
In several application domains such as biol-
ogy, computer vision, social network analy-
sis and information retrieval, multi-class clas-
sification problems arise in which data in-
stances not simply belong to one particular
class, but exhibit a certain membership to
all the classes. Often referred to as learn-
ing fuzzy, mixed or partial memberships, this
type of problems has been recently studied in
fields like fuzzy set theory, statistics and ma-
chine learning, mainly from an unsupervised
learning perspective. Given the interpreta-
tion of fuzzy class memberships in real-world
applications, we present a supervised proba-
bilistic approach. To this end, we show in
particular how kernel-based logistic regression
models can learn fuzzy memberships in an
adequate manner, just by replacing zero-one-
coded class labels by fuzzy labels in the like-
lihood function. Empirical results on several
real-world data sets show that our approach
leads to quasi-identical results but a tremen-
dous gain in computational complexity, when
compared with a naive algorithm that trans-
forms each fuzzy class label into many zero-
one coded class labels.

Keywords: fuzzy/mixed/partial member-
ship models, logistic regression, kernel meth-
ods, machine learning.

1 Introduction

As a general introduction to the concept of
fuzzy membership models, let us start with
a slightly controversial yet suitable example
about the classification of humans into eth-
nic groups. Until the 18th century it has
been claimed by scientists that all humans can
be subdivided into five main classes, namely
white, black, yellow, red and brown people.
Nowadays such superseded views have been
recognized as too restrictive: in which class
do we put for example a man with a Euro-
pean mother and an Asian father? In some
sense one can say that such a man obtains
a membership to both classes white and yel-
low. So, hypothetically speaking, if we would
like to construct a machine learning algorithm
for classifying humans, for example based on

DNA data, then we would definitely need a
classifier capable of handling fuzzy class la-
bels.

Actually, it turns out that many real-world
multi-class classification problems can be
translated into a setting where non-crisp class
labels are observed. Scene classification in
computer vision is such an application, as im-
ages can simultaneously belong to let’s say
the classes “sunsets” and “historic buildings”
[Woods et al., 1995, Boutell et al., 2004]. Here
a strong connection with multi-label classifi-
cation and multi-label ranking can be seen
[Fürnkranz et al., 2008, Hüllermeier et al.,
2008]. Similar arguments hold for related
application domains such as text and scien-
tific literature categorization [Erosheva et al.,
2004] and social network analysis [Koutsoure-
lakis and Eliassi-Rad, 2008].

Other applications can be found in the life sci-
ences. Fuzzy membership models have been
applied to the classification of satellite im-
ages for crop-land suitability analysis [Nisar-
Ahamad et al., 2000]. In microbiology as well,
fatty-acid profiles describe bacterial species in
terms of fuzzy memberships [Marttinen et al.,
2008], and in biochemistry fuzzy memberships
are observed when chemical compounds are
produced in certain proportions, thereby de-
pending on the chosen environmental condi-
tions. Finally, biological experts in agricul-
ture often screen a fixed number of plants to
construct disease prediction models, such that
for each field a fraction of these plants is clas-
sified in each of the disease classes, again re-
sulting in fuzzy class memberships [Isebaert
et al., 2009].

In the latter applications rather a link with
probabilistic classifiers and multi-class prob-
ability estimation can be claimed. Indeed,
from a probabilistic perspective, one can in-
terpret fuzzy memberships as probability es-
timates for the class labels or as class pro-
portions, so that in essence for each data ob-
ject in the training data set a multinomial
distribution over the class labels is observed.
In this light fuzzy membership models and
traditional probabilistic classifiers both pro-
duce probability estimates as outputs, but
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they differ in the sense that the former mod-
els directly take fuzzy memberships as train-
ing labels, while the latter ones only accept
crisp training labels as input. In some imple-
mentations of generalized linear models, fuzzy
memberships can be indirectly processed as
training labels for binary classification, but
this trick is at least not widely established
and rarely supported by statistical packages
[Agresti, 2002].

Given the large number of potential applica-
tions in various domains, researchers in statis-
tics, machine learning and fuzzy sets have
shown interest in developing learning algo-
rithms for fuzzy memberships. In statistics
and machine learning the notions mixed mem-
bership or partial membership are mainly
established, and here previous research was
mainly focussed on unsupervised settings,
such that in clustering algorithms a data in-
stance can simultaneously exhibit a member-
ship in several clusters. Such ideas have for
example been incorporated in mixed mod-
els [Gormley and Murphy, 2008], probabilis-
tic graphical models [Airoldi et al., 2008] and
Bayesian clustering techniques [Heller et al.,
2008].

In fuzzy set theory, unsupervised approaches
have been popular too, consider for exam-
ple the well-known fuzzy c-means clustering
method, but here a few supervised algorithm
have been proposed as well [Cai et al., 2007,
Orsenigo and Vercellis, 2007]. Nevertheless,
these algorithms tend to depart from a sim-
ilar setup as probabilistic classifiers, in the
sense that they also assume crisp class labels
for training data, but fuzzy memberships are
predicted instead of probability estimates.

While assuming a probabilistic interpretation
of fuzzy class memberships, we will in this ar-
ticle discuss how the kernel logistic regression
method can be generalized so that fuzzy class
labels are accepted as input. We give in the
following section a brief summary of the basic
algorithm, followed by its extension for fuzzy
memberships in Section 3.

2 Kernel logistic regression for
multi-class problems

We start with introducing some notations.
Let us in general assume a K-class classifica-
tion problem in which the classes are formally
denoted as C1, ..., CK . For ease of notation,
training data will consist of pairs of the form
(x,y) in which x represents a feature vector
and y is a vector of length K such that the k-
th entry is 1 when the corresponding instance
has label Ck, while all other entries are zero.
This condition will be relaxed in the following
section such that the vector y will represent
fuzzy memberships to all classes. Further-
more, let us assume that examples are iden-
tically and independently drawn according to
an unknown joint distribution over an input
space X and a label space Y. We define a data
set of size N as D = {(x1,y1), ..., (xN ,yN )}.
We will use the notation yn = {yn1, ..., ynK}
so that ynk denotes the k-th entry in the label
vector that corresponds with the n-th data
instance.

Given this notation, multi-class logistic re-
gression (KLR) methods estimate the prob-
ability that a given data instance belongs to
class Ck as follows:

pk(xn) = Pr{ynk = 1 | xn}

=
exp(fk(xn))∑K
l=1 exp(fl(xn))

,

in which f1, ..., fK : X → R are scoring func-
tions that assign a continuous value to data
instances. In traditional logistic regression
models these scoring functions are just linear
models. In kernel logistic regression models
[Zhu and Hastie, 2004], they can be generally
represented in the following way:

fk(x) = wk · φ(x) + b ,

with φ representing a feature mapping to a
possibly high-dimensional feature space and
w1, ...,wK vectors of parameters that must
be estimated based on training data. Ac-
cording to the representer theorem [Schölkopf
and Smola, 2002], the scoring functions can



be equivalently expressed as follows:

fk(x) =
N∑
n=1

αnkK(xn,x) ,

with K a kernel corresponding to φ and αnk
dual parameters.

In probabilistic models an estimate of the
parameters is usually obtained by maximum
likelihood estimation. The multinomial likeli-
hood is given by:

L(w1, ...,wK) = Pr{y1, ...,yN | w1, ...,wK}

=
N∏
n=1

K∏
k=1

(
pk(xn)

)ynk .

Equivalently, we can minimize the negative
log-likelihood:

lnL =
N∑
n=1

K∑
k=1

ynk ln(pk(xn))

=
N∑
n=1

K∑
k=1

ynk

(
fk(x)

− ln
( K∑
l=1

exp(fl(xn))
))
.

In the two-class case, the minimum is usually
found with gradient descent. For the multi-
class case, one arrives at a constrained opti-
mization problem, since it must hold that:

K∑
k=1

pk(x) = 1 , ∀x .

Variants of the sequential minimal optimiza-
tion algorithm found in implementations of
support vector machines have been proposed
for the multi-class case [Keerthi et al., 2005,
Zhu and Hastie, 2005].

3 Learning fuzzy memberships
with KLR

In order to extend kernel logistic regression so
that data objects can have fuzzy memberships
to all of the classes, we will allow now that y ∈
[0, 1]K instead of y ∈ {0, 1}K . In addition,

we will impose the following constraint on the
label vectors:

K∑
k=1

ynk = 1 , ∀n .

This constraint results in a probabilistic in-
terpretation of fuzzy class memberships, and
it also guarantees that we rather stay in a
multi-class classification setting instead of a
multi-label classification setting. A naive and
computationally inefficient approach for mod-
elling fuzzy memberships with existing sta-
tistical tools could consist of artificially cre-
ating a new (much larger) dataset D∗ =
{(x∗

1,y
∗
1), ..., (x∗

N∗ ,y∗
N∗)} by multiplying the

original dataset size with a certain factor. In
this new dataset we then assign crisp labels
class to the duplicates of the original data in-
stances, in accordance with the distribution
generated by the fuzzy memberships, so that
y∗
m ∈ {0, 1}K for all (x∗

m,y
∗
m) ∈ D∗. For-

mally, let the multiplication factor be τ , then
|D∗| = τ × |D| and

yn '
1
τ

N∗∑
m=1:xm=xn

ym , n ∈ {1, ..., N} ,

Basically, the larger τ is, the better the ap-
proximation, but also the more intractable
this approach becomes, because the size of D∗

blows up very fast. To overcome this compu-
tational bottleneck, we can write down the
log-likelihood for D∗ as follows:

lnL =
N∗∑
m=1

K∑
k=1

y∗mk ln(pk(x∗
m))

=
N∑
n=1

τ∑
t=1

K∑
k=1

y∗u(n,t)k ln(pk(xn))

'
N∑
n=1

K∑
k=1

ynk ln(pk(xn))

=
N∑
n=1

K∑
k=1

ynk

(
fk(xn)

− ln
( K∑
l=1

exp(fl(xn))
))
.

in which an index function u : N[1, N ] ×
N[1, τ ] → N[1, N∗] is used in order to map



an object from D to its t-th duplicate in D∗.
Thus, we can avoid the construction of D∗,
while still a very similar log-likelihood func-
tion is minimized. Beside computational ad-
vantages, this approach is also conceptually
preferred since no approximation is required
any more.

4 Experiments

Figure 1: Example of figure title

5 Discussion

In this paper we considered multi-class clas-
sification problems where uncertainty is ob-
served in the class labels, so that data in-
stances obtain a fuzzy membership to sev-
eral classes. As an extension of kernel logis-
tic regression methods, we presented a simple,
yet effective supervised learning approach to
model this type of data. To this end, it was
shown that the naive idea of multiplying the
original dataset and replacing the fuzzy la-
bels by several crisp labels can be avoided,
since fuzzy class labels can be included in the
log-likelihood in an elegant way. Initial ex-
perimental results on synthetic and real-world
data confirm that including the fuzzy mem-
berships in the log-likelihood function leads
to quasi-identical results as multiplying the
dataset. Simultaneously, the computational
burden of the latter approach can be avoided.
To this end, an existing R implementation of
kernel logistic regression was modified. Dur-
ing the talk we will explain more thoroughly
the empirical results.

We would like to thank Ji Zhu from the Uni-
versity of Michigan for providing R code on
kernel logistic regression.
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