averaged Distance Dependent CRP, where the
distance is defined between data points and clusters.
We also test this new algorithm and compare it with
the previous ones.

This paper is structured as follows: first we provide a
short introduction to the algorithms, where the focus is
not on completeness but on summarizing the necessary
concepts. Next we show what draws from all three
processes look like and finally we discuss our testing
method and apply it to a real-world dataset.

2. Algorithms

In document clustering, documents are often modelled
as a bag of words, in which the order of the words
is ignored. Through this assumption, the documents
can be modelled as if they are generated by a latent
topic, where the topic governs the parameters of the
multinomial distribution from which their words are
drawn. These parameters are assumed to be drawn
from a Dirichlet prior, that is unobserved, but can be
learned from the data.
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More precisely, a list of all unique words w =
(w1, . . . , wN ) that occur in the documents can be con-
structed. A document is then represented by a vec-
tor x = (n1, . . . , nN ), where ni denotes the number
of times the word wi appears in the document. If a
documents belongs to a cluster, it is assumed to have
been generated from a multinomial distribution with
parameters determined by that cluster. Denoting the
parameters of this distribution as θ = (θ1, . . . , θN ),
with

∑
n θn = 1, the probability to find a certain doc-

ument x is given by

p(x | θ) ∼ θn1
1 . . . θnN

N (1)

In the algorithms discussed in this paper, the probabil-
ity of the parameters θ is assumed to follow a Dirichlet
distribution. We denote this distribution as G0 and
its parameters as g1, . . . , gN . Thus the likelihood of a
given vector θ is

p(θ | G0) ∼ θg1−11 . . . θgN−1N (2)

In mixture models the parameters g1, . . . , gN are deter-
mined by the documents already present in the cluster.

2.1. The Chinese Restaurant Process

The Chinese Restaurant process is a process that
generates a distribution over partitions (topics) from
which sampling is possible (Neal, 2000). The sim-
plest of the sampling methods is based on Gibbs sam-
pling (Bishop, 2007) and through this sampling the
CRP becomes a powerful clustering algorithm, based
on probabilistic cluster assignments. It has many in-
teresting mathematical properties that are reviewed in
(Teh et al., 2006). We repeat only the very basics.

In the CRP, a data point can be assigned to previ-
ously formed clusters with a probability that is pro-
portional to the amount of points already in such a
cluster. A data point can also be assigned to a new
cluster with a certain probability. This can be ex-
pressed intuitively trough a metaphor, from which the
CRP borrows its name, where customers successively
enter a Chinese restaurant and decide to sit at tables
(the clusters that will be formed) with a probability
proportional to the amount of customers already sit-
ting at the table. They can also decide to sit at a
new table with a certain probability proportional to a
fixed constant. If we denote the data point that is to
be assigned as i, the cluster assignment of i as ci, the
partition of the previous data points defined by the
clustering as zi−1 = (z1, . . . , zn) and the constant to
which the probability to start a new cluster is propor-
tional as α, the previous considerations can be written
as:

p(ci = zk | zi−1, α) ∝

{
nk if zk ∈ zi−1

α if zk = new table
(3)

where nk denotes the number of data points in cluster
k. As described previously, documents are considered
to be generated from a multinomial distribution, with
parameters determined by the cluster assignment. The
probability that a document xi is assigned to a cluster
zk, containing a set of documents {xj ∈ zk}, is then
also proportional to the predictive probability that this
document could have been generated by this cluster.
This predictive probability is obtained by integrating
out the parameters θ weighted by their Dirichlet like-
lihood:

p(xi | {xj ∈ zk}) ∝
∫
p(xi | θ)p(θ | {xj ∈ zk}, G0)dθ

(4)

The Gibbs sampling algorithm for the CRP then suc-
cessively removes documents from their cluster and re-
assigns them to one of the other clusters according to
the appropriate probabilities. These probabilities fol-
low from combining equation (3) and (4) and are given
by

p(ci = zk | zi−1,x, G0) ∝{
nk
∫
p(xi | θ)p(θ | {xj ∈ zk}, G0)dθ if zk ∈ zi−1

α if zk = new table

(5)

Since the multinomial and Dirichlet are conjugate dis-
tributions, a closed form of integral 4 exists, allowing
for computationally effective sampling.

2.2. The Distance Dependent Chinese
Restaurant Process

The distance dependent Chinese restaurant process
can be seen as an extension of the normal CRP. How-
ever, now the customers don’t sit at tables, but are
linked to each other, and the tables arise merely as
clusters of connected customers. The customers are
assumed to have a sequential variable (e.g.. a time
stamp) through which we can calculate a distance dij .
The probability for a customer i to sit with customer
j is then

p(ci = j | D,α) ∝

{
f(dij) if j 6= i

α if j = i
(6)
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where f is some kind of decaying function, D the dis-
tance matrix and ci represents the customer to which
i links. To model time correlations one usually takes
dij = ∞ if j has a larger time stamp then i, so that
no customer can be assigned to a future customer.
This decay function can be chosen so as to suit the
modellers needs. Good choices for f to model time-
correlation include an exponential function or a logis-
tic decay function. If f(d) = 1 for d <∞, the distance
dependent CRP reduces to the normal CRP.

Since in the DDCRP tables arise as clusters of con-
nected customers, the Gibbs sampler will have a
slightly different form than the Gibbs sampler for the
normal CRP. Instead of doing probabilistic cluster as-
signments, the Gibbs sampler will now do probabilis-
tic customer assignments. These assignments proba-
bilities are proportional to (6) and to the appropriate
mixture probabilities. If z(c−i) is a partition with clus-
ters (z1, ..., zn), formed by the links cj (j 6= i), then
the probability that the customer i will have a link ci
is given by

p(ci = j | c−i,x, α,D,G0) ∝
α if ci = i

f(dij) if ci does not join two clusters

f(dij)
p(x

zk(c−i)∪zl(c−i)
| G0)

p(x
zk(c−i)

| G0)p(xzl(c−i)
| G0)

if ci joins clusters k & l

(7)

Again, as we are modelling text documents, we have
words that are drawn from a multinomial distribution
and clusters from a Dirichlet distribution. Hence the
posterior probability

p(xzk(c) | G0) =

∫ ∏
i∈zk(c)

p(xi | θ)p(θ | G0)dθ (8)

can again be written in closed form through their re-
spective conjugacy.

2.3. The averaged distance dependent CRP

In this section we introduce a novel clustering algo-
rithm, the averaged distance dependent CRP (AD-
DCRP), that is a hybrid between the DDCRP and
the normal CRP. In this algorithm, the distance is
no longer defined between individual data points, but
between data points and clusters, through an aver-
aging procedure. If z(c−i) is a partition (z1, . . . , zn)
formed by the cluster-assignments (c1, . . . , ci−1), and
ti denotes the time stamp of the i’th document, the
distance between a data point i and a cluster zk is
defined as

dik = ti −
1

|Iik|
∑
j∈Iik

tj (9)

where Iik =
{
j|j ∈ zk ∧ tj < ti

}
is the set of docu-

ments in cluster k with time stamps smaller than the
time stamp of document i. Other definitions of this
distance are also possible, for instance by taking a
weighted mean

dik = ti −
∑
j∈Iik

f(ti − tj)∑
l∈Iik f(ti − tl)

tj (10)

and hence attributing more importance to closer data
points, or by simply taking the closest point

dik = min
j∈Iik

(ti − tj) (11)

to which we will respectively refer as the weighted
ADDCRP and the minimal ADDCRP. Note that if
|Iik| = 0, we set dik = ∞, so that no data point can
be assigned to clusters that contains only later data
points.

Cluster assignments are then drawn according to

p(ci = zk | D, zi−1α) ∝

{
f(dik)nk for zk ∈ zi−1

α for zk = new table

(12)

It can be readily seen that for f(d) = 1 if d < ∞ this
reduces again to the normal CRP. The probabilities of
assignment during a Gibbs-sampling run are given by
an analogous formula as equation (5) for the normal
CRP, but now they are weighted with a factor f(d).

p(ci = zk | zi−1,x, G0) ∝
f(dik)nk

∫
p(xi | θ)p(θ | {xj ∈ zk}, G0)dθ

if zk ∈ zi−1
α if zk = new table

(13)

3. Drawing from the CRP and its
variations

A useful way to gain intuitive understanding in what
draws from all three processes look like, is to run them
in a generative way. Successive data points are as-
signed to the previous data points according the for-
mulas (3), (6) and (12) for respectively the normal
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CRP, the fully distance dependent CRP and the aver-
aged distance dependent CRP. These assignments are
visualized in figure (1) for an exponential decay func-
tion f(d) = e−βd and for a few different values of the
parameters α and β. As one can see, draws from the
DDCRP and the ADDCRP look reasonably similar, as
the amount of formed clusters and their average length
in time are approximately equal, whereas draws from
the CRP are very different. This leads us to believe
that the DDCRP and the ADDCRP have similar per-
formance.

For testing purposes, we also generated full ‘docu-
ments’ of words drawn from a number of topics. That
way we could test and compare models on datasets
that are more manageable than real world datasets.
We could for instance choose the size of the vocabu-
lary. We now describe the procedure that we used to
generate those datasets.

Beside drawing assignments ci for data points xi by
using formulas (3), (6) and (12), words should, in a
fully generative context, be drawn from the predictive
probabilities

p(xi | {xj ∈ zk}) =

∫
p(xi | θ)p(θ | {xj ∈ zk}, G0)dθ

(14)

where zk is the mixture component to which ci points.
For practical reasons we followed a simpler approach,
where our vocabulary, containing W words, was split
up in a number of C different classes. For each mixture
component, we selected one or two of those classes as
main ‘topics’, and generated documents largely from
those main topics. On average we selected about two
thirds of the words in a document from those main
topics in a random fashion. The other third of the
words was selected from random other topics in the
vocabulary. For all our tests on generated data we
used W ' 800 − 900, C = 16 and on average 600
words per document.

4. Runtime

In this paragraph we consider the scaling properties
of the runtime of all three algorithms as a function
of the number of documents N . In the CRP and the
ADDCRP a document is assigned to one of the cluster
according to equations (5) (CRP) and (12) (DDCRP).
If there are K clusters, one has to calculate this likeli-
hood K times. Since the samplers successively remove
and reassign all elements once every iteration, an iter-
ation scales as O(KN). In the DDCRP, one calculates
the link assignment probabilities for every document

Figure 1. Draws from (a), (b) the normal CRP (c), (d) the
fully distance dependent CRP and (e), (f) the averaged
distance dependent CRP

(7). Nevertheless it is only necessary to evaluate the
computationally heavy mixture integrals (8) for clus-
ters that merge. This can be done in advance and thus
this step also scales as K. However, the bookkeeping
in the DDCRP is more involved, as one has to track
the cluster through a list of links. This causes the al-
gorithm to scale as O(KN2) rather than O(KN). We
show this effect in figure 2 for data generated by the
procedure describe in paragraph 3. Note that these
considerations only apply to the runtime per iteration.
As Blei and Frazier note, the number of iterations un-
til convergence can be much smaller in the DDCRP,
as that sampler can move whole chunks of clusters at
once, whereas the samplers for the CRP and ADD-
CRP only move one element at a time. This depends
however heavily on the data at hand, and we did not
notice this effect in our experiments.
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Figure 2. Average runtime per iteration as a function of
the number of documents

5. Prediction

The goal of analysing data with time-correlations
is often to estimate the likelihood of future data
points. Suppose that N documents, represented by
the vector x, are clustered by an algorithm in a par-
tition (z1, . . . , zn) by the cluster assignments c =
(c1, . . . , cN ) (in the case of the distance dependent
CRP, c denotes the element assignments). The total
predictive likelihood for a given later document xnew
is then given by

p(xnew | x, D,G0, α) =
∑
cnew

∑
c

p(cnew | c, D, α)

p(xnew | cnew, c,x, G0)p(c | x, D, α,G0) (15)

where D is the distance matrix. The last factor on
the right hand side denotes the probability of a given
partition, given the model and the data. Since only
sequential data is considered, the assignment of a new
data point does not change the probability of the pre-
vious assignments. Hence the sum over c can be esti-
mated by averaging over different clustering runs. The
second factor is the probability of the new data point
under the assignment cnew. This can be computed
with the standard inference methods. The first factor
is the probability of that assignment. As can be seen
from (3), (6) and (12), this probability is in the most
general case only dependent on the previous assign-
ments and the distance matrix. Under the distance
dependent CRP this probability becomes independent
of the previous assignments and (15) reduces to

p(xnew | x, D,G0, α) =
∑
cnew

p(cnew | D,α)∑
c

p(xnew | cnew, c,x, G0)p(c | x, D, α,G0) (16)

Under the normal CRP it follows that these assign-
ment probabilities are all equal, and therefore equation
(16) simplifies further to

p(xnew | x, D,G0, α) =

1

N

∑
cnew

∑
c

p(xnew | cnew, c,x, G0)p(c | x, D, α,G0)

(17)

This can be seen from the interpretation of a normal
CRP as a distance dependent CRP with f(d) = 1 if
d <∞.

6. Held-out likelihood as a comparative
test

To test the performance of our model we follow the
approach of Blei and Frazier (Blei & Frazier, 2011)
and compute the so-called held-out likelihood. Sup-
pose a dataset contains M documents and the clus-
tering is performed on a smaller number N of earlier
documents. The held-out likelihood of a later docu-
ment is then defined as the predictive likelihood for
this document, given the N earlier documents and the
clustering. This is nothing else than equation (15).
The held-out likelihood is a measure of how well the
held-out data can be predicted by the mixture compo-
nents created by the clustering algorithm. Hence al-
gorithms that achieve a higher likelihood can be seen
as better performing in this context.

Blei and Frazier computed this held-out likelihood on
real-world datasets of newspaper articles and scien-
tific papers. They concluded that in most cases the
DDCRP is a better model than the normal CRP. We
replicate those tests on another dataset and also per-
form them for the ADDCRP. We used abstracts from
award winning papers from the National Science Foun-
dation1, with submission dates ranging from 1989 to
1995, where we removed a standard list of stop-words
and words that appeared only once in an abstract.

If we look at the held-out likelihood in function of the
training set size, figure (3a), we see that the likelihood
increases as the training set size is increased, the ex-
pected behaviour.

1http://kdd.ics.uci.edu/databases/nsfabs/
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In figure (3b) we compare the different clustering mod-
els. Both the DDCRP and the ADDCRP perform bet-
ter than the CRP. Their relative performance is how-
ever dependent on the choice of the decay parameter,
which has to be adjusted to the data.

Figure 3. (a) The held-out likelihood in function of the
number of training documents, for the CRP, DDCRP
and ADDCRP. Here the held-out likelihood is averaged
over 10 test documents. (b) Held-out likelihood in func-
tion of the decay parameters for the various models for
two different decay functions, exponential: f(d; a) =
exp(−d/a), and the logistic decay function: f(d; a, b) =
1/ (1 + exp([−d + a]/b)). Where b is fixed at 0.5 year. Note
that as the CRP has no dependency on the decay param-
eter, it is just a constant. Here the held-out likelihood is
averaged over 50 test-documents

7. Conclusion

We have implemented and tested two methods, a new
one (ADDCRP) and an already existing one (DD-
CRP), for clustering time-correlated data in the con-
text of mixture models applied to document mod-
elling. We introduced the ADDCRP as a method
to model time-correlations that scales in a similar

way as the CRP if the document number is in-
creased. Implementation-wise, the ADDCRP has the
same complexity as the CRP, whereas the DDCRP is
more complex because the clusters have to be tracked
through a list of links. We found that the ADD-
CRP also achieved better performance than the DD-
CRP on our data, according to the held-out likeli-
hood measure. The performance is however depen-
dent on the choice of the decay parameter. We have
shown that for their main goal, the prediction of future
data, all the distance dependent variants reach bet-
ter performance than the original CRP. Hence they
form an interesting subject of future research. For
instance, a question that arises naturally is whether
an algorithm can be found that can learn the de-
cay parameter β from the data. If some probabilis-
tic framework could be found for this, algorithms as
discussed here could become very powerful. Another
question that relates to our newly proposed algorithm,
is whether it can also be applied successfully to other
domains where non-parametric clustering algorithms
are used. Applications where the DDCRP can out-
perform the CRP are numerous (image compression,
language modelling,...). Hence an interesting topic for
future research would be to investigate whether the
ADDCRP can match the performance of the DDCRP
in those applications. If performance would turn out
to be equivalent, the modellers choice will ultimately
be determined by the trade-off between the conver-
gence time and the runtime per iteration, both can
vary heavily dependent on the application. Modelling
time- and other correlations through a distance de-
pendence is not yet explored very thoroughly in the
context of non-parametric clustering algorithms, and
as such these questions are very interesting to address
in future research.
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