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Een doctoraat is als een marathon. Een normaal examen of een normaal
project is als een sprint, of hoogstens als een wedstrijd van 10km. Je kan de
finish misschien net niet zien op het moment dat je vertrekt, maar je weet dat
ze er is. Dus kan je van bij de start alles geven en dat kom je er wel. Je moet
hoogstens een klein uurtje doorbijten. Bij een doctoraat is dat niet zo. Als je een
nieuw onderzoeksproject aanvat, heb je meestal geen flauw idee waar het naartoe
leidt. Je hebt geen flauw idee waar de finish is, hoe ver het nog is, hoe lang
het nog zal duren... Soms weet je zelfs niet eens of er wel een finish is. Je wil
van bij de start wel alles geven, maar je hebt geen flauw idee hoe je de komende
beproeving moet indelen en of je er wel toe in staat zal zijn om ze tot een goed
einde te brengen.

Gelukkig zijn er bij een doctoraat, net als bij een marathon, mensen die je
begeleiden. En aan het begin van dit boekje, dat doet vermoeden dat ik nu
toch eindelijk een finish in zicht heb, lijkt het mij dan ook een goed moment
om die mensen even te bedanken. In de eerste plaats natuurlijk mijn promotor,
Sven, mijn wetenschappelijke trainer en coach. Zonder hem was ik nooit aan dit
doctoraat begonnen en zonder hem had ik ook geen inhoud gehad om dit boekje
mee te vullen. En al had ik bij momenten liever gehad dat hij mij veel meer
bij het handje had vastgehouden en mij stap voor stap gezegd had wat ik moest
doen, ben ik toch heel blij dat hij me zo veel vrijheid heeft gegeven om te doen
wat ik graag wilde doen en om mijn eigen ideeën uit te werken. Uiteindelijk is
het niet de bedoeling dat een coach zelf mee loopt, maar dat hij zijn protegés
leert lopen. Andere mensen hebben wel mee deze marathon beleefd, zij het in
diverse fasen, en ook zij verdienen een bedanking, omdat dit de mensen zijn die ik
doorheen die vier jaar in S9 mijn collega’s heb mogen noemen. Eerst en vooral de
vele collega’s die voor mij gefinisht zijn: Joeri, Joachim, Gert, Annelies, Waad en
Steven. Maar natuurlijk ook zij die later gestart zijn: Robbert, Sam, Christian
en Marjorie. En zeker en vast zij die samen met mij gestart zijn en nu ook aan
of vlakbij de finish zijn: Sébastien en Peter en iets verder in de toekomst Flor
en Pieter. En laat ik ook vooral de collega post-docs niet vergeten: Mina, Tom,
Jacopo, Gianfranco, Ilse, Aleksandr en Dukhang. En dan heb ik Maarten nog
niet bedankt.

Tijdens een marathon staan er ook allerlei mensen aan de kant van de weg.
Sommige om praktische redenen, zoals Inge, die het secretariaat van ons deel van
de vakgroep op haar eentje draaiende houdt en Gerbrand, die ik herhaaldelijk heb
moeten lastig vallen de laatste jaren als er weeral eens een harde schijf gecrasht
was. Ook hen ben ik veel dank verschuldigd. Andere mensen zijn louter sup-
porter, maar hun taak is niet minder belangrijk. Want als je de kaap van de 30km
gerond hebt en alles pijn doet, dan is 42 echt nog ver en zijn hun voortdurende
aanmoedigingen het enige dat je gaande houdt. Daarom ben ik mijn ouders heel
dankbaar, omdat ik ondanks de verhuis naar Gent nog steeds bij hen kan thuisko-



men. En mijn zussen Sofie en Joke en broer Lowie, omdat ik bij hen altijd wel
ontspanning vind als ik die nodig heb. Voorts zijn er nog de WiNA-vrienden
uit Gent, die de herinnering aan mijn studententijd nog altijd levende weten te
houden.

En dan zijn er nog een aantal speciale mensen die ik nog niet vermeld heb. Hen
ben ik nog het meeste dankbaar, omdat zij weten dat metaforen nooit volledig
kloppen en dat een doctoraat helemaal geen marathon is. Een marathon lopen
vergt jaren voorbereiding en intensieve training, maar als je het juist aanpakt,
valt de marathon zelf lopen heel goed mee. Een doctoraat is helemaal anders.
Aan een doctoraat begin je vanuit het waanidee dat een doctoraat gewoon een
langere versie van een thesis is. Met de stellige overtuiging dat die vijf jaar
universitaire studies genoeg voorbereiding waren. Met veel motivatie en zonder
enige tijd om na het behalen van een masterdiploma even op adem te komen.
Mocht je op die manier een marathon aanvatten, dan zou je nooit de finish halen.
En zo voelt een doctoraat ook, zo ongeveer halverwege. En dan helpen zelfs de
meest enthousiaste supporters je geen meter meer vooruit.

Dat is het moment dat je echte vrienden nodig hebt. Kristof, die een nog
veel zotter doctoraat dan ik heeft aangevat en toch exact hetzelfde leek mee te
maken, afgaande op de vele gezamenlijke zaagsessies in diverse drinkgelegenheden
(de beste pub van Schotland inclusief), meestal bij een ruime hoeveelheid gerste-
of ander nat. Dries, die aanvankelijk als enige werkmens moest instaan voor ons
beider doctoraten en de derde musketier was tijdens onze zotste reizen: IJsland,
Oostenrijk en de legendarische uitstap naar Bouillon. En natuurlijk ook Kenny
en Jiska en Jonathan en Heleen, zonder wie Schotland en Tsjechië nooit hetzelfde
geweest zouden zijn. En mochten die laatste twee niet naar het westen verkast
zijn, dan zouden ze ongetwijfeld ook vaste gast geweest zijn in Bahnhove.

En dan wil ik ook nog Iris bedanken. Omdat ze de grootste optimist is die ik
ken en de beste muze die ik me maar kon wensen. Zien hoe zij iedere dag weer
moet vechten tegen haar eigen lichaam om gewoon normaal te functioneren en er
toch telkens weer in slaagt om de grootste glimlach op haar gezicht te toveren,
duwt je met beide voeten op de grond. En doet je beseffen dat een doctoraat en
alles dat er bij komt kijken helemaal niet zo belangrijk en helemaal niet zo zwaar
is.

Wie ooit een marathon heeft gelopen, weet dat de laatste kilometer fantastisch
is. Als je eindelijk de finish in zicht hebt, dan vlieg je en voel je je onoverwinnelijk.
Zo is het ook met dit doctoraat. Nu het er eindelijk is, geniet ik van elke stap
en kan ik maar geen genoeg krijgen van dit onderzoek. Ik hoop dan ook dat
er nog ergens geld te vinden is om de komende jaren verder te doen. Ik heb
ondertussen al twee keer een marathon gelopen. Maar ik ga het toch mooi bij dit
ene doctoraat houden.

Mei 2016
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0
Summary

D
warf galaxies are the faintest and least massive inhabitants of the large
scale Universe. They are hard to simulate in a cosmological context, since
resolving them requires very high resolutions. For this reason, dwarf galax-

ies currently hold the key to falsifying the ΛCDM model of cosmology on small
scales; a model that has proven to be quite successful on large scales.

There is currently a lot of tension between models and observations about
what happens when a dwarf galaxy enters the sphere of influence of more massive
galaxies, either as a satellite, or as a member of a large galaxy cluster. There
is agreement on the fact that this influence changes the dwarf galaxy morpholo-
gically and dynamically, but it is not clear to what extent. Simulations of this
interaction should help resolve these issues, but these simulations require high
resolution models and state of the art simulation methods, that still need to be
developed.

In this work, we focus on improving the current simulation model in two ways.
First of all, we have developed new hydrodynamical integration methods that
are better than the Smoothed Particle Hydrodynamics (SPH) scheme on which
many current simulation models are based. To this end, we have studied some
basic discretization methods, and efficient algorithms to work with them. We
then used these discretization methods to construct hydrodynamical integration
schemes: a moving mesh scheme that is based on an unstructured Voronoi mesh,
and a mesh-free scheme that is based on a smoothed volume weighing of particle
quantities. We show why these methods perform better than SPH, and illustrate
the differences between these methods and methods that use a (refined) fixed
mesh.

The second improvement of our model is an extension of the current sub-grid
physics models used in galaxy simulations. We have adapted the equation of
state of the gas in our model to take into account the multi phase character of
the interstellar medium (ISM). We also implemented a cosmological ionising UV
background (UVB) in our model, which affects the ionisation equilibrium in the
ISM and hence has a significant impact on the gas cooling and the equation of
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Chapter 0. Summary

state of the fluid. The UVB furthermore acts as a heating term, which prevents
diffuse gas from cooling and refuelling star formation. As a result, simulations
that include a UVB behave very differently than simulations that do not include
it. Star formation histories are limited to a single star formation peak, and the
halo mass range that leads to dwarf galaxies with realistic stellar masses shifts
to significantly higher masses.

To address these issues, we ran a large parameter study, aimed at adapting the
sub-grid physics parameters to the presence of the UVB. We tried to adapt the
strength and timing of the UVB itself, and the strength of the stellar feedback,
but this did not improve the results. Only by including the metallicity dependent
feedback of very low metallicity primordial stars (Pop III stars), were we able to
suppress the initial star formation peak that would otherwise consume and expel
the neutral gas in the simulated dwarf galaxies. Together with a more realistic
treatment of gas accretion and halo growth through merger tree simulations, this
enables us to simulate gas-rich dwarf galaxies with properties similar to those of
observed dwarf galaxies.

The model improvements in this work clear the path for high resolution sim-
ulations of the interaction between dwarf galaxies and more massive galaxies.
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0
Samenvatting – Summary in

dutch

D
wergsterrenstelsels zijn de minst lumineuze en minst massieve be-
woners van het grootschalige Universum. Ze zijn niet zo eenvoudig te
simuleren in hun kosmologische context, aangezien dergelijke simulaties

een heel hoge resolutie vereisen. Bijgevolg zijn dwergsterrenstelsels momenteel
de belangrijkste objecten om het gangbare ΛCDM-kosmologiemodel, dat goed
lijkt te werken op grote schaal, te testen op kleine schaal.

Modellen en observaties zijn het momenteel niet eens over wat er precies
gebeurt wanneer een dwergsterrenstelsel in de invloedssfeer van een zwaarder
sterrenstelsel terechtkomt. Dit gebeurt bijvoorbeeld met dwergsterrenstelsels die
ingevangen worden als satelliet van een zwaarder sterrenstelsel, of met dwergster-
renstelsels die deel uitmaken van een grotere cluster van sterrenstelsels. Modellen
en observaties zijn het erover eens dat deze invloed een effect heeft op de morfo-
logische en dynamische evolutie van het dwergsterrenstelsel, maar het is helemaal
niet duidelijk hoe sterk dit effect precies is. Simulaties van deze interactie kunnen
ons helpen om hier meer vat op te krijgen, maar voor deze simulaties is een model
nodig dat geschikt is voor de hoge resoluties die vereist zijn, en dat gebruikmaakt
van een state of the art simulatiemethode. Beide moeten nog ontwikkeld worden.

In dit werk zullen we het huidige simulatiemodel op twee verschillende vlak-
ken verbeteren. Eerst en vooral hebben we nieuwe hydrodynamische integratie-
methoden ontwikkeld, die beter zijn dan de Smoothed Particle Hydrodynamics
(SPH-)methode waarop veel van de huidige simulatiemodellen gebaseerd zijn.
We hebben hiervoor een aantal eenvoudige discretizatiemethodes en de algorit-
mes om ermee te werken bestudeerd. Deze discretizatiemethodes hebben we dan
gebruikt als basis voor twee nieuwe hydrodynamische integratieschema’s: een
meebewegend (moving mesh) schema dat gebaseerd is op een ongestructureerd,
meebewegend Voronoi rooster, en een roostervrij (mesh-free) schema dat geba-
seerd is op deeltjes waarvan de eigenschappen op een volumegewogen manier
worden uitgemiddeld in de ruimte. We zullen aantonen waarom deze methodes

11



Chapter 0. Samenvatting – Summary in dutch

beter werken dan SPH en zullen de verschillen tussen deze methodes en methodes
die gebruik maken van een (al dan niet verfijnd) vast rooster illustreren.

De tweede verbetering van ons model bestaat uit een uitbreiding van het
model voor ongeresolveerde (sub-grid) fysica dat gebruikt wordt in simulaties
van sterrenstelsels. We hebben de toestandsvergelijking van ons gas aangepast,
zodat ze beter rekening houdt met de verschillende ionizatiefases in het inter-
stellaire medium (ISM). Bovendien hebben we een kosmologische ionizerende
UV-achtergrond (UVB) geïmplementeerd, die het ionizatie-evenwicht in het ISM
beïnvloedt en op die manier een belangrijke invloed heeft op de koeling en de
toestandsvergelijking van het gas. De UVB zorgt ook voor een verhitting van
het gas, waardoor diffuus gas niet kan afkoelen om als brandstof voor late ster-
vorming te dienen. Bijgevolg is er een groot verschil tussen simulaties met en
zonder UVB. De stervormingsgeschiedenis met UVB wordt herleid tot een enkele
stervormingspiek, en de minimale massa die een donkere-materiehalo moet heb-
ben om een sterrenstelsel met een realistische stellaire massa te herbergen stijgt
significant.

Om deze problemen op te lossen, hebben we een grote parameterstudie uit-
gevoerd, met als doel de parameters van het model voor ongeresolveerde fysica
aanpassen aan de aanwezigheid van de UVB. We hebben geëxperimenteerd met
het aanpassen van de sterkte en timing van de UVB zelf, en met het aanpassen
van de sterkte van de stellaire feedback, maar dit leidde niet tot betere resul-
taten. We konden de initiële stervormingspiek die het neutrale gas in de gesi-
muleerde dwergsterrenstelsels zou opgebruiken en wegblazen enkel onderdrukken
door het in rekening brengen van metalliciteitsafhankelijke feedback van primor-
diale sterren met een extreem lage metalliciteit (Pop III sterren). Als we dit
model combineren met een realistischer model voor kosmologische gasaccretie en
donkere-materiehalogroei via versmeltingsbomen, kunnen we gasrijke dwergster-
renstelsels simuleren die gelijkaardige eigenschappen hebben als geobserveerde
dwergsterrenstelsels.

De verbeterde modellen uit dit werk maken het mogelijk om de interactie
tussen dwergsterrenstelsels en zwaardere sterrenstelsels te simuleren op hoge re-
solutie.
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1
Introduction

A
ccording to the ΛCDM model of cosmology, the Universe was formed
during the Big Bang, 13.8 Gyr ago (Spergel et al., 2007). The conditions
in the very early Universe were very different from what they are today, and

were governed by physical laws that nowadays are only accessible in huge particle
accelerators. Nonetheless, observations of the Cosmic Microwave Background
(CMB) provide very tight constraints on the matter contents of the Universe,
and on the parameters that describe its expansion (Planck Collaboration, 2014).

The CMB itself consists of the UV radiation that was allowed to move freely
when the atomic nuclei that formed during the Big Bang nucleosynthesis first
combined with the free electrons inhabiting the Universe to form atoms, in a
process that is misleadingly denoted as recombination, and which happened ≈
378, 000 yr after the Big Bang, or at a redshift of z ≈ 1100 (Zeldovich et al.,
1968). Due to cosmological redshifting, this radiation has since then cooled down
to the microwave range of the radiation spectrum.

Before recombination, the Universe was a tightly coupled plasma. After the
radiation decoupled from the baryonic matter, the Universe became dark, and
all matter was predominantly affected by the force of gravity, until the formation
of the first stars and galaxies. Hot UV radiation from these first structures
then started ionising the neutral gas in the Universe again, in a process that is
called reionization (Becker et al., 2001). This ionising radiation constitutes a
background radiation field that affects the formation of later structures.

The ΛCDM paradigm states that the Universe was initially filled with a mix-
ture of matter, both baryonic matter and cold dark matter (CDM), and a mys-
terious dark energy, represented by a cosmological constant Λ. Structures in the
Universe formed hierarchically, by the growth of initial overdense regions un-
der the force of gravity. In an expanding Universe, the gravitational force and
the expansion compete with each other, so that small overdensities at first grow
slowly (Bond & Efstathiou, 1984). The CMB holds valuable information about
the power spectrum of overdensities in the very early Universe, at a redshift of
1100, so that we know what the initial conditions for this hierarchical structure

13



Chapter 1. Introduction

formation were. This initial power spectrum can be safely analytically evolved
by linear perturbation theory until a redshift of ≈ 100.

To further evolve the overdensities, large numerical simulations are needed
(Davis et al., 1985). The first large simulation of cosmic structure formation
with enough resolution to compare with the observed Universe was carried out
by Springel et al. (2005). They evolved a periodic box with a length of 500 Mpc
containing 10,077,696,000 tracer particles under the force of gravity from redshift
127 to redshift 0. They showed that the initial density perturbations grow into
massive halos in an overall web-like structure, called the cosmic web, in which
massive clusters of halos are joined by filamentary structures, with large voids in
between. The resulting abundances of massive halos are in excellent agreement
with the observed abundances of luminous galaxies. This provides strong evidence
for the ΛCDM model of cosmology.

Simulations since then have focused on refining this model, by using a higher
resolution (Boylan-Kolchin et al., 2009), and by including baryonic physics: gas
cooling and heating, star formation, stellar and Active Galactic Nuclei (AGN)
feedback,... (Vogelsberger et al., 2014b; Schaye et al., 2015). The aim of these
simulations is to falsify ΛCDM on large scales and to turn it into a predictive
theory that can make predictions for future observational campaigns, like ESA’s
upcoming Euclid mission (Scaramella et al., 2014).

These large cosmological simulations lack the resolution to falsify ΛCDM on
smaller scales. To this end, so called zoom simulations are used, which refine the
resolution in a small region of the box, while still taking the relevant cosmological
context into account (Governato et al., 2010; Oñorbe et al., 2015). These simula-
tions require detailed (mostly sub-grid) models to accurately capture all relevant
physical processes, and advanced numerical methods that are both accurate and
computationally efficient.

There are currently a number of outstanding questions concerning small -scale
predictions of ΛCDM that are claimed to contradict observations, like the low
number of observed low-mass satellite galaxies of the Milky Way and Andromeda
(the so called ‘missing satellite problem) (Wang et al., 2012), the large number
of observed massive satellite galaxies in the Local Group (the too big to fail
problem) (Garrison-Kimmel et al., 2014), and the form of the central density
profile of galactic halos (the cusp to core problem) (de Blok, 2010).

Some authors use these claimed discrepancies to support alternative theories
for dark matter (Vogelsberger et al., 2014a) or even gravity (Rodrigues et al.,
2014). Solving these problems however requires the comparison of state of the
art simulations and observations, which are close to the limit of what is currently
feasible. Recent simulations suggest that these discrepancies can be overcome
by including more baryonic physics and improved stellar feedback recipes in the
models (Chan et al., 2015; Dutton et al., 2015).

14



1.1 Dwarf galaxies

Figure 1.1: “Andromeda Galaxy (with Hα)” by Adam Evans.
Two satellite dwarf galaxies are also visible: M110 is the bright
elliptical blob below Andromeda, M32 is the smaller round blob
above and a bit to the left of the center of the galaxy.

1.1 Dwarf galaxies

Dwarf galaxies are the faintest and smallest galaxies in the Universe, with typical
magnitudes fainter than -20, and masses below 1010 M⊙. Unlike more massive
galaxies like our own Milky Way, they host a relatively small number of stars
(∼ 109) (Fig. 1.1). Furthermore, they have much smaller dust contents than
larger galaxies (Walter et al., 2007). Fig. 1.2 shows some properties of observed
dwarf galaxies: stellar and neutral gas masses, half-light radii (the radius at which
the integrated luminosity drops to half of its total value), and metallicities. Dwarf
galaxies are generally metal-poor. The faintest dwarfs do not host observable
neutral gas.

Like more massive galaxies, dwarf galaxies are generally subdivided in two
types (Tolstoy et al., 2009): early type dwarf elliptical and dwarf spheroidal
galaxies that are gas-poor and have predominantly old stellar populations, and
late type dwarf irregulars, which have ongoing star formation from a rich gas
reservoir. Apart from these, there are also transition type dwarf galaxies that

15



Chapter 1. Introduction

−20−15−10−50
MV

102

103

104

105

106

107

108

109

1010

M
⋆
 (

M
⊙)

−20−15−10−50
MV

102

103

104

105

106

107

108

109

1010

M
H
I 
(M

⊙)

−20−15−10−50
MV

10-2

10-1

100

101

102

R
e
 (

kp
c)

−20−15−10−50
MV

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

[F
e/

H
]

Figure 1.2: Some properties of observed dwarf galaxies as a
function of their V-band magnitude. Top left: stellar mass,
top right: neutral gas mass, bottom left: half-light radius, bot-
tom right: metallicity. These data were compiled from van Zee
(2000); Geha et al. (2003); Grebel et al. (2003); Hunter & El-
megreen (2006); Dunn (2010); McConnachie (2012); McQuinn
et al. (2013); Rhode et al. (2013); Tollerud et al. (2015).
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1.1 Dwarf galaxies

share properties of both early and late type galaxies, and more exotic types like
ultra faint and ultra compact dwarf galaxies. Recently, tidal dwarf galaxies have
gained a lot of interest (Sweet et al., 2016). These galaxies are formed as a result
of the tidal interaction between two massive galaxies, and should contain very
little dark matter. This should have a detectable imprint on their rotation curves
and hence provide a good test for dark matter models.

Late type dwarf galaxies are usually observed in isolation, i.e. far away from
the influence of large galaxies or galaxy clusters, while early types are more
common near the center of massive clusters and as satellites of more massive
galaxies (Dressler, 1980; Recchi, 2014). This seems to suggest that, unlike what
the naming suggests, early type dwarf galaxies were originally late type dwarf
galaxies that somehow lost their gas, presumably due to external influences (Geha
et al., 2003; van Zee et al., 2004; De Rijcke et al., 2005, 2010; Lisker et al., 2013).

To test this hypothesis, two approaches have been adopted. Large obser-
vational campaigns aim at gathering statistical data about dwarf galaxy types
and their locations, trying to find a correlation between type and environment
(Ryś et al., 2014). In parallel, theoretical studies have tried to assess whether a
late type dwarf galaxy can lose its gas due to external influences (Mayer, 2010).
Different environmental effects have been implemented in numerical simulations,
carrying ominous names like “galaxy harassment” (Smith et al., 2015) and “tidal
stripping” (Sales et al., 2010). However, different simulations seem to lead to
different results, indicating that the models need to be improved.

A good model of the interaction between a late type dwarf galaxy and a
massive galaxy or cluster first of all requires the self-consistent modelling of the
dwarf galaxy itself. If the modelled galaxy is to represent a late type dwarf in
isolation, then we should first of all make sure the model produces such a galaxy
in isolation, starting from the basic ingredients of a galaxy, i.e. cold dark matter
and neutral gas. These models should include all relevant physical processes that
could affect the evolution of the isolated galaxy, both internal (physics of the
interstellar medium, star formation and stellar feedback), as external (mergers,
a UV background). Only if such a model produces simulated dwarf galaxies that
have the same properties as observed late type dwarf galaxies can we subject
these models to the environmental effects of a larger galaxy or cluster and test
the proposed evolutionary track from late to early type.

Secondly, a good interaction model needs to resolve the effects that could
influence the late type dwarf galaxy once it enters the environment of interest.
Some of these effects, like gravitational tidal forces, could affect the shape of
the halo potential and require the modelling of a live potential with sufficient
resolution by means of an N-body technique. Other effects, like ram-pressure
stripping (see below), only affect the gas in the galaxy, but could potentially strip
this gas completely from the halo, leaving the galaxy “red and dead”. Resolving
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these effects requires a hydrodynamical integration scheme that can handle the
complex interface between the cold, dense gas in the dwarf galaxy, and the hot,
diffuse environmental gas.

Changes in the halo potential will likely also affect the dynamics of the gas in
the dwarf galaxy, leading to changes in star formation that could also affect the
galaxy type. Modelling tidal forces without a self-consistent treatment of star
formation could hence lead to wrong conclusions.

1.2 Dwarf galaxy formation

Like all structures in the Universe, dwarf galaxies formed hierarchically, i.e. by
the merging of several smaller structures that all ultimately originated from the
gravitational collapse of small density perturbations in the very early Universe
(Springel et al., 2005). Before recombination, only the cold dark matter cores
of these perturbations were able to accrete more mass, as the baryonic plasma
was kept homogeneous by radiation pressure (Silk, 1968). After recombination,
the then neutral baryons started to slowly accrete onto these dark matter seed
halos. As the central density of the baryons increased, pressure built up and
impeded further accretion. However, as the baryonic gas was also able to cool as
a result of internal radiative processes, very dense, cold gas clumps were able to
form near the centers of more massive halos. As soon as these clumps become
cold and dense enough, nothing can prevent them from further collapse, so that
they start fragmenting into even denser clumps, at the center of which stars are
formed (Krumholz, 2014).

Galaxy formation is hence mainly driven by the conversion of cold baryonic gas
into stars at the centers of halos, on time scales that are set by radiative cooling
processes. However, once stars have formed, they also affect the further evolution
of the galaxy: young stars emit a lot of UV radiation that ionizes the surrounding
interstellar medium (ISM), while massive stars are usually short-lived and explode
as violent supernova explosions that also emit large amounts of energy into the
ISM and enrich it with stellar material, which contains metals (elements heavier
than 1H and 4He) (Marcolini et al., 2006). This stellar feedback disperses the cold,
dense gas in star forming regions and impedes further star formation. As stellar
populations age, stellar feedback decreases again and subsequent star formation
is enabled.

The conversion of gas into stars and the dispersion of this gas by stellar
feedback will also be affected by the growth of the (dwarf) galaxy halo through
mergers, as tidal interactions between merging halos can drive large outflows or
fuel star formation bursts (Deason et al., 2014; Verbeke et al., 2014; Leaman
et al., 2015; Starkenburg et al., 2016).
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1.2 Dwarf galaxy formation

1.2.1 UV background

The UV radiation from young stars initially only ionizes small bubbles of ISM
surrounding these stars, called Strömgren spheres (Strömgren, 1939). However,
as the number of stars increases, more and more Strömgren spheres are formed,
and different spheres stars to overlap and merge into larger spheres. As star
formation is more violent inside more massive halos, these halos are quickly en-
tirely surrounded by large Strömgren spheres that extend into the intergalactic
medium (IGM). This process is further enhanced by AGN feedback in the centers
of massive halos.

Galaxies are not homogeneously spread out throughout the Universe, but
are also grouped into hierarchical clusters. Near the centers of these clusters,
Strömgren spheres from different galaxies also start to overlap. The continuous
star formation inside these spheres feeds their growth, so that in the end, the
entire Universe is filled with merging Strömgren spheres (Alvarez et al., 2009).
By a redshift of 6 (∼ 1 Gyr after the Big Bang), the entire Universe is reionized
(Becker et al., 2001), and neutral gas is only found in the disks of halos that are
more massive than ∼ 108 M⊙ (Benítez-Llambay et al., 2015).

As the entire Universe is reionized, there is no longer enough neutral gas to
absorb the UV radiation that escapes from star forming galaxies. This radiation
will hence roam the Universe, and constitutes an intense background radiation
field, the UV background (UVB). The UVB reaches its peak strength at a redshift
of ∼ 2 (∼ 3 Gyr after the Big Bang) (Faucher-Giguère et al., 2009), and will have
a large effect on the evolution of alread formed galaxies.

1.2.2 Galaxy environments

Massive galaxies do not only contain cold, neutral gas near their centers, but are
also surrounded by a hot halo of ionized gas, which extends to large radii around
the galaxy core. Temperatures in this hot halo are of the order of 106 K, while
the typical density of ∼ 10−3 amu cm−3 (Williams et al., 2007). Dwarf galaxies
do not contain such hot halos, as their gravitational potentials are to weak to
hold on to this hot, diffuse gas.

When a dwarf galaxy enters the sphere of influence of a more massive galaxy,
the cold gas in the dwarf will interact with the hot IGM surrounding the massive
galaxy, in a process called ram-pressure stripping. As the cold gas cloud plunges
into the hot surrounding IGM, the structure of the cloud is disrupted, and the
resulting fragments are heated by the surrounding hot gas. However, this process
is counteracted by the potential of the dwarf galaxy halo, which tries to hold on
to the cold gas. It is therefore currently unclear how strong the effect of ram-
pressure stripping will be, and if it could potentially strip the dwarf of all its
neutral gas (Mayer, 2010).
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The effect of galaxy environment is particularly strong near the centers of
large galaxy clusters, where the galaxy density can reach values of 103 galaxies
Mpc−1 (Dressler, 1980). Apart from the effects mentioned above, the combined
UV radiation from all these galaxies will also cause these regions to reionize faster
than less dense regions, which will increase the threshold mass for small halos to
hold on to their neutral gas (Alvarez et al., 2009). We do hence expect a different
formation history for dwarf galaxies that formed near the centers of large galaxy
clusters compared with dwarf galaxies that formed in isolation.

1.3 Dwarf galaxy models

The isolated dwarf galaxy models we will use in this work are based on the basic
models of Valcke et al. (2008). They include a sub-grid model for gas cooling,
star formation and stellar feedback, and lead to simulated galaxies that adhere
to a number of observational scaling relations, within observational scatter.

Schroyen et al. (2011) improved these models by adding an initial rotation
to the gas in the simulations, leading to less centrally concentrated star forma-
tion and more realistic star formation histories. Cloet-Osselaer et al. (2012) and
Schroyen et al. (2013) refined the model even further by addressing the para-
meters that control the star formation and stellar feedback strength. They also
improved the radiative gas cooling by first extending it below 104 K, and then
replacing it by a self-consistent three parameter cooling model. With that, the
model includes all relevant internal processes that shape the dwarf galaxy.

Cloet-Osselaer et al. (2014) addressed the effect of halo mergers on the form-
ation of the dwarf galaxies by means of merger tree simulations, which offer
a computationally cheap alternative for cosmological zoom simulations. They
showed that these mergers have an effect on the star formation history of the
galaxy, and play a role in the conversion of a cuspy density profile into a cored
profile, offering a possible solution to the cusp to core problem introduced above.

In this work, we will address the only non-environmental external effect left
to complete our model: the cosmological UVB. Including the UVB not only
requires the addition of gas heating to the sub-grid physics model, but also re-
quires us to address the changes in the gas cooling and even in the gas physics
that are associated with the change in ionisation equilibrium caused by the UVB
(Vandenbroucke et al., 2013; De Rijcke et al., 2013). As we will show in Chapter 6,
the effect of the UVB on simulated dwarf galaxies is rather dramatic, and this
chapter will be entirely devoted to solving the issues that arise. The main con-
clusion will be that we need to incorporate the effect of primordial population
III stars and their feedback into the simulations, to suppress an initial peak in
the star formation that would otherwise lead to an excess in the stellar feedback
that drives all neutral gas out of the galaxy. The ultimate model of isolated late
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1.4 Hydrodynamical instabilities

type dwarf galaxies, that takes into account all internal and external processes,
was published by Verbeke et al. (2015).

1.4 Hydrodynamical instabilities

As Agertz et al. (2007) and Valcke et al. (2010) showed, the Smoothed Particle
Hydrodynamics (SPH) scheme that forms the basis of our current model is incap-
able of resolving a number of hydrodynamical instabilities, that are important
for the modelling of the interface between a cold, dense gas and a hot, diffuse
gas. These issues are best illustrated by means of the “blob test”, which mod-
els the interaction of a dense, spherical gas blob with a diffuse, hot gas stream
in a wind-tunnel like setup, using different hydrodynamical integration schemes
(Agertz et al., 2007), see Chapter 3 and Fig. 3.8. Although no formal conver-
gence is reached between any two methods due to the sensitivity of this idealised
setup to method dependent numerical noise, there is a clear difference between
grid based methods and SPH. While the grid models predict that the blob is
completely disrupted by the hot, diffuse stream, the SPH blob only deforms, and
stays overall intact.

This behaviour persists when higher SPH resolutions are used, so that it is
not only a result of a higher accuracy of grid methods, but is really caused by a
fundamental incapability of SPH to capture certain instabilities. We will come
back to this problem in Chapter 3.

These fundamental problems make it impossible to use standard SPH for
simulations of ram-pressure stripping, as these simulations are very similar to
the blob test. If instead of a blob of gas, we would place a dwarf galaxy in
the wind tunnel, SPH would predict the gas in the galaxy to stay were it is,
irrespective of whether this is the correct physical behaviour in this situation.

We could of course use a grid technique to perform the hydrodynamical integ-
ration, because these techniques have no problems resolving instabilities. How-
ever there are two issues here. First of all, a practical issue: our entire model is
based on an SPH code, with many concepts being tightly coupled to the concept
of a particle-based integration scheme. Changing from an SPH scheme to a grid
scheme requires an adaptation and possible recalibration of our entire model,
which is non-trivial.

Secondly, a grid based method is not necessarily better than SPH due to other
issues. As we will show in Chapter 3, methods that use a fixed grid experience
problems when the fluid is moving at high velocity with respect to the grid. In
principle, most of these problems should be solved by using an appropriately
small integration time step, but this then has a major impact on the runtime
of the simulations. Using a method that is Lagrangian in nature, i.e. where the
integration “grid” (that consists of particles in the case of SPH) moves along with
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the flow, in general can use larger time steps and is more efficient. For typical
hydrodynamical test problems, this is generally not an issue, but for a full-fledged
dwarf galaxy simulation with a large number of resolution elements and a large
range in densities and velocities, we would rather use a Lagrangian method.

Luckily, there has been some advance in the field of astrophysical hydro-
dynamics since the confronting paper of Agertz et al. (2007). A number of au-
thors have proposed ways to save SPH, by adding correction terms to its equations
that should make it sensitive to instabilities (Price, 2008; Valcke et al., 2010; Cha
et al., 2010; Read & Hayfield, 2012). A problem with most of these extra terms
is that they can only be applied when necessary, since they are not physical. In
other words, if we apply these terms in the entire fluid, the integration would
be wrong everywhere, except in the regions where the instabilities are located.
Applying the terms ad-hoc, when necessary, requires a switch that decides when
to activate them. Designing a good switch has proven to be difficult (Read &
Hayfield, 2012).

Other authors have abandoned the use of SPH, and have developed new Lag-
rangian techniques, that combine the Lagrangian nature of SPH with the ac-
curacy of grid methods. Springel (2010) uses a moving unstructured mesh to
discretize the fluid, while Hopkins (2015) uses the SPH formalism to estimate
volumes, rather than densities for the SPH particles, in a so called meshless
method. Both then use a finite volume method for the integration, which does
not experience the problems traditional SPH has.

1.5 This work

In this work, we will build the foundations for future ram-pressure stripping sim-
ulations of late type dwarf galaxies. To this end, we will add the last ingredient,
the UVB, to our model, and tune the model so that it produces realistic late
type dwarf galaxies. We will also devote a considerable part of this work to an
in-depth analysis of different hydrodynamical integration methods, and describe
the implementation of the public moving mesh code Shadowfax. This work has
resulted in Vandenbroucke et al. (2013); Verbeke et al. (2015); Vandenbroucke
et al. (2016) and Vandenbroucke & De Rijcke (2016), while Shadowfax was
also used for part of the analysis presented in Cloet-Osselaer et al. (2014).
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2
Particles & grids

B
efore we can start to even think about modelling physical processes like
gravity, hydrodynamics and star formation, we need to find out how to rep-
resent the physical systems we are interested in on a computer. Although

computers are orders of magnitude more powerful at computing than humans,
they are at the same time incredibly bad at working with abstract concepts like
gas clouds or dark matter distributions. In order to be able to do anything with
those concepts on a computer, we will have to convert them into the small build-
ing blocks a computer can work with: bits. In this chapter, we will explain how
this so called discretization of these concepts can be achieved. We will introduce
different ways of discretizing the interstellar and intergalactic medium found in
the literature, as well as ways of representing the enigmatic dark matter compon-
ent we need in the simulations. This will lead us to a discussion about sampling
of distributions, Poisson noise and how to reduce it, and will at the same time
allow us to present some discretization algorithms in more detail, with a focus
on our own work on Voronoi grids and evolving Voronoi grids.

To introduce the necessary concepts, we will have to make use of densities as
a measure of how much matter (ordinary baryonic or dark) is present in some
small subvolume of space. The precise definition of the hydrodynamical density
in case of the interstellar medium can be found in Chapter 3; for now it suffices
to see the density ρ(~x) as some function of space that gives the average amount of
matter present around some coordinate of space, ~x. The higher the density, the
more matter present in a neighbourhood of that region. As an illustration, we
will use the basic 2D and 3D density distribution shown in Fig. 2.1 throughout
this and the next chapter. It is given by the simple expression

ρ(~x) =

{

1 |~x− ~o| < 0.25,

0.1 0.25 ≤ |~x− ~o|,

with ~o = (0.5, 0.5) in 2D and ~o = (0.5, 0.5, 0.5) in 3D.
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Chapter 2. Particles & grids

Figure 2.1: The 2D and 3D density distribution we will be using
throughout this chapter. The bottom plot shows the surface of
equal density surrounding the high density sphere in the center.
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2.1 Grids

2.1 Grids

2.1.1 Cartesian grids

When showing the basic density distribution of Fig. 2.1, we silently already intro-
duced the first and conceptually easiest way of discretizing a density distribution:
by sampling it on a Cartesian grid. The picture consists of a 2D Cartesian grid
of pixels and the colour of every pixel is set by the average value of the density
in the space covered by that specific pixel.

This method can be very easily extended to 3D (although this is less suited for
graphical representations). In practice, the discrete representation of the density
distribution will then consist of at least two arrays (or some other array-like
structure): (1) an array of coordinates in XD space (with X = 1, 2, 3 for most
physical purposes), where each combination of X consecutive elements defines
the position of the center or anchor of some XD cell in XD space, and (2) an
array of average density values associated with the cells.

It is immediately clear that the representation will get better if the number of
cells is increased, so that the number of cells is a good measure of the resolution
of the representation. At the same time, it is also quite clear that it is much
harder to increase the resolution in XD space if X is larger, since an increase of
the total number of cells with a factor 2 will only increase the number of cells in
one dimension with a factor 2

1
X . If we want to have the same resolution increase

in 3D as in 1D, we should multiply the number of cells in 3D by 8 for every
doubling of the number of cells in 1D.

This last issue makes it very hard to use a simple Cartesian grid when discret-
izing systems with a high dynamic range, i.e. a system where some high density
regions are embedded in a larger volume with a much lower density, e.g. the
cosmic web. We clearly want to resolve the high density regions with enough
resolution elements, since these are the places where the interesting processes
like galaxy formation are taking place. However, if we would use the same high
resolution to resolve the entire cosmic volume, we would end up with a huge
number of cells, of which most will be almost empty and uninteresting. Suppose
we ideally want every cell to have roughly the same average mass. Then cells
in low density regions will be smaller than desired. To handle a density contrast
(the ratio between high density and low density) of 10, we might easily be using
10 times too many cells in the low density region in 1D. In 3D, we will be using
1000 times too many cells for the low density region. In simulations of galaxy
formation, the density contrast can easily be 107, which means we will be using a
staggering factor of 1021 cells too many in the uninteresting regions. In practice,
this makes it completely impossible to run this type of simulations with a fixed
grid, since no computer can handle this number of cells.

One possibility to improve on this is to use adaptive mesh refinement (AMR),
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Figure 2.2: An AMR representation of the 2D density distri-
bution, refined to yield an almost constant mass in every cell.
The low resolution region has 20×20 cells, in the high resolution
region this is refined to 80 × 80 cells. Since the density is aver-
aged over the cell, the distribution cannot be exactly represented
around the edges of the disk. For clarity, the opacity of the colour
plot is lowered to 50%.

a technique whereby a cell can be split into smaller subcells if some cell splitting
criterion is met (Berger & Colella, 1989). The easiest way to implement this
would be to store an extra array, which for every cell gives the size of that cell,
or tells us on which refinement level the cell is located. In practice, techniques
that use an adaptive mesh (Teyssier, 2002; Keppens et al., 2012) make use of
more complex, but very efficient structures to manage the multi level grid. A
very basic 2D AMR grid is shown in Fig. 2.2.

2.1.2 Static unstructured meshes

Another way to construct a grid that has smaller cells in regions of higher density,
is by using unstructured meshes. An unstructured mesh is much harder to store
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Figure 2.3: A point representation of the 2D density distribu-
tion. The distribution was sampled using 2,780 points that were
randomly sampled and then allowed to relax with techniques that
will be discussed later. On average, there are 10 times more
points in the high density region than in the low density region.

and maintain, but it has the advantage that it is unrestricted: every cell can be
split into two (or more) subcells irrespective of the dimension of the space. In a
Cartesian grid in XD space, a cell can only be split in 2X subcells. We hence
have much more control on the number of cells and where to put them to get the
best resolution when using an unstructured mesh.

There are many types of unstructured meshes that are used in various contexts
(Mavriplis, 1997), but for our purposes there are two which will be important and
will be introduced below: the Voronoi mesh and the Delaunay tessellation. They
both start from a set of mesh generators: a set of points in XD space that are used
to define the geometrical structure of the mesh. For a good mesh representation
of the density distribution, we will require these generators to sample the density
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Figure 2.4: Voronoi mesh for the set of generators based on the
2D density distribution. For every point in the set of generators,
there is a corresponding Voronoi cell that contains the region of
the box closest to that specific generator.

profile. This means that we should have a higher probability of finding a mesh
generator in a region with a higher density. We will come back to how to sample
points in this way later; let us for now assume we have such a set of generators
and hence have an array of XD coordinates corresponding to the coordinates of
the generators, see Fig. 2.3.

Voronoi mesh

Given a large enclosing volume (typically a box, but other shapes are possible)
and the set of mesh generators, the Voronoi mesh (or Voronoi diagram/grid/...)
is defined as the collection of cells with the property that every cell contains the
region of space that is closest to one of the generators (Dirichlet, 1850; Voronoi,
1908), which we will call the generator of that cell, see Fig. 2.4 and Fig. 2.5. The
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Figure 2.5: A 3D Voronoi cell, together with its generators

cell borders are hence formed by subspaces of points/lines/planes (depending on
the dimension X of the space) that are equidistant to two of the generators.

The Voronoi mesh for a given box and a given set of mesh generators is
unique. Furthermore, the Voronoi mesh has some very interesting properties.
For our purposes, one of the most important properties is that a Voronoi cell will
always be convex, i.e. it is always possible to connect any point inside the Voronoi
cell with any other point inside the cell by using a line segment that is entirely
contained inside the cell. A second important property is the way in which the
Voronoi mesh changes when the generators are moved away from their original
positions. If the movement of the generators is continuous, then the Voronoi
grid will change in a continuous way: cells will grow or shrink, but will do so
by a growing or shrinking of their boundaries in a continuous way (Reem, 2011).
Generators that share a boundary between their Voronoi cells are neighbours
and two cells can only become neighbours after a continuous movement of the
mesh generators if a new boundary is created in between them with zero size that
grows continuously. Two cells stop being neighbours when the common boundary
between them continuously shrinks to zero size. This will turn out to be a very
important property when we will define a hydrodynamical integration scheme
based on a Voronoi mesh in Chapter 3.
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Constructing and storing the Voronoi mesh in 1D is a trivial task, since in
this case the boundary points will be the midpoints of the line segments between
neighbouring generators. Generators are neighbours if there is no other generator
in between them. For higher dimensions, things get more complicated. There
exists an extensive body of literature on Voronoi meshes and how to construct
and represent them in 2D and 3D (de Berg et al., 2008). Mathematically, it can
be shown that this is most efficiently done using Fortune’s algorithm (Fortune,
1986). In 2D, this algorithm can be coded very elegantly in a so called sweepline
algorithm with efficiency O(N logN). In 3D, algorithms get inevitably more
complex and are less elegantly expressed. We will limit ourselves to one Voronoi
construction algorithm in this work, which will be based on the dual Delaunay
tessellation, and which is described in depth by Springel (2010). This algorithm
has an efficiency of O(N logN + Nd/2) in d dimensions (Edelsbrunner & Shah,
1996). In 2D, the algorithm is hence still O(N logN). In 3D, the second term
will dominate the efficiency, yielding a worst case efficiency of O(N3/2).

Delaunay tessellation

Given the same mesh generators used above, a triangulation of these points is a
set of 2D triangles or 3D tetrahedra that have generators as vertices, so that every
generator is respectively connected to at least 2 or 3 other generators through
at least one triangle or tetrahedron. Of course, there are many ways to achieve
this for a given set of generators. The Delaunay triangulation is then the specific
set of triangulations that fulfils the empty circumsphere criterion: a triangle or
tetrahedron is only valid if the circumcircle/circumsphere does not contain any
other generator apart from the 3 or 4 generators that are its vertices (Delaunay,
1934). Generators on the border of the circumcircle of circumsphere are allowed,
since otherwise it would be impossible to construct a Delaunay tessellation for
generators placed on the vertices of a Cartesian grid, which is a perfectly ac-
ceptable representation of a homogeneous density (this is also the reason why we
consider the specific set of triangulations fulfilling this criterion; the Delaunay
tessellation is not unique for some sets of generators).

Delaunay tessellations have interesting properties as well. It can be shown
that for a specific set of points, the Delaunay tessellation is the triangulation of
those specific points that maximises the minimum angle occurring for all angles
in all triangles. If we interpret the triangles or tetrahedra as being the cells of
an unstructured mesh, then the union of these cells exactly fills the entire convex
hull of the set of generators: the 2D or 3D polygon with generators as vertices
that encompasses all generators, see Fig. 2.6.

For our purposes, the most important property of the Delaunay tessellation
however is its geometrical link to the Voronoi mesh (de Berg et al., 2008). Since
the triangles or tetrahedra of the Delaunay tessellation have a unique circum-

30



2.1 Grids

Figure 2.6: The Delaunay tessellation for the set of generators
sampling the 2D density distribution. Note that the tessellation
does not fill the entire square box, but fills the convex hull of the
generators.

sphere (even in the case when the triangles/tetrahedra are not unique, since
then two or more triangles/tetrahedra will share the same circumsphere), the
midpoints of these circumspheres will also be unique. Furthermore, these mid-
points are those points in space that are equidistant from 3 or 4 generators of
the tessellation and hence correspond to vertices of cells of the Voronoi mesh for
the same generators. The boundaries of the Voronoi cells can then be construc-
ted by connecting these midpoints. We even know which midpoints to connect:
the midpoints of the circumspheres of neighbouring triangles/tetrahedra in the
tessellation. This also means that generators that are vertices of a triangle or
tetrahedron of the tessellation will be neighbours in the Voronoi mesh.

The Delaunay tessellation is hence dual to the Voronoi mesh, in the sense
that one can always be constructed from the other, since they encode similar
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Figure 2.7: The Voronoi mesh and the Delaunay tessellation
for the set of generators that samples the 2D density distribution.
The triangles of the tessellation connect the generators of the cells
of the mesh that are neighbours. The vertices of the cells are the
midpoints of the circumcircles of the triangles.

information. To construct the Voronoi mesh, we need to know which generators
are neighbours and we need the midpoints of the circumspheres of 3 or 4 gener-
ators that are consecutive neighbours in some sense (which will be made more
clear later). In the Delaunay tessellation, this information is directly available
through the triangles or tetrahedra, which explicitly specify the neighbour rela-
tions in terms of the connecting triangles or tetrahedra. The duality between the
Voronoi mesh and the Delaunay tessellation is illustrated in Fig. 2.7.

Incremental construction

If we would have the Delaunay tessellation of the set of generators, it would hence
be a trivial O(N) task to construct the Voronoi mesh for the same set of gener-
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ators. We are left with the task to construct the Delaunay tessellation. A wealth
of algorithms is available to achieve this, and some important mathematical soft-
ware libraries include triangulation algorithms. The conceptually most easy and
stable algorithm is the incremental construction algorithm, for which we start
with a valid tessellation, and then one-by-one add the generators and make sure
the tessellation is valid again before proceeding with the next generator (Guibas
et al., 1992).

As a starting point, we will take a very large triangle or tetrahedron that
encompasses the entire simulation box (and has non-generators as vertices), which
is trivially a valid Delaunay tessellation. Adding a new generator then always
proceeds in the same way, which however is very different for the 2D and 3D case.
In both cases, we first need to find the triangle or tetrahedron that contains the
new generator. To do this, we need a geometrical test to tell us whether a
point is inside or outside a triangle or tetrahedron. We start with some first
guess (usually generators are added in some clever order, so that a very good
first guess is the last triangle or tetrahedron that was affected when adding the
previous generator to the tessellation) and perform this test. If the new generator
is outside the triangle or tetrahedron, we do a very quick test to find out at which
side the line connecting the midpoint of the triangle/tetrahedron with the new
generator leaves the triangle/tetrahedron and use the neighbour at that side as a
new guess. This allows us to very efficiently find the triangle or tetrahedron that
contains the new generator.

Of course, it can happen that the generator is on a boundary between mul-
tiple triangles or tetrahedra, in which case we will have a degeneracy. Most
degeneracies can be solved by treating them as a special case, except for the
fatal degeneracy where two generators happen to coincide, in the sense that their
coordinates are exactly the same. We will always make sure that this cannot
happen by requiring all generators to have distinct coordinates. Very relevant in
this case is the occurrence of round off error that might skew the tests and make
the algorithm unstable. We will discuss this in more depth below.

After the generator has been located inside the old tessellation, the triangle
or tetrahedron containing it is split into several new triangles or tetrahedra. For
each of those, we then have to check whether they fulfil the empty circumsphere
criterion. Every faulty triangle or tetrahedron is then replaced and all new tri-
angles or tetrahedra are checked until no faulty triangles or tetrahedra can be
found any more. At that point, the tessellation is valid again and we can continue
to add the next generator. Below, we will discuss this algorithm in more detail
for the specific case of a 2D and 3D Delaunay tessellation.

2D In two dimensions, the triangle containing the new generator is split into
three new triangles, as illustrated in Fig. 2.8. There is one degenerate case, in
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Figure 2.8: In 2D, the triangle containing the new generator
(gray) during the incremental construction is split into three new
triangles ( left). If the new generator lies on the common edge
of two triangles, these two triangles are split in four triangles in
total ( right).

which the new generator lies on the line segment separating two neighbouring
triangles. In this case, we split the two triangles that share the line segment into
four new triangles in total.

If one of the newly created triangles fails the empty circumcircle test, there
will always be a second triangle that also fails the test: the triangle consisting
of the two vertices of the faulty triangle that are not the new generator, and the
other generator that lies inside the circumcircle. These two faulty triangles can
be replaced by two new triangles by shuffling the vertices in a so called face flip,
see Fig. 2.9.

3D In three dimensions, the tetrahedron containing the new generator is split
into four new tetrahedra. We now have two degenerate cases: the case where
the generator lies on the face between two neighbouring tetrahedra, and the
case where it lies on the edge between in general n neighbouring tetrahedra. In
the former case, the two tetrahedra that share the face are replaced by six new
tetrahedra, in the latter case the n tetrahedra are replaced by 2n new tetrahedra,
see Fig. 2.10

When a tetrahedron fails the empty circumsphere criterion, then just as in 2D,
there will be at least one other faulty tetrahedron, formed by the three vertices
that are not the newly added generator and the generator that lies inside the
circumsphere. There are four possible solutions, depending on the behaviour of
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Figure 2.9: When the generator (gray) opposite of the newly
added generator in a neighbouring triangle lies inside the circum-
circle of the new triangle (black), the two triangles are replaced
by two new triangles, each containing the newly added generator
and the opposite generator. This restores the empty circumcircle
property for these triangles, as can be seen from the gray circles.

the line that connects the new generator with the generator that lies inside the
circumsphere.

This line will always intersect the common face of the two faulty tetrahedra. If
the intersection point with this face lies inside the faulty tetrahedra (and hence
inside the common triangle of the two tetrahedra), the two tetrahedra can be
replaced by three new tetrahedra in a 2-to-3 flip (Fig. 2.11). If the line lies
outside the triangle, then either there exists another tetrahedron that has the
two vertices on the line and two vertices of the common triangle as vertices,
or this tetrahedron does not exist. If it exists, we can replace this tetrahedron
and the two faulty tetrahedra by two new tetrahedra in a 3-to-2 flip (Fig. 2.12).
If it does not exist, we cannot solve this specific faulty tetrahedron, but the
tessellation will be restored through a later flip in another tetrahedron.

The fourth case is the degenerate case where the intersection point of the line
and the face lies on an edge of the common triangle (and hence a common edge
of the two faulty tetrahedra). If this edge is shared by exactly four tetrahedra
in total, then these four tetrahedra can be replaced by four new tetrahedra in a
4-to-4 flip (Fig. 2.13). If it is shared by more or less tetrahedra, then again we
cannot solve this faulty tetrahedron and the tessellation will be restored by a flip
in another tetrahedron.
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Figure 2.10: The three possible cases for the insertion of a new
generator in the 3D Delaunay tessellation. Top: normal case, the
single tetrahedron containing the new generator (gray) is split in
four new tetrahedra (dashed gray lines). Left: degenerate case
where the new generator (gray) lies on the common face of two
tetrahedra (gray face). The two tetrahedra are replaced by six new
tetrahedra (dashed gray lines). Right: degenerate case where the
new generator (gray) lies on the common edge (full gray line) of
n (in this case n = 3) tetrahedra. The n tetrahedra are replaced
by 2n new tetrahedra (dashed gray lines).
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Figure 2.11: When the generator (large gray point) opposite the
newly added generator (large black point) lies inside the circum-
sphere of one of the newly added tetrahedra, and the line joining
this generator and the newly added generator (dashed gray line)
intersects the common face of both tetrahedra (darker gray) on
the inside (small gray point), then the line segment between both
generators becomes the common edge of three new tetrahedra that
replace the two tetrahedra in a 2-to-3 flip.

Round off error All operations described above are a combination of complex
bookkeeping operations on the internal representation of the tessellation, and two
geometric tests: a test to check whether a point lies above, below or on the line
through two points or the plane through three points (an orientation test), and
a test to check whether a point lies inside, outside or on the circle through three
points or the sphere through four points (an incircle/insphere test).

Both tests can (both in 2D and 3D) be reduced to determining the sign of
the determinant of a matrix involving the coordinates of the points involved,
see Appendix A. If all calculations on a computer were exact, then all tests
would always give the exact same answer and the algorithm would be stable.
But computers are not exact: they represent numbers as a combination of a
finite number of bits, 64 for most current systems. For integer arithmetics, the
maximum number that can then be represented on a computer is equal to 264 and
numbers larger than that cannot be used (in fact, if we want to allow negative
numbers, we need to reserve one bit for the sign and the maximum number would
be 263).

Since integer arithmetics would be very limited for any relevant physical sys-
tem (only supporting a numerical dynamic range of ∼ 1019), computers also
support floating point arithmetics. A floating point value is a combination of
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Figure 2.12: When the generator (large gray point) opposite
the newly added generator (large black point) lies inside the cir-
cumsphere of one of the newly added tetrahedra, and the line
connecting both generators (dashed gray line) intersects the com-
mon face of both tetrahedra on the outside, then a 3-to-2 flip is
possible if the segment between both generators is the edge of an
existing tetrahedron. In this case, we can remove the segment that
lies entirely inside the three tetrahedra (full gray line), effectively
converting the three tetrahedra into two new tetrahedra.

the form m × 2e, where m is the mantissa and e the exponent. In most repres-
entations, the exponent is an integer as defined above. The mantissa is a binary
number with a fixed point after the first bit, e.g. 1.0001 for a 5-bit mantissa. The
IEEE standard (IEEE, 2008) specifies that a double precision floating point has
a 53-bit mantissa (including sign bit) and a 11-bit exponent. This is the floating
point value type we will use in this work. It has a much larger numerical dynamic
range of ∼ 10616.

Since there is no physical system with a numerical dynamic range that even
approximately resembles this number, the finite character of double precision
floating points is no longer an issue. What is an issue, is the fact that operations
involving multiple floating points are not necessarily exact. To add two floating
points, we need their exponents to be the same, which might mean we have to
shift the mantissa of one of them, which causes a round off error. If we multiply
two floating point values, we add the exponents and multiply the mantissas.
If the resulting mantissa is too large, we can scale up the resulting exponent,
but we will still loose precision at the other end of the mantissa. Most modern
architectures are capable of using extended precision during the calculations on
the CPU, which means adding floating points might be less prone to round off
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Figure 2.13: When the generator (large gray point) opposite the
newly added generator (large black point) lies inside the circum-
sphere of one of the newly added tetrahedra, and the line through
both generators (gray dashed line) intersects the common face of
both tetrahedra on an edge (small gray point) of the tetrahedra, a
4-to-4 flip is possible if this edge is shared by exactly four tetra-
hedra. In this case, the edge is replaced by the segment connecting
the generators, effectively replacing the four tetrahedra by four
new tetrahedra.

then explained above (in fact, the IEEE standard sets strict limits on the amount
of round off error that the basic arithmetic operations are allowed to generate).
However, at the end of the calculation, the resulting float is put back in memory
and rounded again to 64 bits. If we want the result to still be a floating point
value with the same specifications as the operands, then every operation involving
floating points is susceptible to round off error (Shewchuk, 1997).

The coordinates that are used as input values for the geometrical tests will
be floating point values. And to calculate the sign of the determinants, we have
to add, subtract and multiply these values. This will involve round off errors,
which inevitably means that in some special cases the result of the geometrical
test might be wrong: if the determinant is very close to zero, then maybe some
intermediate result during the determinant calculation might have been a little
bit too large due to round off, resulting in a determinant that is a bit too large
and that, if we would calculate it exactly, would have a different sign.

This in itself is not a problem for any algorithm, since computers are determ-
inistic. If the sign of the determinant is wrong, it will always be wrong for that
specific set of input values. Whether or not a point is inside or outside a sphere
does not really matter for the final Voronoi mesh, since the neighbour relations
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that might be wrong will correspond to very small faces that will not have any
influence on the physics of the problem. We might then just as well consider the
wrong result to be correct.

The issue is that determinants for tests with different input values might
be inconsistent. Consider the example of the first step in the 2D incremental
construction algorithm, when we need to find the triangle containing the next
generator we want to add. To test whether the generator lies inside some triangle,
we need to perform three orientation tests, one for every side of the triangle. If
all tests indicate that the point is above that specific side, then the generator is
inside the triangle. Suppose now the generator is very close to one of the sides,
so that the orientation test for that side incorrectly signals the generator to lie
below that side. We incorrectly assume the generator lies outside the triangle
and continue the search algorithm in the neighbouring triangle that shares that
side with the first triangle. Again, we test the three sides, but since in this case
the order of the vertices of the triangle is different, we now correctly find that
the generator again lies below the side (but now from the point of view of the
neighbouring triangle). Hence we continue the search in the neighbouring triangle
that shares the side, which unfortunately turns out to be the initial triangle again!
We are hence stuck in an infinite loop, jumping back and forth between the two
triangles.

To prevent this from happening, we have to make sure that geometrical tests
are consistent: they should give the same answer, irrespective of the order in
which the values are passed on to the test. While this might seem an obvious
thing to do, it turns out this is actually not so easy. The most straightforward
way to do this turns out to be by requiring the tests to not only be consistent,
but to also be correct. This requires us to use extended precision arithmetics, as
is discussed in Appendix A.

2.1.3 Evolving unstructured meshes

In Chapter 3, we will use the Voronoi mesh as the basic discretization for a moving
mesh hydrodynamical integration method, where we make use of the remarkable
property of the Voronoi mesh that it evolves continuously when the generators
move continuously, as discussed above. This integration scheme will require us to
maintain a Voronoi mesh for a large number of generators, whereby the generators
are allowed to move in between integration steps (but the movements will be small
– we will discuss what we mean with small below).

Since we have an algorithm to construct a Voronoi mesh for a given set of
generators, the easiest way to maintain this mesh would be to rebuild the entire
mesh for every time step, using the latest coordinates for the mesh generators.
This is the method used in Springel (2010) and Duffell & MacFadyen (2011), and
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is also the default method used in our own moving mesh code Shadowfax (see
Chapter 4).

Intuitively, this feels unnecessarily expensive, since the differences in the mesh
between two consecutive time steps will be small. Some cells will gain neigh-
bours, some will loose neighbours, and a considerable part of the cells might just
change shape without changing neighbour relations. The latter means that the
underlying Delaunay tessellation will not change for these specific cells, since this
tessellation encodes the neighbour information. If we rebuild the entire mesh,
we throw away all information from the previous time step, while a considerable
part of this information actually does not change. Duffell & MacFadyen (2011)
use information from the previous time step when reconstructing the mesh, but
they do not conserve this information.

We experimented with a novel mesh evolution algorithm, which makes better
use of the information from a previous time step to evolve rather than rebuild
the mesh. The algorithm starts with a valid Voronoi mesh (obtained using the
incremental construction algorithm), and then restores this mesh after the mesh
generators have been allowed to move (if the movement is small enough). This
algorithm effectively yields a valid Voronoi mesh at every time step, while at the
same time being faster than a total reconstruction. The algorithms for 2D and
3D are a bit different, and will be discussed below. We will focus on the main
steps of the algorithm, the specific solution for various substeps is discussed in
more detail in Appendix B, and is subject of Vandenbroucke & De Rijcke (in
preparation).

2D

In 2D, cells can lose or gain neighbours through one single process involving
four neighbouring cells, which we will call a face flip, analogous to the face flip
in the incremental Delaunay construction algorithm. After a movement of one
or more generators, a non-neighbour of a cell enters the circumcircle through
the cell generator and two of the cell neighbours (that are also neighbours of
the non-neighbour), thereby invalidating the Delaunay triangle that connects the
generators of these cells. The face associated with the neighbour relation between
the two mutual neighbours thereby flips orientation with respect to the cell gen-
erators, which leads to two faces of these cells intersecting, see Fig. 2.14. To
solve this, it suffices to (a) remove the flipped face and the associated neighbour
relation for the two mutual neighbours, and (b) insert a new neighbour relation
and associated face in between the original cell and the non-neighbour. The net
effect is that the face between the mutual neighbours flips to a new face between
the original cell and the non-neighbour.

The easiest place to detect the face flip is in the cells that loose the face, for
they have all three other generators as a direct neighbour, so that we only need
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Figure 2.14: When generator B enters the circle through gener-
ator A and two consecutive mutual neighbours of A and B, C and
D, the face between C and D flips orientation, causing an overlap
of the cells of A and B. The mesh can be restored by removing
the face between C and D, and inserting a new face (gray line)
in between A and B.

to check neighbours of cells. The face flip is then detected by explicitly checking
the empty circumcircle criterion for all triples of consecutive neighbours. Since
a new face can only be created if at the same time another face is removed, this
suffices to cover all cases.

To construct a mesh evolution algorithm, we first need to store the inform-
ation from the existing (valid) Voronoi mesh in such a way that we can easily
distinguish between the geometry of the mesh, set by the actual positions of the
vertices, and the abstract notion of the connectivity, which tells us which cells are
neighbours of each other. We opt for a scheme in which every cell explicitly stores
a list of neighbouring cells, ordered counterclockwise, whereby we store a refer-
ence to the generator of the neighbouring cell, rather than an actual generator
position. We can then keep this information when the generator positions change
and reconstruct the mesh after the movement. This is achieved by calculating
the midpoints of the circumcircles through a cell generator and two consecutive
neighbours of the cell, which are the vertices of the Voronoi cell.

Notice that this procedure will always work, as long as the neighbouring
information stored in the cells is consistent. Consistent means that cells should
always be mutual neighbours, and that when two cells share two neighbours, the
ordering of these neighbours is consistent in both cells (i.e. if A comes before B in
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cell C, then B should come before A in cell D). Having a consistent connectivity
however does not mean the Voronoi mesh constructed from it is valid. This is
only the case if the connectivity satisfies the empty circumcircle criterion. There
are many possible triangulations of a set of generators, but only one (or some for
degenerate generator sets) corresponds to the Delaunay tessellation which is the
dual of the Voronoi mesh.

The procedure is now very straightforward: we move all mesh generators, but
keep the connectivity from the previous time step. For every cell, we loop over
its ordered list of neighbours and check the empty circumcircle criterion for all
triples of consecutive neighbours. If a triple fails the test, we remove the faulty
neighbour from the neighbour list, and add a new face in between the other two
neighbours. The new face is then added to some secondary test stack, so that all
faces are tested at least once. If no more tests need to be performed, the Voronoi
mesh is valid again.

To see that this is indeed the case, consider again the underlying Delaunay
tessellation. After a movement of the generators, the structure we obtain using
the connectivity from the Delaunay tessellation before the movement, will result
in a triangulation of the generators. This triangulation will however no longer
correspond to the Delaunay tessellation. The operations described above are
nothing else than a series of face flips in this triangulation. It is a property of a
general 2D triangulation that it is always possible to convert it to the correspond-
ing Delaunay tessellation by means of a finite series of such face flips (de Berg
et al., 2008). This property does not hold for triangulations in 3D, which will
give us some trouble below.

Before that, we need to say something about degenerate cases, since these
tend to complicate most geometrical algorithms. In this case however, there are
no problems. The only degenerate case that could occur is when a generator and
a triple of consecutive neighbours are cocircular. In practice, this means that the
face in between the generator and the middle neighbour will have shrunk to zero
length. Likewise, the non existing face between the other two neighbours would
have zero length. Since zero length faces are uninteresting to us, we do not have
to treat this case. The only condition is that we need to be absolutely sure that
the cocircularity of the generators comes out irrespective of the order in which the
generators are tested, so that the zero length face is consistently present in both
neighbours. This can be realised using the exact arithmetics described above and
in Appendix A.

3D

In 3D, unlike in 2D, face insertion and removal are separate processes. Since
every vertex of the Voronoi mesh is now determined by four mesh generators,
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Figure 2.15: The vertices of the 3D Voronoi face between gener-
ator A and generator B are the midpoints of the spheres through
A, B and two consecutive face neighbours (C and D) of the face.
The generators C and D are both also real neighbours of A and
B.

deviations will involve five generators. Representing the mesh internally in a
useful format also becomes harder. We will discuss this issue first.

Suppose we want to represent the connectivity of the mesh by means of some
neighbour list for every Voronoi cell, as in 2D. Since every face now has the
same geometric structure as the whole cell in 2D, we need multiple lists: one
for every face. For every real neighbour of the Voronoi cell, we need an ordered
list of what we will call face neighbours, so that the vertices of the Voronoi cell
are now the midpoints of the circumspheres through the mesh generator, the
neighbour associated with the face, and two consecutive face neighbours in the
face neighbour list for that neighbour, see Fig. 2.15. A face neighbour should
always be a real neighbour of the cell as well, and can be face neighbour for
multiple faces of the cell.

Inserting and removing a face will now not only require us to add or remove
neighbour relations between cells, it will also cause changes in the face neighbours.
In principle, every face starts out as a very small triangle, having only three face
neighbours (we will soon encounter a degenerate case which does not). When
new neighbours are added to the cell, this number can grow, allowing the face
to have the more general polynomial size we usually associate with Voronoi cells.
Likewise, a face will only be removed when it has a triangular shape again, which
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means it first has to go through a phase of successive face neighbour removals.

Having a consistent connection now has a slightly different meaning. We still
require neighbour relations to be mutual, but since the neighbours themselves
need no longer be ordered, the requirement that neighbours a consistent ordering
in between neighbouring cells is dropped. We however now have the extra re-
quirement that face neighbour relations between neighbouring faces of the same
cell should be mutual.

We can again use the connectivity from a previous step to construct an initial
guess for the Voronoi mesh after a movement of the generators, and then try to
restore the mesh by a series of operations we will lay out below. However, since
these operations will still correspond to flips in the underlying triangulation, this
algorithm will only be successful if it would be possible to convert an arbitrary
triangulation of a set of 3D points into a valid Delaunay tessellation for that set
of points by means of flipping operations. We saw above that a 3D triangulation
does not have this property.

This means it is impossible to first update all generator positions, and then
restore the mesh, at least theoretically (in some cases, this algorithm does work,
but we can never know if it actually did without doing a very expensive check).
However, we can do something similar if we move the generators one at a time.
As shown above, the Voronoi mesh will always change continuously when the
generators change continuously. The problem with the algorithm as laid out
above is that the actual generator movements are not continuous, but correspond
to time discretized continuous jumps of the generator positions. We can however
make the movement continuous by only moving one generator and if necessary
even subdividing this generators movement in smaller substeps. Then the only
mesh changing processes will indeed be face insertions and removals, which can
be handled.

What now are the mesh restoring operations we mentioned? First of all, there
is the insertion of a new face. If the mutual neighbour of three neighbouring
cells enters the circumsphere through the three generators and another mutual
neighbour of the three cells, we need to create a new triangular face in between
the two mutual neighbours, which will have the three neighbouring cells as face
neighbours, see Fig. 2.16. The face insertion can only be detected in the three
mutual neighbours, as a violation of the empty circumsphere criterion for three
consecutive face neighbours in the faces between these neighbours. From the
point of view of these faces, we have a similar situation as for the 2D face flips,
since now a common edge in these faces will flip its orientation with respect
to the general direction of the face (we will need to be more clear about this
below, especially for the case of faces with three and four vertices). To restore
these faces, we have to remove the flipped edge, which corresponds to removing
a corresponding face neighbour from the lists of those faces.
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Figure 2.16: When generator E enters the sphere through neigh-
bours A and B, and face neighbours C and D, the face segment
in between the vertices mapped out by ABCD and ABDE respect-
ively, flips. The face can be restored by creating a new face (and
neighbour relation) between C and E. The same segment will also
flip in the faces between A and D, and B and D.

When an edge flips in a face with only three edges, the entire face flips, i.e.
all edges change orientation, so that we get a situation similar to the flipped face
in 2D (where neighbouring faces intersect and it seems as if part of the cell is
literally split off from the rest of the cell). In this case, we need to remove this
face and we actually have a face removal. Since the face removal is the opposite
process of the face insertion, we also have to add a new edge in the faces in
between three neighbours that have the two cells as mutual neighbours (and that
will of course be the face neighbours of the flipped face).

The processes described above correspond to the 2-to-3 and 3-to-2 flips we
encountered in the incremental Delaunay construction algorithm. We also en-
countered a degenerate 4-to-4 flip, which we will also have to deal with here. If
two edges flip in a face with only four edges, then we can also consider the entire
face to have flipped. However, instead of just removing the face, we now also
have to insert a new face (with four edges) in between the two face neighbours
that correspond to the two flipped edges. This also requires some face neighbour
removals and insertions, which are explained in more detail in Appendix B.
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The fact that face insertion and removal are separate processes, and the ex-
istence of a degenerate face flip, make the evolution algorithm a lot more com-
plicated. For every mesh generator and every neighbour, we have to subject all
triples of consecutive face neighbours to the empty circumsphere test. We then
need to keep track of the total number of flipped edges. If this number is too
large, we cannot restore the mesh and we have to refine the movement. If the
number has some specific value corresponding to one of the three cases, we re-
store the mesh and continue. Since face insertions are not detectable in the cells
that gain the new face, we also have to include the neighbours of the cells in this
procedure.

Small movements

The algorithms presented above crucially depend on the movement of the gener-
ators being small, since only then it does make sense to try to reconstruct the cells
using information from the previous time step. We did however not quantify the
size of the movements that yields a stable algorithm. Furthermore, we need to
find out what happens when movements are too large: will the algorithm simply
crash or deadlock, or will it produce a faulty updated mesh? In the former case,
we can always revert to a reconstruction of the entire mesh and continue the
simulation. In the latter case, we might end up using a geometrically incorrect
mesh, and it is not safe to use the algorithm.

For the 2D algorithm, it is easy to show that we can never end up with an
incorrect mesh, since every wrong neighbour relation inevitably causes a flipped
face in some cells, which will always be detected. Neither can the algorithm
deadlock, since an arbitrary 2D triangulation can always be converted into a
Delaunay tessellation by means of a finite number of flips (de Berg et al., 2008).

This means that the algorithm can only crash. By running the algorithm on a
large set of randomly moving generators, we found one situation where this hap-
pens: when the generator of a cell geometrically falls outside of its reconstructed
cell. This happens either when the movement of the cell is larger than the size
of the cell, or when the generator is close to the cell boundaries before the move-
ment. Either way, detecting if a point lies inside or outside a polygon is a well
known problem in computational geometry, and there exist very fast algorithms
to do it. We use a technique based on the winding number of the cell (Hormann &
Agathos, 2001). After the movement and before the restoration phase, we check
the winding number for every cell and crash the algorithm whenever a generator
is detected to be outside its cell.

In 3D, the important flipping property that turns out to be crucial for the
stability of the 2D algorithm no longer holds. It is therefore perfectly possible for
the algorithm to produce an invalid mesh or deadlock. Experimentally, we were
able to assess that in these cases, the algorithm crashes somewhere in most of
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Table 2.1: Number of successful consecutive random generator
movements before the evolution algorithm crashes.

2D 3D
fraction iterations fraction iterations

0.5 2 0.25 15
0.25 5 0.125 32
0.125 19 0.0625 100

the cases, so that it is still possible to revert to the old algorithm. However, it is
also possible that the algorithm is unsafe. To prevent this from ever happening,
we explicitly limit the maximal movement of a generator to a fraction of the cell
size, by subdividing the generator movement in smaller movements if it is too
large. By explicitly checking the mesh validity after every update for a large test
problem, we were able to finetune this fraction to a value of 10%, which is small
enough to be unconditionally safe, but large enough to still be fast.

To check when generator movements are small enough for the algorithm to
work efficiently, we set up a test problem in which the generators are moved
completely randomly, with the size of the random movements limited to some
fraction of the cell size. After restoring the mesh, we then repeated this procedure
until the algorithm crashed. In 2D this happens when a generator lies outside
its cell after the movement, in 3D the algorithm crashes when a case cannot be
resolved correctly.

As initial condition for the test, we use a uniform periodic box with unit
length, in which 10,000 generators are placed by drawing random coordinates
from a uniform distribution. The set of generators is then allowed to relax using
100 iterations of Lloyd’s algorithm (see below). This results in an initial mesh
with an average cell volume of (1.000 ± 0.073) × 10−4, and an average cell size of
(5.600±0.021)×10−3 in 2D, and an average cell volume of (1.000±0.047)×10−6

and cell size of (2.900 ± 0.045) × 10−2 in 3D.
We quantify the random mesh movement as a fraction of the average cell size,

and list the number of iterations of the random displacement algorithm before the
restoration algorithm crashes (with a maximum of 100 iterations) in Table 2.1.
Since the random movements of the generators correspond to a random walk in
2 and 3 dimensions, we can estimate the average size of the generator move-
ment before the algorithm crashes as respectively the square and cubic root of
the number of iterations, multiplied with the amplitude of the random move-
ments. We then see that this average movement size before a crash goes down
with decreasing amplitude. This is to be expected, as every random movement
will distort the mesh, and crashes are caused by heavy distortions of the mesh.
However, the average movement of a single generator is not really meaningful
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Figure 2.17: Fraction of the total run time of a Shadowfax

simulations spent in grid construction and hydrodynamical integ-
ration routines, and speed up obtained using the new algorithm,
as a function of the number of cells N for a simple spherical
overdensity test (see Chapter 4).

in this case, as the fatal distortions are likely caused by outliers: neighbouring
generators that consistently move away from each other during a (small) number
of consecutive random steps. For a small number of iterations, their contribution
can be better estimated by simply multiplying the number of iterations with the
amplitude of the random movements. Moreover, in hydrodynamical applications,
the cell movement will contain correction terms to keep cells more regular. These
terms will keep the mesh more regular over a large number of iterations. They
can however not guarantee regularity over a small number of iterations.

Using this heuristic, we see that the 2D algorithm is not stable for displace-
ment fractions of 0.5 and 0.25, but is stable enough for a displacement fraction
of 0.125, or approximately 10% of the average cell size. In 3D, this is the fraction
that is explicitly used to subdivide the generator movement. As a result, the
algorithm is stable enough for all fractions in this case for our simple test.
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Efficiency

Fig. 2.17 shows timing results for a number of simulations using the old and the
new mesh evolution algorithm for a hydrodynamical test problem that will be
introduced in Chapter 3 and discussed in more detail in Chapter 4. The tests for
the old and the new algorithm are identical, except for the way in which the mesh
is evolved: for the old algorithm, the entire mesh is discarded and reconstructed
from the new positions of the generators, while for the new algorithm, we use the
advanced evolution algorithm discussed above.

In 2D, there is a clear speedup of more than a factor two, and this factor in-
creases with increasing cell number, indicating that the mesh evolution algorithm
scales better with the number of cells. The speedup in 3D is less profound due to
the higher complexity of the algorithm, but there we also notice a slightly better
scaling behaviour.

2.2 Particles

In the previous section, we saw that grids come in two flavours: a computation-
ally cheap version that is static and relies on a power of two hierarchy for cell
refinement, and a much more adaptive unstructured version that requires a lot
of resources to construct and maintain.

In this section, we will focus on another method to represent a density dis-
tribution: by means of particles. In fact, we already shortly touched upon this
subject when introducing the set of generators in the previous section (Fig. 2.3).
Recall that these generators were sampled from the density distribution, so that
the number of generators in the high density region was higher than in the low
density region, the number ratio being equal or close to the density contrast of
the distribution. The general idea would then be to assign some mass to the
generators, so that we can retrieve the density in some subregion of the box by
dividing the total mass of all the generators in that subregion by its volume. If
we require the mass of all generators to be the same, then the generator posi-
tions indeed sample the density distribution. Since the generators now no longer
generate anything, we will just call them particles.

Given the particles, we then have to find some computational way to arrive at
the densities, which should closely relate to the intuitive description given above.
In fact, multiple methods exist; we will focus on two of them next.

2.2.1 Smoothed Particle Hydrodynamics

The first method to assign a notion of density to a volume filled with a discrete
set of particles, is by viewing the particles as being some smooth blobs instead of
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discrete points in space. The mass contained in the particle is then not localised
at a single point in space, but is spread out in some spherical volume around
the particle coordinates. The blobs of multiple particles can (and will) overlap,
so that the density in any point in space can be found by summing up the
contributions of all particles that contribute some of their mass to that particular
point. To make this more concrete, we need to find a mathematical way to spread
out the mass of a particle, and we need to define an algorithm to compute a
consistent density from this.

When the resulting density estimate is used as a basis for a hydrodynamical
integration scheme, this technique is called Smoothed Particle Hydrodynamics
(SPH), see also Chapter 3. Many reviews of this technique can be found in
literature, and we will base our short description on that of Price (2012).

Smoothing kernels

In practice, we will define the density distribution associated with one of the
particles (particle i) to be

ρi(~x) = miW (|~x− ~xi|, hi), (2.1)

with mi and ~xi the mass and coordinates of particle i. W (|~x − ~xi|, hi) is the
smoothing kernel, i.e. the function that mathematically represents the smoothing
procedure, and that depends on some parameter hi (the smoothing length), which
sets the size of the smooth blob.

If we want ρi to be a density, then it is immediately clear that W should be a
reciprocal volume. In order to correspond to a smoothing procedure as described
above, we will also require it to be a decreasing function of the distance |~x− ~xi|.
Finally, we will also require it to have compact support, meaning that W drops
to zero for some cut off radius, and stays zero outside this spherical region. The
last requirement is necessary to make the method computationally feasible, since
we do not want to add contributions from all particles for all points in space.

Given these restrictions, there is still a large freedom in choosing the smooth-
ing kernel. The most commonly used kernel is the cubic spline (Monaghan &
Lattanzio, 1985), given by (Springel, 2005):

W (|~x− ~xi|, hi) =
8
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The precise choice of kernel function is not important for the density es-
timation procedure below, although it might affect hydrodynamical integration
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schemes based upon it. The cubic spline e.g. leads to a vanishing hydrodynam-
ical force for particles that come very close together, which can lead to particles
clustering together, the so called clumping instability (Read et al., 2010). These
problems can be overcome by using more advanced kernel functions.

Density iteration

Given (2.1), it is possible to obtain the local density for any point in space by
simply summing up the contributions of all particles whose kernel overlaps with
that particular point. In practice, we will only be interested in obtaining density
estimates for the particle positions themselves, given by

ρi =
∑

j

mjW (|~xi − ~xj |, hj).

There is some complexity involved in this simple equation, that we will now try
to explain in more detail.

First of all, there is the choice of smoothing length in the kernel function
above. If we strictly follow the procedure described above, then we should take
this to be the smoothing length of the other particles, hj . This corresponds to a so
called scatter operation, in which each particle contributes a fraction of its mass
to the surrounding region. If we would replace hj by hi in the above equation,
we end up with a gather operation, in which each particle gathers a fraction
of the mass of its neighbouring particles to constitute its own density. If all
particles would have equal smoothing lengths, this distinction would disappear.
In general, neighbouring particles will have similar smoothing lengths, so that
both operations will yield similar results.

Second, there is the choice of parameters. The density defined above de-
pends upon two completely independent parameters: the particle mass and the
smoothing length. The former is a measure for the amount of matter that is
represented by the smallest resolution element, and we will choose it to be the
same for all particles, so that we have a good idea of the global resolution of the
method. The latter sets the local spatial resolution, which is the quantity that we
want to adapt to the local density field, and will hence treat as a free parameter.
The smoothing length is closely related to the number of neighbours for a given
particle and will hence also determine the computational cost of the method. We
want it to be small enough to make the method cheap, but large enough for the
method to be smooth. In practice, we will try to fix the number of neighbours
for a given particle to some value.

This requires an iterative procedure in which the densities and number of
neighbours are calculated using some first guess for the smoothing length. As-
suming the density is spread out over the volume of a sphere with radius the
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smoothing length, we can then update the smoothing length guess until the
number of neighbours is close to the desired number. Since this requires a large
number of neighbour search operations, in which we try to find the particles in-
side a sphere with some radius around a given set of coordinates, we will always
use the gather form of the density equation. To speed up convergence, we will
allow some flexibility in the number of neighbours.

Modern SPH implementations do even better by using a weighted number of
neighbours (Hopkins, 2013), in which the contribution of a single neighbour to
the total number of neighbours for a particle is also weighted with the smoothing
kernel. The number of neighbours is then no longer an integer, but rather a
continuous function of space. This way, the iteration always converges after just
a few iterations, irrespective of the initial guess for the smoothing lengths.

Since the method by construction smooths out large density jumps, it is im-
possible to exactly represent the example density distribution using SPH, as
illustrated in Fig. 2.18.

2.2.2 Meshless Volumes

The method above provides an easy to program and scalable way to obtain con-
sistent density estimates for a set of particles. It is however very poor in terms of
volume partitioning (Hopkins, 2015). Assuming constant particle mass, the con-
tribution of a single particle to the density at some point in space will correspond
to some fraction of the volume associated with the particle being assigned to that
point in space. If we were to assign a real volume to every particle, then we would
of course require the sum of the volumes of all particles to be equal to the total
volume of the simulation box. Furthermore, we would require the same to hold
for any arbitrary subvolume of the total simulation box: the volume of this region
as sampled by summing the contributions from all neighbouring particles in some
points of the region should correspond to the real volume of that subvolume of
the box. The standard SPH density estimate fails on both points, as illustrated
in Fig. 2.19.

This is not really a problem if we are only interested in estimating densities,
but it leads to problems if we want to use the density estimates as a basis for a
finite volume hydrodynamical integration method (see Chapter 3), where such a
volume partitioning of space is essential. What we actually want is a method that
is as computationally cheap as the SPH density estimate, but partitions space in
a way similar to the unstructured meshes introduced in the previous section.

An additional disadvantage of sampling the density from a discrete set of
points is that sampling noise will affect the density distribution itself. If we
would use the same particles as generators of a Voronoi mesh, this sampling noise
completely disappears from the density distribution, and is completely absorbed
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Figure 2.18: The 2D density distribution as sampled using
Smoothed Particle Hydrodynamics. The particles are coloured
according to their density. In regions of constant density, the
density is recovered reasonably well, although it can be slightly
lower or higher due to noise on the particle distribution. Around
the edges of the high density region, the density is smoothed out
over a layer that is a few particles thick.

by the cells having slightly different sizes. Noise in the particle distribution should
translate to noise in the geometrical properties of this distribution, like volumes,
and not in the hydrodynamical properties, like the densities.

The key is to treat the volume in some small region of the simulation box
as known. We are not interested in obtaining a volume for this small region,
but rather in dividing this volume over the neighbouring particles, so that some
fraction ψi of the local volume is assigned to particle i (Ivanova et al., 2013;
Hopkins, 2015):

ψi(~x) =
1

A(~x)
W (|~x− ~xi|, hi), (2.2)

where A(~x) is a normalisation function that makes sure that the total fraction at
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Figure 2.19: The volume fraction resulting from the SPH dens-
ity estimation, sampled in 100 × 100 pixels. Around the interface
between high and low density region, the volume is oversampled
in some pixels, and undersampled in others. As a direct result,
the sum of the particle volumes is smaller than the actual volume
of the box.

every point in space is always 1:

A(~x) =
∑

i

W (|~x − ~xi|, hi).

Since this procedure is also valid at the particle positions themselves, we can
then define the volume of particle i to be

Vi =
1

∑

j W (|~xi − ~xj |, hi)
.

The density of the particle is then calculated from this volume and the mass of
the particle.

Unlike the SPH density estimate, this method provides a volume partitioning
that indeed sums up to the total volume of the box, and that per construction
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has the correct volume for every subvolume of the box. We will see in Chapter 3
that we can also define meshless surface areas for the particles.

2.2.3 Stars

The typical size of a main sequence star like our Sun is ≈ 7 × 108 m (Emilio
et al., 2012). More massive stars (like the red supergiant Betelgeuse) can be up
to a factor 1,000 larger (Smith et al., 2009), while most stars will have similar or
smaller sizes.

Our Milky Way has an estimated stellar mass of ∼ 6 × 1010 M⊙ (McMillan,
2011), non-uniformly distributed in a sphere with a radius of at least 25 kpc
(Xu et al., 2015) (with most of these stars residing in the disc of the Milky Way).
Assuming all stars have the mass of our Sun, we can estimate the average distance
between stars to be of the order of a few pc, where 1 pc = 3.0857 × 1016 m, and
hence easily a factor 105 larger than the sizes of individual stars. When studying
stars in the context of galaxy evolution, treating the stars as being particles
with all of their mass located at a single point in space is hence a perfectly
acceptable approximation. This will automatically lead us to the treatment of
N-body problems. However, we will also show that this treatment is not really
suited for simulating the stellar contents of a complete galaxy, so that extra
approximations will have to be made.

N-body problems

An N-body problem is the problem of solving the equations of motion for the
movement of N point masses that only interact through the force of (Newtonian)
gravity. For N = 2, the problem has an exact analytic solution, e.g. the elliptical
orbit of Earth around the Sun. For all higher values of N , an exact solution is
impossible, so that we have to resort to numerical methods to solve it.

Their is a vast body of literature on this topic alone, both to obtain very
high accuracy results for systems with small N (e.g. the orbits of the planets in
our solar system) (Blanes et al., 2013), and to obtain less accurate solutions for
systems with very high N (Heggie & Hut, 2003). The topic has even led to the
development of special purpose hardware to calculate the inverse square distance
between two points more efficiently (Makino, 2002).

For relatively high N , there are two important approaches. The first approach
is to calculate the gravitational interactions between the particles directly, so
called direct summation. For a system of N particles, there are N(N − 1)/2
gravitational interactions that need to be calculated, so the runtime of these
algorithms scales very badly (∼ N2) when N gets larger. State of the art direct
summation codes therefore use very fast algorithms implemented on relatively
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cheap Graphics Processing Units (GPUs), that can perform the large amount of
calculations in a highly parallelized way (Portegies Zwart et al., 2007).

Direct summation is used when a high accuracy for the gravitational forces
is required, to obtain a very accurate solution for the particle movements. Even
then, the solution can easily diverge from the real physical solution due to the
chaotic nature of the Newtonian force equation: arbitrary small numerical errors
can grow unboundedly under repeated application of the equations of motion,
so that the solution at any given time depends on the exact order in which
numerical operations are performed during the simulation, and different orders
can give rise to largely different solutions. It is generally acknowledged that
only the properties of an ensemble of such systems can be trusted (Boekholt &
Portegies Zwart, 2015).

When we are less interested in the real physical solution and the movements
of single stars, but rather want to describe the dynamics of a stellar body as
a whole, we can use more approximate methods to calculate the gravitational
forces. A very important example is the algorithm of Barnes & Hut (1986). The
idea is to put the particles in a hierarchical structure, a tree. Every particle will
then correspond to a leaf of this tree (an example of a tree is shown in Fig. 4.4).
Particles that are close together have leaves that are children of the same node
of the tree. When we want to calculate the gravitational forces for a particle,
we start at the top of the tree and calculate the distance between the particle
and every node on the highest level. If this distance is large enough, we use the
center of mass and the total mass of all child leaves of that node rather than the
individual particles to approximate the gravitational force. If the distance is not
large enough, the node is split and the procedure is repeated at a lower level. For
leaves close to the particle, we still go all the way down in the tree and calculate
the forces directly, but for particles on large distances an approximation is used.

By using a carefully selected tree opening criterion, we can gain an enormous
speed up of the calculation (with O(N logN) rather than O(N2) scaling), while
still having a sufficiently accurate gravitational force for all particles. Barnes &
Hut (1986) used a simple geometrical tree opening criterion that is based on the
distance between the particle and the node, and the node size. We will however
use a more advanced relative tree opening criterion that is also based on the
magnitude of the gravitational acceleration during the previous integration time
step (Springel, 2005).

Single Stellar Populations

Even with the approximate methods discussed above, it is still almost impossible
to simulate the stellar contents of a galaxy on a single star basis (but see Bédorf
et al., 2014). This can be easily appreciated when considering the typical mass of
a star, ∼ 1 M⊙, and the typical stellar mass of a dwarf galaxy, ∼ 108 M⊙. If we
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would want to simulate the ∼ 1010 stars (taking into account the large number
of stars that have a mass lower than our Sun), we would need an awfully large
N .

The problem gets even more complicated if we also want to take into account
the effect of the stars on the interstellar medium of the galaxy. Massive stars
emit a lot of high energetic UV radiation during their lifetime, which will heat
up the surrounding gas. They are short-lived and when the fuel for the fusion
reactions that keeps them from gravitationally collapsing is exhausted, they ex-
plode as violent supernova type II explosions (SNII) that put even more energy
and matter into the surrounding gas. When we want to take into account these
stellar feedback effects, we hence need to keep track of the age and mass of the
star (and its metal content, see Chapter 5). This means we need a very large
variety of different star types, masses, etc.

To overcome this complexity and to reduce the number of stellar particles
we need to integrate over, we will use Single Stellar Populations (SSPs) rather
than single stars to simulate the stars in our galaxies (Vazdekis et al., 2012).
An SSP is a population of stars that is born in the same part of the interstellar
medium, and roughly at the same time. Given that we consider a population
that is large enough, it has statistical properties which are better constrained
than the properties of individual stars. We know for example what mass fraction
of the SSP consists of massive stars that give SNII feedback, or of intermediate
mass stars in binary systems that will give rise to SNIa explosions.

Using this approximation, we can of course no longer resolve the trajectories
of individual stars. However, since we are only interested in the dynamics of the
stellar body as a whole, this is not a problem.

2.2.4 Dark matter

Dark matter is the common name for all matter that only interacts gravitation-
ally, and of which we generally have no idea what it physically consists of. We
will assume that it consists of small particles that are orders of magnitude smal-
ler than the typical distance scales in our galaxies, so that we will treat it as a
collisionless fluid.

To discretize this density distribution, we could use the same techniques we
already discussed for the gas. However, since the fluid is collisionless and only
interacts gravitationally, the requirements for this discretization are more relaxed
than in the case of the gas, where we need a discretization that can be used as
a basis for a hydrodynamical integration scheme. As we will see in Chapter 3,
the equations of hydrodynamics are derived from the Boltzmann equation. This
equation is generally valid for any type of fluid, also for a collisionless fluid.
For a collisional fluid, a number of approximations are necessary to convert the
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Boltzmann equation to the Euler equations that form the basis of hydrodynamics.
For a collisionless fluid, these approximations are unnecessary, and we can solve
the Boltzmann equation directly, by using characteristic solutions. To this end,
we represent the collisionless fluid by N mass elements (particles). Solving the
Boltzmann equation then reduces to solving the gravitational interactions for this
N-body system (Dehnen & Read, 2011).

Gravitational softening

Treating the N particles as being point masses can lead to serious efficiency
problems. This is because of the 1/r2 behaviour of gravity: if two point masses
come very close together, their mutual gravitational force becomes very large.
This leads to high relative velocities, which means a large number of very small
time steps is required to integrate this system. This while the other N−2 particles
all behave nicely and can be integrated using a lot larger time step.

Since we are not interested in the detailed behaviour of individual particles,
and since the particles themselves have no real physical meaning, since they
only sample the underlying density distribution of the collisionless fluid, we will
suppress these close encounters by means of gravitational softening. The idea is
to treat the particles as fuzzy blobs of mass, rather than real point masses, so
that the gravitational force between two particles takes a slightly different form
(Dyer & Ip, 1993). For particles that are reasonably separated in space, the force
is still the ordinary Newtonian force of gravity, while for particles close together,
the force takes a non-diverging form.

This means we have two parameters setting the resolution of an N-body sim-
ulation: the particle mass and the softening length. The latter is the generic size
of the mass blob represented by a particle. It might be clear from the above that
the softening length should be chosen carefully; a small softening length leads to
high accuracy, but also has a considerable computational cost. A larger softening
length is more efficient, but less accurate. Some methods therefore use variable
softening lengths that adapt to the local particle density (Price & Monaghan,
2007) in an SPH-like way. We found that this approach itself is quite expens-
ive, since the iteration required to obtain the softening length is less well behaved
than the equivalent SPH iteration due to the collisionless character of the N-body
system. We hence will always use a fixed softening length, which will also tell
us something about the physical scales up to which the simulations resolve the
relevant physics.

When incorporating self-gravity in a hydrodynamical fluid, we will also use an
N-body method to calculate the gravitational forces. Depending on the method,
the particles will then either be the SPH particles or the generators of the un-
structured mesh. The forces will also be softened in this case. In principle, the
softening length could then be chosen based on the smoothing length of the SPH
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particle or the size of the unstructured mesh cell. However, since we will also
treat mixtures of gas and dark matter, we will choose a fixed softening length in
this case as well.

Finally, for the stellar particles, which represent SSPs, we will also soften the
gravitational force. This makes sense, since we saw above that even the stellar
particles rather sample a stellar density distribution than represent real stars.

Sampling noise

To sample N particles from a density distribution (either a dark matter dens-
ity distribution or an ordinary gas density distribution), we use a Monte Carlo
sampling technique called rejection sampling. We generate a random position by
appropriately combining three independent uniform random numbers, and then
determine the theoretical value of the distribution at that position. We then
generate a fourth uniform random number, which will determine whether the
position can be accepted or is rejected. The latter happens when the random
number (in the range [0,1]) is larger than the ratio of the theoretical value of the
distribution and the maximal value of the distribution over the whole domain.
This way, positions in regions with a high density are more likely to be accepted
than those in regions with a lower density, so that statistically the generated
positions will sample the distribution.

This method is not very efficient, since for distributions that span a significant
range in magnitudes a very large number of positions will be rejected, while
we need to evaluate the density distribution for every generated position. The
method can be made more efficient by dividing the domain of the distribution
in bins width precalculated weights, that allow for a more efficient rejection of
invalid positions. It is also possible to sample positions in a skewed way, so that a
generated position is more likely to lie in a high density region of the distribution.
We will not go into the details here.

A potential problem with this way of sampling is Poisson noise, most clearly
illustrated in the case of SPH. We saw that SPH works well for particles that
are homogeneously distributed in space, so that the minimal inter-particle spa-
cing is close to constant for all particles. If the particles are less homogeneously
distributed, the local density as calculated from the SPH iteration can deviate
significantly from the desired density. These denser regions will end up having a
higher pressure than the surrounding regions, which will affect the hydrodynam-
ics. Similarly, overdensities in the sampled dark matter distribution might grow
and form artificial substructures, which is also not desired.

We clearly do not want Poisson noise to dominate the sampled distribution.
This means we either need to find a better way to sample distributions, or a good
way to reduce the noise on a randomly sampled distribution.
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The former can be achieved in various ways (Diehl et al., 2015). It is for
example quite easy to generate a perfectly homogeneous particle distribution in
a box by putting the particles on the positions of the vertices of a Cartesian
grid. This however leads to special directions in the particle distribution, since
the distribution will have a lot of symmetries. A less symmetric distribution is
obtained if the particles are spread out homogeneously along a space-filling curve
(see Chapter 4). However, in this case the local density can still be quite noisy, so
that in practice this method needs to be combined with a noise reducing method
as well.

Noise reduction can be achieved by using a relaxation method that smooths
out the initial overdensities. This can be done in a physical way, or in a purely
geometrical way. In the case of SPH for example, the initial overdensities will
have a higher pressure than the surrounding region, so that the hydrodynamics
itself will wash them out if the fluid is evolved adiabatically. If we want to
sample a completely homogeneous distribution, it hence suffices to integrate it
through time until an equilibrium pressure is reached (Vandenbroucke et al.,
2013). The same can be achieved using the force of gravity with its sign reversed,
so that particles repel rather than attract each other. The resulting gravitational
glasses are commonly used as initial conditions for large cosmological simulations
(Springel et al., 2005).

Geometrically, we can use the Voronoi mesh introduced above to smooth out
Poisson noise. When we iteratively move the generator of a Voronoi cell to the
centroid of the cell and recalculate the mesh, then the mesh very quickly relaxes
towards a centroidal Voronoi mesh, where the generator and the centroid of a
cell are very close together (Springel, 2010). This effectively corresponds to a
homogeneous particle distribution. This algorithm, known as Lloyd’s algorithm,
can only be proven to converge in 1D (Lloyd, 1982). However, we also obtained
good convergence in 2D and reasonable convergence in 3D during our own ex-
periments with this technique. This is illustrated in Fig. 2.20, which shows the
standard deviation on the cell volumes and the average cell size as a function of
the number of Lloyd iterations for a uniformly sampled unit box. Both in 2D and
3D, the standard deviation drops significantly during the first ∼ 20 iterations,
while the average cell size converges to the radius of a sphere with the same
volume as the average cell volume (denoted as rideal). It is interesting to notice
that this algorithm very quickly washes out small density perturbations, while
it takes a lot more iterations to wash out large scale perturbations. It is there-
fore ideally suited to wash out Poisson noise in non-homogeneous distributions
without affecting the large scale density profile of the distribution too much.

To sample the particles for the 2D distribution used throughout this chapter,
we first sampled two uniform homogeneous distributions with respectively 1,000
and 10,000 particles by using rejection sampling (although in the homogeneous
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Figure 2.20: Standard deviation on the average cell size ( top)
and ratio of the average cell size to the radius of a sphere with
the average cell volume (bottom) as a function of the number of
Lloyd iterations. Both the 2D and the 3D test regularize a uni-
formly sampled distribution in a unit box, using 10,000 particles.

density case there is no actual rejection and all positions are accepted). These
distributions were then relaxed using 1,000 iterations of Lloyd’s algorithm. Then,
they were combined by cutting out a circular region from the low density dis-
tribution, and pasting in a circular region of the same size cut out of the high
density distribution. To wash out noise around the interface between high and
low density region, we locally applied Lloyd’s algorithm for ten more iterations.
This finally yielded a distribution that is smooth enough for SPH, and still has
the required density contrast.
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3
Hydrodynamics

I
n the previous chapter, we discussed different ways of discretizing space, so
that we can represent a fluid (gas, dark matter or even stars) as a discrete set
of elements on a computer. In this chapter, we will focus on one particular

type of fluid: the interstellar or intergalactic gas. We will first introduce the basic
equations of hydrodynamics, and then discuss several ways of solving these on a
discrete representation of the gas. At the end of the chapter, we will also discuss
the coupling of other physical processes to the equations of hydrodynamics, more
specifically gravity, and gas cooling and heating. More advanced models that
also take into account the composition of the interstellar gas are discussed in
Chapter 5.

Most of the theory on the Euler equations presented in this chapter is based
on the excellent book by Toro (2009). We only discuss those aspects that are
of direct use to the numerical methods described in this work, and try to sketch
the general picture without going into too much detail. The interested reader is
encouraged to read Toro (2009) for more information. Descriptions of different
hydrodynamical integration techniques come from literature. The results shown
in this chapter were obtained using a number of publicly available simulation
codes, as well as our own moving-mesh code Shadowfax (Chapter 4) and our
own mesh-free implementation in the simulation code swift.

3.1 The Euler equations

3.1.1 Derivation

Macroscopic quantities

A physical gas is a fluid consisting of a huge amount of microscopically small
particles. In the case of the interstellar or intergalactic medium, these particles
are mostly atoms, possibly ionised. Very cold interstellar gas can also contain
molecules and even small dust grains (Draine, 2011). The physical interactions
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between and within these particles will govern the large scale behaviour of the
fluid. It is however impossible to model these interactions for even a limited
number of these particles, let alone for the huge amount of particles that is present
in even small parts of the interstellar volume. Classical hydrodynamics therefore
resorts to a macroscopic description of these processes, which necessarily includes
approximations.

As a first approximation, we will treat the gas as a continuous fluid, rather
than as a huge set of discrete particles (Huang, 1987). This can be done by
introducing macroscopic volume averaged quantities to express the properties of
the gas. The first and most obvious of these quantities is the density ρ, which
measures the amount of mass M within a certain volume V :

ρ =
M

V
.

However, rather than calculating a density for the whole volume under consider-
ation, we are interested in treating the density as a function of space. We would
like to define a function that assigns a specific density value to every point in
space, so that the total mass of the system is recovered when integrating this
function over the entire space. From the perspective of the microscopic particles
constituting space, this does not make sense: either the point in space corres-
ponds to a microscopic particle and its local density is non-zero, or it does not
and its local density is zero. We can however introduce the concept of a volume
element dV = d~x, which is a very small region around the point with coordin-
ates ~x. Provided this volume element is still large enough to contain a reasonable
number of microscopic particles, this allows for the consistent definition of a local
density, which will be a smooth function of space. The approximation then lies
in treating this volume element as if it were an infinitesimal volume element as
used in classical calculus. Physically, this only makes sense if the spatial domain
is much larger than the length scales on which the microscopic particles interact,
which happens to be the case for the interstellar or intergalactic medium.

Once we have a macroscopic density function ρ(~x) defined for every point in
space, it is not so hard to use the same sort of reasoning to define a fluid velocity
function ~v(~x), which gives the average flow velocity for every point in space. This
average flow velocity then corresponds to the average velocity of all microscopic
particles within the same volume element d~x. This notion of flow velocity does
not discriminate between flows with different variances in microscopic particle
velocities, so that a flow in which the particles are moving with large velocities in
all directions is indistinguishable from a flow where all particles move coherently
with the average velocity if the average velocity happens to be the same. We will
encounter a way to discriminate between these scenarios later on in this chapter.

At this point, it is useful to extend our view from the 3D space to the 6D phase
space, which is the space of all coordinates, extended with the space of all linear
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momenta ~p. Every microscopic particle will correspond to a point in the 6D phase
space; the first three coordinates give its position in 3D space, while the last three
coordinates give its linear momentum. Just as for 3D space, we can also define a
volume element d~xd~p in 6D phase space, which is now occupied by all particles
with coordinates within a small volume around the point with coordinates ~x, and
with linear momenta in a small range around the value ~p. Following the same
procedure as above, we can now introduce a continuous function f(~x, ~p) in 6D
phase space, which represents the number density of microscopic particles within
a volume element of phase space.

As the microscopic particles are moving, their positions in the phase space will
change, so that the number density function f(~x, ~p) will also depend on the time
t: f(~x, ~p, t). By multiplying this function with the phase space volume element,
we obtain the number of particles within this phase space volume element at a
given time t.

Boltzmann equation

Suppose that the system described above is indeed moving through space. In the
absence of external forces and assuming the microscopic particles do not collide,
the number of particles within a phase space volume element should stay constant
when the system is evolved for a time interval dt:

f(~x, ~p, t)d~xd~p = f(~x+
~p

m
dt, ~p, t+ dt)d~xd~p,

where m is the mass of a microscopic particle.
We can develop the right hand side of this equation in a Taylor series:

f(~x+
~p

m
dt, ~p, t+ dt)d~xd~p =

f(~x, ~p, t)d~xd~p+ ~∇f(~x, ~p, t).
~p

m
d~xd~pdt+

∂

∂t
f(~x, ~p, t)d~xd~pdt+O(dt2),

which immediately gives us the Boltzmann equation:

~∇f(~x, ~p, t).
~p

m
+
∂

∂t
f(~x, ~p, t) = 0.

We will derive the equations of hydrodynamics by multiplying this equation
with so called moments of the linear momentum ~p, which are just polynomial
expressions in the variable ~p. The Euler equations can then be retrieved by
integrating these equations out over the entire linear momentum space (Huang,
1987). Since we explicitly neglected particle collisions in the above derivation,
we should only consider moments that stay constant under particle collisions
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when integrating over the entire phase space. The zeroth, first and second order
moments m, ~p and |~p|2/m satisfy this condition, corresponding to the total mass,
linear momentum and kinetic energy (up to a factor 1/2) of the system.

Continuity equation

Multiplying with the zeroth order moment and integrating over linear momentum
space yields

∫ [

~∇f(~x, ~p, t).~p+m
∂

∂t
f(~x, ~p, t)

]

d~p = 0.

The second term within the integral sign can be rewritten easily by realising
that the particle mass m and the linear momentum integral both are independent
of time, so that the partial time derivative can be brought outside of the integral
sign. What is left after integration is then nothing else than the number density
of particles within a volume element in 3D position space, multiplied with there
respective masses. This is what we defined to be the density ρ(~x, t).

More specifically, if

ρ(~x, t) =

∫

mf(~x, ~p, t)d~p,

then we can define the average value of the quantity X(~x, ~p, t) to be

〈X〉(~x, t) =
1

ρ(~x, t)

∫

X(~x, ~p, t)mf(~x, ~p, t)d~p.

For the first term, it is also possible to bring the gradient outside of the
integral sign, since it only affects the spatial coordinate ~x. We then are left with

∫

mf(~x, ~p, t)
~p

m
d~p =

∫

mf(~x, ~p, t)~v(~x, ~p, t)d~p

Using the definition of the average of a quantity, we rewrite this as

ρ(~x, t)〈~v〉(~x, t)

Putting both terms together again, we get the continuity equation:

∂

∂t
ρ(~x, t) + ~∇. (ρ(~x, t)〈~v〉(~x, t)) = 0.

This equation expresses the constancy of mass, since it links all transport of mass
and consequent local density change to the spatial movement of the corresponding
mass elements.
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Momentum equation

For the first order moment, we get

∫ [

~p

(

~∇f(~x, ~p, t).
~p

m

)

+ ~p
∂

∂t
f(~x, ~p, t)

]

d~p = 0.

The second term of this equation is again easily rewritten by bringing the
time derivative outside of the integral sign. What is left is exactly the same term
involving the average linear momentum density we encountered before.

The first term is somewhat more involved and we will tackle it on a component
basis:

∫

pi

(

~∇f(~x, ~p, t).
~p

m

)

d~p = ~∇.

∫

vi(~x, ~p, t)mf(~x, ~p, t)~v(~x, ~p, t)d~p =

~∇. (ρ(~x, t)〈vi~v〉(~x, t)) ,

where we introduced the components vi and pi (i = 0, 1, 2) of ~v and ~p and again
made use of the definition of the average of a quantity.

To give more meaning to this term, we will split up the particle velocity in
two parts: a part corresponding to the average particle velocity and an extra
part, corresponding to the random movement of the particle with respect to this
average flow velocity, ~v(~x, ~p, t) = 〈~v〉(~x, t) + ~vrand(~x, ~p, t). This will allow us to
discriminate between the two scenarios mentioned before in which the average
flow velocity is the same, but the individual particle velocities are very different.
It trivially follows that

〈vi(~x, ~p, t)~v(~x, ~p, t)〉 = 〈vi〉(~x, t)〈~v〉(~x, t) + 〈vi,rand〉(~x, t)〈~v〉(~x, t)

+ 〈vi〉(~x, t)〈~vrand〉(~x, t) + 〈vi,rand~vrand〉(~x, t).

The second and third term in this equation are zero, since the average of the
random velocities is zero. The last term describes the flow of the ith component
of the velocity. If we multiply it with the density, we end up with a quantity
describing a net force per unit area. We therefore introduce the pressure tensor :

−→−→
P (~x, t) = ρ(~x, t)〈~vrand~vrand〉(~x, t).

This makes physically sense, since a flow with large random velocities of the
microscopic particles on top of the average flow velocity will have a much higher
temperature and pressure.

At this point, we will make a second approximation and assume an isotropic
medium, in which the pressure is independent of the direction. This means the
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components of the pressure tensor are given by Pij = Pδij , with δij the Kronecker
delta, which is 1 if i and j are equal and 0 otherwise, and P (~x, t) the local pressure
of the fluid.

Putting everything together, we end up with the momentum equation:

~∇. (ρ(~x, t)〈~v〉(~x, t)〈~v〉(~x, t)) + ~∇P (~x, t) +
∂

∂t
(ρ(~x, t)〈~v〉(~x, t)) = 0.

This equation links the local change of the linear momentum density to the
transport of linear momentum due to the average flow and the extra momentum
transfer due to the internal movement of the microscopic particles within the
volume element.

Energy equation

The second order moment gives

∫ [

|~p|2

m

(

~∇f(~x, ~p, t).
~p

m

)

+
|~p|2

m

∂

∂t
f(~x, ~p, t)

]

d~p = 0.

After having brought the time derivative outside of the integral sign as usual,
the second term can be rewritten as

∫

|~p|2

m

∂

∂t
f(~x, ~p, t)d~p =

∫

|~v(~x, ~p, t)|2mf(~x, ~p, t)d~p = ρ(~x, t)〈|~v|2〉(~x, t).

Again splitting up the particle velocity in an average and a random part, we
obtain:

〈|~v(~x, ~p, t)|2〉 = |〈~v〉(~x, t)|2 + 2〈~vrand〉(~x, t).〈~v〉(~x, t) + 〈|~vrand|2〉(~x, t).

The second term vanishes since the average random velocity is zero. The last term
can be interpreted as the average energy per unit mass u(~x, t) = 1

2 〈|~vrand|2〉(~x, t),
which again expresses the fact that a flow with large random velocities will be
physically different from a flow where all particles move with the average flow
velocity. It has to be noted that by adopting this definition of the energy per
unit mass, we automatically fixed the equation of state of the gas, since

〈|~vrand|2〉(~x, t) =
∑

i

〈vi,randvi,rand〉(~x, t) =
1

ρ(~x, t)

∑

i

Pii(~x, t) =
3P (~x, t)

ρ(~x, t)
,

which means P (~x, t) = 2
3ρ(~x, t)u(~x, t).

It is common practice to assume a somewhat more general equation of state
of the form

P (~x, t) = (γ − 1)ρ(~x, t)u(~x, t),
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so that a more general definition of the thermal energy, which takes other forms
of internal energy into account apart from the kinetic degrees of freedom, reads

u(~x, t) =
2

3

〈|~vrand|2〉(~x, t)

(γ − 1)
.

The first definition is then recovered for the specific case of a monatomic gas, for
which γ = 5

3 . For simplicity, we will assume a monatomic gas for now.
The second term in the integral then reads

∂

∂t

(

ρ(~x, t)〈|~v|2〉(~x, t)
)

=
∂

∂t

(

ρ(~x, t)|〈~v〉|2(~x, t) + 2ρ(~x, t)u(~x, t)
)

=

2
∂

∂t
(ρ(~x, t)e(~x, t)) ,

where we introduced the total energy per unit mass e(~x, t), which is the sum of
the internal and kinetic energy per unit mass.

The first term of the integral yields (after bringing the gradient outside of the
integral)

∫

|~p|2

m

(

~∇f(~x, ~p, t).
~p

m

)

d~p =

∫

|~v(~x, ~p, t)|2mf(~x, ~p, t)~v(~x, ~p, t)d~p =

ρ(~x, t)〈|~v|2~v〉(~x, t).

Working out the averaged triple product is preferably done using component
notation:

〈|~v|2vj〉(~x, t) =
∑

i

〈vivivj〉(~x, t)

=
∑

i

(

〈vi〉
2(~x, t)〈vj〉(~x, t) +

2

ρ(~x, t)
〈vi〉(~x, t)Pij

+ 〈vi,rand〉2(~x, t)〈vj〉(~x, t) + 〈v2
i,randvj,rand〉(~x, t)

)

= |〈~v〉(~x, t)|2〈vj〉(~x, t) +
2

ρ(~x, t)
P 〈vj〉

+ 2u(~x, t)〈vj〉(~x, t) + 〈|~vrand|2vj,rand〉(~x, t).

The last term expresses the transport of thermal energy by means of the ran-
dom velocities of the particles. It can be seen as a measurement of the heat
conductivity of the flow and we will define the heat conductivity vector as

~h(~x, t) =
1

2
ρ(~x, t)〈|~vrand|2~vrand〉(~x, t).
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As the heat conductivity is an anti-symmetric function of ~vrand, the average of
this quantity is zero for an isotropic medium, so that this term vanishes.

Putting everything together, we finally obtain the energy equation:

∂

∂t
(ρ(~x, t)e(~x, t)) + ~∇. (ρ(~x, t)e(~x, t)〈~v〉(~x, t) + P (~x, t)〈~v〉(~x, t)) = 0.

Summary

From now on, we will regard the macroscopic quantities ρ(~x, t), 〈~v〉(~x, t), P (~x, t)
and e(~x, t) (and the associated u(~x, t)) as hydrodynamical variables rather than
functions, and we will drop the function parameters and average signs to simplify
the notations. The three equations derived above then become

∂ρ

∂t
+ ~∇. (ρ~v) = 0

∂ (ρ~v)

∂t
+ ~∇. (ρ~v~v) + ~∇P = 0

∂

∂t
(ρe) + ~∇. (ρe~v + P~v) = 0.

We now have five equations for six hydrodynamic variables (e and u counting
as one variable). To be able to solve this system of equations, we hence need an
extra equation that links two of the six remaining variables without introducing
new variables. This will be the same equation of state we already encountered,
which links the thermal energy u to the pressure P :

P = (γ − 1)ρu,

where we will now assume the more general form described above. It turns out
that the equations derived using a monatomic gas are also valid for a gas with
a different adiabatic index, as long as the equation of state retains this more
general form.

It is also instructive to introduce a temperature T , as this makes it easier to
interpret the thermal energy physically. The thermal energy and the temperature
are related through

u =
1

(γ − 1)

kT

m
,

where m is the generic microscopic particle mass we encountered before. k is
the Boltzmann constant, k = 1.38064852 × 10−23 J/K. The equation of state can
similarly be rewritten as

P =
ρ

m
kT.
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Finally, it is also instructive to rewrite the Euler equations in the compact
form (Toro, 2009; Springel, 2010)

∂U

∂t
+ ~∇. ~F = 0,

with

U =





ρ
ρ~v
ρe





and

~F =







ρ~v

ρ~v~v + P
−→−→
1

(ρe+ P )~v






,

and where
−→−→
1 represents the unit tensor. This form of the equations will be

particularly helpful when introducing finite volume methods.

Related equations

For the hydrodynamical integration methods we will introduce later in the chapter,
we will also use different forms of the equations above. We start by rewriting the
momentum equation by using the continuity equation:

~v
∂ρ

∂t
+ ρ

∂~v

∂t
+ ρ~v.~∇ (~v) + ~∇. (ρ~v)~v + ~∇P = ρ

∂~v

∂t
+ ρ~v.~∇ (~v) + ~∇P = 0 (3.1)

Using the definition of the total energy per unit mass,

e =
1

2
|~v|2 + u,

we can rewrite the energy equation in terms of the thermal energy:

∂

∂t

(

ρu+
1

2
ρ|~v|2

)

+ ~∇.

(

ρu~v +
1

2
ρ|~v|2~v + P~v

)

=

∂

∂t
(ρu) +

1

2
ρ~v.

∂

∂t
(~v) +

1

2
~v.
∂

∂t
(ρ~v) + ~∇. (ρu~v)

+
1

2
ρ~v.~∇~v.~v +

1

2
~∇. (ρ~v~v) .~v + P ~∇.~v + ~∇P.~v =

∂

∂t
(ρu) +

1

2
~v.
∂

∂t
(ρ~v) + ~∇. (ρu~v)

+
1

2
~∇. (ρ~v~v) .~v + P ~∇.~v +

1

2
~∇P.~v =

∂

∂t
(ρu) + ~∇. (ρu~v) + P ~∇.~v = 0,
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where for the first step we used the momentum equation, and for the second step
we used both the continuity equation and the momentum equation. This can be
simplified to read

ρ
∂u

∂t
+ u

∂ρ

∂t
+ u~∇. (ρ~v) + ρ~v.~∇u+ P ~∇.~v = ρ

∂u

∂t
+ ρ~v.~∇u+ P ~∇.~v = 0. (3.2)

The equations above give the change of velocity and thermal energy directly,
rather than in the conserved form and they will be used e.g. for the formulation
of the Smoothed Particle Hydrodynamics (SPH) technique.

In this light, it is also useful to introduce an entropic function (Springel, 2005)

A =
P

ργ
,

so that

u =
A

γ − 1
ργ−1.

If we plug this into the energy equation, we get (Springel & Hernquist, 2002)

ρ
∂

∂t

(

A

γ − 1
ργ−1

)

+ ρ~v.~∇

(

A

γ − 1
ργ−1

)

+ P ~∇.~v =

ργ

γ − 1

∂A

∂t
+Aργ−1 ∂ρ

∂t
+

ργ~v

γ − 1
.~∇A+Aργ−1~v.~∇ρ+Aργ ~∇.~v =

ργ

γ − 1

∂A

∂t
+

ργ~v

γ − 1
.~∇A = 0.

If we define the co-moving time derivative d
dt = ∂

∂t +~v.~∇, we see that this effect-
ively means A is a conserved quantity. Since entropy is conserved in the absence
of discontinuities, the name entropic function is hence justified. Note that A is
not the entropy itself, but a monotonic function of it.

3.1.2 Physical solutions

Before trying to solve the Euler equations in a numerical integration scheme,
it is instructive to first explore the possible physical solutions to this problem.
This will not only allow us to introduce the Riemann problem, which will be of
great interest for some numerical integration schemes, but it will also give us the
necessary background to understand why some numerical integration schemes fail
for specific hydrodynamical problems.
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Characteristic waves

Let us start by considering the very basic partial differential equation

∂y

∂t
+ a

∂y

∂x
= 0,

with a a constant, and where y(x, t) is a general two dimensional function of a
position coordinate x and time coordinate t. A characteristic y′(t) = y(x(t), t)
corresponds to the one dimensional solution of this equation along a character-
istic curve x(t) in two dimensional space (consisting of time and a single spatial
coordinate). This characteristic curve has the specific property

dx

dt
= a,

so that
dy′

dt
=
∂y

∂t
+ a

∂y

∂x
= 0.

Suppose we have an initial condition y(x, 0) = y0(x). The condition dy′

dt = 0
then implies that y′(t) stays constant along a characteristic curve with general
equation

x(t) = x0 + at.

In other words,
y(x, t) = y0(x0) = y0(x − at).

The solution to the general partial differential equation is hence reduced to a
linear translation of the initial condition with the characteristic speed.

Linear systems of partial differential equations

Now consider the system of linear partial differential equations below:

∂Y

∂t
+A

∂Y

∂x
= 0,

where Y now is a m-dimensional vector and A is a m×m matrix.
We will call this system of equations hyperbolic if the matrix A has m real

eigenvalues and m corresponding eigenvectors. It follows that A can be written
in diagonal form

A = KΛK−1,

where the columns of the matrix K are the right eigenvectors Ki:

AKi = λiK
i
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with λi the corresponding eigenvalues, that are the diagonal elements of the
diagonal matrix Λ.

We can introduce the new vector of characteristic variables Z:

Z = K−1Y,

which allows us to rewrite the system of equations as

K
∂Z

∂t
+AK

∂Z

∂x
= 0

or
∂Z

∂t
+ Λ

∂Z

∂x
= 0.

This last equation corresponds to the much simpler system of m decoupled
partial differential equations of the form

∂Zi

∂t
+ λi

∂Zi

∂x
= 0,

with i = 1...m.
Given an initial value Y0(x) for the m variables Y , it is hence possible to obtain

the solution Y (x, t) at a later time t, by diagonalizing the system of equations.
Once we have the matrix K, it is straightforward to convert Y0(x) to Z0(x).
The m solutions Zi(x, t) are given by the characteristic speeds λi. It is again
straightforward to convert these solutions back to the required solutions Y (x, t).

Conservation laws

As we have seen, the Euler equations are not linear and have the more general
form

∂U

∂t
+
∂F (U)

∂x
= 0,

where we only consider the one dimensional Euler equations for now. Or we could
just think of this system as a system of m conservation laws: non linear partial
differential equations of the specific form above.

We can calculate the Jacobian matrix of this system, given by

A(U) =
∂F

∂U
.

The system of conservation laws is said to be hyperbolic if this matrix has real
eigenvalues λi(U) and m linearly independent eigenvectors Ki(U). It might be
clear by now that the general solution of a conservation law will depend upon a
diagonalization of this Jacobian matrix and a more detailed study of the resulting
m decoupled partial differential equations, although the actual solution will be a
lot more involved. It will be very instructive however to keep this idea in mind
and explore some of its consequences.
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Wave solutions for conservation laws

The single conservation law

∂u

∂t
+
∂f(u)

∂x
= 0

can be rewritten as
∂u

∂t
+ λ(u)

∂u

∂x
= 0,

where λ(u) = df(u)
du .

By introducing a characteristic curve x(t) for which

dx

dt
= λ(u),

we still find that the solution u′(t) = u(x(t), t) is constant along this characteristic
curve. The characteristic speed λ(u) however is now also function of the solution
u itself, so that this does no longer allow us to solve the partial differential
equation.

In the case where λ(u) is constant, we found that the general solution is
just a linear translation of the initial condition. If λ(u) is not constant, distor-
tions will be produced during the translation of the initial condition that will
affect the general solution. Some characteristics will move faster than others,
eventually leading to a flattening of the initial condition profile in regions where
characteristics move away from each other (expansive regions) and a steepening
of the profile where characteristics move towards each other (compressive region).
The latter effect, also called wave steepening, will eventually lead to crossing of
characteristics and wave breaking. At this point, a discontinuous solution u is
possible.

In expansive regions, only continuous solutions of u make physical sense.
The waves corresponding to these solutions are called rarefaction waves and are
completely described by the conservation law.

A discontinuity of a variable u in a region of excessive wave steepening is what
we will call a shock wave. Since the solution u is no longer continuous, we can
also no longer use the conservation law to solve for u. It is however possible to
still learn something about the solution by looking at the integral form of the
conservation law.

Provided the flux function f(u) is continuous in a range [xL, xR], we can
integrate the conservation law over this entire range:

∫ xR

xL

∂u

∂t
dx = f(u(xL, t)) − f(u(xR, t)).
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If we choose the range so that it is independent of time, we can also bring the
partial time derivative outside of the integral sign and convert it to a total time
derivative. We will now enforce this integral form, even for the case where u is
discontinuous at a point s(t):

f(u(xL, t)) − f(u(xR, t)) =
d

dt

∫ s(t)

xL

u(x, t)dx+
d

dt

∫ xR

s(t)

u(x, t)dx.

The integrals on the right hand side can be expanded using the general formula
(Flanders, 1973)

d

dy

∫ x2(y)

x1(y)

f(x, y)dx =

∫ x2(y)

x1(y)

∂f

∂y
dx+ f(x2, y)

dx2

dy
− f(x1, y)

dx1

dy
,

to yield

f(u(xL, t)) − f(u(xR, t)) = (u(sL, t) − u(sR))S +

∫ s(t)

xL

∂u

∂t
dx+

∫ xR

s(t)

∂u

∂t
dx,

where u(sL, t) and u(sR, t) are the limits of u when approaching the discontinu-
ity from the left and from the right respectively. S = ds

dt is the speed of the
discontinuity. If we put xL = s(t) − ε and xR = s(t) + ε (ε > 0) and take the
limit ε → 0, the two integrals vanish, since their integrand should be bounded
for physical reasons.

We are left with the following condition, linking the jump ∆u = u(sR, t) −
u(sL, t) across the discontinuity to the jump in the fluxes ∆f = f(u(sR, t)) −
f(u(sL, t)):

∆f = S∆u.

This condition is called the Rankine-Hugoniot condition (after Rankine (1870)
and Hugoniot (1887)) and we will use it to solve the Euler equations across
discontinuities.

Wave solutions for the Euler equations

For the specific case of the 1D Euler equations, the Jacobian matrix is given by

A(U) =





0 1 0
− 1

2 (γ − 3)v2 (3 − γ)v γ − 1
−γve+ (γ − 1)v3 γe− 3

2 (γ − 1)v2 γv



 .

This matrix can be diagonalized to read

Λ(U) =





v − cs 0 0
0 v 0
0 0 v + cs



 ,
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where we have introduced the sound speed cs =
√

γP
ρ , and the corresponding

eigenvectors are given by the columns of

K(U) =





1 1 1
v − cs v u+ vs

e+ P
ρ − vcs

1
2v

2 e+ P
ρ + vcs



 .

We will hence always have three wave components for the solution of the 1D
Euler equations in some region of space: a component that moves with the local
fluid velocity, and two components that move with the sound speed relative to
this component. We will call these components the left, middle and right waves,
as they will always occur in this specific spatial order.

Across the waves, we have a set of ordinary differential equations, also known
as Generalised Riemann invariants (Whitham, 2011). For the left wave, these
are

dρ

1
=

d(ρv)

v − cs
=

d(ρe)

e+ P
ρ − vcs

.

For the middle wave, we have

dρ

1
=

d(ρv)

v
=

d(ρe)
1
2v

2
,

and for the right wave

dρ

1
=

d(ρv)

v + cs
=

d(ρe)

e+ P
ρ + vcs

.

For the middle wave, we immediately find

vdρ = vdρ+ ρdv,

which means that v is constant across the middle wave. Using this, we also find

de = d

(

1

2
v2 +

P

(γ − 1)ρ

)

=
1

(γ − 1)ρ
dP −

P

(γ − 1)ρ2
dρ,

which we can use to work out the second Riemann invariant for the middle wave:

1

2
v2dρ = edρ+ ρde =

(

1

2
v2 +

P

(γ − 1)ρ

)

dρ+
1

(γ − 1)
dP −

P

(γ − 1)ρ
dρ,

which learns us that P is also constant across the middle wave. Since both v and
P do not change across the middle wave, the only change allowed is a change in
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ρ. We will therefore call the physical solution associated to the middle wave a
contact discontinuity.

The Riemann invariants for the left and right wave cannot be manipulated to
yield similar relations. The first Riemann invariant even reduces to

vdρ± csdρ = vdρ+ ρdv,

which means any change in ρ across the left or right wave will always lead to a
change in v across the same wave for a non-trivial sound speed. The left and
right waves hence cannot correspond to a contact discontinuity.

There are two options left for these waves, corresponding to the two wave
structures introduced above: a shock wave and a rarefaction wave. The former
corresponds to a discontinuity in all three hydrodynamical quantities, while for
the second all three quantities are continuous. As indicated above, the Euler equa-
tions themselves cannot be used across a shock wave (nor can the derived Gen-
eralised Riemann Invariants), so that we will have to use the Rankine-Hugoniot
conditions in this case to link the quantities to the left and to the right of the
shock wave.

Primitive variables

Across a discontinuity, the variables v and P are constant. It hence makes sense to
consider the hydrodynamical equations with these quantities as variables, instead
of the quantities ρv and ρe. We already rewrote the momentum and energy
equations accordingly, and the same can be done with the continuity equation,
to yield the following system of equations (again in 1D):

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0

∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂P

∂x
= 0 (3.3)

∂P

∂t
+ γP

∂v

∂x
+ v

∂P

∂x
= 0.

This system has the general form

∂W

∂t
+A(W )

∂W

∂x
= 0,

with

A(W ) =





v ρ 0
0 v 1

ρ

0 γP v



 .
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The variables W =





ρ
v
P



 are called the primitive variables.

The matrix A(W ) (unsurprisingly) has the same eigenvalues as the Jacobian
matrix for the conservative Euler equations, but now the matrix of eigenvectors
reads

K(W ) =





1 1 1
− cs

ρ 0 cs

ρ

c2
s 0 c2

s



 .

The second eigenvector immediately expresses the constancy of v and P across
the middle wave.

If we replace the energy equation by the entropy equation (using the entropic
function A introduced above), we can use ρ, v and A as primitive variables. The
matrix A(W ) then reads

A(W ) =







v ρ 0
c2

s

ρ v 1
ρ

∂P
∂A

0 0 v






.

The eigenvalues of this matrix are again the same as above, with

K(W ) =





1 − ∂P
∂A 1

− cs

ρ 0 cs

ρ

0 c2
s 0



 .

In the case where the primitive variables change continuously, ∂P
∂A = ργ , and the

Generalised Riemann Invariants for the left and right (rarefaction) wave imme-
diately show that A is constant across these waves.

Using this information, we can also deduce

±csdρ = ±
√

γργ−1Adρ = ρdv,

or
±
√

γργ−1Adρ− ρdv = 0.

Since A is constant, we can integrate this:

±

∫

√

γAρ
γ−3

2 dρ− v = constant,

which learns us that the following quantities are also constant across the left and
right rarefaction wave:

v ±
2cs

γ − 1
.
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ρR

ρL

ρ

vx,R

vx,L
v x

x0
x

PL

PR

P

Figure 3.1: The general 1D Riemann problem. The primitive
variables at the left and the right of x = x0 are given at time
t = 0. We want to know what the values of the primitive variables
are at an arbitrary later time t.

3.1.3 The Riemann problem

Theory

Suppose we have a two state hydrodynamical setup as depicted in Fig. 3.1. At
some time t = 0, the hydrodynamic variables W = (ρ,~v, P ) are given by

W (~x) =

{

WL x < x0

WR x > x0,

where WL and WR represent constant vectors of primitive variables.
The Riemann problem is the general problem of finding the hydrodynamical

solution for the primitive variables at position x = x0 and at all later times
t > 0. We will start by solving the 1D Riemann problem and then generalise this
solution to the 3D case.

From the general discussion on physical solutions of the Euler equations, we
already know that the solution will consists of four different regions, separated
by the three elementary wave characteristics. We also know that the middle
characteristic wave will always be a contact discontinuity, across which v and
P are constant. The left and right wave can either be a continuous rarefaction
wave, or a discontinuous shock wave.
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3.1 The Euler equations

Using this knowledge, we can connect the density, velocity and pressure at
the left side with that on the right side, using the Rankine-Hugoniot conditions
and Riemann invariants discussed above. This leads to the following equation
for the pressure P∗ and the velocity v∗ associated with the middle wave (Toro,
2009):

f(P∗,WL,WR) = 0

v∗ =
1

2
(vL + vR) +

1

2
(fR(P∗,WR) − fL(P∗,WL)),

where f(P,WL,WR) is given by

f(P,WL,WR) = fL(P,WL) + fR(P,WR) + vR − vL

fX(P,WX) =











(P − PX)
√

AX

P +BX
P > PX

2cs,X

(γ−1)

[

(

P
PX

)

γ−1
2γ

− 1

]

P ≤ PX

AX =
2

(γ + 1)ρX

BX =
(γ − 1)

(γ + 1)
PX,

with X = L,R. The condition P > PX corresponds to a shock wave, P ≤ PX to
a rarefaction wave.

Iterative solution

Given the complex form of the function f(P,WL,WR), finding the root of this
function is a non-trivial task, which needs to be done numerically using a root
finding algorithm.

Toro (2009) recommends using a Newton-Raphson method (Thijssen, 1999),
which makes use of the first derivative of the function:

f ′(P,WL,WR) = f ′
L(P,WL) + f ′

R(P,WR)

f ′
X(P,WX) =











(

1 − P −PX

2(BX+P )

)√

AX

BX+P P > PX

1
ρXcs,X

(

P
PX

)

−(γ+1)
2γ

P ≤ PX.

This method is quite fast, but can end up getting stuck in an endless loop for
some initial values. We therefore combined it with a more robust root finding
algorithm: Brent’s method (Brent, 1973). This method requires an initial guess
for an interval containing the root, which we do not normally have at our disposal.
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We know that f(0,WL,WR) < 0, but it is hard to predict a value for P where
the function is positive. We therefore use Newton-Raphson as long as the current
guess for P results in a negative function value, and switch to the more robust
Brent when we find a positive function value to use as upper limit for the interval.

To obtain fast convergence, a good initial guess for the pressure P∗ is import-
ant. To obtain a good guess, we can make use of approximations in the wave
structure of the solution. If the two outer waves for example are both rarefaction
waves, then the pressure for the middle wave is given by an analytic expression
(Toro, 2009):

P∗,TR =





cs,L + cs,R − 1
2 (γ − 1)(vR − vL)

cs,LP
−(γ−1)

2γ

L + cs,RP
−(γ−1)

2γ

R





2γ

γ−1

.

Similarly, if the two outer waves are shock waves, the pressure for the middle
wave is approximately given by (Toro, 2009)

P∗,TS =
gL(P̂ )PL + gR(P̂ )PR + vL − vR

gL(P̂ )PL + gR(P̂ )PR

gX(P ) =

√

AX

P +BX
,

with P̂ a suitable guess for the pressure, that can be obtained using a linearized
version of the Euler equations:

P∗,lin =
1

2
(PL + PR) −

1

8
(vR − vL)(ρL + ρR)(cs,L + cs,R).

In practice, we will always start by calculating the linearized guess P∗,lin, since
it is the cheapest to calculate. If this pressure lies in between the pressure for
the left and right states, and if the pressure contrast between the states is less
than two, we will use this guess as starting point for the Newton-Raphson. If this
guess is smaller than the minimum pressure for left and right states, we use the
two rarefaction wave approximation P∗,TR. If it is larger, we use the two shock
wave approximation P∗,TS, using P∗,lin as initial guess.

Since some of the approximations above can lead to negative pressures, we
make sure the initial guess for the pressure is positive by enforcing some very
small positive value for the pressure if necessary.

Approximate solution

We will see below that the solution of the Riemann problem is at the core of finite
volume hydrodynamical integration methods, so that these methods crucially
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depend on the fast and accurate solution of a large number of Riemann problems.
The iterative procedure sketched above can be computationally very expensive,
leading to a potential bottleneck for these methods. For this reason, a number
of approximate solutions for the Riemann problem have been developed, which
can obtain quite accurate results at constant computational cost.

The most simple approximate solution is the two rarefaction wave solution
we already encountered above. In this case, we assume that both outer waves
are rarefaction waves, and we immediately get P∗. This specific wave solution
will occur when the primitive variables for left and right states are similar in
magnitude, so that this type of solution is related to smooth, continuous flow,
which is the type of flow most often encountered in astrophysical situations.

A two shock wave approximation is less useful, since it does not lead to a direct
analytic expression for the pressure of the middle wave. Furthermore, shock waves
usually occur in very specific regions of the flow, so that the approximation is
generally not valid for the bulk of the flow.

Even better approximations to the Riemann problem can be found by as-
suming a two- or a three-wave model that is then directly used to calculate
inter-cell fluxes that can be used in a finite volume method (see below). These
Harten-Lax-van Leer (HLL) and Harten-Lax-van Leer Contact (HLLC) approx-
imate Riemann solvers (Toro, 2009) do not actually give a solution to the whole
Riemann problem, but are nonetheless very useful. We will not discuss them in
more detail, as they were not used for our work.

Sampling the solution

Once we know the pressure and velocity for the middle wave, the solution is
completely fixed, since this also fixes the wave form of the outer waves. To
obtain the solution at position x and at time t, we need to sample the solution,
to find out in which region of the solution we are. This is illustrated in the
flowchart in Fig. 3.2.

To find out at which side of the middle contact wave we are, we have to
compare the generic speed S = x

t with the velocity of the middle wave, v∗. If
it is smaller, we are at the left of the contact wave and need to sample the left
wave. If it is larger, we sample the right wave instead.

To find out if the left or right wave is a shock wave, we compare the pressure
of the middle wave with the pressure of the left or right state. If this pressure is
larger, we have a shock wave. If it is smaller, we have a rarefaction wave.

At last, to find out at which side of the left or right wave we are, we need to
compare S with the signal velocities of the appropriate wave. For a shock wave,
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3.1 The Euler equations

the shock velocity is given by (Toro, 2009)

SX = vx,X ± cs,X

√

γ + 1

2γ

P∗

PX
+
γ − 1

2γ
, (3.4)

where the positive sign corresponds to a right wave (X = R) and the negative
sign to a left wave (X = L). If S is in between the velocity of the middle wave
and the shock velocity, the solution for the density is given by

ρX,shock = ρX

(

P∗

PX
+ γ−1

γ+1
γ−1
γ+1

P∗

PL
+ 1

)

,

while the velocity and pressure are given by v∗ and P∗.
For a rarefaction wave, there are two signal velocities: the velocity of the head

of the wave, which separates the left or right state from the left or right wave,
and the velocity of the tail of the wave, which separates the left or right wave
from the middle wave. The former is given by

SHX = vX ± cs,X,

and the latter by

STX = v∗ ± cs,X

(

P∗

PX

)
γ−1
2γ

,

where again in both cases the positive sign corresponds to the right wave and
vice versa.

In between head and tail of the wave, the density, velocity and pressure are
given by

ρX,rarefaction = ρX

(

2

γ + 1
±

γ − 1

(γ + 1)cs,X

(

vX −
x

t

)

)
2

γ−1

vX,rarefaction =
2

γ + 1

(

±cs,X +
γ − 1

2
vX +

x

t

)

PX,rarefaction = PX

(

2

γ + 1
±

γ − 1

(γ + 1)cs,X

(

vX −
x

t

)

)
2γ

γ−1

,

where this time the positive sign corresponds to the left wave.
In between the tail of the wave and the middle wave, the velocity and pressure

again correspond to v∗ and P∗, while the density is given by

ρX,tail = ρX

(

P∗

PX

)
1
γ

.
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Vacuum

In everything we did above, we silently assumed that the density had a positive
value everywhere. However, we will encounter cases where the density effectively
becomes zero, a situation which is called vacuum. This for example happens when
we simulate isolated galaxies as a spherical cloud of gas embedded in a spherical
dark matter potential with open boundaries, so that outside of the gas cloud we
have a vacuum. If there is no matter, concepts as velocity, energy and pressure
become meaningless, and we can no longer use the Euler equations to describe the
hydrodynamics. This means the wave form of the solution of a Riemann problem
involving vacuum will be different than the ordinary three wave structure.

Physical common sense dictates that the hydrodynamical variables are all just
zero in vacuum, so that we do not require anything special to treat the vacuum
itself. We have to take care however in cases where the vacuum is adjacent to a
region with non-zero density. We distinguish three different cases: the two trivial
cases where one of both states in the Riemann problem is a vacuum, and the
somewhat more involved case were vacuum is created as part of the solution to
the Riemann problem. The latter happens when the following vacuum condition
is satisfied (Toro, 2009):

2cs,L

γ − 1
+

2cs,R

γ − 1
≤ vR − vL.

This can clearly only happen if there is a large velocity contrast in a flow with
very small sound speeds.

In all cases, the vacuum region is separated from the region with non-zero
density by a wave front (or two wave fronts if vacuum is generated) with velocity

SX,vacuum = vX ±
2cs,X

γ − 1
,

where the positive sign corresponds to a left vacuum wave. It can be proven that
a vacuum can never be adjacent to a shock wave, so that the left or right state is
separated from the vacuum front by a rarefaction wave. For the cases with left
or right vacuum state, the wave solution hence consists of only two waves, while
for the vacuum generation case it consists of four: a left rarefaction wave, a left
vacuum front, a right vacuum front, and a right rarefaction wave.

To sample the vacuum solution, we can then proceed as before, but now only
using the velocity of the head of the rarefaction wave and the velocity of the
vacuum front. If the speed S = x

t is in the vacuum region, all primitive variables
are simply zero. If it is in the region between the head of the rarefaction wave and
the vacuum front, the primitive variables are given by ρX,rarefaction, vX,rarefaction,
and PX,rarefaction.
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Multiple dimensions

Until now, we have always considered the one dimensional Riemann problem. For
most practical purposes however, we will need to consider the Riemann problem
in two or three dimensions, which means the velocity v will be a vector quantity
~v. Furthermore, the partial derivatives with respect to the spatial coordinate x
will be replaced by gradient and divergence operations, which will make the Euler
equations a lot more complex.

By an appropriate rotation of the coordinate system, it is always possible to
align the x-axis with the direction in which the change from left to right state
occurs, so that we can formulate the Riemann problem in split multidimensional
form (Toro, 2009). The 3D Euler equations then take the following form (since
derivatives in the y- and z-direction vanish):

∂U

∂t
+
∂F

∂x
= 0,

with

F =













ρvx

ρv2
x + P
ρvxvy

ρvxvz

(ρe+ P )vx













.

There is an interesting symmetry in the way in which the y- and z-component of
the velocity are treated in these equations, which is also reflected in the eigenval-
ues of the Jacobian matrix for this system. These are still given by vx − cs, vx

and vx + cs, but now the middle eigenvalue has multiplicity three, which means
the middle contact wave will consist of three contact waves that coincide. The
two extra contact waves correspond to simple jumps in the tangential velocity
components, while the solution for the other three waves is as before.

We can hence solve the multidimensional Riemann problem very easily by
converting it into a 1D Riemann problem and treating the tangential velocity
components as passively advected quantities, which are all quantities q that satisfy
the equation

∂q

∂t
+ ~v.~∇q = 0,

or, using the continuity equation,

∂(ρp)

∂t
+ ~∇. (ρp~v) = 0.

For these quantities, the solution is given by a simple jump from left to right
value across the central contact discontinuity.
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3.2 Finite volume methods

In the previous section, we derived the Euler equations and saw that the physical
solutions to these equations are given by rarefaction waves, contact discontinuities
and shock waves. In this and the next section, we will discuss how we can solve
these equations numerically for a discretized density distribution. In Chapter 2,
we introduced various possible discretizations for the density distribution of a gas,
and the different hydrodynamical integration methods will be intimately linked
with these different discretizations. We will start with grid based discretizations.

3.2.1 Fixed grid

A grid based discretization consists of cells, which have a geometrical surface
area or volume. This quantity can be used to convert the primitive variables
to conserved variables. These naturally pop up when we integrate the Euler
equations in conservative form over the volume Vi of the cell (Springel, 2010):

∂

∂t

∫

Vi

UdV =
∂

∂t

∫

Vi





ρ
ρ~v
ρe



 dV =
d

dt





mi

~pi

Ei



 =
d

dt
Qi = −

∫

Vi

~∇. ~F (U)dV,

where we introduced the mass mi, linear momentum ~pi and total energy Ei of
the cell.

The volume integral on the right hand side of this equation can be converted
into a surface integral:

d

dt
Qi = −

∫

S

~F (U).d~n,

where S is the total surface area of the boundaries of the cell, and ~n is a normal
vector to the boundary of the cell. We now see why this formulation of the
Euler equations is called the conservative form, as these equations link the time
evolution of conserved variables to a flux through the boundary of the cell. It
is very important to note that the above conversion from a volume integral to
a surface integral is mathematically only allowed if the fluxes and their first
derivatives are continuous. This is not the case if the physical solution for the
hydrodynamical variables corresponds to a contact discontinuity or a shock wave,
since then the Euler equations are no longer valid. By doing the conversion, we
hence exclude these solutions inside the cell.

Since in practical grids a cell will be bordered by a finite number of geometrical
faces, we can rewrite the equation above in discrete form as

d

dt
Qi = −

∑

j

AijFij , (3.5)
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where we introduced the face averaged flux

Fij =
1

Aij

∫

Aij

~F (U).d ~Aij ,

and where ~Aij is the surface area of the geometrical face between cells i and j.

This equation is the cornerstone of so called finite volume methods. It ex-
presses the change of the conserved variables of a cell as a sum of fluxes through
the boundaries of the cell. The outward flux for one cell will correspond to an
inward flux for one of its neighbouring cells; the hydrodynamical integration is
hence completely governed by a flux exchange between cells. Since all changes
in the conserved variables are given by a symmetric exchange between cells, the
total sum for these values for the entire system will be constant, so that globally,
these variables are indeed manifestly conserved.

To actually solve the Euler equations, we still need to determine appropriate
fluxes. These fluxes should take into account the actual physical solutions to the
Euler equations, especially if we also want to allow discontinuities or shock waves,
which were excluded in the interior of the cell by the conversion of the volume
integral above. We will start with a simple first order method and then extend
it to second order in space and time.

First order: Godunov fluxes

In the previous section, we encountered the Riemann problem, and showed that
its solutions include the three physical wave structure solutions to the Euler
equations. The only necessary ingredients of a general Riemann problem are two
states, separated by some region in space. It is hence possible to formulate a
Riemann problem in between two neighbour cells of the grid, taking their primit-
ive variables as the two states and the face between them as the separating region.
We saw that we can always reduce the multidimensional Riemann problem to the
one dimensional equivalent by means of an appropriate rotation, which in this
case corresponds to a rotation that aligns the x-axis with the normal of the face
between the two cells.

This is the main idea of the flux estimation of Godunov (1959): we use the
primitive variables of the cells as input to a Riemann solver (approximate or
exact) and calculate fluxes based on the solution to the Riemann problem. Since
this solution automatically includes rarefaction waves, shock waves and contact
discontinuities, we also include these possible solutions in the flux estimation.

The method is illustrated in Fig. 3.3 for the spherical overdensity problem
that was introduced in Chapter 2. To this end, we introduce a pressure contrast,
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Figure 3.3: The first order finite volume result for the spher-
ical overdensity test in 2D, obtained using the AMR code mpi-

amrvac on a 40 × 40 cell grid with 2 levels of refinement, and at
time t = 0.1. The gray line represents the high resolution solution
to the equivalent 1D problem, which acts as a reference solution.
The black dots are the 2D simulation results.

given by

P (~x) =

{

1 |~x− ~o| < 0.25,

0.1 0.25 ≤ |~x− ~o|,

which is the same as the density contrast.
Due to the pressure contrast, the dense region, which is initially at rest, will

start to expand into the low density region. The radial density profile reflects
the solution of a typical Riemann problem, and consists of a inward travelling
rarefaction wave, a central contact discontinuity and an outward travelling shock
wave. These are illustrated at time t = 0.1.

Although the setup has a very modest resolution, these features are clearly
visible. To do better, we can increase the number of cells, but this only slowly
increases the resolution of the solution. The reason for this is that the method
described here is only first order in time and space. This means that the error
we make by discretizing the Euler equations on a grid scales linearly with the
cell size. Similarly, the error we make by discretizing time in finite steps scales
linearly with the time step size. To reduce the overall error by a factor 2, we
hence need to double the number of cells per dimension (which means using 8
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times more cells in 3D!) and divide the time step size by a factor 2. We can do
better than this by using a second order method.

Second order: gradients

To extend the first order Godunov method to second order in space, we need
to take into account extra spatial information. Before, we treated every cell
of the grid as being an independent entity, having its own conserved variables
and derived primitive variables. However, if we go back to the original density
distribution, we see that the cells are not independent, but together constitute a
discrete representation of that density distribution. If two neighbouring cells have
different density values, then this is likely caused by a local density gradient of
the underlying distribution, rather than a discrete contact discontinuity between
the two cells. To better represent the distribution in space, we can hence take
into account these gradients and reconstruct the density profile inside the cell.

We need to modify the first order method as follows. Just as before, we
still use the volume of the cells to convert the conserved variables to primitive
variables. We then use these primitive variables to estimate local gradients for
the primitive variables: for every cell, we calculate the linear gradients of the
primitive variables between the cell and its neighbouring cells and combine them
into a single gradient for every primitive variable. Before solving the Riemann
problem at the face between two neighbouring cells, we reconstruct the primitive
variables at the position of the face by linearly interpolating from the midpoint
of the cell using the gradients of the cells. These reconstructed values are then
used as input for the Riemann problem.

To also obtain second order accuracy in time, we need to take include a time
dependence into this reconstruction step. To this end, we will also integrate the
primitive variables forward in time for half a time step, using the Euler equations
in primitive form (3.3). The idea is that the primitive variables will have evolved
for half a time step when they arrive at the face if they have to arrive at the
midpoint of the neighbouring cell at the full time step. The Euler equations in
primitive form link the time evolution of the primitive variables to their gradients,
which we already need for the spatial reconstruction.

The result for the spherical overdensity test using this second order MUSCL-
Hancock method (van Leer, 1979) is shown in Fig. 3.4. The different features are
now more clearly visible and the resolution increases a lot faster when increasing
the number of cells.
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Figure 3.4: The second order result for the spherical overdensity
test, obtained using the AMR code mpi-amrvac using a grid of
40×40 cells with 2 levels of refinement, and at time t = 0.1. The
gray line represents the high resolution 1D reference solution, the
black dots are the 2D simulation results.

Time stepping

To solve (3.5) numerically, we rewrite it as

dQi = −
∑

j

AijFijdt.

We can hence calculate changes in the conserved quantities by applying the fluxes
for these quantities during some discrete time step dt. It is clear that the accuracy
of the integration method will depend crucially on the size of the time step dt:
if the time step is too large, the discretization error will be very large as well,
and we cannot expect the solution to be accurate. If the time step is too small,
we might take a lot more steps than actually required, each leading to small
numerical round off error. The accumulation of this round off error will then also
lead to a less accurate result. Ideally, we hence want to use a time step that is
small enough to sufficiently suppress discretization error, but not much smaller
than that to limit the total number of steps.

For simple differential equations of the form

∂y

∂t
+ a

∂y

∂x
= 0
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there exists a mathematical framework to find a time step that is small enough to
suppress discretization error, known as von Neumann stability analysis (Isaacson
& Keller, 1994; Toro, 2009). The idea is to look at how the discretization error
due to a single step behaves when applying the differential equation itself again. If
the discretization error grows under the differential equation, then the integration
is unstable. If on the other hand the discretization error itself shrinks under the
differential equation, then small errors will be automatically suppressed, and the
integration is stable.

The stability of an integration method is usually expressed through the di-
mensionless Courant number, for the differential equation above given by

C =
a
dx
dt

,

with dt the time step and dx the size of a (one dimensional) cell. The quantity
in the denominator corresponds to a grid speed, i.e. the maximal speed that can
be handled by the integration scheme. As we have seen before, a corresponds to
the wave speed of the solution. It can be shown that a simple upwind integration
scheme of the form

yn+1
i = yn

i −
a

dx

(

yn
i − yn

i−1

)

dt,

where yn
i corresponds to the value of y in cell i at time tn, is stable if the Courant

number lies in the range [0, 1]. The name upwind comes from the fact that we
base the spatial discretization in between brackets on the sign of the wave speed
a: for a positive value, the net flow will be from left to right, and we take the
spatial discrete derivative by subtracting the value of y in the cell to the left from
that of the cell i.

For the Euler equations, there are multiple waves associated with the gen-
eral solution (we encountered this general solution while discussing the Riemann
problem), which will generally have different associated wave speeds. However,
the integration scheme above can still be seen as an upwind scheme if the flux
between neighbouring cells is only based on the values of the primitive variables
of these two cells. We can hence still define a Courant number (now called the
Courant-Friedrichs-Lewy or CFL number after Courant et al. (1928)):

CCFL =
Smax

dx
dt

,

where Smax represents the maximal wave speed for the cell under considera-
tion. Since obtaining this maximal wave speed requires the solution of the local
Riemann problem, this speed is usually approximated by

Smax ≈ |~v| + cs.
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For multidimensional cells, we should in principle also take the wave speeds in
different directions into account, and we should use a better generic cell size
estimate dx. However, in practice we will still use the CFL number above, and
use a somewhat more strict stability condition, 0 ≤ CCFL ≤ 0.5. This turns out
to be both fast and accurate.

The CFL criterion applies on a cell-by-cell basis, meaning that the time step
for different cells can be very different. Since we usually do not want to integrate
cells with a time step that is orders of magnitude too small (since this is com-
putationally expensive and leads to the accumulation of round off error), we will
in practice use individual time steps. To this end, the total simulation time is
mapped to an integer timeline, and cell time steps are restricted to power of two
subdivisions of the total integer simulation time. To keep the integration mani-
festly conservative, we have to make sure all fluxes are exchanged symmetrically.
If a cell that is active at some time interacts with an inactive cell, then we still
exchange flux with the inactive cell, but with a time step that is equal to the
(smaller) time step of the active cell (Springel, 2010). As input for the Riemann
problem we use the primitive variables for the inactive cell that were calculated
at the last time the cell was active. When the cell is active again, it will have
exchanged fluxes through all of its faces for a time step that is equal to the total
time step of the cell, and only then it is possible to update the primitive variables
using the new values of the conserved variables.

Limiters

The first order Godunov method for the pure Euler equations without external
terms is unconditionally stable, given that an appropriate time step criterion is
used. This means that the method will never produce unphysical results were
the mass or energy for a cell becomes negative. The reason for this is that the
Riemann problem formulated using the cell values as inputs can never produce
results that lead to fluxes that are too large.

The second order MUSCL-Hancock method does no longer satisfy this uncon-
ditional stability. By locally reconstructing the primitive variables, we can end
up with input states that have higher densities than physically possible for a cell,
so that the resulting fluxes might carry away more mass or energy than available
in the cell. Furthermore, the use of gradients can introduce new extreme values
for the primitive variables, which will in turn lead to wave patterns in the solution
that were not part of the initial setup.

To solve these issues, we need to include limiters in the scheme (Toro, 2009).
These limiters exist in various flavours. At the one hand, it is possible to limit
the cell gradients, in which case we have slope limiters. On the other hand, it is
also possible to limit the fluxes, which is done using flux limiters.
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Slope limiters themselves also come in two varieties: cell wide slope limiters
and per face limiters. The former limit the gradients on a cell wide basis before
the reconstruction step, by ensuring that the gradients never lead to reconstructed
values that are larger than the primitive variables in one of the neighbouring cells,
for any of the faces (Springel, 2010). The advantage is that they treat the entire
cell on the same level. Per face limiters limit the reconstructed values at the face
without affecting the gradients themselves and are hence face dependent. A good
per face slope limiter makes sure that no new wave structures are introduced in
the solution by performing the reconstruction step, so that when the first order
scheme would result in a rarefaction wave, the second order scheme does so as
well and does not result in e.g. a shock wave (Hopkins, 2015).

The strength of a specific finite volume method is completely determined by
the interplay between the Riemann solver and the slope limiter. If an approximate
Riemann solver is used that does not handle shocks (e.g. the two rarefaction wave
Riemann solver), there is no risk of introducing unphysical shocks and the slope
limiter can be quite soft. This in turn leads to less numerical dissipation, but
also means the method will be bad at resolving shock waves. An exact Riemann
solver will produce shocks and requires a more stringent slope limiter, leading to
an overall better behaviour close to shock waves, but also to more dissipation.

Flux limiters are the last chance to prevent a cell from loosing more mass
or energy than it has, and act directly on the flux between cells (M. Schaller,
personal communication, February 2015). They are about as artificial as resetting
the mass or energy in a cell to some small value whenever it becomes negative, but
at least they preserve the manifest mass and energy conserving character of the
method by acting on the flux between cells rather than individual cell quantities.
There are many possible flux limiters, and we opted to use a geometrical one that
makes sure that the flux is never larger than some fraction of the total cell mass
or energy, which corresponds to the ratio of the surface area of the active face to
the total surface area of the cell (multiplied with the ratio of the smallest and the
largest time step of the two cells if individual time stepping is used). This way
the mass or energy can never become negative, even if the outflux for all faces is
maximal. For consistency, we limit all five fluxes with the same factor.

3.2.2 Moving mesh

The discussion about finite volume methods above was completely independent of
the geometry of the grid (although the examples used a regular Cartesian grid).
This illustrates the fact that a finite volume method can be defined on just about
any type of grid structure, as long as it has a notion of cells with an associated
notion of volume, and every cell has a list of neighbouring cells that share faces
with some notion of a location in space and a surface area. A Voronoi mesh
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satisfies all of these criteria.
Unstructured meshes can be advantageous for stationary problems with some

clear geometry, as they make it possible to adapt the cell geometry to the problem
at hand. They however become even more interesting if we consider the case
where the mesh is allowed to move. In Chapter 2, we saw that the Voronoi
mesh changes in a very continuous way when the generators of the mesh change:
faces between neighbouring cells grow or shrink linearly, but they only appear or
disappear by continuously passing through a phase of zero length. This means
that the flux between neighbouring cells would change linearly as well if the
generators are allowed to move, which makes it possible to define a consistent
integration scheme based on such a moving mesh. By coupling the movement of
the mesh to the movement of the fluid itself, we can hence make sure that the
mesh keeps being adapted to the problem at hand, even if this problem is highly
dynamical.

Of course, a finite volume method on such a moving mesh would only be
meaningful if the method does not depend on the underlying mesh: the integra-
tion can be better if the cells are allowed to move, but the solution can not in any
way depend directly on the movement of the cells. When we exchange the fluxes,
we hence need to take the movement of the cells into account, by rewriting the
fluxes as (Springel, 2010)

~F =







ρ(~v − ~w)

ρ~v(~v − ~w) + P
−→−→
1

ρe(~v − ~w) + P~v






,

where ~w is the velocity of the face, while ~v is still the fluid velocity with respect
to a reference frame fixed to the simulation box. This takes the geometrical flux
−~wU due to the movement of the face into account .

We could in principle still solve the Riemann problem in the reference frame
fixed to the box, but most of the power of a moving mesh method comes from the
fact that we now can do it in the rest frame of the face as well. To this end, we
deboost the fluid velocities for the left and right states before solving the Riemann
problem by simply subtracting the face velocity, and boost the solution afterwards
by adding the face velocity again. This leads to a much higher accuracy when
the fluid has a high bulk velocity with respect to the simulation box, since this
bulk velocity will completely cancel out of the Riemann problem.

Generator velocities

Ideally, we would like to set the velocities of the mesh generators to the local fluid
velocity inside the corresponding Voronoi cell, so that the cell exactly follows the
flow. This can however lead to very irregular cell shapes in regions with complex
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flow behaviour, which is undesired (especially if an evolving Voronoi mesh is
used, see Chapter 2). By using Voronoi cells as the discrete representations of a
continuous distribution, we silently assume that the cell quantities are sampled
at the position of the centroid of the cell. However, for part of the algorithm, we
treat them as if the quantities are located at the position of the generators instead.
The method will only be accurate if these positions are not too far apart, which
means the cells need to be regular enough. Vogelsberger et al. (2012) further
note that the gradient reconstruction works best if the cells are to some extent
spherical, i.e. there should not be an order of magnitude difference between the
distance from the centroid to the cell boundary in one direction with respect to
another direction.

To make sure the mesh stays regular enough, we add an extra correction term
to the generator velocity. This correction term is inspired by Lloyd’s algorithm
and is directed towards the actual centroid of the current cell. It only switches
on if the distance between the generator position and the cell centroid is large,
and is given by (Springel, 2010)

~vcor =















0 |~s− ~x| < 0.9ηR

cs

(

~s−~x
|~s−~x|

)(

|~s−~x|−0.9ηR
0.2ηR

)

0.9ηR ≤ |~s− ~x| < 1.1ηR

cs

(

~s−~x
|~s−~x|

)

1.1ηR ≤ |~s− ~x|,

where ~x is the position of the generator of the cell, ~s is the position of the centroid

of the cell, η is a parameter (we adopt the value η = 0.25), and R = 3

√

3V
4π is the

generic size of the cell, which corresponds to the radius of a sphere with the same
volume V .

Face midpoints and velocities

Calculating the midpoints of the faces of the cells is a purely geometrical task,
which can be achieved by storing the vertex positions in some fixed order (clock-
wise or counterclockwise) around the line joining the generators of the cells that
share the face. The midpoint is then the surface area weighted average of the
midpoints of the triangles formed by the first vertex and two consecutive other
vertices of the face. This calculation can easily be done together with the calcu-
lation of the total surface area of the face.

To obtain the velocity of the face, we have to combine the velocities of the
two generators appropriately. If ~xij is the position of the midpoint of the face,
then the velocity of the face is given by (Springel, 2010)

~vij =
~wi + ~wj

2
+

(

(~wi − ~wj).(~xij −
~xi+~xj

2 )

|~xj − ~xi|

)

(

~xj − ~xi

|~xj − ~xi|

)

.
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Time stepping

For unstructured meshes, it is still possible to use a CFL-like time step criterion,
as introduced for fixed grids above. If the mesh is allowed to move along with
the flow, we can even relax the maximal wave speed estimate to only include the
sound speed and the relative motion of the fluid with respect to the movement
of the cell. This will lead to time steps that are somewhat larger than for the
equivalent fixed grid integration, especially in fluids with large bulk velocities.

Saitoh & Makino (2009) pointed out that the use of a standard CFL criterion
in combination with individual time steps can lead to severe problems in the
vicinity of strong shocks. For a shock wave, the speed is given by (3.4), which
can be significantly larger than the sound speed. Furthermore, shock waves arise
very locally, so that they can only be detected in a few cells, but affect many more
cells. To this end, Springel (2010) proposes using a tree based time step criterion
that also takes into account the relative velocity of the cell with respect to other
cells in the vicinity. If a shock is detected, then we make sure the individual time
step for all cells that can be affected by this shock is small enough to resolve it.

This tree based criterion is computationally very expensive. We will hence
only use it when absolutely necessary, for example when handling the Sedov-
Taylor blast wave test which we will encounter in Chapter 5.

Results

The result of the spherical overdensity test using a moving mesh hydrodynam-
ical integration method is shown in Fig. 3.5. The accuracy of the solution is
comparable to that of the second order AMR solution, but uses less resolution
elements. Computationally, the moving mesh method is a lot more expensive, so
that in most practical cases it is still cheaper to use a fixed grid with a higher
resolution to obtain the same level of accuracy. For the spherical overdensity
test, the second order AMR simulation on a grid with an effective resolution of
160×160 cells in the most refined regions took 3.082 seconds to finish. The same
simulation using a moving mesh code with only 2,780 cells took 2.516 seconds on
the same hardware.

The situation is different for flows with a high bulk velocity with respect
to the simulation box. Fig. 3.6 shows the example of a shearing layers test
(Lecoanet et al., 2015; Vandenbroucke & De Rijcke, 2016), in which two layers
with different densities are in pressure equilibrium. The setup is made highly
unstable by introducing a large shearing velocity in one or both layers, so that
any small velocity in the direction perpendicular to the boundary layer will grow
exponentially to form a so called Kelvin-Helmholtz instability.

This instability will arise at all scales, so that in practice the wavelength of
the instabilities that will dominate the simulation depends on the resolution of
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Figure 3.5: The second order moving mesh result for the spher-
ical overdensity test, obtained using the moving mesh code Shad-

owfax using the generator distribution from Chapter 2 with
2,780 generators, and at time t = 0.1. The gray line repres-
ents the high resolution 1D reference solution, the black dots are
the 2D simulation results.

the simulation. To make the test resolution independent, we introduce a linear
transition layer in between the two layers that suppresses all instabilities below a
certain threshold wavelength (Chandrasekhar, 1961; Hendrix & Keppens, 2014).
Since this will also suppress the numerical noise that seeds the instability, we need
to seed the instability artificially, by introducing a small velocity perturbation
in the direction perpendicular to the interface. The thickness of the transition
layer also sets a maximally unstable wavelength mode. If we seed this particular
wavelength, then we are certain that it will dominate the simulation and we can
compare between methods.

With the normal setup, both a fixed grid and a moving mesh succeed in resolv-
ing the exponential growth of the instability. However, if we add an arbitrary
(but large) extra velocity to the entire fluid, so that both layers are moving su-
personically and the relative shear velocity is much smaller than the bulk velocity
of the flow, we see that fixed grid methods have difficulties resolving the instabil-
ities, while the result is basically unchanged for the moving mesh code. More
importantly, the time step for the fixed grid integration is significantly smaller in
this case, to be able to accommodate the high flow velocity. For the moving mesh
it is exactly the same, since the cells automatically follow the high flow velocity.
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Figure 3.6: Density colour plot for the shearing layers test
at time t = 1.5. The left column shows simulations run with
Shadowfax, the right column shows simulations run with mpi-

amrvac. Both use a 400×400 grid which is (initially) Cartesian.
The top row shows simulations without a bulk velocity, the bot-
tom row shows simulatons where the entire fluid has a velocity
vbulk = 100 with respect to the simulation box. This clearly affects
the mpi-amrvac result.
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3.3 Smoothed Particle Hydrodynamics

For a high enough bulk velocity, the run time of a moving mesh simulation will
hence always be smaller than for a fixed grid simulation.

3.3 Smoothed Particle Hydrodynamics

In Chapter 2, we introduced the smoothing kernel and showed how we can con-
sistently estimate the density for a set of particles using an iterative proced-
ure. Smoothed Particle Hydrodynamics (SPH) is the hydrodynamical integra-
tion scheme based on this density estimate. To this end, we will rewrite the other
primitive hydrodynamical quantities in terms of the smoothing kernel as well, so
that every particle gets an associated velocity, thermal energy, and pressure next
to its density:

~v(~x) =
∑

i

~vi
mi

ρi
W (|~x− ~xi|, hi)

u(~x) =
∑

i

ui
mi

ρi
W (|~x− ~xi|, hi)

P (~x) =
∑

i

Pi
mi

ρi
W (|~x − ~xi|, hi).

The particle quantities will still be time-dependent, but their position de-
pendence now is absorbed by the smoothing kernel. The gradient or divergence
of these quantities can then be expressed as a simple particle sum as well (Price,
2012):

~∇X(~x) =
∑

i

Xi
mi

ρi

~∇W (|~x − ~xi|, hi).

If we want the density estimate to hold at all times, the particle positions
should be adapted in between time steps. This can be achieved by moving the
particles with their local fluid velocity, so that the continuity equation is trivially
satisfied. This corresponds to a so called Lagrangian point of view, which can
formally be obtained by rewriting the Euler equations so that all partial time
derivatives are replaced by total Lagrangian time derivatives: d

dt = ∂
∂t + ~v.~∇.

3.3.1 Equations

Applying the procedure described above, we can rewrite the momentum equation
(3.1) as

d~v

dt
= −

1

ρ
~∇P.
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Evaluating this equation at the position of particle i, and inserting the kernel
estimates for the velocity, density and pressure, we get

d~vi

dt
= −

1

ρi

∑

j

Pj
mj

ρj

~∇W (|~xi − ~xj |, hj),

which can be used to integrate the particle velocity in time. The right hand side
of this equation then corresponds to a hydrodynamical acceleration, which can
be treated just like the gravitational acceleration in an N-body simulation.

The expression above is however not symmetric in i and j. This is problematic,
since this also means that the momentum transfer from particle i to particle j will
differ from the momentum transfer from particle j to particle i, which violates
momentum conservation. We can symmetrize the momentum equation by noting
that

~∇

(

P

ρ

)

=
~∇P

ρ
−
P

ρ2
~∇ρ.

This leads to a more symmetric velocity equation:

d~vi

dt
= −

∑

j

(

Pj

ρ2
j

+
Pi

ρ2
i

)

mj
~∇W (|~xi − ~xj |, hj).

Note that, for strict momentum conservation, we also need to use a symmetrized
form of the smoothing kernel, which is done in most SPH codes.

The energy equation (3.2) in Lagrangian form is given by

du

dt
= −

P

ρ
~∇.~v.

This leads to the following equation for the thermal energy of an SPH particle:

dui

dt
= −

Pi

ρi

∑

j

~vj .
mj

ρj

~∇W (|~xi − ~xj |, hj).

This equation is not a very good Lagrangian equation, since it depends on
the absolute velocity vj of the neighbouring particle. We can rewrite it using

~∇.~v =
1

ρ
ρ~∇.~v =

1

ρ

(

~∇.(ρ~v) − ~v.~∇ρ
)

,

to read
dui

dt
= −

Pi

ρ2
i

∑

j

(~vj − ~vi).mj
~∇W (|~xi − ~xj |, hj).
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3.3 Smoothed Particle Hydrodynamics

The relative velocity of particle j with respect to particle i will usually be a lot
smaller than its absolute velocity, allowing a much more accurate integration of
the thermal energy, especially for fluids with a high bulk velocity and low thermal
energy.

When using variable smoothing lengths, as we will always do, we also have
to add small correction terms to the momentum and energy equation to take
the variation of the smoothing length into account (Springel & Hernquist, 2002;
Price, 2012).

Springel & Hernquist (2002) show that the equations of SPH can be derived
in a fully conservative form by starting from a Lagrangian formalism, in which
variable smoothing lengths are assumed by construction. Such a scheme can be
shown to conserve both energy and entropy (which is not the case for the equa-
tions above) if not the thermal energy, but the entropic function A is integrated.
This is the approach adopted by the public version of the SPH code Gadget2

(Springel, 2005). We will however use the thermal energy to accommodate for
the use of a more generalised equation of state, see Chapter 5.

3.3.2 Problems

The above equations lead to a conceptually very simple integration scheme,
whereby the hydrodynamics is done during two neighbour loops, whereby we
loop over all particles and for every particle find the particles that lie within its
smoothing length. During the first loop, the densities for the particles are calcu-
lated using the iterative procedure described in Chapter 2. These densities are
then used during the second loop to calculate the hydrodynamical acceleration
and to update the thermal energy, using the equations above. This algorithm fits
perfectly within the kick-drift-kick formalism of a symplectic leapfrog integrator,
which has good energy conserving properties. In Fig. 3.7, we show the result of
the spherical overdensity test obtained using SPH.

Compared with other methods, the solution is significantly less accurate, but
this is mainly due to the effective resolution of SPH being significantly lower:
where the moving mesh simulation uses all 2,780 cells, everything is smeared out
over 20 neighbours in the (2D) SPH simulation. The effective resolution is hence
only of the order ∼ 100 cells. Nonetheless, the overall density profile is quite
good, and there is even a small bump around the location of the shock wave.
The central contact discontinuity is completely absent however.

Computationally, SPH performs better than its competitors: the spherical
overdensity test only takes 1.29 seconds.

Some fundamental problems exist with the standard formulation of SPH.
Agertz et al. (2007) compared a number of popular hydrodynamical solvers on a
set of benchmark problems. They found a striking disagreement between finite
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Figure 3.7: SPH result for the spherical overdensity test in 2D
at time t = 0.1, obtained using the SPH code Gadget2. The
initial particle distribution used is the same as for the moving
mesh simulation, which contains 2,780 particles. The black dots
are the simulation results, the gray line corresponds to the high
resolution 1D reference solution.

volume methods and SPH on problems involving a strong discontinuity in the
density. SPH performs particularly bad for problems involving Kelvin-Helmholtz
and Rayleigh-Taylor instabilities, as illustrated in Fig. 3.8, which shows the inter-
action of a shock wave with a high density blob: while the finite volume solution
shows a complex interface with multiple instabilities, the SPH solution contains
no instabilities, and just shows a deformed blob.

Even more striking is that the SPH solution does not improve when the res-
olution of the SPH simulation is increased. While increasing the resolution of
the finite volume simulations leads to a higher level of detail in the instabilities,
SPH fails to reproduce any physical instability, independent of the resolution
employed. The problems are hence not caused by a poor effective resolution, but
point to a fundamental inability of SPH to resolve particular physical solutions
of the Euler equations. This will be discussed in more detail below.

To solve these problems, some ad hoc fixes have been proposed, involving
artificial viscosity and conductivity terms in the velocity and thermal energy
equation (Price, 2008; Valcke et al., 2010; Read & Hayfield, 2012; Schaye et al.,
2015; Yamamoto et al., 2015). The problem with these terms is that they should
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3.4 Mesh-free finite volume methods

Figure 3.8: Density profile for the 2D interaction of a shock
wave with a spherical high density blob at time t = 1. Left:
solution obtained using the SPH code Gadget2, right: solution
obtained using the moving mesh code Shadowfax.

only be applied when necessary. If there is a large density contrast, we need
artificial terms to retrieve the missing instabilities, but we do not want these
terms to affect the (correct) solution in regions with fairly regular flow. Artificial
terms are hence always combined with appropriate switches that should detect
the occurrence of discontinuities and activate correction terms accordingly. This
is far from trivial, and usually involves a significant extra computational cost.

3.4 Mesh-free finite volume methods

Compared with a finite volume method, SPH clearly suffers some fundamental
problems. It has however the advantage of being a Lagrangian method, a property
which it only shares with moving mesh finite volume methods. Compared with
a moving mesh method, SPH is computationally a lot cheaper, since we do not
need to construct and maintain a complex geometrical structure. This is the
reason that many astrophysical simulators still use SPH methods with ad hoc
fixes rather than using a moving mesh method.

Part of the problems with SPH stem from the poor volume partitioning prop-
erties of SPH, which we already encountered in Chapter 2. Since the particles
sample the simulation box in an inconsistent way, the local resolution is not
always what we expect it to be, especially around discontinuities. More funda-
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mentally, SPH is incomplete. When discussing the physical solutions to the Euler
equations, we showed that there are three such solutions: rarefaction waves, con-
tact discontinuities and shock waves. Only rarefaction waves are mathematical
solutions to the Euler equations themselves, while the solutions involving discon-
tinuities have to be treated using Riemann invariants and the Rankine-Hugoniot
conditions. Since the SPH equations are derived using only the Euler equations,
we completely miss the possibility of discontinuous solutions.

To put the missing solutions back into the method, we could try to base the
hydrodynamical forces on the solution of a Riemann problem somehow. This is
the method Cha et al. (2010) explore. This method however still suffers from
the poor volume partitioning of regular SPH, and is hence nothing more than a
computationally expensive fixed SPH version.

What we actually want, is a method with good volume partitioning properties,
so that the method becomes independent from the particle distribution in a sense,
and preferably also a method that is similar to a finite volume method, since we
then have manifest conservation of conserved quantities. The meshless volumes
we introduced in Chapter 2 offer exactly this. They however only define a notion
of volume. We will see below how we can also derive some notion of surface area,
which will allow us to construct an effective mesh-free finite volume method.

3.4.1 Weak solutions of the Euler equations

We can integrate the Euler equations in conservative form over the entire sim-
ulation volume V and over some time interval T , and multiply them with an
arbitrary test function φ(~x, t), which has compact support. This means that
φ(~x, t) has some non-trivial value at position ~x and time t, but drops to zero
away from this position and time, so that it is certainly zero at the boundaries
of the simulation box and the endpoints of the time interval:

∫

T

∫

V

φ(~x, t)

(

∂U

∂t
+ ~∇. ~F (U)

)

dV dt = 0.

Due to the spatial and temporal coordinates being completely independent,
we can switch around the integral signs as desired and arrive at the following
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relations:
∫

T

∫

V

∂

∂t
(φ(~x, t)U) dV dt =

∫

T

∫

V

φ(~x, t)
∂U

∂t
dV dt

+

∫

T

∫

V

U
∂

∂t
φ(~x, t)dV dt

∫

T

∫

V

~∇.
(

φ(~x, t)~F (U)
)

dV dt =

∫

T

∫

V

φ(~x, t)~∇. ~F (U)dV dt

+

∫

T

∫

V

~F (U).~∇φ(~x, t)dV dt.

The integrals on the left hand side trivially vanish because of the test function
having compact support. This means we can rewrite the Euler equations as

∫

T

∫

V

(

U
∂

∂t
φ(~x, t) + ~F (U).~∇φ(~x, t)

)

dV dt = 0. (3.6)

The solutions φ(~x, t) are called weak solutions of the Euler equations. It is inter-
esting to note that the weak solutions are still valid in regions of space were the
hydrodynamical variables or the fluxes are discontinuous.

In Chapter 2, we divided up the volume of every small region in space over a
number of neighbouring particles, using the fractions defined in (2.2). Similarly,
we can divide up the value for a function f(~x) over the discrete set of neighbouring
particles, using the same fractions:

f(~x) =
∑

i

fiψi(~x),

for which we have
~∇f(~x) =

∑

i

fi
~∇ψi(~x).

If we integrate out the function f(~x) over the entire volume of the simulation
box, we get

∫

V

f(~x)dV =

∫

V

∑

i

fiψi(~x)dV =
∑

i

fiVi,

where we defined the volume of particle i to be the integral of its volume fraction
over the entire volume of the simulation box:

Vi =

∫

V

ψi(~x)dV.

Without loss of generality, we can expand the weak solution φ(~x) in the second
term of (3.6) (Ivanova et al., 2013):

∫

T

∫

V

~F (U).~∇φ(~x, t)dV dt =

∫

T

∫

V

~F (U).
∑

i

φi(t)~∇ψi(~x)dV dt.
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We know that
∑

i ψi(~x) = 1 (and hence also ~∇
∑

i ψi(~x) = 0), so that we can
rewrite this as

∫

T

∫

V

~F (U).~∇φ(~x, t)dV dt

=

∫

T

∫

V

~F (U).
∑

i,j

ψi(~x) (φj(t) − φi(t)) ~∇ψj(~x)dV dt

=

∫

T

∫

V

~F (U).
∑

i,j

φi(t)
(

ψj(~x)~∇ψi(~x) − ψi(~x)~∇ψj(~x)
)

dV dt

=

∫

T

∑

i,j

φi(t)

∫

V

~F (U).d~Σij ,

where we introduced a generalised surface area

~Aij =

∫

V

d~Σij =

∫

V

(

ψj(~x)~∇ψi(~x) − ψi(~x)~∇ψj(~x)
)

dV.

We can know approximate the volume integral by a simple point quadrature,
to obtain

∫

T

∫

V

~F (U).~∇φ(~x, t)dV dt ≈

∫

T

∑

i,j

φi
~Fij(U). ~Aijdt,

where ~Fij(U) is the flux through the abstract interface between particle i and j,
similar to the flux through the face of a cell in a finite volume method.

The first term of (3.6) can be similarly approximated by

∫

T

∫

V

U
∂

∂t
φ(~x, t)dV dt =

∫

T

∫

V

U
∂

∂t
φ(~x, t)

∑

i

ψi(~x)dV dt

≈

∫

T

∑

i

dφi(t)

dt
Ui

∫

V

ψi(~x)dV dt

=

∫

T

∑

i

dφi(~x)

dt
UiVidt.

Since the weak solution has compact support, we can use integration by parts
to rearrange the time derivative:

∫

T

∫

V

U
∂

∂t
φ(~x, t)dV dt = −

∫

T

∑

i

d

dt
(UiVi)φi(t)dt.
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Putting both terms together again (and noting the anti-symmetry of ~Aij =

− ~Aji), we obtain

∫

T

∑

i

φi(t)





d

dt
(UiVi) +

∑

j

~Fij . ~Aji



 dt = 0.

This equation should hold for every arbitrary set of weak solutions φi(t) and for
all times, which means the factor in between brackets should be zero as well.
We arrive at the following meshless equivalent of the finite volume flux equation
(Hopkins, 2015):

d

dt
(UiVi) +

∑

j

~Fij . ~Aji = 0

3.4.2 Gradient estimation

If we want to calculate the generalised surface areas derived above, or want to
be able to do a second order gradient reconstruction as for the grid based finite
volume methods, we need to be able to estimate gradients on the particle based
discretization.

A first approximate way to do this is by using the SPH gradients derived by
Price (2012). However, due to the poor volume partitioning properties of SPH,
these estimates will be highly dependent on the positions of the particles, which
can make them very susceptible to Poisson noise.

To overcome this drawback, Hopkins (2015) suggests using second order accur-
ate, spatial configuration independent locally-centred least-squares matrix gradi-
ent estimates. These express the αth component (α = x, y, z) of the gradient of
the function f(~x) at the position of particle i as

(

~∇f
)α

i
=
∑

j

(fj − fi)ψ̄
α

j(~xi),

with
ψ̄

α
j(~xi) =

∑

β

Bαβ
i (~xj − ~xi)

βψj(~xi),

and the 3 × 3-matrix Bi = E−1
i , with

Eαβ
i =

∑

j

(~xj − ~xi)
α(~xj − ~xi)

βψj(~xi).

The matrix Ei can be calculated together with the volumes during a first
neighbour iteration. Gradients for the primitive variables are then calculated
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during a second neighbour iteration, while the flux exchange happens during a
third neighbour iteration. This scheme hence requires one neighbour iteration
more than SPH.

3.4.3 Interface position and velocity

The second order gradient reconstruction step requires a spatial extrapolation
of the primitive variables at the position of the particle to the position of the
interface between two particles. However, since this interface is more an abstract
notion of an oriented surface area that arises when identifying the equations of
finite volume hydrodynamics with the meshless hydrodynamical equations, rather
than a real geometrical surface, such a position does not actually exist.

We could adopt a position similar to that of the face of a Voronoi cell, by
just using the midpoint of the line segment joining the two neighbouring points.
Hopkins (2015) suggests weighing this midpoint by the smoothing length of the
particles:

~xij = ~xi +
hi

hi + hj
(~xj − ~xi).

Similarly, it is no longer possible to define a geometrical velocity for the ab-
stract interface. We therefore just use a linear interpolation from the particle
velocities to the position of the interface:

~vij = ~vi + (~vj − ~vi)

(

(~xij − ~xi).(~xj − ~xi)

|~xj − ~xi|2

)

.

3.4.4 Results

The result for the spherical overdensity test is shown in Fig. 3.9. This result is just
slightly more accurate than the SPH result, but takes 1.89 seconds to calculate.
Again, the effective resolution in this simulation is no more than ∼ 100 cells,
explaining the overall bad accuracy.

3.5 Sources and sinks

Until now, we only considered the Euler equations in the absence of sources and
sinks. This means that the movement of the fluid, described by the momentum
equation, was purely due to pressure gradients in the fluid. Likewise, the only
heating and cooling influencing the energy of the system through the energy
equation, was due to the adiabatic contraction and expansion of the fluid.

In real hydrodynamical applications, we would like to include other external
sources and sinks as well. In an astrophysical context, the force of gravity is a
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Figure 3.9: Result of the 2D spherical overdensity test at time
t = 0.1, obtained using the mesh-free finite volume code gizmo,
using the initial particle distribution from Chapter 2, containing
2,780 particles. The black dots are the simulation results, the
gray line is the high resolution 1D reference solution.

good example. We distinguish external gravitational forces due to some (dark
matter) potential, and the self-gravity the fluid exerts on itself. The gas in the
interstellar medium will loose energy due to radiative cooling, and is heated by
the UV light emitted by young stars or coming from the cosmic UV background.

In this section, we will discuss the inclusion of these external sources and sinks
in the Euler equations, and discuss how they couple to the existing hydrodynam-
ical integration schemes. Since external forces also exert work on the fluid, they
couple to both the momentum and the energy equation. Cooling and heating
only influence the latter, and we will discuss them first.

3.5.1 Cooling and heating

The inclusion of a cooling and heating term is most easily done in the thermal
energy equation (3.2). The cooling and heating is usually expressed as an intens-
ive property of the gas, i.e. an energy per unit volume. Since the thermal energy
is an energy per unit mass, we arrive at the following adapted energy equation:

∂u

∂t
+
(

~v.~∇
)

u+
P

ρ
~∇.~v =

1

ρ
(H − L) ,
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where H is the heating and L the cooling.
Returning to the conservation law form of the energy equation, we get

∂

∂t
(ρe) + ~∇. (ρe~v + P~v) = H − L.

The cooling and heating can also be coupled to the entropy equation:

∂A

∂t
+ ~v.~∇A =

γ − 1

ργ
(H − L) ,

which is the form used in standard Gadget2 SPH (Springel & Hernquist, 2002;
Springel, 2005).

Any radiative cooling function L will depend on the temperature of the gas,
and hence its thermal energy, so that in all practical applications the cooling
vanishes when the thermal energy tends to zero. In principle, the loss of energy
can hence never become larger than the thermal energy, so that the total energy
can never become zero due to the cooling.

However, in practical integration schemes the cooling is applied as part of
the overall integration scheme, using the integration time step deduced from the
primitive quantities. Since the classic time step criteria do not take into account
cooling and heating explicitly, this might lead to serious over-cooling, effectively
leading to unphysical negative energies. To prevent this from happening, care has
to be taken when applying the cooling term. We therefore subcycle the integ-
ration time step, so that the cooling is applied over smaller time steps, leading
to an overall cooling that more closely follows the temperature dependence of
the cooling function. In some cases, the net sum of cooling and heating will
balance out for a given temperature, meaning that during the time step an equi-
librium temperature is reached. This is also taken into account when applying
the cooling.

3.5.2 Gravity

The gravitational acceleration due to a gravitational potential Φ is given by

agrav = −~∇Φ.

This can be straightforwardly coupled to the momentum equation:

∂ (ρ~v)

∂t
+ ~∇. (ρ~v~v) + ~∇P = −ρ~∇Φ.

The gravitational force hence acts as a simple extra term in the momentum
equation. For SPH, taking into account gravity then boils down to updating the
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particle velocities with the sum of the hydrodynamical and gravitational accelera-
tion, which can be done with minor modifications to the integration scheme. This
explains the popularity of SPH in simulations of galaxy formation and evolution.

If the energy is integrated by means of the total energy equation, rather than
the thermal energy equation, we need to take into account the change of the
kinetic energy due to the change in gravitational potential. The work done by
the gravitational force to move a mass m, moving at a velocity ~v, over a distance
d~x during a time interval dt is given by

Wgrav = ~Fgrav.d~x = −m~∇Φ.~vdt.

So that the change in energy for the fluid in the volume element dV will be given
by −ρ~v.~∇Φ:

∂

∂t
(ρe) + ~∇. (ρe~v + P~v) = −ρ~v.~∇Φ.

This is the energy equation we need to integrate in a finite volume method in the
presence of a gravitational potential.

As Springel (2010) notes, there are serious issues with energy conservation
when just treating the gravitational work as an extra term in the energy equation.
By using the expression above, we implicitly assume that the entire mass of a
cell of the (co-moving) grid moves with velocity ~v. However, we know from the
hydrodynamical integration scheme that this is not the case: part of the mass
of the cell will leave the cell during the time step due to the mass flux from the
cell to its neighbouring cells. This mass flux will contribute a small fraction of
gravitational work to the energy contents of the cell. The gravitational energy
flux for a cell with mass mi, moving with velocity ~wi is hence given by

∆Ei,grav = −mi
~∇Φ. ~wi∆t−

1

2

∑

j

∆mij (~ri − ~rj) .~∇Φ,

where ∆mij is the mass flux from cell i to cell j, and the sum extends over
all neighbouring cells. Note that in this scheme, we explicitly replace the fluid
velocity ~vi by the cell velocity ~wi, since it is the actual movement of the cell that
causes the gravitational work, not the movement of the fluid.

Just as in the case of cooling and heating, applying the extra term in the
energy equation can cause the energy to become negative. However, in this
case there is no clear physical way to prevent this from happening, since the
gravitational work does not depend directly on the energy of the system. In
very cold fluids with large bulk velocities, the gravitational work might cause a
severe over-flux of energy, which can only be handled by using an appropriate
gravitational time step criterion combined with the usual hydrodynamical time
step criterion, and by including a strict flux limiter.
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3.6 Overview

In this chapter, we introduced the Euler equations and their solutions, and laid
out the basics for four different hydrodynamical integration schemes: a finite
volume AMR scheme using a (refined) Cartesian grid, a finite volume moving
mesh method, classical SPH and a mesh-free finite volume method. All have
specific advantages and disadvantages, but all solve the same equations, so that
they should in principle yield similar results. Here, we list the most important
differences and try to indicate when a particular method is preferred.

Note that the list of methods above is non-exhaustive: there are other methods
to solve the Euler equations that were not mentioned in this chapter. Examples
are finite difference methods (Smith, 1985), and finite element methods (Zien-
kiewicz et al., 2005), which are often used as an alternative for the finite volume
method on a Cartesian grid.

3.6.1 Eulerian versus Lagrangian

In general, Eulerian methods are computationally cheaper than Lagrangian meth-
ods for the same number of discretization elements, since the underlying geomet-
rical structures are independent of time. This makes these methods more efficient
in obtaining a high resolution result for a given problem.

For problems involving a high dynamical range in space, AMR is needed to
keep Eulerian methods efficient. This leads to problems when the high density
region moves with respect to the fixed grid, since then the refined region has to
move along.

Eulerian methods are also at a disadvantage when the fluid as a whole moves
with respect to the fixed grid, since they are not Galilean invariant. This becomes
especially apparent when the fluid moves at high Mach numbers, with the Mach
number being defined as the ratio M = v/cs. Not all Eulerian methods can
handle these cases, and those that can need to adapt their time step accordingly,
making them in most cases less efficient than Lagrangian methods.

For high resolution cosmological simulations that include baryonic physics
(Vogelsberger et al., 2014b; Schaye et al., 2015), Eulerian methods cannot be
used, since the combination of a high dynamic range and high Mach number
movement of the halos (Mach numbers of 300 and more) makes them essentially
useless. Since many simulations of isolated halos are zoom simulations based on
these cosmological simulations, Lagrangian methods are commonly used in this
type of simulations as well.

Eulerian cosmological simulations are used however when the grid is more im-
portant than the resolution inside the halos. To study cosmic voids for example,
a high resolution is needed in regions with little to no matter, which is impossible
with a Lagrangian method (Kreckel et al., 2011).
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For other types of simulations, Eulerian methods usually perform better than
Lagrangian ones, both computationally and accuracy-wise. It is also easier to ex-
tend them with extra equations, like the equations of Magneto-Hydrodynamics
(MHD). In problems involving self-gravity, Lagrangian methods are however pre-
ferred, since these methods couple more naturally to N-body methods.

3.6.2 Grid versus particles

Classical SPH is clearly at a disadvantage with respect to the other methods,
since it is incapable of resolving discontinuities. However, in simulations of galaxy
formation and evolution, these discontinuities play no role, and the only effect of
using improved versions of SPH turns out to be somewhat better mixing proper-
ties at high resolution (Schaller et al., 2015). We will therefore still use classical
SPH for the dwarf galaxy simulations in Chapter 6.

When including other equations, like those of MHD, SPH is usually abandoned
in favour of grid based methods (but see Price, 2012). For galaxy simulations in-
cluding MHD, other Lagrangian methods are used (Pakmor et al., 2011; Hopkins
& Raives, 2016).

Simulations of ram-pressure stripping crucially depend on resolving the dis-
continuities at the interface between the cold, dense interstellar medium in the
dwarf galaxy and the hot, diffuse intergalactic medium surrounding the massive
galaxy or cluster. For these simulations, classical SPH cannot be used. For future
simulations of this effect, we will hence use either a moving mesh or a mesh-free
approach.
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4
Shadowfax

I
n Chapter 2 and Chapter 3, the details of a hydrodynamical integration
scheme based on an unstructured Voronoi mesh were given. I have imple-
mented the relevant algorithms in the simulation code Shadowfax, which

can be used to evolve a mixture of gas, subject to the laws of hydrodynamics
and gravity, and any collisionless fluid only subject to gravity, such as cold dark
matter or stars. We will now discuss this simulation code in more detail.

Shadowfax is written in C++ and makes ample use of the object oriented
capabilities of the language. It is parallelized for use on distributed memory
systems by means of MPI1. Some of its features make use of the open source Boost
C++ libraries2 to extend basic C++ functionality, e.g. to read in parameters
from a .ini file or to use extended precision integer arithmetics (see Appendix A).
Optionally, it is also possible to expose some of the functionality of the code to
Python scripts through the Boost Python library3.

To allow for a user friendly compilation process, we make use of the automatic
build file generation system CMake4. The program consists of a main simulation
program, consisting of the binary programs shadowfax2d and shadowfax3d, and
up to three auxiliary programs to generate initial condition files, apply Lloyd’s
algorithm to obtain the centroids of a Voronoi mesh, and generate .vtk files to
plot the Voronoi mesh in a visualisation program (called respectively i
makerXd,
lloydXd and vtkmakerXd, with X equal to 2 or 3, depending on the number of
dimensions). To speed up the compilation process, common parts of these pro-
grams are precompiled as static libraries that are then linked into the appropriate
program.

Input and output of (possible very large) initial condition and snapshot files
is done using the HDF5 library5, in a format that is compatible with the formats
used in the public simulation codes Gadget2, gizmo, and swift. This makes it

1http://www.mpi-forum.org
2http://www.boost.org
3http://www.boost.org/doc/libs/release/libs/python/doc/index.html
4https://cmake.org
5https://www.hdfgroup.org/HDF5
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extremely easy to compare all these codes on the same test problems. The same
format was also used for large simulation projects, e.g. the EAGLE simulation
(Schaye et al., 2015). Other advantages of HDF5 are the existence of a toolset
to read and edit these files (both using the command line or the interactive
hdfview program6), and the existence of user-friendly python bindings (the h5py
package7).

Shadowfax is free software, and is publicly available8 under the GNU Af-
fero General Public Licence9. For more details, see Vandenbroucke & De Rijcke
(2016).

In this chapter, we will give an overview of the program structure, and high-
light some of its main features. We will also discuss ways to visualise Shadowfax

output, and demonstrate the capabilities of the code on a number of test prob-
lems.

4.1 Program structure

The program execution can be roughly divided into two phases: program ini-
tialisation, and the execution of the actual simulation. Program initialisation
consists of the setup of the initial condition, and the initialisation of the com-
putational resources for the simulation. The former has been strictly separated
from the main simulation program by the use of initial condition files. These have
the same structure as the snapshot files that are written during the course of the
simulation, but specify the primitive hydrodynamical variables at the beginning
of the simulation. The main simulation program is then nothing more than a
program that reads in the initial condition, and writes out snapshots.

4.1.1 Initial condition generation

To set up the initial conditions for the simulation, we need to create an initial
condition file. This file should contain the coordinate positions of the cell gen-
erators, and the values of the primitive variables for the cells. It also assigns
a unique long integer ID to each generator, so that we can relate generators in
between different snapshots. If dark matter or other types of particles are to be
used in the simulation, their positions, masses, IDs and velocities should also be
specified in the initial condition file. Apart from this, the initial condition file
should also specify the dimensions of the simulation box, the total number of
particles for each type (currently Shadowfax supports gas particles (cells) and

6https://www.hdfgroup.org/products/java/hdfview
7http://www.h5py.org
8https://github.com/AstroUGent/shadowfax
9http://www.gnu.org/licenses
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4.1 Program structure

cold dark matter particles), and the type of boundary conditions used for the
box.

Creating initial condition files can be done in various ways. First of all, it
is possible to use a snapshot from a previous simulation as initial condition file,
since the format of these files is identical. The snapshot format of Shadowfax

is also equal to that of Gadget2 (type 3), gizmo and swift, so that we can
also use output from one of these codes as input for a Shadowfax simulation.
When writing an initial condition from scratch, it is possible to either use the
i
makerXd program, or use a Python script and the h5py library.

i
maker2d and i
maker3d

i
makerXd is a program that uses Shadowfax functionality to create initial
condition files. There are two modes of operation: the first uses hardcoded
methods to specify the values of the primitive variables and the positions of
the cell generators for some specific set of problems, while the second mode of
operation allows the user to specify the hydrodynamical regions of the initial
condition in a syntax that was based on that used for the AMR code ramses10

(Teyssier, 2002). The program allows sampling Cartesian grids as well as random
unstructured meshes, and allows to specify the number of cells (although this
number is restricted to a specific set of possible values for a Cartesian grid).

To suppress Poisson noise in randomly sampled generator distributions, the
Shadowfax Voronoi mesh is used to regularise the initial mesh using Lloyd’s
algorithm. By default, 10 iterations are used for both 2D and 3D initial condi-
tions when using a random unstructured mesh. When using the second mode
of operation, random sampling is biased towards regions with high density, to
obtain particle distributions that represent the underlying density distribution
(see Chapter 2).

For the region syntax of the second mode of operation, we conceive the sim-
ulation box as a combination of geometrical building blocks. For every building
block, we specify a geometrical shape and values for the primitive variables in-
side the region. Building blocks can overlap, in which case the values for the last
region in the list are used for the overlap region. The regions are defined in a
.xml file.

The file for generating the 2D spherical overdensity test used in Chapter 3 is
given in Listing 4.1. We first specify the dimensions of the simulation box, by
specifying an origin and a height, width, and depth (the latter only for 3D initial
conditions). We then need to specify the type of boundary conditions used, in
this case reflective boundaries. We then proceed to specify two regions: the low
density region that fills the entire simulation box, and the high density spherical

10http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html
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<?xml version=" 1 .0 " ?>
<box>

<he igh t>1.0</ he igh t>
<width>1.0</width>
<o r i g i n>

<x>0.5</x><y>0.5</y><z>0.5</z>
</ o r i g i n>
<boundary>r e f l e c t i v e</boundary>
<reg i on s>

<reg ion>
<he igh t>1.0</he igh t>
<width>1.0</width>
<exponent>10 .0</exponent>
<o r i g i n>

<x>0.5</x><y>0.5</y><z>0.5</z>
</ o r i g i n>
<hydro>

<rho>0.1</rho><vx>0 .</vx><vy>0 .</vy><p>0.1</p>
</hydro>

</ reg ion>
<reg ion>

<he igh t>0.5</he igh t>
<width>0.5</width>
<exponent>2.0</exponent>
<o r i g i n>

<x>0.5</x><y>0.5</y><z>0.5</z>
</ o r i g i n>
<hydro>

<rho>1 .</rho><vx>0 .</vx><vy>0 .</vy><p>1 .</p>
</hydro>

</ reg ion>
</ r eg i on s>

</box>

Listing 4.1: Example .xml file for the 2D spherical overdensity
test.
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region in the center. By first specifying the former, we make sure that the latter
is used in the spherical overlap region between the two.

Each region has an origin and dimensions as well. However, there now is
also an extra parameter, the exponent of the region. This specifies how distances
should be calculated inside the region. The general formula for the distance
between the point with coordinates ~x and the origin ~o in a region with exponent
e and dimensions ~d is given by.

dist(~x,~o) =

[(

xx − ox

0.5dx

)e

+

(

xy − oy

0.5dy

)e

+

(

xz − oz

0.5dz

)e] 1
e

.

To find out if a point lies inside the region, we calculate the distance between the
origin and the point, using this formula. If the distance is smaller or equal than
1, the point is said to lie inside the region.

The exponent hence sets the shape of the region. If we consider only 2D and
assume all components of the dimensions ~d to be the same, then e = 1 corresponds
to a diamond, and e = 2 corresponds to a disc. e very large will lead to a very
small 1/e, which will lead to all points inside the square with dimensions ~d to be
accepted, so that we end up with a square region. Due to numerical precision,
e = 10 is large enough to define a square region. If the components of ~d are not
the same, rectangle based shapes are obtained.

This simple syntax only allows for geometrical regions with constant primitive
variables. To also allow more complex initial conditions, we added support for
mathematical expressions, using addition, subtraction, multiplication and divi-
sion, and the special functions 
os, sin, tan, sinh, 
osh, tanh, log, exp, a
os,
asin, atan, log10, sqrt and 
brt. We also support the use of brackets, the math-
ematical constant pi, and the coordinates x, y, z and r. The latter is always
calculated with respect to the origin of the region (using the ordinary definition
r =

√

(xx − ox)2 + (xy − oy)2 + (xz − oz)2), while the former are absolute. To
support this kind of syntax, we make use of Boost Spirit11, a versatile regular
expression parsing library.

To bias the random sampling towards dense regions in complex setups using
non-constant regions, we numerically integrate the density function over each
region, to obtain relative weights for the different regions. Sampling inside a
single region is then done using a rejection sampling technique, as discussed in
Chapter 2.

Python scripting

Since the initial condition files are written in HDF5 format, it is possible to create
them directly using the h5py library. An example creating the initial condition

11http://www.boost.org/doc/libs/release/libs/spirit/doc/html/index.html
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import h5py
import numpy as np

n c e l l = 40
npart = n c e l l ∗∗2
rhoIC = [ 0 . 1 , 1 . ]
pIC = [ 0 . 1 , 1 . ]
r sphere = 0 .25
boxL = 1 .

coords = np . z e r o s ( ( npart , 3 ) )
v = np . z e r o s ( ( npart , 3 ) )
m = np . z e r o s ( ( npart , 1 ) )
rho = np . z e r o s ( ( npart , 1 ) )
h = np . z e r o s ( ( npart , 1 ) )
u = np . z e r o s ( ( npart , 1 ) )
i d s = np . z e r o s ( ( npart , 1 ) , dtype=’L ’ )

dx = boxL/ n c e l l

idx = 0
for i in range ( n c e l l ) :

for j in range ( n c e l l ) :
coords [ idx , 0 ] = ( i +0.5)∗dx
coords [ idx , 1 ] = ( j +0.5)∗dx
v [ idx , 0 ] = 0 .
v [ idx , 1 ] = 0 .
v [ idx , 2 ] = 0 .
r2 = ( coords [ idx ,0 ] −0.5)∗∗2 + ( coords [ idx ,1 ] −0.5)∗∗2
i f r2 < rsphere ∗∗2 :

rho [ idx ] = rhoIC [ 1 ]
P = pIC [ 1 ]

else :
rho [ idx ] = rhoIC [ 0 ]
P = pIC [ 0 ]

u [ idx ] = 1 .5∗P/rho [ idx ]
i d s [ idx ] = idx
idx += 1

Listing 4.2: Example .py file for the 2D spherical overdensity
test: setting up the variables.
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f i l e = h5py . F i l e ( " Overdensity . hdf5 " , ’w ’ )

grp = f i l e . create_group ( " /Header " )
grp . a t t r s [ " BoxSize " ] = boxL
grp . a t t r s [ "NumPart_Total " ] = [ npart , 0 , 0 , 0 , 0 , 0 ]
grp . a t t r s [ "NumPart_Total_HighWord " ] = [ 0 , 0 , 0 , 0 , 0 , 0 ]
grp . a t t r s [ " NumPart_ThisFile " ] = [ npart , 0 , 0 , 0 , 0 , 0 ]
grp . a t t r s [ "Time " ] = 0 .0
grp . a t t r s [ " NumFilesPerSnapshot " ] = 1
grp . a t t r s [ "MassTable " ] = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]
grp . a t t r s [ " Flag_Entropy_ICs " ] = [ False , False , False ,

False , False , False ]

grp = f i l e . create_group ( " /RuntimePars " )
grp . a t t r s [ " PeriodicBoundariesOn " ] = 1

grp = f i l e . create_group ( " /Units " )
grp . a t t r s [ " Unit␣ cu r r en t ␣ in ␣ cgs ␣ (U_I) " ] = 1 .
grp . a t t r s [ " Unit␣ l ength␣ in ␣ cgs ␣ (U_L) " ] = 100 .
grp . a t t r s [ " Unit␣mass␣ in ␣ cgs ␣ (U_M) " ] = 1000.
grp . a t t r s [ " Unit␣ temperature ␣ in ␣ cgs ␣ (U_T) " ] = 1 .
grp . a t t r s [ " Unit␣ time␣ in ␣ cgs ␣ (U_t) " ] = 1 .

grp = f i l e . create_group ( " /PartType0 " )
ds = grp . c r eat e_datase t ( ’ Coord inates ’ , ( npart , 3 ) , ’ d ’ )
ds [ ( ) ] = coords
ds = grp . c r eat e_datase t ( ’ V e l o c i t i e s ’ , ( npart , 3 ) , ’ f ’ )
ds [ ( ) ] = v
ds = grp . c r eat e_datase t ( ’ Masses ’ , ( npart , 1 ) , ’ f ’ )
ds [ ( ) ] = m
ds = grp . c r eat e_datase t ( ’ Density ’ , ( npart , 1 ) , ’ f ’ )
ds [ ( ) ] = rho
ds = grp . c r eat e_datase t ( ’ SmoothingLength ’ , ( npart , 1 ) , ’ f ’ )
ds [ ( ) ] = h
ds = grp . c r eat e_datase t ( ’ InternalEnergy ’ , ( npart , 1 ) , ’ f ’ )
ds [ ( ) ] = u
ds = grp . c r eat e_datase t ( ’ Pa r t i c l e ID s ’ , ( npart , 1 ) , ’L ’ )
ds [ ( ) ] = id s

f i l e . c l o s e ( )

Listing 4.3: Example .py file for the 2D spherical overdensity
test: writing the HDF5 file.
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for the 2D spherical overdensity test (on a Cartesian grid) is given in Listing 4.2
and Listing 4.3.

The advantage of this method is that it is very easy to set up complex ini-
tial conditions, as it is possible to use the full strength of Python in specifying
coordinates and primitive variables. h5py communicates well with numpy

12, a
very powerful library for numerical calculations.

However, the disadvantage is that Python has no native support for Voronoi
meshes (there is limited support for 2D Voronoi meshes using s
ipy

13), meaning
we cannot easily use Lloyd’s algorithm to regularise random distributions.

4.1.2 Program initialisation

The main shadowfaxXd program takes a single command line parameter, specify-
ing the name of a parameter file, in .ini format, containing the runtime parameters
for the simulation. These parameters control the input and output of the simula-
tion, the time integration, the accuracy of the integration... A complete overview
of these parameters and their default values is given in the example .ini file in
Listing 4.4 and Listing 4.5. Most of these parameters have a default value, also
indicated in the table. The only exception is the maximal simulation time, which
needs to be set in order for the program to run.

When the program starts, the parameter file is read in. We then locate the
initial condition file (indicated in the parameter file) and read in the particle data.
If the program is run in parallel, only part of the data is read in on each individual
node, so that the memory usage on a single node is limited. The particles are
then redistributed over the nodes as part of the initial domain decomposition and
tree construction.

Once the particle data is loaded, the simulation time line is initialised. We
then construct the initial Voronoi mesh, and use it to convert the primitive vari-
ables from the initial condition file to the conserved variables which will be in-
tegrated. The initial Voronoi mesh is also used to set the initial velocities of the
mesh generators and to set the variables necessary to calculate the initial time
steps.

Once conserved variables have been calculated and the initial time steps are
set, we can start the main program loop.

4.1.3 Main program loop

The main program loop combines a leapfrog scheme for the collisionless particles
with a simple kick-drift integration scheme for the hydrodynamics. It is imple-

12http://www.numpy.org
13http://www.scipy.org
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[ Time ]
; Total s imu lat ion time
MaxTime = −

; Use a g l oba l time step ?
GlobalTimestep = f a l s e
; Maximum s i z e o f the p a r t i c l e time step
MaxTimeStep = <MaxTime>
; Minimum s i z e o f the p a r t i c l e time step
MinTimeStep = <MaxTime/(2^60)>

[ Snapshots ]
; P r e f i x f o r snapshot name
BaseName = snapshot
; Time between subsequent snapshots
SnapTime = <0.1∗MaxTime>
; Index number o f f i r s t snapshot that i s e f f e c t i v e l y
; wr i t t en out
FirstSnap = 0
; D i r ec tory in which snapshots , log− f i l e s and r e s t a r t
; f i l e s w i l l be s tored
OutputDir = .
; Type o f the snapshot f i l e s (Gadget/Shadowfax )
Type = Gadget
; Does every node wr i t e a l o c a l snapshot ?
PerNodeOutput = f a l s e

[ IC ]
; Name of the i n i t i a l cond i t i on f i l e
FileName = <BaseName><FirstSnap >.hdf5
; Type o f the i n i t i a l cond i t i on f i l e (Gadget/Shadowfax )
Type = Gadget

[ RiemannSolver ]
; Type o f Riemann s o l v e r used ( Exact/TRRS)
Type = Exact
; Tolerance used f o r Newton−Raphson i t e r a t i o n
Tolerance = 1 . e−8
; Deprecated parameter used in exact Riemann s o l v e r
CutOff = −5.
; Courant−Fr ied r i ch s −Lewy parameter f o r time step c r i t e r i o n
CFL = 0.4

Listing 4.4: Example .ini file with default values, part 1.

125



Chapter 4. Shadowfax

[ Hydro ]
; Adiabat ic index f o r the gas
Gamma = <5/3>

[ Gravity ]
; Use grav i ty ?
Gravity = true
; So f t en ing l ength used f o r p a r t i c l e s with a f i x ed
; s o f t en in g l ength
So f t en ing = 0.03
; Eta f a c t o r used in g r a v i t a t i o n a l time step c r i t e r i o n
Eta = <0.05/2.8>
; Alpha f a c t o r used in r e l a t i v e t r e e opening c r i t e r i o n
Alpha = 0.005

[ Voronoi ]
; Deprecated parameter used during gr id con s t ru c t i on
Tolerance = 1 . e−9

[ Tree ]
; S ide o f the gr id on which the Ewald c o r r e c t i o n to the
; g r a v i t a t i o n a l f o r c e or mesh movement i s precomputed
EwaldSize = 64
; Parameter alpha determin ing the c u t o f f between shor t
; range and long range in Ewald ’ s method
EwaldAlpha = 2 .

[Memory ]
; Maximum s i z e o f the MPI−bu f f e r in memory
MaximumSize = 1 GB

[ Code ]
; Computational time i n t e r v a l a f t e r which to wr i t e a
; r e s t a r t f i l e , in seconds
RestartTime = 3600.

[ Units ]
; Units used during the s imu lat ion ( SI /CGS/ g a l a c t i c )
I n t e rna lUn i t s = SI
; Units used in snapshots ( SI/CGS/ g a l a c t i c )
OutputUnits = SI

Listing 4.5: Example .ini file with default values, part 2.
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tsystem > nsnaptsnap

write snapshot

tsystem < tmax

stop simulation

gravitational kick active

gas over 0.5∆t

communicate W s
estimate gradients

active cells
communicate gradients

calculate hydro fluxes

active cells
communicate fluxes

drift all cell

generators

update conserved variables

for all cells
communicate generator positions

kick active collisionless particles over 0.5∆t

drift all collisionless particles over ∆t

tsystem+ = ∆t

definition active changes

sort particles, update tree
update Voronoi mesh

only calculate cell for active generators

calculate gravitational accelerations

for active particles

gravitational kick active

gas over 0.5∆t

kick active collisionless

particles over 0.5∆t
update W s

active cells

calculate ∆t

for active particles

no
no

yes

yes

Figure 4.1: Flowchart of the main Shadowfax simulation
loop. The small arrow at the top left indicates the entrance point
of the loop. Dark gray boxes indicate communication steps that
are only necessary in parallel runs. Light gray boxes indicate
steps that involve communication in parallel runs, but are also
necessary in serial runs.
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mented as a loop, with the system time as loop variable. The structure of the loop
is depicted in Fig. 4.1. At the end of an iteration, the system time is compared
with the maximum simulation time parameter. If the system time equals the
maximum simulation time, the loop is ended and the simulation stops. Together
with this check, we also check if a snapshot needs to be written. To this purpose,
we store the integer counter of the last snapshot that was written (initialised
with the value of the FirstSnap parameter). When the time interval between
subsequent snapshots (the SnapTime parameter) multiplied with this counter
becomes smaller or equal to the current system time, a new snapshot needs to
be written.

Note that this simple scheme does not produce snapshots at system times
that are not covered by the integration scheme. In other words, suppose the
entire simulation consists of 8 time steps between 0 and 1: 0.125, 0.25, 0.375, 0.5,
0.625, 0.75, 0.875 and 1 (which takes into account the power of two subdivision
of the maximum simulation time, see Chapter 3). Suppose now that we want
5 snapshots, spaced 0.2 in time. Then we will get snapshots at times 0.25, 0.5,
0.625, 0.875 and 1. For this particular example, the actual snapshot interval is
very different from the desired 0.2, but in most cases, the deviations will be a lot
smaller.

Note also that the scheme can produce less snapshots than expected. If in the
example above the snapshot interval is set to 0.1, we will get a snapshot at every
system time, but we will only have 8 snapshots in total, and not the expected 10.

It should be possible to resolve the problems above by either adapting the
maximal system time step to make sure that enough snapshots are produced
(this does not solve the first problem), or by drifting the primitive variables and
positions to the actual time of the snapshot when necessary. The former affects
the integration directly and is not desired. The second is currently not imple-
mented, but might be in the future. It however requires a significant adaptation
of the time line implementation.

4.1.4 Restarting

Large simulations run in parallel on a large number of nodes on special purpose
machines, and run for a long time (up to months). Since these large machines are
used intensively by many different users, and since large machines are inevitably
vulnerable to hardware failure, there is a large probability that the simulations
will be interrupted multiple times during the course of a run. It is in principle
possible to restart an interrupted run from the last snapshot that was written
(remember that initial condition files have the same format as snapshot files),
but this requires adapting the parameter file, and can lead to numerical error,
since snapshots do not necessarily contain the correct values for all the cells at
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the time they are written (if individual time steps are used).
To allow for easy restarting of a run, we periodically write specific restart

files. These are simple binary dumps of the memory as it is, which can be read
in very efficiently to restart the run as if it was never interrupted. For this to
work, it is of course not possible to change the computational resources of the
simulation when restarting, and it is also not advised to change the code itself. We
therefore implemented strict checks on the hardware layout and the code version
and compilation time when reading and writing restart files. Some changes will
lead to warnings, while most will lead to errors that make it impossible to restart
the run.

To restart a run, the restart file rather than the parameter file is given as
command line argument to the shadowfaxXd program. This file is then used
in a separate restart (rather than initialisation) routine to re-initialise the run.
When this is done, the main simulation loop is entered again and the simulation
resumes as before.

4.2 Special features

4.2.1 Domain decomposition and tree construction

Domain decomposition is the subdivision of the simulation box into smaller re-
gions that are then assigned to different processes in a distributed memory parallel
environment. This is done to limit the memory usage of a single process. During
the parallel computation, a process will only perform a part of the computation,
which will only require part of the data, so that it would be unwise to store all
data for every process. However, it can of course happen that a single piece of
data is needed in the computation on multiple processes, so that simply splitting
up the data will not work either. Nonetheless, this is the approach we will take:
apart from some very general data which are stored on every process, all particle
data is split up over the different computing processes. If the computation on
process A requires data stored on process B, then this is signalled and the relevant
data is communicated from B to A.

Since communication inevitably leads to extra work compared to a non-
parallel simulation, and since on many systems communication between process
A and B requires some form of synchronisation between A and B (which might
require one of them to interrupt its computations and wait for the other), we
would like to minimise the amount of communication. Otherwise, communic-
ation will require a considerable fraction of the simulation runtime, which will
decrease the performance gain we get by doing the simulation in parallel.

To limit the amount of communication, we need to identify the parts of the
simulation which are communication intensive, and we need to adapt the domain
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decomposition. For the latter, it is important to realise that communication
will occur mainly at the boundaries between domains: the finite volume method
exchanges fluxes between neighbouring cells and if these neighbouring cells are
on different processes, this implies communication. Similarly, the calculation
of gravitational forces is done directly for particles that are close together (in
space), while for particles far apart, approximate methods involving only globally
stored data are used. We hence need to minimise the surface area of the domain
boundaries, while at the same time maximising the domain volume.

The best surface to volume ratios are obtained for domains that have the form
of Voronoi cells (Steinberg et al., 2015), but computing and maintaining these
domains is hard. We will therefore use a domain decomposition consisting of
large cubic blocks, which could for example be obtained by recursively splitting
the simulation box into eight smaller boxes. This approach only works if the
number of processes is a power of two, since only then is it possible to divide
such blocks equally over the processes. Furthermore, this approach also only
works if the data are uniformly distributed in the simulation box, since only then
will blocks with equal sizes correspond to equal computational loads.

Since none of these requirements is generally satisfied, we will use a more
flexible domain decomposition, based on space-filling curves. A space-filling curve
is a 1D curve that winds through 2D or 3D space in a continuous way, without
ever intersecting itself, in such a way that it fills the entire space (up to some
level). They have the property that two points that are close together on the
curve, are also close together in the 2D or 3D space (but points close together in
2D or 3D space are not necessarily close together on the curve). An example of
the space-filling Hilbert curve is shown in Fig. 4.2 and Fig. 4.3.

Space-filling curves are obtained by converting the coordinates of a point in
2D or 3D space to an integer key, which corresponds to the 1D coordinate of the
same point along the curve. If we calculate the keys for a set of points and then
sort the set according to these keys, then the points are in space-filling order.
We can then split up the space-filling curve in pieces by selecting key ranges and
assigning these to different processes. Since points that are close together on the
space-filling curve are close together in space, these pieces will consist of block-
like structures as defined above, but with somewhat more complex structures.
However, the domains will still have a large, cohesive volume and a relatively
small surface area.

Using these space-filling curves has two extra advantages. First of all, there
exist very efficient parallel sorting algorithms to sort sets of points (or particles
in our case) across processes (Siebert & Wolf, 2010). This allows for a very effi-
cient domain decomposition. It is possible to assign weights to the particles (for
example based on the computational cost of the particle during the previous time
step), so that the space-filling curve can be split up based on the computational
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weight rather than just the number of particles.

Secondly, there is a correspondence between the levels of the space-filling
curve, and the levels of the octree used for calculating the gravitational accelera-
tions and to perform neighbour searches (Springel, 2005). To see this correspond-
ence, we need to explain how an octree is constructed and how the space-filling
Hilbert keys are calculated.

Note that a geometrical domain decomposition as described above is not the
most efficient way to divide up a parallel computation. Gonnet (2014) advocates
the use of a work-based domain decomposition, which uses a graph of the task
dependencies to minimise the amount of communication. This however only
works well for algorithms that have clearly defined tasks and dependencies, which
is not the case for the current version of Shadowfax.

Space-filling curve

To calculate a 64-bit Hilbert key, we first need to convert the 2 or 3 coordinates of
the particle to 32- or 21-bit integers. This can be done by mapping the domain
of the simulation in every dimension to an integer domain with a 32- or 21-
bit precision. Once we have the integer coordinates, the key is obtained by
interleaving parts of the key. This works as follows. We start by taking the
first digits (being the most significant bit) of the integer coordinates for every
dimension, and combining them into a single 2- or 3-bit number. If these bits
are labelled bx, by and bz, the number is e.g. given by bx ∗ 4 + by ∗ 2 + bz, which
is the number obtained by putting bx on the position of the most significant bit,
and so on.

The 2- or 3-bit number is called the level 1 key of the set of coordinates,
and it tells us exactly in which of the four or eight parts of the simulation box
the coordinates lie if we would subdivide the box in smaller copies of the box.
With every one of these four or eight boxes, we associate a rotation angle. Before
continuing to the next level, we rotate the integer coordinates over this angle.
We also set the highest bits of the (empty) Hilbert key to the level 1 key of the
coordinates.

After the rotation has been performed, we continue by taking the second digits
of the integer coordinates. These are again converted to a 2- or 3-bit number, the
level 2 key. This again tells us in which one of the four or eight subboxes of the
level 1 box we reside, and associates a rotation to this box. We then again rotate
the coordinates and add the level 2 key to the next empty bits in the Hilbert key.
This procedure is repeated until the last (least significant bits) of the coordinates
have been processed. We then end up with a 64- or 63-bit Hilbert key (we loose
a bit in 3D). Examples of two level Hilbert curves are shown in Fig. 4.2 and
Fig. 4.3.

131



Chapter 4. Shadowfax

0000 0001

00100011

0100

0101 0110

0111 1000

1001 1010

1011

11001101

1110 1111

00

01 10

11

Figure 4.2: 2D space-filling Hilbert curve. The black lines rep-
resent the level 2 curve, derived from the gray level 1 curve by
applying a block specific rotation to a copy of the level 1 curve.
The labels are a binary representation of the corresponding Hil-
bert key values.

The rotations that are performed when going from one level to the next make
sure that the curve always stays connected, so that the length of the line segment
in between two consecutive points on the curve is always the same. If we would
not perform these rotations, we end up with a Morton space-filling curve, which
has similar properties, but has a large jump in between high level boxes.

The rotations can be expressed by relatively easy binary operations on the
integer coordinates, so that the Hilbert key calculation is computationally cheap.
It is however possible to speed up the calculation even more by introducing a
look-up table (Jin & Mellor-Crummey, 2005). To this end, we store the 8 or
12 (2D and 3D respectively) possible orientations of the level 1 U-shape that is
replicated on each level. For every orientation, we store the key on that level
as a function of the Morton key on that level (obtained by simply interleaving
the 2 or 3 coordinate contributions on that level), together with the index of the
orientation on the next level. To calculate the key, we need only walk trough the
table and add the level keys.
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Figure 4.3: 3D space-filling Hilbert curve. The black line rep-
resent the level 2 curve, derived from the gray level 1 curve by
applying a block specific rotation to a copy of the level 1 curve.
The labels are a binary representation of the corresponding Hil-
bert keys.
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Figure 4.4: 2D particle distribution and corresponding octree.

Octree

The octree is a complex structure, consisting of nodes and leaves. During tree
construction, a node is a simple (rectangular) box with a center or anchor, and
two or three side lengths. It also holds a list of four or eight children, which are
themselves either nodes or leaves. A leaf corresponds to a single particle of the
tree. Examples of 2D and 3D octrees are shown in Fig. 4.4 and Fig. 4.5.

The tree itself needs to be nothing more than a pointer or a reference to the
highest level node of the tree, which we call the root. Initially, this root will be
empty. During incremental tree construction, particles are added one-by-one to
the tree, and the tree structure is adjusted accordingly.

To add a particle, we first need to figure out to which one of the four or eight
children of the root node it belongs, based on the particle coordinates and the
dimensions of the root node. If the corresponding entry in the list of children is
empty (which it is initially), we add a new leaf pointing to the particle to that
entry. If the entry corresponds to a leaf, we need to replace the leaf by a new
node, to which we then add both the particle in the old leaf, and the new particle.
If the entry corresponds to a node, we add the particle to the node, which means
starting over the whole process for that node. We need to go recursively deeper
into the tree until the particle can be stored in a new leaf of the tree.

After the incremental construction is finished, we restructure the tree, so that
every node contains two pointers: one to the next node of the tree that should be
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Figure 4.5: 3D particle distribution and corresponding octree.
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handled if the node were to be discarded (which is either a sibling of the current
node, or the sibling of one of its ancestors), and one to the first child of the node
that should be handled if the node is opened. A leaf contains a single pointer,
pointing to the sibling of the leaf that is next in the tree walk. Walking through
the tree then boils down to following these pointers. The memory that is freed
up by no longer storing the 3 or 7 other children of a node is used to store general
node properties, like its center of mass and total mass.

Key-based octree

The levels of the tree and the levels of the Hilbert key are actually the same.
While constructing the Hilbert key, we noted that the level 1 key tells us in
which one of the four or eight boxes the particle lies. These boxes are nothing
else than the child nodes of the root node of the tree. The level 1 key hence
tells us exactly in which subnode of the root the particle resides. If we go down
a level, then the level 2 key will do exactly the same, but then for the children
of that specific node (and taking into account the appropriate rotation). The
correspondence goes all the way down to the least significant bits of the key.

This means we do not need to use the particle coordinates themselves to figure
out what child of a specific node to test during tree construction. We rather just
look at the corresponding part of the key, which is much easier. Furthermore,
this method also eliminates problems that could arise due to round off error when
particles are very close to the boundaries of one of the high level nodes.

We could go even further and use the keys directly to build up the tree in a
bottom-up rather than a top-down manner (Sundar et al., 2008), but this was
found to be less efficient than using the incremental construction algorithm.

Note that this procedure does limit the maximal depth of the tree, since the
length of the key is limited to 32 levels in 2D and to 21 levels in 3D. However, in
practice, particle trees that deep were not encountered during any of our tests.

The correspondence between key and tree levels has advantages for parallel
tree construction as well. In a parallel environment, each process holds a valid
global tree, which contains all the nodes on the highest level. On lower levels
however, the tree is not necessarily locally complete, since the particles stored
in the leaves are not all on the same process. To represent the information that
is missing in the local memory, we make use of pseudo nodes, which store the
global properties of the nodes they represent, and a reference to the process that
holds the underlying data. If during some tree walk the pseudo node needs to be
opened, we need to communicate.

Since every domain in the domain decomposition corresponds to a given range
in Hilbert keys, and since this range in keys corresponds to a range of tree nodes,
it is not so difficult to find out which nodes are local on a given process and which
ones are not. We can hence easily add the pseudo nodes to the tree by simply
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adding the keys of these nodes. To make sure the global tree is not too deep
(since we need to represent it on all processes), we can round the key ranges to
a given level precision. This at the same time guarantees that the domains will
be relatively large blocks.

When we need to retrieve pseudo node information from the process that
holds the original node, we also just use the key of the pseudonode to address
this information, and we do not need complex data structures to keep track of
the location in memory of data on other processes.

4.2.2 Template tree walks

The point of a particle tree as discussed above is to speed up computations that
require the spatial distance between particles. A good example is a neighbour
search algorithm, which consists of finding all particles within some radius R
around a point with coordinates ~x (these coordinates do not necessarily need to
correspond to the coordinates of a particle).

We start by finding out which child nodes of the root node of the tree overlap
with the search region, i.e. either contain the entire sphere with origin ~x and
radius R, or part of it. Each of these nodes is then traversed in turn, and the
same procedure is repeated for its children. When one of the children inside the
search region is a leaf, then the corresponding particle is added to the list of
neighbours.

This algorithm is orders of magnitude faster than a naive direct search al-
gorithm, in which we traverse all particles and for each particle calculate the
distance to ~x and compare that directly with R. The speed up comes from
the fact that we can very quickly discard large portions of the particle set by
discarding high level nodes.

Other types of tree walks exist, for example for the calculation of the gravita-
tional acceleration. In this case, high level nodes are not discarded, but are used
to approximate the true gravitational acceleration using the total mass and the
center of mass of the entire node rather than the individual masses and positions
of the underlying particles. Apart from this, the overall structure of these tree
walks is very similar to that of the neighbour search algorithm.

We exploit the similarities between tree walks to define a general template
parallel tree walk algorithm, which makes use of C++ templates. Every tree walk
is represented by a specific C++ class, the members of which are the variables
that are used during the tree walk. The class interface then defines a number of
methods that are used during the tree walk: a method that decides whether or
not to open a specific node of the tree, a method that is called when a node is not
opened, and a method that is called when a leaf of the tree is encountered. There
is also a method that is called when a pseudo node of the tree is encountered, and
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that decides if the tree walk should be communicated to another process. The
interface then also defines two subclasses that are used to export the tree walk
to another process, and to import the results back to the original process. At the
end of the tree walk, a corresponding method of the tree walk object is called that
finalises the result of the tree walk and updates the appropriate particle data.

The advantage of this abstraction is that we only need to implement one tree
walk routine, which uses a template tree walk object, without having to think
about the details of the tree walk itself. Furthermore, the actual communications
have been completely taken out of the tree walk object and are limited to this
general tree walk routine. To make sure the communications are correct, we need
only make sure the method that decides whether or not to open a pseudonode
is correct, and we need to correctly initialise a non-local tree walk based on the
appropriate export object (and update the local results using the imported results
from another process).

Another advantage of using templates is the compile time polymorphism they
offer. It is perfectly possible to define an actual abstract tree walk class from
which all concrete tree walks inherit, using classical (runtime) polymorphism.
However, this means every time a method of the tree walk object is called, we
first need to call the corresponding method of the abstract tree walk class, which
then is translated at runtime into a call to the actual underlying tree walk.
This extra function call completely disappears when we use templates, since
then the compiler translates the single general tree walk routine to specific tree
walk routines for every template tree walk class, directly calling the appropriate
methods of the specific tree walk.

We verified that the parallel template tree walk for the gravitational accel-
erations implemented in Shadowfax is comparable in efficiency with that of
Gadget2, while at the same time being a lot easier to understand and adapt in
the code.

4.2.3 Voronoi mesh

The Voronoi mesh is an important part of Shadowfax if gas is present in the sim-
ulation, since it sets the volumes that are needed to convert conserved variables to
primitive variables, defines the faces through which the fluxes are exchanged, and
sets the positions of the centroids that are used to interpolate primitive variables
and steer the motion of the mesh.

On the other hand, we do not want to build the entire code around the Voro-
noi mesh, since we would like to be able to use other types of grid as well, or
use different mesh construction/evolution algorithms. The mesh and the hy-
drodynamical integration should be well separated in order to test one without
depending on the correctness of the other.
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The Voronoi mesh is hence represented by a general class that only implements
the general geometrical information we actually want to extract from the mesh.
We feed the gas particles to the mesh by means of an associated index and then
use that index to retrieve the volumes or the centroids. Ideally, we would also
like to have a general way to extract the face information (together with the
information of which particles are neighbours), but for the moment this is still
done separately for each grid type, so that we only define a method to calculate
the fluxes, which then sets the fluxes for the particles in an example of bad
object-oriented programming.

We currently support one fully functional mesh: a Voronoi mesh that is re-
constructed every time step using the incrementally constructed Delaunay tessel-
lation. Apart from that, we also support the mesh evolution algorithm discussed
in Chapter 2, but this only works for 2D and some 3D cases (see Appendix B).
To check the hydrodynamical integration, we also implemented a fixed Cartesian
grid, which however is not fully functional.

Further decoupling the hydrodynamical integration and the geometrical struc-
ture of the mesh should greatly improve the code, but is far from trivial.

4.2.4 Riemann solvers

The Riemann problem introduced in Chapter 3 can be solved exactly using an
iterative exact Riemann solver. Solving the Riemann problem is at the core
of a finite volume method and for some grid types even makes up most of the
computational cost, so that using an exact solver can become very expensive. To
this end, a number of approximate Riemann solvers have been developed as well,
which offer a good approximation to the exact solution without iteration.

To be able to switch between different Riemann solvers, we defined an abstract
Riemann solver interface, which defines a single method that solves the Riemann
problem for a given left and right state. Implementations of this interface are
generated by a factory class, which takes the name of a Riemann solver as input.
This name can then be specified as a parameter in the parameterfile. As explained
when discussing the template tree walks, this runtime polymorphism inevitably
brings along an extra function call, redirecting the abstract method call to the
specific implementation. However, in this case the slow down does not outweigh
the ability to change the type of Riemann solver as a parameter, especially since
the number of Riemann solver method calls will be significantly lower than the
number of function calls in a typical tree walk.

For the moment, we implemented two types of Riemann solvers: an exact
Riemann solver and a TRRS solver (see Chapter 3). If we want to implement
more precise approximate solvers, like the HLL or HLLC solvers (Toro, 2009), we
will need to refactor the code, as these approximate solvers directly output the
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fluxes rather than the solution to the Riemann problem. This is left for future
work.

Note that the Riemann solver class also contains methods to convert primitive
variables into conserved variables (given a volume) and the other way around, and
methods to calculate a sound speed for a set of primitive variables. This makes
it possible to implement support for advanced equations of state (see Chapter 5)
by simply writing a new Riemann solver implementation. Support for this is not
perfect yet, and still requires parts of the code to be refactored.

4.2.5 Units

Units have historically been a cause for concern to many simulators, as they
link the simulation to the real physical world. For a computer, all calculations
only involve numbers, both as input and as output, and these numbers do not
represent anything. If we want to interpret the calculations however, we can
choose to interpret the variables that are involved as distances or time intervals,
and we can e.g. multiply masses with accelerations to get forces. The computer
is unaware of these interpretations.

At the end of the simulation (or in every snapshot), the simulation program
produces some values, and it is up to the simulator to find out to which physical
quantities they belong. More importantly, it is up to the simulator to figure out
which physical units these values have. This is not at all difficult, as long as
we realise that these units will be a function of the values that are put in the
simulation at the start.

We identify three different stages of the program where units are involved: at
the start, during the simulation and at the end. As long as all equations involved
during the simulation are physically correct, in the sense that the units at one
side of the equation are equal to the units at the other side, the units during the
simulation are irrelevant. The only thing that matters then are the units that are
put in and come out of the simulation. If no explicit conversions happen, both
will be equal to the units during the simulation. If we set the initial coordinates
of the particles in metres, then the coordinates of the particles in the snapshots
will be in metres as well.

To make sure we do set units at the start and the end of the simulation, we
explicitly specify them in both the initial condition file and the snapshot files.
These contain a HDF5 group with 5 attributes, specifying the values of the length,
mass, time, temperature and current unit in CGS units14. All quantities in the
file are then assumed to be specified in these units (or derived units). If no units

14CGS stands for Centimetres, Grammes, Seconds; the five basic units in this system are cm,
g, s, K and A.
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are specified, Shadowfax assumes SI units15.

When reading in the initial condition, all quantities are converted to the
simulation units, which might or might not be the same as the input units.
Similarly, when writing a snapshot file, all quantities are again converted to the
output units. Both the simulation units and the output units are specified as
parameters in the parameter file, the default value being SI units. The input
units need not be specified as parameters, since they should be present in the
initial condition file.

The only other things that have units are the quantities specified as paramet-
ers in the parameter file, for which we adopt the convention that they use the
simulation units that are also specified in the parameter file, and the physical
constants that are used in the simulation.

In the current version of Shadowfax, there is only one physical constant: the
gravitational constant G = 6.67408 × 10−11 m3/kg/s2, which is used to calculate
the gravitational accelerations. This constant also has units, and we need to
make sure its value is converted to the simulation units.

To make working with units easy, we implemented a unit class, with three
member variables. These are the quantity which the unit represents, the value
of the unit in SI units, and an optional name for the unit (which was used in
an old snapshot format). The quantity needs to be composed of the five basic
quantities by means of multiplications and divisions, and for convenience we also
require the expression to be ordered with first the multiplications and then the
divisions, with the factors being in alphabetical order.

Two different units are compatible if their quantities are the same (which
means the expressions are exactly the same if both adhere to the standard out-
lined above). Values having compatible units can be converted into each other
by using a unit converter class, which can be constructed from two compatible
units with different SI values.

Physical constants are represented by a class holding a value and an associated
unit. When the value of the physical constant is requested, we need to specify
the desired unit for the quantity, and the value is converted accordingly. The
converted value is stored in a separate class, so that it does not need to be
recalculated every time it is needed.

4.3 Visualisation using VisIt

Many of the figures in this work were produced using matplotlib

16, a Python
plotting library. Since Shadowfax snapshot files can be read into Python using

15Système Internationale, with as basic units m, kg, s, K and A
16http://matplotlib.org
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h5py, this is a good match. However, since Python is an interpreted language, it
is known to be slow when processing large data sets. There is also no direct in-
terface between Python’s visualisation capabilities and graphics processing units
(GPUs), so that making high quality 3D figures in Python is very difficult.

For this kind of figures, we use VisIt17, an open source, interactive visualisa-
tion tool, based on the powerful Visualization Toolkit (VTK)18. VisIt makes use
of all graphical capabilities of the system, including the GPU, and even supports
stereographic output for 3D screens. Apart from that, it also has a powerful
(although poorly documented) Python interface.

To read in snapshots in VisIt, we developed our own database reader plugin,
called swizmo. It reads in the default HDF5 snapshot format and stores it as a
VTK point mesh, where the data is represented as being located on the position
of the cell generators (or the particle positions if the snapshot comes from an
SPH simulation).

To plot the actual Voronoi grid corresponding to a snapshot, we wrote the
auxiliary vtkmakerXd program, which reads in the generator positions and re-
calculates the corresponding Voronoi mesh. This is then outputted as an un-
structured mesh in the .vtk file format, which can be read by VisIt.

4.4 Test suite

The public version of Shadowfax contains a number of basic test problems to
validate the code, which are gathered in a test suite. These problems are meant
to be run as a general code check after any significant change to the code, and
hence focus more on efficiency than on accuracy. We will give an overview in
this section, to demonstrate the capabilities of Shadowfax. We will focus on
accuracy in the next section, where we compare Shadowfax with a number of
other codes.

We will not discuss test problems that only check the proper working of the
code itself, like the restarttest, which is used to verify that Shadowfax correctly
restarts from restart files.

4.4.1 Spherical overdensity

This test was already discussed in Chapter 2 and Chapter 3, and is a 2D or 3D
generalisation of one of the Riemann solver tests from Toro (2009). The version
included in the test suite uses 10,000 cells in 2D, and 100,000 cells in 3D. The
results are shown in Fig. 4.6 at time t = 0.1, together with the 1D reference
solution.

17https://wci.llnl.gov/simulation/computer-codes/visit
18http://www.vtk.org
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Figure 4.6: Radial density profile for the spherical overdensity
test at time t = 0.1. The black dots are the simulation results, the
full gray line is the 1D reference solution. To limit the number of
data points, the simulation results have been binned, the standard
deviation of the density within the bins is indicated by the error
flags.

4.4.2 Gresho vortex

A known problem with Eulerian integration methods is a bad local conservation
of angular momentum. These methods typically generate a lot of numerical
diffusion in the velocity of the fluid, which leads to angular momentum being
smeared out over a number of neighbouring cells. Lagrangian methods should
not suffer this problem, as the resolution elements move along with the flow and
angular momentum is naturally conserved.

A good test for local angular momentum conservation is the Gresho vortex
test. For this test, a vortex in hydrostatic equilibrium is evolved for some time.
The problem consists of a box with unit length in 2D and dimensions 1×1×1/3 in
3D, containing a gas with constant unit density. Inside the box, a 2D azimuthal
velocity profile of the form (Springel, 2010)

vφ(r) =











5r 0 ≤ r < 0.2

2 − 5r 0.2 ≤ r < 0.4

0 0.4 ≤ r,

with r =
√

(x− 0.5)2 + (y − 0.5)2 both in 2D and 3D, is balanced by a pressure
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Figure 4.7: Radial velocity profile for the Gresho vortex test at
time t = 3. Both the 2D and 3D simulations use 10,000 uni-
formly sampled cells. The black dots represent the binned sim-
ulations results, with the error flags indicating the standard de-
viation on the values within the bins. The full gray line is the
initial velocity profile.

profile of the form

p(r) =











5 + 25
2 r

2 0 ≤ r < 0.2

9 + 25
2 r

2 − 20r + 4 log
(

r
0.2

)

0.2 ≤ r < 0.4

3 + 4 log (2) 0.4 ≤ r.

Since the setup is in hydrostatic equilibrium, the result should be independent
of time. To test this, we evolve the simulation to time t = 3, and compare the
velocity profile with the initial profile in Fig. 4.7. Apart from a loss of precision
around the peak of the velocity profile, the overall agreement is good.

4.4.3 Sedov-Taylor blast wave

A crucial aspect for simulations of galaxy formation and evolution is the capability
to resolve strong shock waves, as e.g. caused by stars going supernova. These
events deposit large amounts of energy into a small volume of the interstellar
medium, causing a rapid heating and expansion of the surrounding gas. A good
test for this situation is the Sedov-Taylor blast wave test, which we will also
encounter in Chapter 5.
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Figure 4.8: Density profile for the Sedov-Taylor blast wave test
at time t = 0.1. Both the 2D and 3D version use an initially
Cartesian grid with 45 cells in every dimension. The black dots
represent the binned simulation results, the error flags indicate
the standard deviation on the density values within the bins. The
full gray line is the analytic solution of Sedov (1977).

For this test, we set up a box with unit length, in which a cold medium with
unit density and pressure 10−6 is in rest. At the start of the simulation, we
set the pressure in the central cell to a much higher value, corresponding to an
effective energy input of 1. This initiates a strong explosion with a self-similar
shock profile with a known analytic solution (Sedov, 1977). The 2D and 3D
results are shown at time t = 0.1 in Fig. 4.8, together with the analytic solution.

To accurately capture the explosion, we need to make sure that the central
cells are kept regular enough at the start of the simulation, since any irregularities
will lead to asymmetries in the solution. Furthermore, we need to adopt an
appropriate time step criterion that detects the shock in cells surrounding the
central cell. Finally, we also need an accurate Riemann solver that can handle
vacuum generating conditions at the faces of the central cell. This test hence can
be used to verify these crucial parts of the code.

4.4.4 N-body test

Apart from a hydrodynamical integrator, Shadowfax also contains an N-body
solver that is used to evolve the collisionless component and to calculate the
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Figure 4.9: Results of the N-body test using 10,648 cold dark
matter particles. Left: Density profile at the start and end of
the simulation, calculated by summing the masses of all particles
within spherical shells. The full gray line represents the theoret-
ical density profile from which the initial condition was sampled
using rejection sampling. Right: Relative energy error as a func-
tion of time. The gray line shows the energy error for every
system step, the black line shows the energy error at the system
steps when all particles were active.

gravitational accelerations for the gas. We limit use of this N-body solver to 3D.
To test the N-body solver itself, we evolve a collisionless Plummer sphere

(Plummer, 1911) with mass 1000 and scale parameter 1 to time t = 1. We set
the gravitational constant G = 1 for this problem, so that t = 1 corresponds to
∼ 10 dynamical times. The density profile should stay constant during this time.
We use a fixed gravitational softening length of 0.03.

The initial and resulting density profile are shown in Fig. 4.9, together with
the relative energy error throughout the simulation. We see that the density
profile indeed is stable, and that the total energy is quite accurately preserved.
Very similar results were obtained using Gadget2 on the same initial conditions.

4.4.5 Evrard collapse

To test the coupling of gravity and hydrodynamics, we study the collapse of a
cold self-gravitating sphere with unit mass and unit radius, which has an initial
density profile of the form

ρ(r) =

{

1
2π(r+0.001) r ≤ 1

0 1 < r,
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Figure 4.10: Results for the Evrard test using 20,000 cells. Left:
density profile at time t = 0.81. The black dots are the binned
simulation results, the error bars indicate the standard deviation
on the density values within the bins. The full gray line is the
solution of an equivalent 1D problem. Right: relative energy er-
ror. The gray line represents the energy error at all system steps,
the black line is the energy error at the steps when all particles
were active.

with r =
√

x2 + y2 + z2 in this case. The entire sphere is given a constant low
thermal energy by imposing a pressure profile of the form

p(r) =

{

0.05
3π(r+0.001) r ≤ 1

0 1 < r.

This setup is very similar to the setup introduced by Evrard (1988). The
sphere will first collapse under its own gravity, causing a conversion of gravita-
tional potential energy into kinetic energy. While the central density rises, this
kinetic energy is converted into thermal energy, causing an outward travelling
shock wave that virializes the sphere. The density profile of the sphere at time
t = 0.81 is shown in Fig. 4.10, together with the solution of an equivalent 1D
problem. We also show the relative energy error as a function of time to time
t = 3, when the sphere has virialized.

The conversion of gravitational potential energy into first kinetic and later
thermal energy is a good test for the gravity implementation. Another challenging
aspect of this test is the treatment of the vacuum boundary of the cloud, which
requires an appropriate Riemann solver and a good flux limiter.
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4.5 Comparison with other methods

In Chapter 3, we already mentioned some of the advantages of a moving mesh
scheme over more traditional methods. In this section, we will quantify the
differences between a moving mesh scheme and other methods by comparing them
on a number of test problems. The initial conditions for these tests are available
online19, so that anyone can repeat these tests and use them to compare with
other codes.

4.5.1 Kelvin-Helmholtz instabilities

Kelvin-Helmholtz instabilities arise when two layers of fluid shear against each
other, so that small velocity perturbations in the direction perpendicular to the
shear direction grow exponentially to form wave-like structures. As already men-
tioned in Chapter 3, Kelvin-Helmholtz instabilities arise at all scales, so that we
need to suppress small scale instabilities to be able to compare different methods.
This can be done by the introduction of a transition layer in between the shearing
layers.

Since Kelvin-Helmholtz instabilities mix up fluid from the two layers, resolving
them is essential when e.g. studying the elemental composition of the interstellar
medium. Agertz et al. (2007) showed that classical SPH does not resolve Kelvin-
Helmholtz instabilities at all, meaning that codes like Gadget2 have very bad
mixing properties. Eulerian codes generally have much better mixing properties.
We will therefore compare Shadowfax with mpi-amrvac, a public grid based
AMR code20(Keppens et al., 2012).

We will focus on two different aspects: the mixing of two layers with different
densities late in the simulation, and the early linear exponential growth of the
instability. Both will be studied in 2D only.

Mixing

The first setup consists of a periodic box with unit length, in which the fluid is
given a density profile of the form

ρ(x, y) =











1 y < 0.25

10 0.25 ≤ y ≤ 0.75

1 0.75 < y.

19http://www.dwarfs.ugent.be/shadowfax/
20http://homes.esat.kuleuven.be/~keppens/
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The x component of the velocity is given by

vx =































−0.5 y ≤ 0.25 − d

−0.5 + y+d−0.25
2d 0.25 − d < y < 0.25 + d

0.5 0.25 + d ≤ y ≤ 0.75 − d

0.5 − y+d−0.25
2d 0.75 − d < y < 0.75 + d

−0.5 0.75 + d ≤ y,

(4.1)

where we introduced a middle layer with thickness d = 0.025. The y component
of the velocity is given by

vy = A sin (4πx)

(

e−
(y−0.25)2

2σ2 + e−
(y−0.75)2

2σ2

)

,

and seeds an instability with wavelength half a box length and amplitude A = 0.1
in a small layer with thickness σ = 0.00125 around the two interfaces between
high density and low density layers. The pressure is set to P = 2.5 in the
entire box. We use the same initial condition consisting of a Cartesian grid with
100×100 cells for both the mpi-amrvac and Shadowfax simulations. Of course,
this grid will deform during the Shadowfax simulation, while it is static for the
mpi-amrvac simulation.

We use two different modes of mpi-amrvac for this test: a mode using a
conservative finite difference scheme with global Lax-Friedrich splitting and a
fifth order spatial reconstruction (FD), and a finite volume scheme with a HLLC
Riemann solver (FV). Both schemes use a fourth order accurate Runge-Kutta
time integration scheme.

As shown in the top row of Fig. 4.11, both the Shadowfax simulation and
the mpi-amrvac simulations lead to similar results at time t = 1.5. All three
simulations develop clear instabilities at around the same time. The non-linear
evolution of these instabilities is a bit different, but this is to be expected.

As a variant of the test, we also ran the three simulations using the same setup,
but with a large bulk velocity vbulk = 100 added in the x direction, corresponding
to a Mach number of 155 in the high density layer. This does not change the
physical problem, so that a properly Galilean invariant code should yield the
same results as for the setup without bulk velocity. As can be seen from the
bottom row of Fig. 4.11, this is indeed the case for the Shadowfax simulation.
The mpi-amrvac simulations are clearly affected by the bulk velocity, with the
FV result being smeared out, and the FD simulation not yielding any result at
all. Increasing the resolution does not help improving the FV result much, as
was already shown in Fig. 3.6.
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Figure 4.11: Density colour plots for the shearing layers test at
time t = 1.5, using a 100 × 100 Cartesian initial condition. The
individual cells are shown, which explains the irregular shapes
in the Shadowfax results. The top row shows the result for
the normal setup, the bottom row corresponds to a setup with an
extra bulk velocity vbulk = 100 added to the x component of the
velocity.

Linear growth rate

If we use a setup without density contrast, the initial exponential growth of
the instability will only depend on the wavelength of the instability and the
thickness of the middle layer, so that simulations of this phase should converge
to a consistent growth rate, irrespective of the resolution or method that is used
(Hendrix & Keppens, 2014).

To test this, we set up a variant of the test above whereby the initial density
is set to unity in the entire box. The y component of the velocity is now given
by

vy = B sin (4πx)

(

e− (y−0.25)2

32d2 + e− (y−0.75)2

32d2

)

,
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Figure 4.12: Convergence of the linear exponential growth rate
of the Kelvin-Helmholtz instability for the shearing layers tests
without density contrast. Left: kinetic energy in the y direction as
a function of time. Right: relative difference between the kinetic
energy in the y direction for the 400×400 mpi-amrvac simulation
and that for the other simulations as a function of time.

with B = 0.0005 and d = 0.0317. The same d is now also used as thickness of
the middle layer in (4.1). The other quantities have the same values as before.

To quantify the growth of the instability, we track the total kinetic energy
in the y direction. This energy is initially set by the seed velocity, and will
grow exponentially as kinetic energy in the x direction is converted into extra
kinetic energy in the y direction by the growing instability. The results are
shown in Fig. 4.12. The high resolution Shadowfax simulations are clearly in
agreement with the high resolution mpi-amrvac results, but the convergence
seems to be slower. To eliminate differences caused by slightly different onsets
of the growth of the instability, we also fitted a simple exponential curve to the
linear exponential part of the curves in the left panel of Fig. 4.12. The slopes are
given in Table 4.1. Again, we see that convergence is slower for the Shadowfax

simulations. Furthermore, both methods converge to slightly different slopes.
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Table 4.1: Slope of an exponential fit to the kinetic energy in the
y direction in the time interval [1.5,2.5] for the shearing layers
tests without density contrast

Simulation Slope
Shadowfax 100 × 100 4.61
Shadowfax 200 × 200 5.43
Shadowfax 400 × 400 5.10
Shadowfax 800 × 800 5.10
mpi-amrvac 100 × 100 5.28
mpi-amrvac 200 × 200 5.14
mpi-amrvac 400 × 400 5.14

4.5.2 Sod shock

In Chapter 3 we introduced mesh-free methods as another alternative for SPH,
that uses a finite volume method similar to that implemented in Shadowfax,
but using kernel-based volume estimates. We will compare Shadowfax with our
own mesh-free hydrodynamics implementation in the simulation code swift21

(swift gizmo), and the standard SPH implementation in swift (swift SPH).
We will focus on a high resolution version of the Sod shock test, which consists

of a 1 × 0.125 × 0.125 periodic cuboid containing a fluid with density

ρ(x) =

{

1 x ≤ 0.5

0.25 0.5 < x

and pressure

p(x) =

{

1 x ≤ 0.5

0.1795 0.5 < x

that is initially at rest. The results are evolved to time t = 0.12, and should
equal the results of the corresponding Riemann problem, which consists of a left
rarefaction wave, a central contact discontinuity and a right shock wave.

We generated a single initial condition file containing two gravitational glasses
that were pasted together to yield the correct density contrast when using SPH.
The resulting setup has 1,024,128 particles and was used for all three simulations.

The results and the analytic solution are shown in Fig. 4.13. Overall, the
Shadowfax result is more accurate than the other two results. Both swift

results are comparable, although the swift SPH result has more noise on the
density, and systematically underestimates the density in most of the box. This

21https://gitlab.cosma.dur.ac.uk/swift/swiftsim/tree/gizmo
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Figure 4.13: Results of the Sod shock test at time t = 0.12. Left:
density profile, right: difference between the density and the the-
oretical density given by the solution of the equivalent Riemann
problem. The black dots represent the binned simulation res-
ults, the error flags indicate the standard deviation on the values
within the bins. The full gray lines represent the analytic solution
of the equivalent Riemann problem.
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is a direct result of the way in which the density is calculated in SPH. To quantify
the accuracy, we calculated χ2 values for all three simulations by summing the
quadratic differences between the effective densities and the theoretical result.
This yielded χ2 = 29.96 for Shadowfax, χ2 = 106.71 for swift gizmo, and
χ2 = 123.54 for swift SPH.

4.5.3 Noh test

Noh (1987) proposed a strong shock test that is very challenging and has a
known analytic solution. The setup consists of a reflective box with unit length,
in which a fluid with unit density and a very small thermal energy of 1 × 10−5

is enclosed. At time t = 0, we set the radial velocity everywhere to −1, with the
radius r =

√

x2 + y2. We will restrict ourselves to the 2D problem, although the
problem can be solved in 3D as well.

Since the fluid collapses on the origin, a strong outward shock wave develops,
with very high Mach number. The velocity of the shock front is given by vshock =
1/3, and the density profile by

ρ(r, t) =

{

16 r ≤ vshockt

1 + t
r vshockt < r.

We compare Shadowfax with mpi-amrvac FV using a low resolution 400 ×
400, and a high resolution 1600×1600 Cartesian setup. The radial flow of the fluid
will create low density cavities at the boundaries of the simulation box, which
are normally compensated by using inflow boundaries. However, Shadowfax

does not support this type of boundary condition, so that we will restrict the
simulation to t = 0.5, before the shock interacts with these cavities.

The resulting density profiles are shown in Fig. 4.14. Overall, both methods
resolve the shock quite well, although mpi-amrvac overestimates the central
density. We also calculated χ2 values in this case, by summing the quadratic
differences between the simulated densities and the analytic solution. For the
low resolution simulations, this yielded χ2 = 1.78 × 104 for Shadowfax and
χ2 = 2.87 × 105 for mpi-amrvac. For the high resolution simulations, we get
χ2 = 1.55×105 for Shadowfax, and χ2 = 4.54×106 for mpi-amrvac. The high
values for the mpi-amrvac results are likely caused by the low density cavities,
since the results in these regions will necessarily be wrong and since these regions
will contain a lot more fixed mpi-amrvac cells than co-moving Shadowfax cells.

4.5.4 Implosion test

The implosion test of Liska & Wendroff (2003) is another challenging test prob-
lem. In a 2D periodic box with dimensions 0.6 × 0.6, a fluid with unit density
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Figure 4.14: Results of the Noh test at time t = 0.5. Left: dens-
ity profile, right: difference between density and analytic solution.
The black and gray dots represent the binned simulation values,
the error flags indicate the standard deviation on the values inside
the bins. The full gray line is the analytic solution.

and pressure is placed at rest. In the center of the box, we cut out a rhombus
with width 0.3, in which the density is set to ρ = 0.125, and the pressure to
P = 0.14. We use an initial Cartesian grid of 800 × 800 cells, and evolve it until
time t = 0.75 using Shadowfax and mpi-amrvac FV. As in Liska & Wendroff
(2003), we set the adiabatic index γ = 1.4 for this test.

The high density region will initially implode into the low density region,
and cause a large scale shock wave, that will travel back and forth through the
simulation box. Meanwhile, small scale Rayleigh-Taylor and Kelvin-Helmholtz
instabilities will arise at the interface between the two regions, and will interact
with the large scale shock wave. These instabilities are seeded by numerical noise
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and therefore behave very chaotically. We can however compare the evolution of
the large scale shock wave between both methods.

The results at three different times are shown in Fig. 4.15. The large scale
shock wave is clearly visible and behaves in the same way for both methods.
The small central instabilities are more pronounced in the Shadowfax result,
indicating that a moving mesh method is more sensitive to these instabilities.
This is probably caused by (a) a higher sensitivity of a moving mesh to noise
in the velocity component of the fluid, and (b) the Lagrangian character of the
method, which will keep instabilities intact, while numerical diffusion washes
them out in an Eulerian method. It is interesting to see that these instabilities
are not symmetric in the mpi-amrvac result, indicating that they are indeed
completely governed by numerical noise.
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5
Sub-grid physics

T
he methods in Chapter 3 allow us to simulate a hydrodynamical fluid inside
a gravitational potential, under the influence of cooling and heating. This
is a large step towards modelling the real interstellar medium of galaxies,

but it is not enough. We still treat the gas as being a monatomic ideal gas, and
have not specified how the gas cools. The same applies to the heating terms,
which still need to be physically motivated. In this chapter, we will discuss these
aspects in more detail.

We start with the gas, explain how it cools and behaves, and what the effect
of an external UV background is on the cooling and heating of the gas. We then
discuss the different types of stellar feedback, and detail how these affect the gas.

5.1 Gas physics

The interstellar medium (ISM) is the general name for all baryonic matter inside
a galaxy that is not in the form of stars or stellar remnants like black holes,
neutron stars, .... It not only consists of neutral or ionised gas, but also of
molecules and even small dust grains. Although its density can locally reach
high values, it is overall quite diffuse. For this reason, the neutral ISM is one
of the best realisations of an ideal gas, so that the ideal gas approximation is
certainly acceptable.

Element-wise, the ISM mainly consists of 1H (≈ 90%) and 4He (≈ 9%), in
number abundances that did not change much since the Big Bang nucleosynthesis,
which took place in the first 20 minutes after the Big Bang. The remaining 1% of
the ISM consists of a mixture of other elements, which astronomers just denote
as metals.

When discussing stellar feedback, we will see that this mixture can be charac-
terised by two independent metallicities, corresponding to a fast contribution by
the supernova explosions of massive stars, and a slow contribution by the super-
nova explosions of less massive stars (De Rijcke et al., 2013): a [Fe/H] value and
a [Mg/Fe] value, denoting respectively the logarithm of the iron abundance and
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the magnesium abundance in units of the corresponding solar abundance. Prim-
ordial gas that has not been enriched by stellar feedback has element abundances
set by the Big Bang nucleosynthesis, and zero metallicity.

Apart from being composed of different elements, the ISM is also a mixture
of a neutral gas and an ionised plasma, depending on the local temperature and
density. Not all elements are ionised at the same temperature and even for a
single element, the transition from neutral to ionised takes place in some broad
temperature range, so that we end up with a complex mixture of atoms and ions
in different stages of ionisation. It is this complex fluid that we want to model.

5.1.1 Radiative cooling

When a 1H ion recombines to a neutral atom by capturing a free electron, a small
amount of binding energy is released in the form of one or multiple photons (with
an energy of 13.6 eV). This photon can be captured by another neutral 1H atom
and ionise it, but if the local ISM is diffuse enough, it will escape the ISM and
will cause an effective energy loss in the system.

Similarly, transitions from excited states of the 1H atom to the ground state,
or between excited states, will also release photons that carry away energy from
the system. The same applies to other elements in the ISM. All these energy
losses together constitute a cooling term in the energy equation.

In regions with a very high temperature, the ISM will be completely ion-
ised, and the losses due to recombination processes become negligible. However,
in these regions there will still be losses due to other radiative processes, like
bremsstrahlung emitted by electrons that are accelerated by magnetic fields in
the plasma.

It may be clear from the above that calculating a physical cooling term re-
quires a full modelling of all radiative processes in the multiphase ISM. This
means we need to determine the ionisation state and the abundance of all ele-
ments in the ISM. In the absence of external heating, these are set by three
parameters: the temperature of the local ISM and its metal content, character-
ised by the two metallicity parameters.

Given these parameters, we use the Chianti spectral database (Dere et al.,
2009) to calculate the ionisation equilibrium, which then gives us the net cooling
rate of the gas. Doing this for every set of parameters at runtime during the
simulation is however way too expensive. To remedy this, we precalculate the
cooling rates for a number of parameter values and store them in cooling tables.
At runtime, we then linearly interpolate on these tables to obtain an approximate
cooling rate.
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5.1.2 Ionisation and recombination

In Chapter 3, we introduced the temperature T of the gas through a linear relation
with the thermal energy of the gas. For an ideal gas with adiabatic index γ = 5/3,
the relation is

u =
3

2

kT

m
,

with m the mass of a single microscopic constituent of the gas. This relation
expresses the equipartition theorem, which assigns a thermal energy of 1

2kT to
every degree of freedom of a microscopic constituent of the gas, with a single
constituent having only three spatial degrees of freedom.

We can rewrite the equation above by introducing a constituent number dens-
ity, n:

ρu =
3

2
nkT.

This relation is valid for a monatomic ideal gas consisting of only one type of
constituents. However, if the gas consists of multiple elements, that are allowed
to ionise, then we have to adapt the equation to (Vandenbroucke et al., 2013)

ρu =
3

2

(

∑

X

nX + ne(T )

)

kT +
∑

X





∑

i

nX,i(T )





i
∑

j=1

εX,j







 , (5.1)

where nX now represents the number densities of the different elements in the
gas. ne(T ) is the number density of electrons, which depends on the ionisation
state of the different elements and hence the temperature. nX,i(T ) is the number
density of the ith ion of element X , while εX,j is the energy needed to ionise the
(j−1)th ion of element X to the jth ion of X . Charge conservation dictates that
the number density of electrons is coupled to that of the ions:

ne(T ) =
∑

i

inX,i(T ).

In a monatomic ideal gas with a single type of constituents, the pressure is
given by

P = nkT.

In a multiphase, multicomponent gas, this becomes

P =

(

∑

X

nX + ne(T )

)

kT =
ρkT

µ(T )
,

where we introduced the mean constituent mass µ(T ). It is immediately clear
from the above that in the case of the real ISM, the relation P = (γ − 1)ρu is no
longer valid.
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This simple fact has some far-reaching consequences for the hydrodynamical
integration, as it forces us to adapt the energy equation. In practice, it forces
us to introduce the temperature T as a new primitive variable that is integrated
along with the other variables, and that is used to calculate the pressure when
it is needed. To this end, we need to know the mean constituent mass µ(T ),
which will depend on the ionisation state of the fluid. Just as for the cooling,
we will precalculate the mean constituent mass for a number of temperature and
metallicity values, and then calculate it at runtime by linear interpolation on
these three dimensional tables.

In Vandenbroucke et al. (2013), we compared the change in the thermal energy
by the ionisation of 1H and 4He to the effect caused by the ionisation of other
metals. Due to their low abundances, the latter is negligible. Similarly, the
change in thermal energy caused by transitions between excited states of a single
ion is negligible compared to the change due to ionisation. For this reason, we will
only take into account the contributions of 1H and 4He for the mean constituent
mass, and the contribution of the ionisation of 1H for the ionisation potential
energy reservoir.

The ionisation fractions of 1H and 4He do however depend on the pres-
ence of other metals, so that we do effectively end up with three dimensional,
composition-dependent tables. Note also that metals do need to be taken into
account for the radiative cooling, especially in low temperature regions, where
metal line cooling is the only efficient cooling mechanism.

To adapt the energy equation, various methods have been tested. In Vanden-
broucke et al. (2013), we tabulated the thermal energy-temperature relation (5.1)
and used the standard thermal energy equation to integrate the thermal energy.
Whenever a temperature was needed, we calculated it by linear interpolation on
the three dimensional thermal energy-temperature tables. This approach how-
ever turned out to be problematic when using it for the more extended five
dimensional tables needed when an external UV background is present, since
the thermal energy-temperature relation becomes degenerate in some parts of its
domain.

The most recent version of our code uses an alternative approach. We split
the thermal energy in two parts, a kinetic part due to the movement of the
microscopic constituents of the fluid, and a potential energy part due to the
ionisation of the 1H:

u = ukin +
χH

mH
x,

with χH = 13.6 eV the ionisation energy of 1H, mH = 1.6737236 × 10−27 kg the
mass of the 1H atom, and x the ionisation fraction of the gas, x = 0 being a
completely neutral, and x = 1 a completely ionised gas.

In the absence of ionisation, the kinetic thermal energy equals the total
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Figure 5.1: The position of the shock front as a function of time
for the Sedov-Taylor blast wave test in an ambient medium with
a density of 81 amu cm−3 and a temperature of 15, 000 K, using
three different treatments for the ionisation. The circles represent
a simulation that does not take into account the effect of ionisa-
tion. The squares represent a simulation that takes into account
the change in mean particle mass, but does not take into account
the potential energy associated with the ionisation. The triangles
represent a simulation that takes the full effect of ionisation into
account. The full black line represents the analytic solution due
to Sedov (1977). The dashed line represents the boundary of the
periodic simulation box.
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Figure 5.2: The ratio of the total potential energy change
and the injected energy as a function of time for simula-
tions with different ambient temperatures and densities. Top:
ρ = 81 amu cm−3, middle: ρ = 0.81 amu cm−3, bottom: ρ =
0.0081 amucm−3.
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thermal energy, so that the kinetic thermal energy is the quantity that is evolved
by the thermal energy equation. Instead of replacing the kinetic thermal energy
by the total thermal energy when taking into account ionisation, we can also still
evolve the kinetic thermal energy, using an adapted thermal energy equation:

dukin

dt
=

du

dt
−
χH

mH

dx

dt
,

where we took into account the time dependence of the ionisation fraction.
If we neglect temporal changes in the composition of the gas (which we do

implicitly by considering gas in ionisation equilibrium), then the ionisation frac-
tion to first order only depends on the temperature, or hence the kinetic thermal
energy of the gas, so that

dx

dt
=

dx

dukin

dukin

dt
.

If we insert this in the equation for the kinetic thermal energy, we end up
with the following evolution equation for the kinetic thermal energy:

dukin

dt
=

1

1 +Xukin

du

dt
,

where Xukin = χH

mH

dx
dukin

represents a dimensionless quantity that describes the
absorption of thermal energy by the ionisation potential energy reservoir. Instead
of evolving the total thermal energy, we can hence evolve the kinetic thermal
energy, and adapt the thermal energy equation by applying the correction term
given by Xukin. Xukin is tabulated like the mean constituent mass and the cooling
above.

Xukin does not take into account the effect of the change in mean constituent
mass due to the ionisation on the kinetic thermal energy, so that in practice we
still need to tabulate the kinetic thermal energy as well. However, the relation
between the kinetic thermal energy and temperature is no longer degenerate, so
that this approach effectively solves the integration problems caused by evolving
the total thermal energy.

The effect of the treatment of ionisation on the dynamics of the gas is illus-
trated in Fig. 5.1, by means of a Sedov-Taylor blast wave test. For this test, an
energy of 1052 erg is inserted in the center of a cubic simulation box with side
0.1 kpc, containing gas with a density of ρ = 81 amu cm−3 and a temperature
T = 15, 000 K, which is initially at rest. The central energy injection causes a
strong shock wave to spread out from the center of the box. We keep track of
the position of the shock front as a function of time, and compare the results
for three different simulations with the analytic solution of Sedov (1977). As can
be seen in the figure, the effect of the changing mean constituent mass is rather
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small, while the potential energy reservoir associated with the ionisation is able
to absorb a significant fraction of the shock energy.

The fraction of the initial shock energy that is absorbed as a function of time
is shown in Fig. 5.2 for a number of simulations with different initial gas densities
and temperatures. For a gas with a density of 81 amu cm−3, similar to the density
of a star forming region in our galaxy simulations, this fraction can be more than
50%. For lower densities, the effect is a lot smaller (on the same length scale,
because the whole problem is in fact dimensionless).

5.1.3 UVB

In the discussions above, we always assumed the gas to be in collisional ionisation
equilibrium, i.e. the ionisation of the gas is set by the dynamic equilibrium of
collisional excitation and ionisation, and the radiative recombination and deex-
citation of the atoms in the gas. The rate at which atoms collide only depends
on the temperature of the gas, so that the equilibrium is completely determined
by three parameters.

In the presence of an external UV photon background (UVB), atoms are no
longer only ionised by collisions, but can also be ionised by absorbing a UV photon
with an energy of at least 13.6 eV from the background. The rate at which this
will happen depends on the strength of the UVB, and on the ability of the local
gas to shield itself from the UVB. If the ionisation rate in some region of the gas
is high enough to absorb all ionising photons from the external UVB, then gas
internal to this region does no longer “see” the UVB, and is effectively shielded
from it. The strength of this shielding will depend on the number density of
neutral 1H, and hence on the density of the gas. We adopt an exponential self-
shielding with a density threshold of nH = 0.007 amucm−3 (De Rijcke et al.,
2013).

The strength of the UVB gradually increases over time as more galaxies host
young UV bright stars, starting from a redshift of ∼ 10.5 and reaching its peak
strength at a redshift of ∼ 2 (Faucher-Giguère et al., 2009). This introduces a
time dependence for all quantities that depend on the ionisation equilibrium of
the gas.

We hence need to add two extra parameters to the three parameters we
already had: the gas density and the current simulation redshift (or time), yield-
ing five parameters in total. Furthermore, the self-shielding depends on the dens-
ity of neutral 1H rather than the actual gas density, which itself depends on the
temperature and the composition of the gas. We hence need to combine the five
dimensional interpolation with a three dimensional interpolation to obtain the
correct neutral 1H density.

Five dimensional tables are precalculated for the gas cooling, mean constituent
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mass, thermal energy and Xukin. Moreover, the UVB also acts as a heating term
in the thermal energy equation, which also needs to be tabulated and added to
the integration.

The UVB actually introduces an explicit time and density dependence for the
ionisation potential energy part of the thermal energy as well, so that we should
replace the total time derivative in the definition of Xukin with a partial derivat-
ive, calculated for a fixed density and redshift. We should also include correction
terms for the density dependence to the kinetic thermal energy equation. How-
ever, the effect of these will likely be smaller than that of Xukin, so that this is
left for future work.

5.2 Stellar feedback

We have seen in Chapter 2 that the star particles in our simulations do not
correspond to single stars, but rather to small stellar populations that are born
at roughly the same time and have very similar metal contents. These Single
Stellar Populations (SSPs) consist of a statistical mixture of stars with different
masses, distributed according to a stellar Initial Mass Function (IMF), which
gives the number of stars within a given stellar mass bin. Different prescriptions
for the IMF exist (Salpeter, 1955; Kroupa, 2002; Chabrier, 2003), and it is not
yet clear if the IMF depends on the metallicity of the gas from which the stars
are born (Geha et al., 2013).

We will use a Chabrier IMF (Chabrier, 2003) throughout this work, both to
calculate the statistical properties of SSPs, and to calculate the contribution of
the UV light of young stars to the UV background, which affects the ionisation
equilibrium of the ISM and hence its cooling and heating.

During their lifetime, stars emit energy in the form of radiation. Since the
ISM is transparent to most wavelengths of light, most of this energy is lost from
the galaxy. An exception is the UV light emitted by young, massive stars, which
is locally absorbed by the ISM, and acts as an extra heating term in the thermal
energy equation. When stars reach the end of their lifetime, their fate largely
depends on their mass. The least massive stars silently go out, without affecting
their surroundings. However, the most massive stars explode in violent supernova
explosions, which put large amounts of energy and debris in the surrounding ISM
and will affect the local hydrodynamics.

In this section, we will discuss these different forms of stellar feedback in more
detail, including the feedback from the first stars, that has properties that are
very different from those of stars that were formed later. But first, we need to
explain how stars are formed.
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5.2.1 Star formation

Stars form when a dense region of the ISM becomes Jeans unstable, i.e. the
hydrodynamical pressure inside the ISM can no longer support the region against
the gravitational pull of its own mass, and the whole region starts to fragment
into smaller clumps at the core of which stars are formed. The typical length
scale at which a cloud is in hydrostatic equilibrium is called the Jeans length, and
is given by (Jeans, 1902)

lJ =

√

15kT

4πGµρ
.

In a monatomic ideal gas that evolves only under its own gravity, clouds
smaller than the Jeans length will expand, since the pressure is a strictly rising
function of the density and temperature, and both temperature and density will
rise when the gas gravitationally collapses. However, when the gas is allowed
to cool radiatively, then the temperature will go down when the density rises,
breaking this stability. Since for high densities the cooling scales quadratically
with the density, while the pressure only scales linearly, the cloud will effectively
become unstable for some critical density. Including the external gravitational
potential generated by the dark matter halo of a galaxy only speeds up this
process.

Due to the limited resolution of our simulations, we cannot resolve the collapse
and fragmentation of individual clouds. We therefore will model star formation
by replacing gas by star particles, representing SSPs, when the hydrodynamics
we can resolve indicates that the gas has become Jeans unstable. In practice,
there are three star formation criteria which need to be satisfied before gas is
allowed to form a star particle: the gas should be cold enough (below 15, 000 K),
should be in a region of collapsing flow (measured by a negative divergence of
the fluid velocity), and should be dense enough (we adopt a density criterion of
100 amu cm−3) (Valcke et al., 2008; Schroyen et al., 2013).

To make sure we effectively resolve the Jeans length, we need to make sure
that the gravitational resolution (set by the softening length) is at least equal to
the Jeans length at the critical density and critical temperature.

When the three star formation criteria are satisfied, we remove a fraction
of the local mass (corresponding to a single gas particle in SPH simulations)
from the simulation and replace it by a star particle with the same mass. The
star particle adopts the metallicity of the gas from which it was formed, and
the current simulation time is taken as birth time of the star particle. For the
remainder of the simulation, the star particle is treated as an N-body particle,
and only affects the gas through stellar feedback.
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5.2.2 SW and SNII

The most massive stars (with masses in the range 8−70 M⊙) are short-lived, with
lifetimes in the range 3.8−31 Myr. During their lifetime, these stars already emit
a significant amount of energy in the form of UV radiation. These Stellar Winds
(SW) create hot, ionised bubbles around the young stars, which prevent further
star formation in the vicinity of the star particle. To model this process, we heat
the gas resolution elements (particles or cells) in the vicinity of the young stellar
particle during the time interval in which young stars live, i.e. 0 − 31 Myr. In
total, we insert a fiducial 1.0 × 1050 erg per massive star into the surrounding gas
during this time interval (Thornton et al., 1998), uniformly spread out in time.
These values differ from the values used in Valcke et al. (2008) and subsequent
works due to the use of a different IMF.

When the heavy stars run out of fuel for the fusion reactions in their core that
prevent them from gravitationally collapsing, they undergo a massive gravita-
tional implosion, which causes a supernova explosion, whereby the outer shells of
the star are violently expelled. Due to their spectral characteristics, these super-
novae are called supernova type II explosions (SNII). An estimated 1.0 × 1051 erg
is inserted in the ISM during this event (Thornton et al., 1998), together with
metal rich material from the outer shells of the star. In total, a fraction of 0.191
of the stellar mass is returned, of which most is 1H and 4He. In the two metalli-
city model we use, a fraction of 9.33 × 10−4 of the total stellar mass is returned
to the ISM in the form of Fe, while a fraction 1.51 × 10−3 of the mass is returned
as Mg. The energy and metal injection due to SNII is also spread out uniformly
in time.

These early forms of stellar feedback have been proven to be crucial in galaxy
evolution simulations, as they disperse the dense ISM and suppress further star
formation (Valcke et al., 2008; Cloet-Osselaer et al., 2012; Schroyen et al., 2013).
The dispersed ISM can then cool and fall into the central galactic potential again
to fuel later star formation.

There is however a problem with directly injecting the stellar feedback energy
into the surrounding hydrodynamical resolution elements, if the resolution is low.
The hot bubbles around young stars created by SW, or the shock bubbles around
SNII are relatively small. Inside these bubbles, radiative cooling is very inefficient
due to the high temperature of the ISM. Outside these bubbles, temperatures are
significantly lower. If the resolution of the hydrodynamical model is too low to
capture the bubbles, then the temperature inside the hydrodynamical cell or
particle will be the average of the hot bubble and the surrounding cool ISM,
resulting in a temperature that is too low for the hot bubbles, and too high for
the surrounding gas. This average temperature will likely lie in a temperature
range where radiative cooling is very efficient, leading to a serious over-cooling in
the cell or particle. Therefore, most of the energy that we inject in the resolution
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element will be immediately lost, and feedback becomes very inefficient.

To remedy this problem, various methods have been proposed. Some authors
inject part of the supernova energy as kinetic energy rather than thermal en-
ergy, by directly injecting momentum in the neighbouring gas and temporarily
decoupling the resolution element from its surroundings (Dalla Vecchia & Schaye,
2008). Although this mimics the supernova explosion, it leaves little control over
the precise amount of energy that is injected and can drive unphysical outflows.
Other authors inject thermal energy over a larger time interval, by explicitly
keeping track of the shock front and inserting energy in all cells that lie inside
the shock radius (R. Cen, personal communication, October 2013), although this
method seems only feasible when a fixed grid is used. A popular method for
Lagrangian methods is switching off radiative cooling for particles that receive
stellar feedback (Thacker & Couchman, 2000), thus allowing the local ISM to go
through a phase of adiabatic expansion before allowing it to cool again. We will
use this last method for SW and SNII feedback, but not for the SNIa feedback
discussed next.

5.2.3 SNIa

Stars with masses lower than 8 M⊙ do not go supernova, but expire relatively
silently without a significant impact on the ISM. When the fusion reactions in
their core no longer support them against gravitational collapse, they collapse
to form white dwarfs, which are very compact objects that are supported by the
pressure generated by the repulsive forces between electrons due to the Pauli
exclusion principle. These white dwarfs have no significant impact on the ISM.

However, there is an upper limit on the mass of white dwarfs, set by the
strange properties of the electron degenerate gas that supports it against collapse.
For non-rotating stars with a composition similar to that of the Sun, this mass
limit (called the Chandrasekhar limit) is ∼ 1.4 M⊙. When the mass of the white
dwarf increases beyond this limit, the electron degenerate force can no longer
support the star, and the entire star explodes in a very violent supernova type Ia
(SNIa) explosion.

When a white dwarf forms, its mass will be below the Chandrasekhar limit,
so that it needs to gain mass to cause a SNIa. For isolated white dwarfs, the
chances of gaining enough mass are very small, so that we do not expect isolated
white dwarfs to ever go supernova. However, a significant fraction of stars does
not form in isolation, but rather forms as part of a binary system. For the Milky
Way, an estimated one third of the stars is part of a binary system (Lada, 2006).
In some of these systems, mass transfer between the two companions is possible
if the Roche lobes overlap, i.e. the regions where the gravitational pull of one star
is larger than that of the other. If one of the companions is a white dwarf, and
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the other is a red giant that is expanding, mass of the red giant can be accreted
onto the white dwarf. This increases the mass of the white dwarf, leading to an
expansion of its Roche lobe and a further mass accretion, ultimately pushing the
mass of the white dwarf over the Chandrasekhar limit (Mazzali et al., 2007).

Due to the high fraction of binary systems and the fact that most stars evolve
to white dwarfs, SNIa hence do occur. In our simulations, we assume a ratio
of 0.15 SNIa explosions for every SNII explosion, each also releasing a fiducial
energy amount of 1.0 × 1051 erg to the ISM (Valcke et al., 2008). Just like SNII,
SNIa also return a fraction of 6.55 × 10−3 of the mass of the star particle to the
ISM; a fraction of 1.65 × 10−3 of its mass as Fe, and a fraction of 2.58 × −4 of
its mass as Mg. Note that SNIa return more Fe and less Mg than SNII, which is
also the reason why we use a two metallicity model for the cooling and heating,
to distinguish between these two contributions (De Rijcke et al., 2013).

Contrary to SW and SNII feedback, SNIa feedback is spread out over a large
time interval. Unlike Valcke et al. (2008) and subsequent work, we use the Gaus-
sian model of (Strolger et al., 2010) and return the total energy using a normal
distribution that is centred on a delay time of 4 Gyr, and with a standard devi-
ation of 0.8 Gyr (Bonaparte et al., 2013). This decreases the large impact the old
SNIa feedback model had on the gas of the simulation when including the UVB
in our simulations (see Chapter 6).

Since SNIa go off when the ISM is already dispersed and the star particle
has moved away from the region where it was born, the ISM surrounding the
SNIa will have a low density and high temperature. We do not expect significant
over-cooling in this case, so that we do not switch off radiative cooling in the case
of SNIa feedback.

5.2.4 Population III stars

Radiative cooling at low temperatures is only efficient in metal rich gas, since it
is dominated by the contribution of metal line cooling. Primordial gas has very
low metallicities (Big Bang nucleosynthesis only produces stable elements up to
7Li), so that the gravitational collapse of this primordial gas to form the first
stars will be very different than for later star formation.

As a result, the first stars are thought to have been significantly more massive
than stars that were formed later (Nomoto et al., 2013; Susa et al., 2014), and
are expected to have an IMF that is very different from the Chabrier IMF. Due
to their very low metallicities, these stars should have specific spectral properties
that distinguish them from other stars. We call them population III (Pop III)
stars, Pop I stars being the stars that we are most familiar with, while Pop II
stars are low metallicity stars that still form like Pop I stars. Up to date, there
are no confirmed observations of Pop III stars in the Universe (which, for dwarf
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galaxies, is in line with what models predict, see Verbeke et al. (2015)). Recent
observations of high redshift Lyα emitters however provide strong evidence for
their existence (Sobral et al., 2015).

Since they are more massive, Pop III stars will have even shorter lifespans
than the most massive Pop I stars. When they go supernova, they insert more
energy in the ISM than normal SNII (Nomoto et al., 2013), while also emitting a
lot of UV radiation during their short lifetimes (Heger & Woosley, 2010). They
also return metals to the ISM, but in lower fractions than for SNII and SNIa.

For this work, we experimented with different models for Pop III feedback,
ranging from very basic ad hoc models, to a full Pop III SW and SN model
including return of metals to the ISM.

Model 1

As a first method to include the effect of Pop III feedback, we simply scale up
the number of SNII explosions in metal poor star particles to match the energy
output of a Pop III SSP with the same mass. We neglect Pop III SW for this
model, and keep the same metal return as ordinary SNII (but then scaled up just
like the energy output). The only degrees of freedom that are left then are (a)
the mass range of Pop III stars, which sets the time interval for the feedback,
and (b) the precise form of the Pop III IMF in this mass range, which sets the
total energy output of the Pop III SSP. We use two different mass ranges, which
we call Model 1a and Model 1b, and for each model assume different forms for
the IMF.

Model 1a assumes Pop III stellar masses in the range 60 − 300 M⊙, giving a
feedback time interval from 0.006−0.36 Myr after the star particle was formed. If
we assume the same Chabrier IMF as for Pop I and Pop II stars, and extrapolate it
out to this mass range, then we end up with a total energy feedback of 0.06358 ×
1051 erg M⊙

−1 (low feedback). If on the other hand we assume a flat IMF in
this mass range (more in agreement with the IMF found by Susa et al. (2014)),
this increases to 4.9025 × 1051 erg M⊙

−1 (high feedback). To also allow for more
complex IMF shapes, we also included a model with a feedback energy of 0.1467×
1051 erg M⊙

−1 (intermediate feedback).

Model 1b assumes a smaller Pop III mass interval of 140 − 300 M⊙, leading
to a much shorter feedback time interval of 0.006 − 0.043 Myr over which the
feedback is spread out. We again assume both a Chabrier and a flat IMF, leading
to respective feedback energies of 0.1814 × 1051 erg M⊙

−1 (low feedback) and
0.32 × 1051 erg M⊙

−1 (high feedback).
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Model 2

As a second, more advanced method for including Pop III feedback, we also
include the effect of Pop III SW (Heger & Woosley, 2010), by scaling up the
corresponding energy of a Pop I SSP. This feedback starts from the moment
the Pop III star particle is born, and lasts until the last Pop III SN. We use
the same time interval as for Model 1b. We compare two different versions of
this model: one with high SW energy (1052 erg) and low SN energy (0.007361 ×
1051 erg M⊙

−1), and one with low SW energy (1051 erg) and high SN energy
(0.051765 × 1051 erg M⊙

−1).

Model 3

Our most advanced Pop III feedback model is based on the version of Model 2
with low SW feedback and high SN feedback, and also includes a more realistic
metal return to the ISM. Contrary to Model 2, the feedback is now given in a
time interval of 1.25−16.7 Myr, and takes into account the contributions of lower
mass stars that explode as ordinary SNII. A Pop III star returns a fraction of 0.45
of its mass to the ISM. A fraction of 9.327 × 10−5 of its mass is returned in the
form of Fe, while a fraction of 1.514 × 10−4 of its mass is returned as Mg. These
values are 10% of the corresponding value for a normal SNII, and were based on
the metal yields from Nomoto et al. (2013). By keeping the ratio [Mg/Fe] fixed,
we make sure we can still use our two metallicity model for cooling and heating.

This model was used for Verbeke et al. (2015).

5.2.5 Feedback efficiency

The numbers given above correspond to the expected energy output of the various
stellar feedback processes. However, this energy is released in many different
channels, and it is not a priori clear how much of it will effectively be absorbed
by the ISM. Another problem is that it is also not clear if all of the energy we
deposit into the ISM will effectively do what we expect it to do, owing to all sorts
of resolution issues, consider e.g. the over-cooling problem.

As a result, we will not treat the feedback processes as being fixed, but make
them a parameter in the model, which needs to be calibrated. This parameter
is called the feedback efficiency parameter, and is present in almost all numer-
ical simulations of galaxy formation or evolution (Governato et al., 2010; Cloet-
Osselaer et al., 2012; Vogelsberger et al., 2014b; Shen et al., 2014; Schaye et al.,
2015). When calculating the amount of feedback energy to put into the local
ISM, we will multiply this value with the feedback efficiency parameter. The
parameter is the same for all forms of feedback, ranging from SW, SNII and
SNIa feedback to Pop III feedback, since the uncertainties and numerical issues
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with feedback equally apply to all these forms of feedback. Since different forms
of feedback have different time dependencies and different relative importance, it
still makes sense to distinguish between them.

As Cloet-Osselaer et al. (2012) showed, the feedback efficiency parameter
closely relates to another parameter of the model: the star formation efficiency
parameter. This parameter sets the probability that gas that is eligible for
star formation (i.e. satisfies the star formation criteria) effectively forms a star
particle, and is chosen to reproduce an observational Schmidt law (Schmidt,
1959). It was found that varying the star formation efficiency does not signific-
antly change the total stellar mass produced by the simulation, since less efficient
star formation leads to more initial star formation, leading to more feedback that
shuts down further star formation. Changing the feedback efficiency parameter
has similar effects, since more initial feedback leads to less initial star forma-
tion, which leads to an overall lower initial feedback which increases later star
formation.

Changing the star formation efficiency parameter and the feedback efficiency
parameter together does hence not make much sense, and we choose to keep the
star formation efficiency fixed at a value of 0.1 throughout this work. Changing
the feedback efficiency parameter has only effect when the changes are significant
enough, so that we distinguish between low feedback efficiencies (∼ 0.1), high
feedback efficiencies (∼ 0.7), and unphysically high feedback efficiencies (1 or
more). The latter can be justified due to the uncertainties on the hydrodynamical
modelling, and we will only use them to illustrate the effect of increasing the
stellar feedback. The low feedback efficiencies were shown to produce too many
stars when combined with the high density threshold for star formation (Cloet-
Osselaer et al., 2012; Schroyen et al., 2013), so that we will use the high feedback
efficiency parameter 0.7 for most of our work.
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6
Constraining the sub-grid physics

in simulations of isolated dwarf

galaxies

I
n this chapter, we use the ingredients introduced in the previous chapters
to study the formation and evolution of dwarf galaxies. This work is a nat-
ural extension of the work of Valcke et al. (2008), Schroyen et al. (2011),

Cloet-Osselaer et al. (2012) and Schroyen et al. (2013), and introduces the UV
background as a new ingredient in our model. As we will show, this leads to ma-
jor problems, that can be solved by introducing Pop III feedback (Vandenbroucke
et al., 2016), combined with the use of merger trees (Cloet-Osselaer et al., 2014).
This then led to the worked presented in Verbeke et al. (2015).

6.1 Influence of the UVB

Fig. 6.1 shows the star formation rate (SFR) for a typical dwarf galaxy in isol-
ation, as discussed in Schroyen et al. (2013). The star formation shows a clear
peak at the start of the simulation, when the gas first collapses to form stars.
Feedback from these first stars then disperses the dense gas at the center and
causes the subsequent SFR to be lower. However, there is ongoing star formation
until the end of the simulation.

Fig. 6.2 shows the same simulations with one extra ingredient in the models:
the cosmological UV background (UVB). The UVB has a huge effect on the SFR:
after the first star formation peak, the gas is dispersed as before, but now it is
unable to form any more stars, causing an effective halt of the star formation.
The cause of this dramatic effect is UVB heating of the dispersed, low density
gas, which cannot shield against the UVB. All gas that at some time during
the simulation receives enough feedback to drop below the density threshold for
self-shielding (nH = 0.007 amu cm−3) will be heated and can never become dense
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Figure 6.1: The star formation rate for a model without UVB.
After an initial star formation peak, star formation continues on
a lower level until the end of the simulation. The models shown
here correspond to the models C4P2M1R00L, C4P2M1R05L and
C4P2M1R10L introduced below.

enough again to form stars. In simulations without a UVB, this same gas is
recycled and fuels further star formation.

Observed SFRs for isolated dwarf galaxies show a decrease in SFR around
z = 2 (Weisz et al., 2014), corresponding to the peak strength of the UVB.
The effect of the UVB can hence be observed. However, these observations also
show signs of ongoing star formation after z = 2, indicating that the effect in
our simulations is somehow too strong. Furthermore, stellar masses for observed
dwarf galaxies are typically lower than for simulated dwarf galaxies that live in a
dark matter halo with the same estimated mass (Sawala et al., 2015), and have a
significantly higher neutral gas content (McGaugh, 2012). This means that real
dwarf galaxies are able to retain a significant fraction of their neutral gas mass
and keep it dense enough to self-shield against the UVB, yet dispersed enough
to prevent it from forming stars.

Low mass halos with masses in the range 107 − 109 M⊙ are massive enough
to keep the gas in their center in the density range 0.007 − 100 amu cm−3, which
corresponds to gas that does not form stars, but does self-shield against the UVB.
Since in the ΛCDM model of galaxy formation all halos form by the merging of
less massive halos, these halos could well provide the neutral gas reservoir that
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Figure 6.2: The star formation rate for the same model as
Fig. 6.1, but with a UVB. After the initial star formation peak,
star formation is completely shut down. The models shown
here correspond to the models C3P2M1R00L, C3P2M1R05L and
C3P2M1R10L introduced below.

fuels star formation after the initial star formation peak. However, simulations
that take into account the effect of mergers (Verbeke et al., 2015), still show a
significant initial star formation peak and very low level late star formation.

The only way to reconcile theory and observations seems to be the suppression
of the initial star formation peak (Trujillo-Gomez et al., 2015). In the remainder
of this chapter, we focus on a large parameter study of the models discussed in
Chapter 5 and the next section, with the aim to achieve this. We pay special
attention to a fair comparison of simulation results and observations, by using
the same techniques observers use to analyse the simulation snapshots.

6.2 Models

Since we want to explore a large parameter range, we need to use simulations
that are computationally cheap enough to run a large number of them. For this
reason, we focus on simulations of isolated galaxies. We note that this approach
is not ideal for reproducing dwarf galaxies that are to be compared directly to
observations, since these simulations miss the important effect of cosmological gas
accretion. Isolated simulations do however allow to qualify the effect of changing
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sub-grid parameters on some important global properties of the dwarf galaxy, like
the SFR, so that they are fit for our purpose, which is finding a sub-grid model
that reduces the initial star formation peak.

6.2.1 Initial conditions

Halo

The initial conditions for our simulations consist of a virialized halo, containing
only cold dark matter (DM) and gas. The former is set up as an NFW-halo
(Navarro et al., 1997):

ρDM(r) =
ρDM,c

r
rc

(

1 + r
rc

)2 ,

with a concentration parameter (Cloet-Osselaer et al., 2014)

c ≈ 33

(

Mh

108 M⊙

)−0.06

,

where Mh is the total mass of the DM halo.

The gas halo is set up as a pseudo isothermal sphere, with a density profile
of the form (Schroyen et al., 2013)

ρgas(r) =
ρgas,c

1 +
(

r
rc

)2 ,

with rc the scale length of the NFW-halo, and ρgas,c the central gas density, which
is related to the scale density ρDM,c of the NFW-halo:

ρgas,c =
Ωb

ΩDM
ρDM,c,

with Ωb/ΩDM = 0.2115 (Spergel et al., 2007).

The velocities of the dark matter particles that sample the halo are drawn
from the isotropic distribution function that corresponds to the NFW density
profile, with so called ‘quiet’ initial conditions (Cloet-Osselaer et al., 2012), that
make sure the initial density cusp in the DM profile is not washed out by Poisson
noise.

The gas particles that sample the gas halo are initially at rest, or are given a
constant solid body rotation, with vrot being a model parameter.
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Resolution

We sampled our halos using 50,000 particles for both the DM and the gas halo.
To assess whether this is enough to obtain a converged SFR, we also used a high
resolution version of some of the initial conditions using 200,000 particles to run
convergence tests. An alternative sampling of the initial conditions using 50,000
particles but a different random seed was used to assess the effect of stochastic
differences between simulations using the same model.

As the total halo mass is a parameter in our study, not all simulations have
the same mass resolution. The softening length of the different components (DM
and gas, and later in the simulation also stars) is set to a value which roughly
corresponds to the smoothing length of a gas particle that has a density equal to
the star formation density (100 amu cm−3), and hence also depends on the gas
particle mass and the total halo mass.

6.2.2 Code

The simulations for this work were run using an adapted version of Gadget2,
and include the 5D cooling, heating and gas physics discussed in Chapter 5.
Stellar feedback by SW, SNII and SNIa is used in all models, while Pop III
feedback is only included in a subset of our models. The UVB is included in
all but one model, and to qualify the effect of different UVB models, we also
ran simulations with a UVB that only starts at a redshift of 7 (instead of 10.5),
and with a UVB with a strength that is only 10% of the normal strength. To
quantify the effect of the adiabatic cooling period for gas particles receiving stellar
feedback, we ran one model with cooling enabled for gas particles that received
SW and SNII feedback.

The simulations start at a redshift of 12, which corresponds to a lookback-time
of 13.37 Gyr, and were run until redshift 0 on our local computing infrastructure,
consisting of 5 computing nodes with multicore Intel CPUs.

To limit the use of computational resources, a 3 month time limit was imposed
on all simulations. 7 simulations exceeded this limit because the stellar feedback
contribution was computationally too expensive. All these simulations formed
too many stars from the very beginning of the simulation, so that we would not
learn anything new from them anyway.

3 simulations crashed during the run, because of problems in the stellar feed-
back algorithm. These problems are also related to these simulations forming
way too many stars.
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Table 6.1: Naming convention for code and parameter values.

Code Symbol UVB model ffeedback Pop III model #
C1P1 N low and late 0.7 no Pop III stars 30
C1P1bis N low and late 0.7 no Pop III stars 15
C2P1 ⋄ full and late 0.7 no Pop III stars 16
C3P1 � full and early 0.7 no Pop III stars 16
C3P2 � full and early 1.0 no Pop III stars 30
C3P3 � full and early 2.0 no Pop III stars 16
C4P2 ◦ no UVB 1.0 no Pop III stars 16
C7P4 ◭ full and early 0.7 Pop III model 1A: low

feedback
16

C7P6 ◭ full and early 0.7 Pop III model 1A: high
feedback

16

C7P7 ⊳ full and early 0.7 Pop III model 1A: inter-
mediate feedback

16

C9P8 ◮ full and early 0.7 Pop III model 1B: low
feedback

16

C9P9 ◮ full and early 0.7 Pop III model 1B: high
feedback

6

CaPa H full and early 0.7 Pop III model 2: high
stellar winds, low feed-
back

16

CbPc ♠ full and early 0.7 Pop III model 2: low
stellar winds, high feed-
back

16

CcPd ♣ full and early 0.7 Pop III model 3 6
CeP1 ♥ full and early 0.7 no Pop III stars, no

adiabatic cooling period
16

6.2.3 Model names

To keep track of the different models, we adopt a simple naming convention for
our simulations. The name of a simulation is composed of two parts: a part that
indicates which code and parameter model was used (denoted by 4 characters),
and a part indicating which initial condition file was used (usually consisting
of 6 characters). The former are listed in Table 6.1 together with the number
of simulations run with this model and a symbol that will be used to depict
simulations of these model in general overview figures. The latter are listed in
Table 6.2, together with the corresponding resolution parameters.

In general, models are run with the 15 low resolution initial conditions, and
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Table 6.2: IC naming convention.

Mass and resolu-
tion code

DM particle
mass (103 M⊙)

gas particle mass
(103 M⊙)

softening length
(pc)

M1L 20.0 4.23 9.76
M1H 5.0 1.06 6.15
M3L 60.0 12.7 14.1
M3H 15.0 3.17 8.87
M5L 100.0 21.2 16.7
M5H 25.0 5.29 10.5
M7L 140.0 29.6 18.7
M7H 35.0 7.40 11.8
M9L 180.0 38.1 20.3
M9H 45.0 9.52 12.8

Rotation code Physical velocity ( km s−1)
R00 0.0
R05 5.0
R10 10.0

one high resolution initial condition (M9R10H) is used for the convergence test.
For some models, only the 5 R10 low resolution initial conditions were used, to-
gether with the high resolution M9R10H convergence simulation. For two models,
all 15 high resolution initial conditions were used for a more extensive convergence
test. Model C1P1bis is identical to C1P1, but uses initial conditions sampled us-
ing a different random seed as a test for stochastic effects. Only the 15 low
resolution initial conditions were used in this case.

In total, 263 simulations were run, of which 250 will be discussed in the re-
mainder of this chapter. Of the 13 simulations not discussed, 7 exceeded the 3
month time limit imposed. 3 crashed, while 3 were discarded because they form
an excessive amount of stars, which makes further analysis impossible. Further-
more, these last 3 show a strong increase in circular velocity and have almost no
neutral gas at the end of the simulations, contrary to other simulations using the
same model. The models that exceeded the time limit showed similar behaviour,
which leads us to conclude that the more massive models with no rotation are
unphysical. The simulations that were discarded are listed in Table 6.3.

6.3 Analysis

We compare our simulations with the observed baryonic Tully-Fischer relation
(BTFR) of McGaugh (2012). This relation is an interesting test, since it relates
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Table 6.3: Simulations that were discarded from our set.

Name Reason
C1P1M7R00H exceeded time limit
C1P1M9R00L excessive star formation
C1P1M9R00H exceeded time limit
C1P1M9R05H exceeded time limit
C1P1bisM9R00L excessive star formation
C3P2M9R00L excessive star formation
C3P2M9R00H exceeded time limit
CeP1M1R00L crashed
CeP1M3R00L crashed
CeP1M5R00L exceeded time limit
CeP1M7R00L exceeded time limit
CeP1M9R00L crashed
CeP1M9R10H exceeded time limit

two model independent observable quantities, unlike other methods that depend
on model fits to data to estimate quantities like the halo mass or the half-light
radius (Wolf et al., 2010; Garrison-Kimmel et al., 2014). The circular velocity
itself cannot be directly measured either, but a clearly defined proxy is used that
can be: the rotation of the neutral gas. We show below that this rotation velocity
is not a particularly good proxy for the real circular velocity of a halo, but it is
a quantity that we can calculate from the simulations to at least make a fair
comparison between simulations and observations.

Similarly, we use observational techniques to determine the stellar mass of a
simulated galaxy, rather than just use the sum of the masses of the star particles.
This will appropriately weigh the contributions of old and young stars, and will
limit the mass estimate to the central parts of the galaxy that can be observed.

In this section, we detail the techniques used to analyse the results. We
start by showing a number of general simulation properties, and show how they
correlate with the mock observational values we obtain. This can help us assess
how well observational proxies actually predict the real value for a quantity, as
determined from the simulation, and can be of use for observational astronomers
as well.

6.3.1 General properties

Fig. 6.3 shows some general properties of the simulated halos: the total halo
mass, stellar mass and neutral gas mass, and the virial radius. The masses are
taken to be the masses within the virial radius, with the virial radius calculated
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Figure 6.3: General properties of the simulations. Top left: stel-
lar mass as a function of halo mass, top right: neutral gas mass
as a function of stellar mass, bottom left: neutral gas mass as a
function of halo mass, bottom right: virial radius as a function
of halo mass. The different symbols correspond to the different
models in Table 6.1.

as the radius at which the mean density inside the spherical halo equals 200 times
the mean density of the Universe, 4.5 × 10−31 g cm−3 (Spergel et al., 2007).

Since the initial conditions are parametrized by the mass of the DM halo, the
simulations form groups with similar halo masses. Furthermore, there is a strong
correlation between halo mass and virial radius. There is no clear link between
halo mass and stellar mass or neutral gas mass, with different models leading to
very different observed galaxies. Halos which form more stars are more likely to
have more neutral gas, although there are a lot of exceptions.

We can also compare some general mock observational properties of our sim-
ulations with observed galaxies on the so called scaling relations. These scaling
relations are correlations between observational quantities that were found to
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Figure 6.4: Our simulations on four observational scaling rela-
tions. Top left: B − V colour, top right: V − I colour, bottom
left: half-light radius, bottom right: central surface brightness.
The stars correspond to the observational data, while the other
symbols correspond to the different models in Table 6.1.

hold for observed dwarf galaxies, and that set the typical size and luminosity
of a dwarf galaxy. As Cloet-Osselaer et al. (2012) showed, producing simulated
dwarf galaxies that are in line with these scaling relations is almost trivial, and
hence we cannot use them to constrain our models. They are however a good first
check on the results, since simulations that cannot produce galaxies consistent
with these relations should certainly be discarded.

The luminosities and half-light radii of the simulated galaxies were estimated
by fitting a Sérsic profile to the surface brightness profile of the galaxies, cut off
at a surface brightness of 30 mag arcsec−2. The surface brightnesses in the B,
V and I band were estimated from the age and metallicity of the star particles
by interpolating on the tables of Vazdekis et al. (2012). Not all simulations
contain enough stars to fit a general Sérsic profile, so that we resort to a simple
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exponential curve if the general profile visibly yields a bad fit. The C7P6 models
form so little stars that even an exponential fit does not work, so that we do not
show them on the scaling relations. In total, 234 simulations were fitted, of which
216 with a general Sérsic profile, and 18 with a simpler exponential profile.

Fig. 6.4 shows four scaling relations, together with the observational data
for early and late type galaxies in the Local Volume (van Zee, 2000; Grebel
et al., 2003; Hunter & Elmegreen, 2006; McConnachie, 2012), including recent
additions like Leo P (McQuinn et al., 2013; Rhode et al., 2013), and Pisces A and
B (Tollerud et al., 2015), galaxies within the Coma (Graham & Guzmán, 2003),
Virgo (van Zee et al., 2004) and M81 cluster (Lianou et al., 2010), and isolated
dwarf galaxies (van Zee, 2000; Magorrian & Ballantyne, 2001; Geha et al., 2003;
Grebel et al., 2003; Hunter & Elmegreen, 2006; Dunn, 2010). The simulations
are clearly in agreement with the observed relations, although the B−V colours
and the half-light radii are rather high, two effects that can be linked to a large
initial peak of star formation in all our simulations. There is a large scatter on
the V − I colour for fainter galaxies, due to the relatively bad quality of the fits
to the low stellar mass surface brightness profiles at this end.

6.3.2 Stellar mass

Observationally, stellar masses are estimated from the total luminosity of the
galaxy, taking into account information about the age and metallicity of the
stars through a colour. We will do the same to obtain mock observational masses
for our simulations, using the relation of Bell & de Jong (2001) and the I band
luminosity and V − I colour obtained above.

For the C7P6 models where we were unable to fit a surface brightness profile,
we will just sum up the contributions of the star particles, which corresponds to
the values in Fig. 6.3.

In Fig. 6.5, we show the mock observational mass as a function of the actual
stellar mass, obtained by summing the masses of the individual star particles.
There is a clear correlation between both quantities, but the mock observational
mass is in general lower than the true value, with the ratio given by 0.63 ± 0.38.
We have discarded the C7P6 and CeP1 models to fit the ratio, as well as models
with a fitted Sérsic index larger than 1.5.

The systematic offset between the mock observational mass and the true value
is both due to the differences in assumed IMF between the mass to light ratio
model of Bell & de Jong (2001) and the IMF assumed to derive luminosities
for the star particles (Vazdekis et al., 2012), and due to the low luminosity star
particles at the outskirts of the halo which are too faint to be observed.
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Figure 6.5: The mock observational stellar mass as a function
of the true stellar mass for all our models. The full line is a
1:1 relation, the dashed line corresponds to the fitted mean ratio,
while the dotted lines correspond to a 1σ interval around this
ratio. The different symbols correspond to the different models in
Table 6.1.

6.3.3 Neutral gas mass

Neutral gas can be observed as Hi clouds through the 21 cm radio emission line.
Neutral gas is not necessarily confined to the center of the galaxy, although none
of our simulations has neutral gas far away from the center. We will therefore
estimate the mock observational neutral gas mass by simply summing the con-
tributions of the different gas particles in the simulation, without imposing an
artificial cutoff.

To this end, we estimate the neutral fraction of a gas particle by a 5D inter-
polation on the precalculated tables of De Rijcke et al. (2013), that are also used
for the cooling, heating and gas physics, as described in Chapter 5. These tables
take into account background ionising radiation from local stars and the cosmic
UVB, and hence also depend on the details of our models.
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Figure 6.6: The circular velocity derived from the rotation curve
of the neutral gas ( top), and derived from mock spectral line
widths (bottom) as a function of the theoretical circular velocity.
The full line is a 1:1 relation, while the dashed and dotted lines
correspond to a least squares fit to the data and the corresponding
1σ confidence interval. The different symbols correspond to the
different models in Table 6.1.
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Figure 6.7: The circular velocity derived from the rotation curve
of the neutral gas as a function of that derived from mock spectral
line widths. The solid line corresponds to a 1:1 relation, while
the dashed and dotted lines are a least squares fit and the corres-
ponding 1σ confidence interval. The different symbols represent
the different models from Table 6.1.

6.3.4 Circular velocity

The circular velocity of a spherically symmetric halo is a theoretical quantity,
that is defined as

vc(r) =

√

GM(< r)

r
,

with M(< r) the total mass within radius r. It is a measure for the strength
of the total gravitational potential of the halo, including the mass contributions
that cannot be observed, and sets a limit to the movement of stars and gas within
this potential. The circular velocity is usually characterised by quoting the value
at a given radius, or by taking the maximal value. Both methods converge at
large enough radii, where the circular velocity profile tends to become flat.

Observationally, the circular velocity can only be traced by observing the
motions of gas and stars within the potential. Since the maximum of the circular
velocity profile usually lies outside the main stellar body of the galaxy, these
observations will likely underestimate the true circular velocity. It is therefore
very important to use a good mock observational circular velocity to compare
simulations and observations, as using the theoretical value for the simulations
would lead to a systematic offset with respect to the observations.
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Figure 6.8: The stellar velocity dispersion in the x, y and z dir-
ection within a sphere with radius two times the half-light radius,
as a function of the theoretical circular velocity of the halo. The
dashed and dotted lines show a least squares fit and the corres-
ponding 1σ confidence interval. The different symbols represent
the different models from Table 6.1.

We use two different tracers to determine mock circular velocities: the rotation
of the neutral gas and the movement of the stars. For the former, we produce
mock rotation curves for the neutral gas and determine the maximal value of the
velocity. We visually checked the rotation curves and only accepted the values
that were obtained from curves with a clear rotation and enough neutral gas. The
resulting circular velocities are compared with the theoretical circular velocity in
the top panel of Fig. 6.6. Alternatively, we also produced mock spectral lines for
the neutral gas, and fitted a normal distribution to the broadened spectral lines.
The circular velocity can then be estimated as halfW20, the width of the Gaussian
bell curve at 20% of its maximal value (McGaugh, 2012). The values obtained in
this way are compared to the theoretical circular velocity in the bottom panel of
Fig. 6.6. We use these estimates if enough neutral gas mass is available, but the
rotation curve yields no clear rotation.

In total, 113 simulations contained enough neutral gas to estimate circular
velocities. For 90, we were able to estimate a circular velocity using both tech-
niques, these simulations are shown in Fig. 6.7. 11 more had a clear Hi rotation
profile, so that we can use rotation curve based values for 101 simulations. For
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the 12 remaining simulations, we use the values derived from the spectral line
widths instead. None of the CeP1 simulations contain enough neutral gas to be
observable, but the neutral gas shows a very strong rotation, so that we have
calculated circular velocities for them nonetheless. This allows us to show them
on the BTFR below.

The circular velocity estimates are clearly lower than the theoretical value,
and there is a significant amount of scatter on the values. The circular velocities
derived from spectral line widths are a bit higher than those derived from rotation
curves.

For the 150 simulations that do not contain enough neutral gas to estimate
circular velocities, we use the stars to trace the gravitational potential. For an
isothermal sphere, the stellar velocity dispersion along a line of sight can be shown
to correlate linearly with the circular velocity (Binney & Tremaine, 2008), and
we expect a similar relation to hold for our galaxies. Fig. 6.8 shows the velocity
dispersion in the x, y and z direction of the stars within a sphere with radius
2 times the half-light radius, as a function of the theoretical circular velocity.
There is a clear correlation, given by

σv = (0.52 ± 0.07)vc.

6.3.5 BTFR

The top panel of Fig. 6.9 shows our simulations on the BTFR of McGaugh (2012).
Since not all our simulations have a circular velocity derived from their neutral
gas, we have extended this figure with an alternative representation that uses the
circular velocity derived from the stellar velocity dispersion in the bottom panel,
and compare it with the observations from McGaugh & Wolf (2010). We also
indicated the fit of McGaugh (2012) on both panels.

It is clear that the simulations are systematically above the observed relation
in the top panel, indicating that they form too many stars, or that their circular
velocity is gravely underestimated. The simulations seem to be in better agree-
ment with the observations in the bottom panel. The bottom panel also shows
a clear drop in baryonic mass at a circular velocity of ∼ 30 km s−1, signalling
the transition from gas-rich to gas-poor galaxies. A similar drop off is seen in
large cosmological simulations (Sales et al., 2016), and in observations, although
there it is less pronounced and happens at lower circular velocity. These gas-poor
simulations are of course absent from the top panel.

6.3.6 Metallicities

We have seen above that our simulations lie well within the range of the observed
scaling relations. They lie above the BTFR of McGaugh (2012), but are in relative
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Figure 6.9: The BTFR for all simulations in the set. Top: ba-
ryonic mass as a function of the circular velocity derived from the
neutral gas, bottom: baryonic mass as a function of the circular
velocity derived from the stellar velocity dispersion. The stars
indicate the observations, while the different symbols correspond
to the different models from Table 6.1. The full line is the fit of
McGaugh (2012), and the dashed line is a least squares fit to the
simulation values.
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agreement with the alternative BTFR of McGaugh & Wolf (2010). Apart from
the systematically high B − V colour and relatively large half-light radii, there
is hence no clear indication that the large initial star formation peak in the
simulations leads to unrealistic dwarf galaxies. This indication is provided when
we look at the metallicities of our galaxies.

As already discussed in Chapter 5, the metallicity is a measure of the amount
of elements heavier than 1H and 4He present in the ISM. A popular metallicity
tracer is [Fe/H], as Fe is not formed during Big Bang nucleosynthesis, and hence
has to be produced during stellar nucleosynthesis.

Metal lines can be observed in the absorption line spectra of stars; we compare
our simulations with the metallicities of Kirby et al. (2013), which are based
on the optical colours of red giant branch (RGB) stars. Since the absorption
spectrum of a star originates from the outer shells of the star, it traces the metal
contents of the gas from which the star was formed. Stars that formed early
on from primordial gas will have low metallicities, and the global metallicity is
expected to be an increasing function of time.

To estimate stellar metallicities, we use the stellar evolution tracks of Bertelli
et al. (2008, 2009) for Pop I and Pop II stars, and those of Marigo et al. (2001)
for Pop III stars to calculate the fraction of the star particle that resides on the
RGB at a given time. We then weigh the metallicity of the star particle with
that fraction to calculate an average [Fe/H] value. This method is biased towards
older star particles, as they have a larger mass fraction of RGB stars.

A peculiarity from Kirby et al. (2013) is their definition of the average metal-
licity of a galaxy, as they define this is as the averaged [Fe/H] value for the
observed RGB stars in that galaxy, 〈[Fe/H]RGB〉. As the [Fe/H] value is the
logarithm of the metal mass, it would be more meaningful to average the metal
masses and calculate a [Fe/H] value from this average, [〈Fe/H〉]RGB. Both ap-
proaches are illustrated in Fig. 6.10, and compared with the average luminosity
weighted metallicity of the star particles, [〈Fe/H〉]lum. The method of Kirby
et al. (2013) clearly underestimates the metallicity, so that it is important to use
a similar definition when comparing our simulations with their data.

From Fig. 6.11 it is then clear that the simulated galaxies have significantly
lower metallicities than observed. This is a clear indication of the large initial
star formation peak, as the stars that formed during this peak will have low
metallicities. The only way to increase the metallicity would be an increase of
the star formation at later times. However, since the simulations already form
too many stars, this is only possible if we also drastically reduce the initial star
formation peak.
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Figure 6.10: The RGB weighted metallicity as a function of the
luminosity weighted metallicity for our simulations. Top: aver-
aged [Fe/H] value, as used by Kirby et al. (2013), bottom: [Fe/H]
value of the averaged metallicity. The dashed line represents a
1:1 relation, the different symbols represent the different models
from Table 6.1.

6.4 Results

In the previous section, we showed general properties of all our simulations. It is
clear that all simulations behave well for some properties, like the global scaling
relations. However, we also showed that all simulations have metallicities that are
too low compared with observations, and lie above the observed BTFR. In this
section, we focus on the individual models, and discuss the effect of the variation
of a single model parameter on the properties of the simulations. We begin by
quantifying the influence of stochastic effects and resolution.

6.4.1 Stochastic effects

As mentioned in Chapter 2, sampling a density distribution with a finite number
of particles will always lead to Poisson noise. This noise can be reduced by
using special techniques, but it can never be completely eliminated. There will
hence always be small density fluctuations in the initial setup of the simulations,
both in the DM and in the gas component. As these components are evolved
under the force of gravity, the small random overdensities might grow into larger
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Figure 6.11: The averaged [Fe/H] value as a function of the V
band luminosity. The stars are the observations from Kirby et al.
(2013), the different symbols correspond to the different models
from Table 6.1.
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Figure 6.12: SFR for two simulations using exactly the same
model, but with differently sampled initial conditions.
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Figure 6.13: BTFR for the models C1P1 and C1P1bis. The
stars and full line are the observations from McGaugh & Wolf
(2010) and McGaugh (2012) and the fit from McGaugh (2012).
The dashed lines are the least squares fits to all simulations.
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Figure 6.14: Relative difference in neutral gas mass for the
models using differently sampled initial conditions.

overdensities that will grow out to be the first star forming regions. Since the
sampling noise is different when a different set of particles is used to represent
the same density distribution, the initial star forming regions for the same model
can hence be different if a differently sampled initial condition is used.

It is important to know how large this effect of stochastic differences is, be-
cause it means that some of the differences that we would otherwise attribute to
the difference in model parameters could well be due to stochastic effects. We
already eliminated these effects where possible by using the exact same initial con-
ditions when comparing different models, but we cannot eliminate these effects
when comparing two simulations with different resolutions, as for the convergence
test below.

Fig. 6.12 shows the SFR for simulations C1P1M9R10L and C1P1bisM9R10L,
which use exactly the same model, but differently sampled initial conditions. The
stochastic differences lead to small differences in SFR, but the overall form of the
curve, with a large initial peak and low level subsequent star formation, is the
same.

The simulations of model C1P1 and C1P1bis trace out very similar BTFRs,
as can be seen from Fig. 6.13. There is some difference in circular velocities in
the top panel for the matching simulations, which is a good indication of the
noise on the circular velocity estimates. Both models are in excellent agreement
on the bottom panel, except for simulations C1P1M3R05L and C1P1bisM3R05L,
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Figure 6.15: SFR for two simulations using the same model,
but different resolutions.

which have very different baryonic masses. It turns out that for these simulations,
model C1P1 has a significant higher neutral gas content than C1P1bis. Both have
a stellar circular velocity of ∼ 30 km s−1, which is close to the transition from
gas-rich to gas-poor. As is illustrated in Fig. 6.14, there is generally a larger
difference in neutral gas mass between the two models in this baryonic mass
range. This makes sense, as the galaxy will have lost most of its gas in this case,
and the remaining gas mass is largely determined by the details of the stellar
feedback, which is sensitive to stochastic differences.

6.4.2 Convergence

As was already illustrated in Chapter 2 and Chapter 3, numerical simulations
are more accurate when more resolution elements are used. However, we cannot
limitlessly increase the resolution of the simulations for two reasons. The first
reason is of course the limitations of our computational resources. An increase
in resolution leads to a larger memory imprint, and more CPU time needed to
carry out the simulation. Since Gadget2 does not have particularly good strong
scaling properties (Gonnet, 2014), this inevitably leads to longer simulation times.

A second reason that we cannot increase the resolution below a particle mass
of ∼ 103 M⊙ is the limited validity of the sub-grid physics model. As discussed
in Chapter 5, we calculate the feedback values for the star particles by assuming
every star particle to represent an SSP. However, this approach is only valid if
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Figure 6.16: Cumulative SFR for the M3 simulations of model
C3P2.

the SSP is massive enough to represent a statistically significant population with
statistical properties. When less massive SSPs are used, the number of massive
stars in the SSP becomes too small, so that a real population with that mass will
either contain only a few massive stars, or will not contain massive stars at all.
It is clear that this will significantly affect the feedback of the SSP. For our least
massive halo model, this effectively limits the maximal resolution to 200,000 gas
particles.

Even simulations with 200,000 gas particles (and the same number of DM
particles) are already computationally expensive, so that we prefer to run lower
resolution simulations containing only 50,000 particles of every type. We investig-
ate whether these low resolution simulations have enough resolution to reproduce
the same behaviour that is found in the corresponding high resolution simula-
tion by running two models, C1P1 and C3P2, with both low resolution and high
resolution.

Fig. 6.17 shows the BTFR for model C1P1 (the BTFR for C3P2 is very similar
and is not shown, see Vandenbroucke et al. (2016). The BTFR is very similar
to that in Fig. 6.13: the top panel shows significant scatter, while the bottom
panel is in much better agreement. The low circular velocity simulations have
less converged neutral gas masses, as can also be seen from Fig. 6.18. Since this
effect is similar to the stochastic effects discussed above, this is likely due to
the inevitable stochastic differences between the low and high resolution initial
conditions.
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Figure 6.17: BTFR for the simulations of model C1P1. The
stars and the full line represent the observations from McGaugh
& Wolf (2010) and McGaugh (2012) and the fit from McGaugh
(2012). The dashed lines represent the least squares fits to all
simulations.

199



Chapter 6. Constraining sub-grid physics

106 107 108 109

Mb (M⊙)

−2

−1

0

1

2

2
M

H
I
,
H
−
M

H
I
,
L

M
H
I
,
H
+
M

H
I
,
L

C1P1R00

C1P1R05

C1P1R10

C3P2R00

C3P2R05

C3P2R10

Figure 6.18: Relative difference in neutral gas mass between the
high resolution and low resolution simulations of models C1P1
and C3P2.

107 108 109 1010

Mb (M⊙)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

2
M

H
I
,
H
−
M

H
I
,
L

M
H
I
,
H
+
M

H
I
,
L

Figure 6.19: Relative difference in neutral gas mass between the
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Fig. 6.15 shows the SFR for simulations C1P1M9R10L and C1P1M9R10H.
Both curves have the same overall form, although the initial star formation peak
is a bit lower for the high resolution simulation. Fig. 6.16 shows the cumulative
SFR for the M3 simulations of model C3P2. The build up of stellar mass is
similar for the high and low resolution simulations, although there is a difference
in final stellar mass for the simulations with initial rotation, which have more
spread out initial star formation which is more sensitive to stochastic differences.

Fig. 6.19 shows the relative difference in neutral gas mass between simulations
M9R10L and M9R10H for all models (except models C1P1bis and CeP1). It is
clear that not all models are equally well converged, with convergence being best
for models with a large neutral gas mass. Since we are interested in producing
galaxies with large neutral gas masses, we hence conclude that the simulations
are enough converged for this purpose.

6.4.3 UV background

We already illustrated the effect of including a UVB on the SFR of the simulated
galaxies above. Here, we investigate the effect of the strength and timing of the
UVB on the simulations, by comparing models C1P1, C2P1 and C3P1. The
resulting BTFR is shown in Fig. 6.20.

The BTFR is clearly resilient against changes in both the timing and the
strength of the UVB. The former is easy to explain, as a change in the onset
from redshift 10.5 to redshift 7 corresponds to only a small shift in time. The
initial star formation peak in the simulations typically occurs around a redshift
of 7, so that the gas will only be dispersed and susceptible to UVB heating after
the UVB started, both for the early and late UVB.

The apparent independence of the UVB strength is less expected, and is due
to the non-linearity of the UVB heating. If the strength of the UVB decreases,
this will tilt the ionisation balance in the gas towards more neutral gas. A larger
fraction of neutral gas will absorb a larger fraction of the UVB energy, so that
the total heating energy absorbed from the UVB stays approximately the same.
To obtain a significant change in UVB heating, we have to decrease the strength
of the UVB by many orders of magnitude, far below what could be physically
explained, as we know that the Universe was completely reionized by redshift 6
(Becker et al., 2001).

6.4.4 Over-cooling

Before we can discuss the effect of different feedback strengths, we have to make
sure that the feedback we put into the ISM is effectively converted into kinetic
and thermal energy, and not just radiated away, an effect known as over-cooling.
We therefore ran one model, CeP1, without switching off cooling for gas particles
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Figure 6.20: The BTFR for models C1P1, C2P1 and C3P1.
The stars and full line represent the observations from McGaugh
& Wolf (2010) and McGaugh (2012) and fit from McGaugh
(2012). The dashed lines represent the least squares fits to all
simulations.
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Figure 6.21: BTFR for the CeP1 simulations. The stars and
full line represent the data of McGaugh & Wolf (2010) and
McGaugh (2012) and fit from McGaugh (2012). The dashed lines
are the least squares fits to all simulations.
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Figure 6.22: SFR for a simulation without adiabatic cooling
period.

that received SW and SNII feedback. A typical SFR for one of these models is
shown in Fig. 6.22. It is immediately clear that the initial star formation peak in
this case is significantly stronger than for the other simulations. This indicates
that the feedback from the initial star formation is indeed very ineffective.

The resulting BTFR, shown in Fig. 6.21 strongly deviates from the BTFR
for the other simulations, forming way too many stars and having a stronger
gravitational potential. We hence conclude that over-cooling also causes a strong
initial star formation peak, but that it is significantly stronger than what is found
for the other simulations. By switching off radiative cooling for gas particles that
receive feedback, we make sure the feedback energy effectively ends up in the
gas, so that we can play with the feedback strength parameter to quantify the
influence of the feedback energy.

6.4.5 Stellar feedback efficiency

As already discusses in Chapter 5, increasing the stellar feedback efficiency also
mimics the effect of lowering the star formation efficiency, as the stellar feedback
efficiency and star formation efficiency are linked. At the current resolution, we
cannot a priori predict values for both of these parameters, so that we have to
treat at least one of them as a real model parameter.

Fig. 6.24 shows the BTFR for the models C3P1, C3P2 and C3P3, which
have different feedback strengths. Model C3P3 is completely absent from the
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Figure 6.23: Relative difference in neutral gas mass between
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top panel, since none of these simulations had enough neutral gas to estimate
a circular velocity. From the bottom panel, we see that an increasing feedback
strength leads to a lower stellar mass and circular velocity, but in line with the
observed relation.

From Fig. 6.23, we see that increasing the feedback strength not necessarily
leads to a lower final neutral gas mass, but affects the cutoff halo mass at which
a galaxy loses its neutral gas completely, to the extent that the model with the
highest feedback strength loses all its gas for all simulations. A higher feedback
energy clearly helps to reduce the number of stars formed, but also affects the
neutral gas. The entire SFR is suppressed, but the relative difference between
the initial star formation peak and the subsequent star formation is not lowered.

A lower feedback strength would lead to more neutral gas, but would also
lead to more stellar mass, while the stellar masses are already too high.

6.4.6 Pop III feedback

Until now, we only played with the parameters of the old dwarf galaxy model used
by Valcke et al. (2008), but then with a UVB. We showed that the parameters
setting the timing and strength of the UVB do not influence the simulations
significantly, while tuning the stellar feedback strength does not resort in the

205



Chapter 6. Constraining sub-grid physics

vc,gas (km s−1)
105

106

107

108

109

1010

M
b

(M
⊙

)

C3P1R00L

C3P1R05L

C3P1R10L

C3P2R00L

C3P2R05L

C3P2R10L

C3P3R00L

C3P3R05L

C3P3R10L

100 101 102

vc,stars (km s−1)

102

103

104

105

106

107

108

109

1010

M
b

(M
⊙

)

Figure 6.24: BTFR for the C3P1, C3P2 and C3P3 models.
The stars and full line represent the data from McGaugh & Wolf
(2010) and McGaugh (2012) and fit from McGaugh (2012). The
dashed lines are the least squares fits to all simulations.
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Figure 6.25: The latest formation time of a Pop III star as a
function of the final stellar mass of the simulation. The different
symbols correspond to the different models in Table 6.1.

desired suppression of the initial star formation peak.

What we would actually like to do, is play with the timing of the stellar
feedback, since a time dependence of the SW and SNII feedback would potentially
allow us to reduce the initial star formation peak, without affecting subsequent
star formation. This could be achieved by having a higher feedback strength
early in the simulation, which then decreases to the normal level later on.

In Chapter 5, we introduced Pop III stars and showed that they have prop-
erties that differ significantly from that of Pop I and Pop II stars. Since they
are formed out of primordial, unenriched gas, we expect them to be only formed
early on in the simulation, so that Pop III feedback is potentially limited to the
beginning of the simulation. This is confirmed by Fig. 6.25, which shows the
latest formation time of a Pop III star in our simulations as a function of the
stellar mass of the galaxy. Most galaxies form the last Pop III star before 2 Gyr in
the simulation, with the bulk of Pop III stars being formed during an even earlier
star formation peak. The trend that can be observed in this figure indicates that
galaxies which form little stellar mass likely only formed Pop III stars.

Below, we discuss the different Pop III feedback models that were introduced
in Chapter 5.
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Figure 6.26: SFR for models C7P4 and C7P7.

Model 1

The first Pop III feedback model assumes only SN feedback and simply scales up
the feedback parameter for SNII feedback for stars with very low metallicities.
The different variants of the model depend on different assumed lower mass limits
for the Pop III stars, and different forms of the IMF.

Model 1a is characterised by a relatively long Pop III feedback interval. The
BTFR for models C7P4, C7P6 and C7P7 is shown in Fig. 6.27, together with
that of model C3P1, which has the same parameters but no Pop III feedback. It
is clear that model C7P6, which has the highest Pop III feedback energy, leads to
gas-poor galaxies that form very little stars. The other two models yield BTFRs
that are similar to that of the model without Pop III feedback.

At first sight then, Pop III feedback has very little effect on the simulations
if the feedback energy is reasonable. If we look at the SFR for the simulations in
Fig. 6.26 however, we see that an increase in Pop III feedback energy effectively
reduces the initial star formation peak, without affecting the subsequent star
formation, just as we wanted.

Model 1b has a much shorter Pop III feedback interval and comparable feed-
back energies. In this case, the reduction in initial star formation peak is even
more pronounced, as can be seen from Fig. 6.29. The BTFR in Fig. 6.28 now
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Figure 6.27: BTFR for models C7P4, C7P6 and C7P7, and
reference model C3P1. The stars and full line represent the data
from McGaugh & Wolf (2010) and McGaugh (2012) and fit from
McGaugh (2012). The dashed lines are the least squares fits to
all simulations.

209



Chapter 6. Constraining sub-grid physics

vc,gas (km s−1)
105

106

107

108

109

1010

M
b

(M
⊙

)

C9P8R10L C9P9R10L C3P1R10L

100 101 102

vc,stars (km s−1)

102

103

104

105

106

107

108

109

1010

M
b

(M
⊙

)
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Figure 6.29: The SFR for models C9P8 and C9P9.

indicates that the models with Pop III feedback form less stars than the models
without.

Model 2

A short Pop III feedback interval with a high feedback energy completely sup-
presses the initial star formation peak. However, the heavy lower limit on the
Pop III masses assumed for model 1b is not very realistic. We can obtain a very
similar effect by using a more realistic Pop III mass interval, and include the
effect of Pop III SW. As illustrated in Fig. 6.30, this does no longer completely
suppress the initial star formation peak, but still leads to a similar SFR. The
resulting BTFR (Fig. 6.31) is similar to that of model 1b.

Model 3

The previous Pop III models did not include a realistic chemical enrichment
model for Pop III feedback. As mentioned in Chapter 5, our 5D cooling, heating
and gas physics model crucially depends on the metal content of the ISM being
parametrized by two tracers, [Fe/H] and [Mg/Fe], which only makes sense if
there are two feedback mechanisms with different [Fe/H] and [Mg/Fe] outputs.
If we would give Pop III stars a different [Fe/H] and [Mg/Fe] output, this simple
model would break down. We therefore opted to scale down the SNII chemical
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Figure 6.30: SFR for models CaPa and CbPc.

enrichment values, so that Pop III return values are more realistic, but are still
proportional to the old model.

The resulting BTFR for this most advanced Pop III feedback model is shown
in Fig. 6.32. It is very similar to that of the other Pop III models. The top panel
even lies very close to the observed BTFR, although this could be a coincidence
due to the overall large error flags on the circular velocities derived from the gas.

6.5 Discussion

In this chapter, we ran a large parameter study to try to suppress the initial star
formation peak that kills our dwarf galaxy models in the presence of an ionising
UV background. We showed that this star formation peak is very resilient against
changes in the UVB itself, and that playing around with the feedback strength
of regular SW, SNII and SNIa feedback as in the models of Valcke et al. (2008)
does not help to suppress the star formation peak without at the same time
suppressing subsequent star formation.

We conclude that a viable way to suppress the initial star formation peak
is the inclusion of a new form of feedback, Pop III feedback, that introduces a
time dependence for the feedback strength. Although not yet observed, Pop III
stars are expected to have significantly different properties from regular Pop I
and Pop II stars, so that our Pop III feedback model has a well defined physical
meaning. We showed that the Pop III star particles are indeed only formed early
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Figure 6.31: BTFR for models CaPa and CbPc, and reference
model C3P1. The stars and full line are the data from McGaugh
& Wolf (2010) and McGaugh (2012) and the fit from McGaugh
(2012). The dashed lines are the least squares fits to all simula-
tions.
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Figure 6.32: BTFR for model CcPd and reference model C3P1.
The stars and full line represent the data from McGaugh & Wolf
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The dashed lines are the least squares fits to all simulations.
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in the simulation, so that they effectively give rise to a different feedback strength
during the initial star formation peak, while the feedback during subsequent star
formation is unaffected. We showed that this model helps reducing the initial
star formation peak, as desired.

We compared our simulations with the observed BTFR of McGaugh & Wolf
(2010) and McGaugh (2012) by constructing mock observations of the simulated
galaxies, that resemble the real observations as closely as possible. We compared
the mock observational quantities with the true values from the simulations, and
conclude that some quantities, like the stellar mass, are recovered reasonably
well by using observational tracers. Other quantities, like the circular velocity,
are harder to estimate observationally, especially if neutral gas is used as a tracer.
As a result, we found a better agreement between the simulations and the BTFR
of McGaugh & Wolf (2010), which uses the stellar velocity dispersion as a circular
velocity tracer.

Even with Pop III feedback, our models form too many stars and have too
little neutral gas, which is probably caused by neglecting the effect of cosmic
gas accretion in the simulations of isolated galaxies. By using a merger tree
to simulate the effect of a hierarchical growth of the halo, these problems are
overcome (Verbeke et al., 2015).
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7
Future research

W
ith the model described in Chapter 5 and tested in Chapter 6, we
can simulate dwarf galaxies that have the same properties as observed
late-type dwarf irregular galaxies (Verbeke et al., 2015). Although our

models still carry a lot of assumptions, and have a number of free parameters
that need to be fixed, we are clearly starting to get a grasp of the processes that
regulate the formation and evolution of these galaxies. The model is hence mature
enough to tackle more complex questions, like the transformation of late-type into
early-type dwarf galaxies by environmental effects, mentioned in Chapter 1.

Of course, to tackle this question, we also need a reliable hydrodynamical
solver. In Chapter 3, we introduced two Lagrangian methods that are promising
candidates to replace the SPH scheme on which our current model is based: the
moving mesh scheme and the mesh-free method. During the work that led to
this thesis, significant progress has been made in developing codes that imple-
ment these methods, both by the development of our own moving mesh code
Shadowfax (see Chapter 4), and by collaboration on the development of the
SPH/mesh-free code swift. Developing a code for astrophysical simulations how-
ever has become more work than fits in a single PhD; some effort is still required
to port the sub-grid model of Chapter 5 to these codes.

Apart from these obvious subjects, the work in this thesis also opens up
more exotic possibilities. With the development of arepo and gizmo, a grow-
ing interest has risen in the astrophysical community to include magnetic fields
in a more broad range of simulations (Pakmor et al., 2011; Hopkins & Raives,
2016), like cosmological simulations (Marinacci et al., 2015; Marinacci & Vogels-
berger, 2016) and simulations of galaxy formation and evolution (Pakmor et al.,
2014). These magnetic fields are believed to become important on smaller scales,
regulating small-scale turbulence in fragmenting clouds and hence affecting star
formation (Seifried & Walch, 2015). On the other hand, these fields are less
constrained by observations, so that it is currently unclear whether they play
an important role. If we would expand Shadowfax with an MHD implementa-
tion, this would open up the exciting possibility to simulate dwarf galaxies with
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magnetic fields.
Another recent development in the astrophysical community is the coupling of

real time radiative transfer and hydrodynamics, whereby the transport of ionising
photons in the fluid is resolved by integrating the local radiation field (Skinner
& Ostriker, 2013; Kolb et al., 2013; Rosdahl et al., 2013; Ramsey & Dullemond,
2015; Roth & Kasen, 2015). This problem is incredibly complex and requires an
enormous amount of computing power, but solving it is crucial for a thorough
understanding of reionization and the effect of the UV background on galaxy
formation. With the growing use of hybrid codes that use both CPU and GPU
power in parallel, radiation hydrodynamics is starting to become a reality. Grid-
based codes like Shadowfax are more easy to couple to a radiative transfer
scheme, so there lies another possible future challenge.

On a science level, a number of interesting questions about dwarf galaxies
are waiting to be answered, like the too big to fail and cusp to core problems
mentioned in Chapter 1. For a thorough solution of these problems, we need to
use full-fledged cosmological zoom simulations, to accurately resolve the effect of
cosmic gas accretion on the galaxies. The too big to fail problem furthermore
requires us to resolve dwarf galaxies that are satellites of Local Group analogues,
which can only be done in zoom simulations.

In this work, we have shown that it is not so straightforward to compare sim-
ulations and observations, and that some tensions between both can be alleviated
by probing the simulations using mock observables. This raises the question if
problems like the cusp to core problem and the too big to fail problem could be
caused by similar issues. Many of these problems originate from the comparison
of dark matter only simulations with observations. These observations necessar-
ily trace the dark matter using the movement of stars and gas, which requires
a model fit to estimate dark matter halo properties that can then be compared
with the simulations (Garrison-Kimmel et al., 2014). This approach likely suffers
from serious systematic uncertainties that affect the results. We would advocate
the use of simulations that include baryons, and that use the baryons from the
simulation to construct mock observations that are directly compared with the
real observations. This way, all model uncertainties are at least limited to the
model. However, the current generation of large scale simulations does not have
the resolution necessary for such an approach.

Using our model in a cosmological simulation would suffice to do this, but
requires simulations that are too computationally demanding for the current gen-
eration of high performance systems. Progress in these simulations will have to
be accompanied by progress in the algorithms that are used, whereby novel al-
gorithms should make more efficient use of highly parallel infrastructures. Codes
like swift provide a step in the right direction.

Exciting times lie ahead!
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A
Exact geometrical tests

A
s discussed in Chapter 2, we need exact geometrical tests during the incre-
mental Delaunay construction algorithm. In total, we need four tests: a
test to check the orientation of three points in 2D, a test to check whether

a point in 2D lies inside or outside the circle through three other points, and the
respective 3D equivalents of these tests.

Mathematically, these tests can be translated into finding the sign of the
following determinants (Shewchuk, 1997; Springel, 2010):

det orient2D(~a,~b,~c) =
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det orient3D(~a,~b,~c, ~d) =
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det incircle(~a,~b,~c, ~d) =
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det insphere(~a,~b,~c, ~d, ~e) =
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,

where ~a, ~b, ~c, ~d and ~e are the coordinates of points in 2D or 3D (with compon-

ents ax, ay and az, etc.). If the three input points for det orient2D(~a,~b,~c) are in
counterclockwise order around the center of the triangle they form (assuming a
right-handed Cartesian reference frame), the determinant is positive and we say
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the triangle is positively oriented. The determinant will be zero if the three points
are colinear.

Likewise, det orient3D(~a,~b,~c, ~d) will be positive if the point ~d is below the plane

through ~a, ~b and ~c, where above is defined as the direction from which the triangle
formed by the other three points is seen as counterclockwise. In this case, we call
the tetrahedron through the four points positively oriented. The determinant
will be zero if the four points are coplanar.

With these definitions of positive orientation, the other two determinants will
be positive if the last input point is inside the circumcircle or circumsphere of the
positively oriented triangle or tetrahedron formed by the other points, negative
if it is outside, and zero if the four points are cocircular or the five points are
cospherical.

Calculating the sign of these determinants requires only three basic arith-
metic operations: addition, subtraction and multiplication. All three operations
have the pleasant property that it is possible to predict, for a given precision of
input parameters, what precision is needed to exactly store the end result. It is
hence possible to carry out these operations without any round off error, provided
enough precision is used. This is not possible for e.g. a division, where the result
can be unbounded and it is impossible to predict what precision is necessary to
store the end result exactly or if this is even possible. In this appendix, we will
discuss how we can exploit this fact to exactly calculate the determinants, or at
least to exactly determine the sign they will have.

Note that this does not overcome problems associated with the round off of
converting values from a decimal system to a binary system. Suppose we want to
use the 2D orientation test on the specific set of points ~a = (0, 0), ~b = (0.4, 1.2)
and ~c = (0.5, 1.5). These points are colinear, so the answer should be zero.
However, 0.4 and 1.2 cannot be represented exactly in a binary floating point
format. In double precision, they are represented as

0.4 ≈ 1.1001100110011001100110011001100110011001100110011010 × 10−10

1.2 ≈ 1.0011001100110011001100110011001100110011001100110011 × 100,

where the expressions on the right use base 2 rather than base 10. Converting
these values back to base 10, we notice that the representation of 1.2 is slightly
smaller than 3 times the representation of 0.4, so that the point ~b will lie below
the line through ~a and ~c (which can be exactly represented). The triangle will
hence have positive orientation, and the determinant will be positive. This result
is exact on the computer, but it is still the wrong answer to the original problem.

However, this kind of problem is not relevant for the Delaunay construction
algorithm, since there we are only interested in exact tests for values that have
already been converted into a binary representation. Hence, the algorithms dis-
cussed below are sufficient for our purpose.
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A.1 Error bounds

When adding, subtracting, multiplying or dividing two floating point values, the
result will mathematically consist of two pieces:

A�B = X + Y,

where A and B are two floating points and � is one of the operations listed above
(+, −, × or /). X is the approximate floating point result of the operation (which
always has finite precision and can be exactly represented), while Y is the round
off error, i.e. the part of the result that cannot be expressed as a floating point
value and has to be added to the approximate result to obtain the true result of
the operation.

Following the IEEE standard, Y is bounded by a relative error factor, ǫ (Shew-
chuk, 1997):

|Y | ≤ ǫ|X |.

For a 64-bit floating point value, ǫ = 2−53.
When the result X is used as input for a next floating point operation, not

taking into account Y will induce a further error on the result. Suppose for
example we want to calculate det orient2D, given by

det orient2D = (ax − cx)(by − cy) − (ay − cy)(bx − cx)

Computationally, this operation boils down to four subtractions, followed by two
multiplications and a final subtraction. Each of these operations has a relative
error associated with it. Let us try to see what the effect of the accumulated
errors will be on the final result.

The first step in the calculation yields

det orient2D = [(ax − cx)′ ± ǫ|(ax − cx)′|][(by − cy)′ ± ǫ|(by − cy)′|]−

[(ay − cy)′ ± ǫ|(ay − cy)′|][(bx − cx)′ ± ǫ|(bx − cx)′|].

Here, we have denoted the approximate results of the subtractions by a ′, and we
have taken into account the fact that this result might be a factor ǫ too small or
too large.

The next step in the calculation are the multiplications needed to square the
results in between brackets:

det orient2D = [((ax − cx)(by − cy)) ′ ± 2ǫ |(ax − cx)′(by − cy)′|

± ǫ2 |(ax − cx)′(by − cy)′| ± ǫ | ((ax − cx)(by − cy)) ′| ]

− [((ay − cy)(bx − cx)) ′ ± 2ǫ |(ay − cy)′(bx − cx)′|

± ǫ2 |(ay − cy)′(bx − cx)′| ± ǫ | ((ay − cy)(bx − cx)) ′| ].
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Not all error bounds in this expression are useful, since some of them still contain
the individual factors. We can rewrite the entire expression in terms of the
approximate results of the multiplications, by making use of

|(ax − cx)′(by − cy)′| = | ((ax − cx)(by − cy)) ′| ± ǫ | ((ax − cx)(by − cy)) ′| .

This gives

det orient2D = [((ax − cx)(by − cy)) ′

± (3ǫ+ 3ǫ2 + ǫ3) | ((ax − cx)(by − cy)) ′| ]

− [((ay − cy)(bx − cx)) ′

± (3ǫ+ 3ǫ2 + ǫ3) | ((ay − cy)(bx − cx)) ′| ].

The final step in the calculation yields

det orient2D = (det orient2D)′ ± ǫ |(det orient2D)′|

± (3ǫ+ 3ǫ2 + ǫ3) ( | ((ax − cx)(by − cy)) ′| + | ((ay − cy)(bx − cx)) ′| ) .

It is clear that the approximate result (det orient2D)′ can be too large or too small
by a factor that could be considerably larger than ǫ. In fact, we can only be sure
that the sign of (det orient2D)′ is correct, if the following inequality holds:

(1 − ǫ) |(det orient2D)′| > (3ǫ+ 3ǫ2 + ǫ3) ( | ((ax − cx)(by − cy)) ′|

+ | ((ay − cy)(bx − cx)) ′| ) .

We still need to bring the factor 1 − ǫ to the other side of the inequality,
making sure that we do not underestimate the error bound. If we want to be
able to calculate the sum in between brackets, we also need to take into account
the round off due to this calculation. Finally, we need to round the total error
bound up to a number that can be expressed as a 64-bit floating point value.
This finally yields the following practical error bound (Shewchuk, 1997):

|(det orient2D)′| >
(

(3ǫ+ 16ǫ2) ( | ((ax − cx)(by − cy)) ′|

+ | ((ay − cy)(bx − cx)) ′| ) )
′
.

If this inequality holds, we are sure that the sign of the determinant will be
correct. Since the terms between brackets are intermediate results in the compu-
tation, calculating this error bound does not cause much overhead. Furthermore,
the factor 3ǫ+ 16ǫ2 can be precomputed once and then reused.

It is possible to compute similar error bounds for the other determinants
above. Having these, we can determine with absolute certainty if the resulting
sign of the determinant will be correct. If it is, we are done. If it is not, we will
need a way to do better than ordinary floating point arithmetics...
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A.2 Arbitrary precision arithmetics

From the previous section, we know that the result of addition, subtraction and
multiplication can be split into two parts: the approximate result obtained using
floating point arithmetics, and an error term containing the part of the result
that is lost due to round off error. It is actually possible to compute this second
term using floating point arithmetics.

For an addition, the true result can never contain more information than
fits in two floating point values, since in the worst case we add the largest and
the smallest possible floating point value and we end up with the approximate
result being the largest one and the error term being the smallest one. For all
other additions, the extra floating point value containing the error bound can be
calculated from (Shewchuk, 1997)

ǫa+b = (b − ((a+ b)′ − a)′)′,

where every ′ represents a floating point operation with round off. Apart from
this, there are also cases where the error term ǫa+b is exactly zero (e.g. when
|a+ b| ≤ |a| and |a+ b| ≤ |b|).

For subtraction and multiplication, similar results hold and it is also possible
to calculate a single floating point error term. It is hence possible to perform all
of these operations exactly, by explicitly keeping track of the single floating point
error term.

However, to obtain an exact result for the determinants, we need to do better
than this, since we also need to be able to do further computations with these
composite exact floating point results. We therefore define a notion of expansion
sum, which is the expansion of a floating point value in non-overlapping floating
point terms, so that the first term is the result rounded to double precision, and
all extra terms are error terms of different order (in fact, this is what we mean by
non-overlapping; we will not go into the mathematical definition of this term).
Exact arithmetics is then just a matter of defining exact addition, subtraction and
multiplication on these expansion sum representations of floating point numbers.
This is far from trivial, and we will not discuss it in detail (see Shewchuk, 1997).

It might be clear from the above that exact arithmetics comes with a cost:
since we need to keep track of a significant number of extra floating point terms
during all operations, the calculation of the determinants will take a lot longer.
Since the geometrical tests are at the core of the Delaunay construction algorithm,
this will have a significant impact on the total runtime of this algorithm.

Since we do not want to waste resources on exact arithmetics when it is
unnecessary, we will use arbitrary precision arithmetics instead: rather than using
exact arithmetics everywhere, we will first use standard floating point arithmetics
to obtain the error bounds that will tell us if the sign of the determinant is correct.
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In the rare cases that round off error does indeed affect the result, we will use exact
arithmetics for the first operations in the calculation to obtain a slightly more
precise result, and again determine the error bounds. We repeat this until the
result is precise enough to be sure about the sign of the determinant. In the worst
case scenario, we will need to use exact arithmetics for the entire computation,
but this will very rarely happen. This then justifies the computational overhead
of calculating the error bounds.

A first version of Shadowfax used this approach by means of the predicates
provided by Shewchuk (1997)1. It was discovered however that this did not work
on all systems. The reason for this is that we need to be absolutely sure that the
intermediate results are stored as 64-bit floating point values for the error term
calculations to work. However, as already mentioned in Chapter 2, most modern
architectures try to do better than this and store the intermediate results on the
CPU as a 80-bit floating point. If result and error term are computed sequentially,
then the result used in the error term calculation will have too much precision,
and the error term will be wrong. This wrong error term will then propagate
through the consecutive operations to yield a wrong final result. There are ways
to overcome this problem, by forcing the system to write out the intermediate
results to memory before using them in consecutive operations, but this inevitably
leads to a slow down of the computations. Furthermore, this is not guaranteed
to work on all systems.

To make the code more robust, we hence need to implement yet another
method to perform exact geometrical tests. This method is discussed next.

A.3 Mapped integer arithmetics

Recall from Chapter 2 that a 64-bit floating point consists of two parts: a 53-
bit mantissa, holding the sign and a fixed precision floating point value, and an
11-bit exponent. Without the exponent, the mantissas map out a much smaller
range of possible values, that is formally equal to that of the 53-bit integers. It is
the combination of mantissa and exponent that expands this small range to the
enormous numerical dynamical range of the floating point values.

But it is also the combination of exponent and mantissa that causes much of
the trouble encountered above. If floating point values would map out a similar
range as the integer values, then only two types of round off error would be
possible: an overflow when a value is larger than the maximal allowed value,
and a real round off when the absolute value of a value is smaller than zero and
becomes just zero. The latter can only occur when divisions are included in the
possible set of operations, which is not the case here. All problems with round

1http://www.cs.cmu.edu/quake/robust.html
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off can hence be solved very easily by increasing the number of bits of the values
involved: a single bit for an addition or subtraction (since the result can never
be larger than two times the maximal allowed value), and twice as many bits
for multiplication (since we should be able to store the maximal allowed value
squared).

Combined with an exponent, we still have both types of round off error, but
now not only at the extreme values of the range of possible values, but also
everywhere in between. If we add two floating point values, then we need to
convert them to a common exponent first. Since overflow results in an unbounded
error, this has to be the largest exponent of the two, so we will have round off
in the mantissa of the smallest. We could still solve this by using more bits, but
now it is not clear how many bits this should be, since this depends on the values
of the exponents.

To be able to use the much simpler approach of just increasing the number of
bits to get more precision, we thus need to get rid of the exponent. In practice,
this means that we will extract the mantissa from the floating point values and
convert it to a 53-bit (or standard 64-bit) integer (this can be done by multiplying
the floating point value with an appropriate integer value and storing the result
as an integer). However, to be sure that this indeed maps out a continuous range
of values, we of course need to make sure that all exponents are the same.

We do not only need all exponents for the floating point inputs to one of the
tests to be the same, but also that of all other possible inputs to all other possible
tests. The reason for this is the same as the reason we want to use exact tests
in the first place: consistency. Suppose we would allow generator coordinates
to have arbitrary floating point exponents, and that we would convert these to
some common exponent if the coordinates are used in a test. Then it is possible
that the same coordinates will be converted differently when used as input for
another test (combined with other coordinates with possible other exponents).
This could mean that the extracted integer mantissa is different for one test than
it is for another, which could cause inconsistent test results, which would then
lead to a deadlock of the algorithm, which is what we try to avoid.

We hence need all coordinates to have the same floating point exponents.
This can be realised by only using coordinates in the range [1, 2], since all of
these numbers will have an exponent zero. The corresponding mantissas will
then also all lie in the continuous range [1, 2] and map precisely to the range
of 52-bit integers (since they all have the same sign) (Springel, 2010). This
conversion might seem to limit the dynamical range of the tessellations that
is being constructed, or worse, that of the generators that generate it. This is
however not a problem if we only do it for the coordinates that are used during the
mesh construction, since they need not have the same precision as the coordinates
that are integrated in time. We hence will always store two coordinates for active
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generators: their actual physical double precision coordinates, and the mesh
generating coordinates in the range [1, 2] that have less precision and that are
obtained from the former by mapping the entire simulation box to the unit cube
with sides [1, 2].

We could of course also store the 53-bit mantissas of these coordinates instead,
since they are what we actually use in the calculations. Just as with the arbitrary
precision arithmetics, performing the exact calculations is however not always
necessary and is quite computationally expensive. We will therefore use the
same technique that was introduced there and first compute approximate results
and error bounds. Only in the rare cases that the results are not guaranteed
to have the correct sign, we will map the mantissas to integers and perform
exact arithmetics. Note however that we will use the mapped coordinates in the
range [1, 2] for all tests, since otherwise we would again introduce inconsistencies
between the treatment of the normal inexact tests, and the special more exact
tests.

We have now shown that we can indeed perform exact arithmetics in a ma-
chine and architecture independent way by mapping floating point values to in-
tegers. We are left with the trivial task of determining the size integers should
have to indeed be sure that the results are exact. Recall from above that for
addition, subtraction and multiplication, the only possible round off error for in-
tegers is an overflow. We hence need to make sure the integers are large enough
to store the largest possible result of the combination of these operations that
constitutes the computation.

For det orient2D, given by

det orient2D = (ax − cx)(by − cy) − (ay − cy)(bx − cx),

we find that the subtractions in between brackets can always be stored in a 54-bit
integer, since the sum of two 53-bit integers can never be larger than 254. The
multiplications of two 54-bit integers can never be larger than 108 bits, and the
subtraction of two 108-bit integers can never be larger than 109 bits. 109-bit
integers are hence enough for this computation.

Similarly, we find that det orient3D requires at most 165 bits, det incircle can be
calculated using 220 bits, and det insphere will never be larger than 277 bits.

All of these numbers are larger than the standard 64-bit integer type, so that
we need to use a software library to perform the arithmetics. Springel (2010)
uses the GMP library2, which has no predefined precision. Since we know what
precision we need, we will resort to the Boost.Multiprecision library3, which
allows us to define new integer types with these precisions (although timing results

2https://gmplib.org/
3http://www.boost.org/doc/libs/release/libs/multiprecision/doc/html/index.html
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suggest that it is better to use somewhat larger power of two precisions in some
of the cases).
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B
Mesh evolution algorithm

I
n Chapter 2, we introduced a Voronoi mesh evolution algorithm. In this
appendix, we will detail the implementation of this algorithm in the moving
mesh code Shadowfax. This algorithm is not part of the current public

version of Shadowfax, but will be part of a future release.

B.1 2D

The 2D adaptive Voronoi mesh is abstracted into a single class, that takes a valid
already constructed Voronoi mesh (constructed using e.g. the technique discussed
in Chapter 2) as input at construction. The information contained in this mesh
is first translated into a more efficient structure for the evolution algorithm. At
the end of this step, a valid adaptive Voronoi mesh is available and its properties
can be queried.

During the remainder of the simulation, the mesh can be in two states: either
it is still valid, or the generators have been moved and the mesh is not yet
adapted to this situation and has become invalid. The mesh will then still contain
information, but will no longer contain a valid Voronoi mesh that can be queried.

B.1.1 Structure

The information stored in the mesh consists of two aspects: the connectivity in-
formation, that tells us which cells or generators are neighbours of each other, and
the actual mesh, that consists of the vertices of the cells and yields cell volumes
and centroids, and interface areas and midpoints. The mesh itself strongly de-
pends on the connectivity and the actual positions of the mesh generators, and
will change whenever one of these changes. However, a change in generator posi-
tions does not necessarily induce a change in connectivity, so that we will evolve
the connectivity, rather than reconstruct it.

We will hence always store a connectivity for the mesh, but this connectivity
will not necessarily correspond to the specific connectivity that yields a valid
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Voronoi mesh. Only when it does, it makes sense to calculate an actual Voronoi
mesh. We will therefore only calculate the actual mesh when the connectivity is
valid.

Connectivity

The connectivity consists of the information about which generators are neigh-
bours. For efficient mesh construction, this information is stored on a per gen-
erator basis. With every cell generator, we associate an object of an adaptive
Voronoi cell class, that stores a list of references to the neighbouring cells. In our
specific implementation, these references are the indices of these cells in a general
list of all cells that is stored in the adaptive Voronoi mesh class, with special
values of the index flagging special neighbour types, like boundary neighbours,
that are necessary to represent reflective boundary conditions.

The neighbours for a cell are furthermore ordered counterclockwise with re-
spect to the generator of the cell. This way, we can very easily determine which
neighbours of a cell are also mutual neighbours, which will be of great help during
the mesh restoration step.

Mesh construction

To construct the actual Voronoi mesh from a valid connectivity, we traverse the
list of neighbouring generators for every cell, and calculate the midpoints of the
circumcircles through the cell generator and two consecutive neighbours from the
list (with the last element of the list being combined with the first to make the cell
complete). These midpoints then correspond to the vertices of the cell, and due to
the counterclockwise ordering of the generators, they are also in counterclockwise
order. This ordering allows for a very efficient calculation of the cell volume (the
2D face area) and centroid, as described in Chapter 2. Calculating face areas
(line segment sizes) and midpoints is trivial in 2D.

B.1.2 Mesh restoration

When the positions of the generators of the mesh change, we have to signal
this to the adaptive mesh by calling an appropriate method of the object, and
passing on the new positions to this method. To allow for an easy identification
of the new coordinates and the corresponding generator, we use the same unique
identifier that is associated with the generator when it is added to the standard
Voronoi mesh from which the adaptive mesh is constructed. This is also the same
identifier that is used to access cell properties later on.

In parallel simulations, the change in generator positions can trigger a re-
decomposition of the domain, during which generators move from one process
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to another. We have to account for this by moving the corresponding cells and
adjusting the necessary neighbour relations.

After the positions have been updated, the adaptive mesh is no longer valid,
and cell properties can no longer be queried. To make it valid again, we have to
restore the mesh. This is done by adding all cells that are affected by the new
positions to a queue for checking. The cells in this queue are then traversed one
by one. For every cell, we subject triples of neighbours to the incircle test: if
D is the cell generator, and A, C and B are its neighbours (in counterclockwise
order), then we check if B is in the circumcircle through D, A and C. If it is not,
the triple ACB is valid, and we move on. If it is not, we have detected a face
flip, and have to carry it out. This will change neighbour relations for the four
cells, so that we will need to repeat the checks for these cells. If all triples are
valid, the entire cell is valid, and can be removed from the queue. It can however
always be added to the queue again later on, if a face flip is detected and handled
in one of its neighbours.

Face flip

Suppose a face flip is detected in the triple neighbours ACB of the cell generated
by D (see Fig. 2.14). Before the face flip is carried out, the relevant parts of the
neighbour lists of the different cells are

D: ... - A - C - B - ...
A: ... - C - D - ...
C: ... - B - D - A - ...
B: ... - D - C - ...

The face flip signals the invalidation of the neighbour relation between C and D,
and the creation of a new neighbour relation between A and B. After the face
flip, the neighbour lists for the different cells are

D: ... - A - B - ...
A: ... - C - B - D - ...
C: ... - B - A - ...
B: ... - D - A - C - ...

This means the following operations need to be carried out:

• Insertion of a new neighbour B in between neighbours C and D for cell A

• Insertion of a new neighbour A in between neighbours D and C for cell B

• Removal of neighbour C from the neighbour list of D

• Removal of neighbour D from the neighbour list of C
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Boundaries

In Chapter 2, we mentioned that a Voronoi mesh is always enclosed within a
box. This is necessary, since otherwise cells at the boundaries of the volume
would have infinite volumes. In general, two types of boxes are used: reflective
boxes, whereby the cells are cut off at the boundaries of the box, and one or
more faces of the cell coincide with these boundaries, and periodic boxes, whereby
points outside the box are replicated at the other side of the box, and cells at the
boundaries of the box still have irregular shapes. Both are illustrated in Fig. B.1.

To construct a Voronoi mesh inside a box, we have to add boundary ghosts:
extra generators that represent copies of generators inside the box. The faces
between internal generators and these boundary ghosts will then trace out the
boundary of the box. For both types of boxes, this ensures that the sum of all
cell volumes equals the volume of the box.

In the classical incremental construction algorithm of Chapter 2, these bound-
ary ghosts are treated as normal generators, that are inserted at the end of the
incremental Delaunay construction algorithm (Springel, 2010). For the mesh
evolution algorithm, we have to be a bit more careful, since we need to keep
track of these ghosts in between two valid states of the adaptive mesh. If we
adapt the position of a generator in between valid states of the mesh, we also
have to update the positions of the ghosts that depend on this generator. We use
different approaches for periodic and reflective boundaries.

Periodic ghost generators are nothing else than ordinary generators that have
been translated. They behave exactly as normal generators; the only difference is
that we need to adapt their coordinates to account for this translation whenever
coordinates are required. To this end, we keep track of a second list for all cells,
that associates a wall key to every neighbour of the cell. The wall key can be
either zero, in which case we have a normal neighbour, or it can be a negative
integer, in which case the neighbour is translated to the relevant periodic copy
of the box (see Fig. B.2).

When a generator moves outside the periodic box through a wall, its coordin-
ates are changed to those of the periodic copy that lies inside the box. This
also means we need to change the wall key for all neighbouring generators. It is
straightforward to precalculate movement tables that give the new wall key for a
neighbour with a given old wall key after a movement through a wall with given
key. Likewise, we can precalculate tables that give the wall key for a newly added
neighbour during the face flip.

Reflective ghosts are ghost copies of the generator itself, by mirroring the
generator coordinates with respect to a wall or corner of the box. Like in the
case of periodic boundaries, we can assign a wall key to each reflective ghost.
Reflective ghosts can however not be treated as normal generators, since then we
would end up with particles that are neighbours of themselves. We hence need to
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Figure B.1: Ghost generators are used to represent the boundar-
ies of the box. Top: mirror copies of generators generate reflect-
ive boundaries, bottom: periodic copies of generators generate
periodic boundaries.
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Figure B.2: Wall keys for the 2D evolution algorithm.

treat them on a different level throughout the algorithm. We therefore define a
new type of ghost generator, that can be a neighbour of a normal generator, but
that itself does not have neighbours, but only stores a reference to the generator of
which it is a mirror copy, and the wall key of the appropriate mirroring boundary.
After the positions of the original generators have been updated, the positions of
the associated mirror copies are updated as well.

The presence of mirror copies adds extra complexity to the face flip algorithm,
as cells at the boundaries will regularly contain faces of zero length caused by
degenerate generator configurations. Normally, a cell will only have ghost neigh-
bours that are mirror copies of the cell generator itself. But due to round off
error, the order four vertex at the boundary of the box between the cell gener-
ator, its mirror copy, a neighbouring cell and the neighbour’s mirror copy can be
split into two order three vertices that are very close together (Fig. B.3). If the
cell generator moves away from the boundary, we have to make sure all ghost
neighbours are removed, not only the mirrors of the cell generator itself.

If a cell touches the border, we need to add new ghost generators; this also
requires some extra bookkeeping.
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Figure B.3: Due to round off error, cells at the reflective bound-
ary can have ghost neighbours that are not a mirror copy of the
cell generator.

B.2 3D

The 3D adaptive Voronoi mesh is also contained in a single class, and can be
either valid or invalid. Externally, the object behaves exactly like the 2D adaptive
Voronoi mesh, but internally it works a bit differently, since we cannot update
the generator positions all at once, like in the 3D case (see Chapter 2).

B.2.1 Structure

As in 2D, we create a cell object that holds a list of neighbours for every generator.
However, this list is not enough to be able to construct the vertices of the Voronoi
cell, since every vertex is now determined by four generators. For this reason, we
defined a new type of neighbour, a face neighbour. For every normal neighbour of
the cell, we also store a list of face neighbours that trace out the face between the
cell and that neighbour. The list of face neighbours is ordered counterclockwise
with respect to the vector pointing from the cell generator to the neighbouring
generator, so that the vertices of the face are given by calculating the midpoint
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of the sphere through the cell generator, the neighbour and two consecutive face
neighbours in the list. Every face neighbour is also a normal neighbour of the
cell, and the faces corresponding to them are the neighbouring faces of the face
they trace out.

B.2.2 Mesh restoration

As mentioned in Chapter 2, there are three distinct cases of mesh deviations
that can occur after a small movement of a cell generator, with each their own
restoration operation. These three cases mimic the three operations that can
be encountered during the validity check of newly created tetrahedra during the
incremental Delaunay construction algorithm. The first two involve five distinct
generators and correspond to the creation or removal of a new face. The last one
is a degenerate case that involves six distinct generators and flips a face.

Face creation

Fig. 2.16 illustrates what happens when generator E enters the circumsphere
through cell generator A, cell neighbour B, and face neighbour C and D. The
edge of the face consisting of the midpoint of the sphere through ABCD and the
midpoint of the sphere through ABED flips (and the same edge also flips in the
face between A and D, and between B and D). This edge flip can be restored by
inserting a new face between C and E.

Before the restoration, the relevant parts of the face neighbour lists are given
by

A: B: ... - E - D - C - ...
C: ... - B - D - ...
D: ... - C - B - E - ...
E: ... - D - B - ...

B: A: ... - C - D - E - ...
C: ... - D - A - ...
D: ... - E - A - C - ...
E: ... - A - D - ...

C: A: ... - D - B - ...
B: ... - A - D - ...
D: ... - B - A - ...

D: A: ... - E - B - C - ...
B: ... - C - A - E - ...
C: ... -A - B - ...
E: ... - B - A - ...

E: A: ... - B - D - ...
B: ... - D - A - ...
D: ... - A - B - ...

After the restoration, this becomes

A: B: ... - E - C - ...
C: ... - B - E - D - ...
D: ... - C - E - ...
E: ... - D - C - B - ...

B: A: ... - C - E - ...
C: ... - D - E - A - ...
D: ... - E - C - ...
E: ... - A - C - D - ...
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C: A: ... - D - E - B - ...
B: ... - A - E - D - ...
D: ... - B - E - A - ...
E: A - D - B

D: A: ... - E - C - ...
B: ... - C - E - ...
C: ... - A - E - B - ...
E: ... - B - C - A - ...

E: A: ... - B - C - D - ...
B: ... - D - C - A - ...
C: A - B - D
D: ... - A - C - B - ...

The newly created face between C and E has only three face neighbours.
To restore the mesh, we hence need the following operations:

• Insertion of the new face in between C and E, with the face neighbours
given above

• Insertion of face neighbour E in the faces between A and C, B and C, and
C and D

• Insertion of face neighbour C in the faces between A and E, B and E, and
D and C

• Removal of face neighbour A in the face between B and D

• Removal of face neighbour B in the face between A and D

• Removal of face neighbour D in the face between A and B

The cell where the edge flip is detected automatically assumes the role of A,
while the neighbour associated with the face assumes the role of B. D is the face
neighbour that generates the flipped edge, and C and E are the face neighbours
before and after D in the face neighbour list.

Face removal

Face removal is the reverse process of face insertion, and it occurs when the face
between C and E that was created above flips: if one edge of this face flips, the
other two automatically also flips, so that the entire face flips.

To restore the mesh, we execute the operations from above in reverse:

• Removal of the face between C and E

• Removal of face neighbour E in the faces between A and C, B and C, and
C and D

• Removal of face neighbour C in the faces between A and E, B and E, and
D and C
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• Insertion of face neighbour A in the face between B and D

• Insertion of face neighbour B in the face between A and D

• Insertion of face neighbour D in the face between A and B

To find out which generator assumes which role in this case, we cannot simply
use any flipped edge. The flipping face will cause edge flips in the surrounding
faces as well, which could be misinterpreted as flagging a face creation. We
therefore first need to locate the face with only three face neighbours that flips
entirely. The generator of the cell with that face then assumes the role of C,
while the neighbour associated with the face assumes the role of E. A, B and D
are then the face neighbours of this face (actually ordered as ADB in the face
neighbour list for C).

Face flip

If two opposing edges flip in a face with only four edges (and only four face
neighbours), then this entire face is removed and replaced by a new face between
the generators that correspond to the flipped edges. This effectively corresponds
to the 3D equivalent of a 2D face flip.

We call the cell to which the flipping face belongs C, and its neighbour E
(analogous to the case above). The face neighbours corresponding to the flipped
edges (in between which the new face is created) are called A and B, while the
other two face neighbours are called D and F. The face neighbour lists before the
face flip are

A: C: ... - D - E - F - ...
D: ... - E - C - ...
E: ... - F - C - D - ...
F: ... - C - E - ...

B: C: ... - F - E - D - ...
D: ... - C - E - ...
E: ... - D - C - F - ...
F: ... - E - C - ...

C: A: ... - F - E - D - ...
B: ... - D - E - F - ...
D: ... - A - E - B - ...
E: A - F - B - D
F: ... - B - E - A - ...

D: A: ... - C - E - ...
B: ... - E - C - ...
C: ... - B - E - A - ...
E: ... - A - C - B - ...

E: A: ... - D - C - F - ...
B: ... - F - C - D - ...
C: D - B - F - A
D: ... - B - C - A - ...
F: ... - A - C - B - ...

F: A: ... - E - C - ...
B: ... - C - E - ...
C: ... -A - E - B - ...
E: ... - B - C - A - ...

After the face flip, the face neighbour lists have become
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A: B: C - D - E - F
C: ... - D - B - F - ...
D: ... - E - B - C - ...
E: ... - F - B - D - ...
F: ... - C - B - E - ...

B: A: F - E - D - C
C: ... - F - A - D - ...
D: ... - C - A - E - ...
E: ... - D - A - F - ...
F: ... - E - A - C - ...

C: A: ... - F - B - D - ...
B: ... - D - A - F - ...
D: ... - A - B - ...
F: ... - B - A - ...

D: A: ... - C- B - E - ...
B: ... - E - A - C - ...
C: ... - B - A - ...
E: ... - A - B - ...

E: A: ... - D - B - F - ...
B: ... - F - A - D - ...
D: ... - B - A - ...
F: ... - A - B - ...

F: A: ... - E - B - C - ...
B: ... - C - A - E - ...
C: ... - A - B - ...
E: ... - B - A - ...

The face flip can hence be carried out through the following operations:

• Removal of the face between C and E

• Insertion of the new face between A and B, with the four face neighbours
as given above

• Replacement of face neighbour E by face neighbour B in the face between
A and C

• Replacement of face neighbour C by face neighbour B in the face between
A and E

• Replacement of face neighbour E by face neighbour A in the face between
B and C

• Replacement of face neighbour C by face neighbour A in the face between
B and E

• Insertion of face neighbour B in the faces between A and D, and A and F

• Insertion of face neighbour A in the faces between B and D, and D and F

• Removal of face neighbour E in the faces between C and D, and C and F

• Removal of face neighbour C in the faces between D and E, and E and F

Boundaries

Boundaries are treated as in 2D by the insertion of ghost generators. However,
since reflective boundaries lead to similar problems with fourth order vertices as
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Figure B.4: Wall keys for the 3D evolution algorithm.
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in 2D, we have not currently implemented them (we will see below that the 3D
algorithm does not perform well when handling fourth order vertices).

Periodic boundaries are implemented by keeping track of two extra lists for
every cell: a list of wall indices for all neighbours, and a list of face wall indices for
all face neighbours of a face. The wall index convention is illustrated in Fig. B.4.
The bookkeeping is similar to the 2D algorithm, although everything is a bit
more complex.

B.2.3 Algorithm

In 3D, we cannot move all generators and then fix the Voronoi mesh, as is the
case in 2D. Instead, we need to move the generators one by one, and refine their
movement when necessary, to prevent different deviations from overlapping. To
this end, we devised a counting scheme for edge flips. Once we have moved
the generator of a single cell, we check all faces of this cell, and all faces of
neighbouring cells that have this cell as a face neighbour, and count the number
of edge flips, the number of edge flips in faces with only three edges, and the
number of edge flips in faces with four edges. We then compare these numbers
to the flip signature of the three different deviations described above. If no flips
are encountered, the generator movement is accepted, and we move on with the
next cell. If the flip signature matches one of the known cases, we also accept the
movement, and restore the cell. We then check the cell and its neighbours again,
since the restoration can lead to consecutive deviations. If a non-trivial signature
is encountered that does not match a known case, we refine the movement: we
move the generator back to its original position and then move it with a fraction
of the first displacement. We repeat this procedure until the entire movement
has been carried out.

A normal face creation is signalled by a single edge flip. This edge will be
shared by three faces, which are each shared by two cells. In total, we hence
expect six edge flips to signal a face creation. To speed up the algorithm, we
check every face only once: if a face has already been checked in one of the two
cells that shares it, we skip it in the other cell. We hence are left with three edge
flips as the face creation signature.

A face removal corresponds to three edge flips in a single face with only three
edges. These edges are all shared by two other faces (each shared by two cells),
so that we end up with 18 edge flips, and two face flips as the signature for a face
removal. However, we will not count the six edge flips in the flipped face, and for
efficiency we only check every face once. We hence end up with one flipped face
and six flipped edges as the signature for a face removal.

The degenerate face flip is signalled by two opposite edges flipping in a face
with only four edges. We will again not count the edge flips in the flipping face
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(but count them as a distinct double edge flip), and count every other face only
once. The signature for a face flip is then a single double edge flip, and four
flipping edges.

We have tried to optimise the performance of the algorithm, by immediately
breaking off the counting algorithm if an invalid count is encountered: if the
number of edge flips in a single face is too high, or the total number of edge flips
exceeds six. We also keep track of which edges flipped, so that we already have the
necessary information for the mesh restoration if a valid signature is encountered.
Despite all this, the speed up obtained with the 3D evolution algorithm is less
significant than for the 2D algorithm. This, and the fact that we have not yet
found a safe way to use the 3D algorithm with reflective boundaries (or an efficient
way to parallelize it), makes this algorithm not yet fit for scientific use.
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