

Department of Information Technology INTEC

Application of Circuit/Field Co-optimization Techniques to IEC 61967/62132 Test Boards

D. Vande Ginste*(1), H. Rogier(1), D. De Zutter(1), and H. Pues(2) (1) Dept. of Information Technology, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium (2) Melexis N.V., Transportstraat 1, B-3980 Tessenderlo, Belgium

Department of Information Technology - Electromagnetics Group

- Introduction
- Circuit/field co-optimization with ADS-Momentum (Agilent EEsof EDA)
- Application of circuit/field co-optimization to DPI test board design
- Conclusions

INTEC - Electromagnetics Group

- Introduction
- Circuit/field co-optimization with ADS-Momentum (Agilent EEsof EDA)
- Application of circuit/field co-optimization to DPI test board design
- Conclusions

INTEC - Electromagnetics Group

p. 3

Introduction

- Design of PCBs for IC-level EMC tests: conducted emission and immunity testing (e.g. 150 Ohm method and DPI) and radiated emission and immunity testing (TEM-cell)
- Important issues:
 - Transfer characteristics of RF coupling path (from SMA to IC-pin):
 - maximal deviation < 3 dB
 - · no resonances allowed
 - Extension of frequency range: from 150 kHz to 2.5 GHz (instead of 1 GHz)
- Optimization of test and application boards by prototyping and measuring is costly and timeconsuming
 - => Circuit/field co-optimization is necessary

INTEC - Electromagnetics Group

- Introduction
- Circuit/field co-optimization with ADS-Momentum (Agilent EEsof EDA)
- Application of circuit/field co-optimization to DPI test board design
- Conclusions

INTEC - Electromagnetics Group

DPI Test Board Design

Problem statement:

- Determine transfer characteristics (S-parameters) of RF coupling path (from SMA to IC-pin):
 - maximal deviation < 3 dB
 - no resonances allowed

How?

- Replace IC-pin by 50 Ohm termination
- Calculate S-parameters
- Incorporate all high-frequency effects!

INTEC - Electromagnetics Group

- Melexis
- At high frequencies it is crucial to include the board characteristics!!
- Board:
 - Double-sided FR4
 - substrate thickness = 1.6 mm
 - relative permittivity = 4.35
 - · Grounded Co-Planar Waveguide
 - · IC (DUT) placed at the bottom side
 - All other components placed at top side
 - SMA at port 1
 - Port 2 is placed at the position of the DUT's VDD-pin

INTEC - Electromagnetics Group

DPI Test Board Design

Analysis of RF power injection path

Observations

- Values of the capacitor and inductor are too low
 => these need to be optimized!!
- A resonance occurs at 1.64 GHz. This is due to the signal via. As the board is rather thick, the return path is not well-defined. To minimize the flux in the RF-loop, ground vias should be placed near the signal via.
 - => the positions of the ground vias have to be optimized!!

INTEC - Electromagnetics Group

Conclusions

- High-frequency phenomena corrupt (the interpretation of) IC-level EMC tests
- These phenomena, occurring at the board level, can only be accurately determined by EM (field) simulations of the board
- This becomes especially important at frequencies exceeding 1 GHz
- Circuit/field co-optimization leads to rapid, easy, and cheap design of test boards
- Extensions: more complex structures including cross-talk between RF-paths, 4-layer boards, ...

INTEC - Electromagnetics Group

Proceedings of the
20th International Zurich Symposium
on Electromagnetic Compatibility

Laboratory for Electromagnetic Fields and Microwave Electronics ETH Zurich

Zurich, Switzerland
© 2009 ISBN 978-3-9523286-6-8
IEEE Catalog Number: CFP09628-CDR

CDROM contents prepared by Causal Productions (info@causalproductions.com)