
Ph.D. Research Abstract:
A methodology for Java/FPGA co-design

Philippe Faes, Ghent University
http://www.elis.UGent.be/~pfaes

INTRODUCTION

In recent years many methodologies have been
proposed for co-designing Field Programmable Gate
Array (FPGA) and software systems. In these systems
the FPGA is used to accelerate highly parallelisable
and time critical parts of the system, while an instruc-
tion set processor (ISP) is used for the sequential parts.

Existing systems require a specific programming
style of the software developer. This makes it virtually
impossible to use legacy software. Some systems re-
quire a message-passing interface between threads, and
allow threads to migrate between software and FPGA
[7]. Other systems give access to the hardware using a
specific hardware driver and communication libraries
[6]. Yet other systems provide a special compiler
to enable hardware acceleration [11]. We propose a
system where the original Java source code and even
the compiled Java bytecode are left unmodified, and
the Java Virtual Machine (JVM) is used for handling
the communication with the FPGA. [4], [3]

SYSTEM DESCRIPTION

In this research we take advantage of a JVM
[2] for intercepting method calls. We leave the Java
bytecode unmodified, and merely inform the JVM of
which methods can be accelerated. Whenever one of
these methods is called, the JVM intercepts the call
and decides if it should be executed in hardware or
software. For methods delegated to the FPGA, the
primitive parameters are passed by value and the object
parameters (such as arrays) are passed by reference, as
the Java specification prescribes. These references can
be used to fetch data from the main memory through
Direct Memory Access (DMA) or they can be passed
as arguments to other methods.

We regard the FPGA as a full partner of the instruc-
tion set processor. It can access main memory and call
the JVM to execute methods and constructors on be-
half of the FPGA. It can even perform synchronization
operations on objects (lock and unlock).

In the future we would like to allow the JVM to
reconfigure the FPGA, based on the current needs of
the application. Programs with a phased behavior will
benefit from this, since they can use the full FPGA
for executing a certain algorithm in one phase, and a
different algorithm in a second phase of their execution
[10].

We will also introduce non-homogeneous memories.
Different memory chips can be mounted on different
circuit boards in a system, interconnected by some fab-
ric. Some memories will have a better interconnection
with the ISP, others will be more easily accessible by
the FPGA. We will investigate where the data should
be stored that is used both by the ISP and the FPGA.
This decision is far from trivial in systems where
data is produced by one routine on the ISP, and later
read and modified by both the FPGA and ISP. We
would like to minimize the communication cost, while
preserving a transparent view on the memories.

APPLICATION AND MEASUREMENT DATA

As a first demo application, we have accelerated a
Java application for comparing protein sequences. We
use a Java implementation of the Smith-Waterman-
Gotoh [5], [9] algorithm, based on [8]. We calculated
the cost function for the alignment of one fixed protein
sequence with each sequence in a database of 1000.
This operation took 49.35s on an AMD Athlon MP
2600+ machine for a Java implementation on the
JikesRVM 2.3.5 (a JVM formerly known as Jalapeño
[1]). When we accelerate the application on the same
machine with an Altera PCI Development Board with a
Stratix 1s25 FPGA, we can execute the same operation
in 1.24s, which is a performance gain of almost a
factor 40.

We have shown that a standard, bidirectional and
fully transparent interface between Java and reconfig-
urable hardware is feasible without the need to modify
the Java bytecode, and that large performance gains
can be achieved. We will continue to work on memory
management and the communication protocol between
Java and the hardware.

REFERENCES

[1] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., BURKE,
M. G., CHENG, P., CHOI, J.-D., COCCHI, A., FINK, S. J.,
GROVE, D., HIND, M., HUMMEL, S. F., LIEBER, D.,
LITVINOV, V., MERGEN, M. F., NGO, T., RUSSELL, J. R.,
SARKAR, V., SERRANO, M. J., SHEPHERD, J. C., SMITH,
S. E., SREEDHAR, V. C., SRINIVASAN, H., AND WHALEY,
J. The Jalapeño virtual machine. IBM Systems Journal 39, 1
(2000), 211–238.

[2] ARNOLD, K., AND GOSLING, J. The Java Programming
Language. Addison Wesley, 1996.

[3] FAES, PH., CHRISTIAENS, M., BUYTAERT, D., AND
STROOBANDT, D. FPGA-aware garbage collection in java. In
2005 International Conference on Field Programmable Logic
and Applications (FPL) (Tampere, Finland, 1 2005), T. Rissa,
S. Wilton, and P. Leong, Eds., IEEE, pp. 675–680.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55727367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


[4] FAES, PH., CHRISTIAENS, M., AND STROOBANDT, D. Trans-
parent communication between Java and reconfigurable hard-
ware. In Proceedings of the 16th IASTED International
Conference Parallel and Distributed Computing and Systems
(Cambridge, MA, USA, 11 2004), T. Gonzalez, Ed., ACTA
Press, pp. 380–385.

[5] GOTOH, O. An improved algorithm for matching biological
sequences. Journal of Molecular Biology 162, 3 (1982), 705–
708.

[6] HA, Y., VANMEERBEECK, G., SCHAUMONT, P., VERNALDE,
S., ENGELS, M., AND DE MAN, H. Virtual Java/FPGA
interface for networked reconfiguration. In Proceedings of
the ASP-DAC 2001 Asia and South Pacific Design Automation
Conference (Jan. 2001), pp. 558–563.

[7] MIGNOLET, J.-Y., VERNALDE, S., VERKEST, D., AND
LAUWEREINS, R. Enabling hardware-software multitasking
on a reconfigurable computing platform for networked portable
multimedia appliances. In ERSA 2002 Las Vegas (June 2002).

[8] MINNAERT, B. Ontwerp van een hardwareversneller voor de
vergelijking van DNA-sequenties. Master’s thesis, Gent, 2005.

[9] SMITH, T. F., AND WATERMAN, M. S. Identification of com-
mon molecular subsequences. Journal of Molecular Biology
147, 1 (1981), 195–197.

[10] TRIMBERGER, S. Scheduling designs into a time-multiplexed
FPGA. In International Symposium on FPGAs (1998), ACM,
pp. 153–160.

[11] VASSILIADIS, S., WONG, S., GAYDADJIEV, G. N., BERTELS,
K., KUZMANOV, G., AND PANAINTE, E. M. The Molen
polymorphic processor. IEEE Transactions on Computers
(November 2004), 1363–1375.


