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Abstract 

A more efficient use of the existing road infrastructure, using advanced traffic control 

strategies, can lead to reduced congestion, reduced emissions, reduced fuel consumption and 

improved safety. A large urban network consists mainly of two elements link roads and 

signalized intersections. Modeling the traffic flow dynamics along each of these elements in a 

large urban network with a large number of links and intersections is a complex task. The 

model-based control strategies that are needed in order to achieve such an improvement 

depend strongly on the quality and the accuracy of the dynamic model of the system, and on 

the accuracy of the state estimates available for feedback.  

In this thesis, we develop a stochastic hybrid model (SHM) to effectively describe the 

evolution over time of the queue-length and arrival/departure flow rates of vehicles in an 

urban traffic network as stochastic processes. Using this SHM framework, it is possible to 

model the queue-length evolution at a signalized intersection, describing the interaction 

between traffic light sequences and arrival/departure traffic flow in all the intersections. This 

interaction is a combination of event-driven dynamics and time-driven dynamics. The event-

driven dynamics are dictated by the green-red light switches and by the events causing some 

queue lengths to switch from positive to zeros or vice versa. The continuous variables 

describing, for each mode of the traffic operations, the arrival and departure flow rates can be 

modeled by a first-order autoregressive (AR) model. The complete SHM is thus  a jump 

Markov model.   

The SHMs for which we need to estimate the model parameters can be used for filtering the 

raw traffic flow measurements and for predicting queue lengths at signalized intersections. 

The variability of the traffic flow during successive cycles of the traffic light must be 

estimated with sufficient accuracy in order to predict the expected queue length resulting from 

control decisions. Parameter estimation techniques are used to determine the unknown 

parameters of the SHM as a prerequisite for implementing a good real-time controllers of the 

traffic lights in an urban environment. The parameters of the AR process take different values 

depending on the mode of traffic operation making this a hybrid stochastic process. We 

assume that mode switching occurs according to a first-order Markov chain. This thesis 

proposes both offline techniques and online techniques for estimating the parameters of the 

AR models describing the flow rate for each mode and the entries of the transition matrix of 
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this Markovian model process. The offline technique uses expectation-maximization (EM) 

algorithm while the online algorithm utilizes a particle filtering approach. Both techniques 

have been validated using actual traffic flow from Belgium and Indonesia, as well as data 

generated a VISSIM traffic simulator. 

The EM method is an iterative algorithm working in two steps. In the E-step the sufficient 

statistics of the complete data are estimated. This estimated is then used to obtain a new 

estimated of the parameters in the so called M-step which is minimizing the prediction error. 

This parameter estimate is then fed back to E-step, and so the method iterates until 

convergence. In this thesis we do reformulate the EM approach for jump Markov model 

(JMM) in order to get a simpler and easier algorithm, changing the cost-function in the M-step 

by adding a weighted term with corresponding smoothed inferences about the currently active 

mode taking into account the probability with which an observation at time tk corresponds to 

modes s.  

The performance of any state estimator, including Observation and Transition-based most 

likely modes tracking Particle Filter (OTPF) for hybrid systems, depends on the prior 

knowledge of a good model for the plant dynamics and the noise characteristics, including the 

knowledge of the transition probabilities between discrete modes. We check the accuracy of a 

PF estimator, that uses the parameter values estimated by the EM algorithm as obtained in one 

time window, to obtain state estimates in another time window that is very close to the 

original time window (time window shift method), so close that one can expect that the 

identified model parameters are still valid. We do find that this adaptive PF does lead to a 

sufficiently accurate estimator, validating the usefulness of the proposed method for state 

estimation and for online control applications.  

However, this EM offline parameter estimation along with the time-window shift technique 

has at least two disadvantages: (a) the performance of state estimator strongly depends on the 

length of the time window shift W, (b) this offline approach needs significant memory 

requirements and processing power for storing and processing large datasets. In practice W is 

so large that the adaptation of this method is too slow for feedback control applications. 

To address the disadvantage, we extend the particle filter approach to an algorithm that 

achieve online joint state and parameter estimation. The extension of particle filters to joint 

state and parameter estimation for SHM is non-trivial. The conventional strategy is to add a 

random walk to the parameters and then augment the state-space with the parameters for joint 
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estimation. The use of a random walk however increases the covariance of the parameters 

(dispersion), making the posterior distributions too diffuse. In this thesis we improve the 

natural kernel smoothing approach for reducing the covariance by optimally tuning the kernel 

smoothing factor. The optimal selection of the kernel parameter hk ϵ [0,1] maximally reducing 

the over-dispersion in the PF remains a difficult problem. The current practice for tuning of 

the smoothing factor hk use ad-hoc rules defining a constant hk for which optimally cannot be 

established w.r.t the online data. In this thesis we will introduce a systematic approach for 

choosing this tuning parameter hk by using an on-line optimization algorithm based on 

Kullback-Leibler (KL) divergence. Since the hybrid model describes the different traffic 

modes, the transition probabilities matrix (TPM) of the traffic modes must be estimated. We 

use the Dirichlet distribution to generate particles for the PF estimation of this TPM. The 

combination of adaptive OTPF with Dirichlet based kernel smoothing leads to an efficient 

joint estimation of the TPM, of the other parameters and of the state. 

The traffic control is developed in this thesis by integrating an identification and estimation 

technique approach into a control policy avoiding  long queues that would lead  spillbacks. 

This thesis develops controllers using a chance constraint based feedback strategy. In this 

proposed controller, the risk of spillbacks is limited by using a chance constraint in order to 

keep the queue length less than threshold to avoid spillback. We thus achieve a state feedback 

control of the traffic lights, adjusting their red/green phases to the actual queue lengths and 

traffic flow rates, while adapting in real time to changes in the SHM parameters. The 

performance of this controller is defined by the objective function with constraints on the 

inputs and states that should be satisfied in the presence of uncertainties. Since  objective 

functions of this type are not convex we use a convex bounding approximation method for the 

probability distribution, leading to feasible solutions. 

This thesis proposes a new control algorithm, probabilistically constrained predictive control. 

The propagation of probabilistic parameter uncertainties and exogenous disturbances through 

the stochastic hybrid model and the reformulation of probabilistic constraints to 

computationally tractable expressions are key issues in this stochastic control algorithm. The 

proposed stochastic control is demonstrated using a simulated case study and give satisfactory 

results compared to both fixed controller and adaptive stochastic with different cost function. 

The proposed controller is able to fulfill all the constraints including the chance constraint 

which ensures that the probability of the queue length on specific road exceeding a threshold 

always remains sufficiently small.  
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Samenvatting 

 

Geavanceerde strategieën voor verkeersregeling kunnen leiden tot een efficiënter gebruik van 

de bestaande infrastructuur, met minder verkeershinder, minder uitstoot van uitlaatgassen, 

minder brandstofverbruik, en veiliger verkeer tot gevolg. Om het dynamisch gedrag van het 

verkeer te beschrijven in een grote stad moet de evolutie van het verkeer beschreven worden 

in de vele verbindingsstraten en kruispunten van het verkeersnetwerk. Dit is een complex 

modelleringsprobleem dat moet opgelost worden voor het ontwerpen van model-gebaseerde 

regelstrategieën. De performantieverbetering die kan bekomen worden met behulp van 

terugkoppelregeling hangt sterk af van de kwaliteit en de nauwkeurigheid van het model dat 

gebruikt wordt bij het ontwerp, en van de nauwkeurigheid van de model-gebaseerde 

toestandsschattingen die voor de terugkoppeling beschikbaar zijn.  

In dit proefschrift ontwikkelen we een stochastisch hybriede model (SHM) om de evolutie te 

beschrijven van het stochastische proces van wachtrijlengte, en van de aankomst- en 

vertrekintensiteiten van verkeer. Dit SHM model laat toe om de evolutie te beschrijven van de 

wachtrijlengte op een kruispunt met verkeerslichten, en van de uitstroom uit een dergelijk 

kruispunt en dus van de interactie van de verschillende verkeerslichten en de verschillende 

kruispunten in een netwerk. Deze interactie wordt gestuurd zowel door discrete 

gebeurtenissen als door tjidsgebonden modellen. Gebeurtenissen omvatten onder meer de 

groen/rood omschakeling van verkeerslichten, veranderingen in het verkeersgedrag (vlot 

verkeer, opstopping, incidenten, afhankelijk van allerlei interne en externe fenomenen) en de 

momenten waarop wachtrijen leeg worden of terug beginnen aan te groeien. De intensiteit van 

aankomst- en vertrekprocessen kan voorgesteld worden door  autoregressieve processen (AR) 

waarbij de AR-model parameters afhangen van een werkingsmode. Er wordt verondersteld 

dat de werkingstoestand evolueert volgens een eerste-orde Markov proces.  

De parameters van de SHModellen moeten op basis van verkeersmetingen geschat worden 

vooraleer die modellen gebruikt kunnen worden voor het wegfilteren van de ruis op de 

verkeersmetingen en voor het voorspellen van de wachtrijlengte aan kruispunten. De 

stochastische evolutie van de verkeersstromen, over verschillende opeenvolgende cycli van de 

verkeerslichten, moet geschat worden ten einde te kunnen bepalen wat de effecten zijn van 

regelbeslissingen voor de verkeerslichten op toekomstige wachtrijlengtes. Om goede regelaars 
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in reële tijd te bekomen is deze schatting van de parameters van het SHModel dus nodig, en 

deze schatting moet gebeuren aan de hand van meetgegevens uit een stedelijk 

verkeersnetwerk.  In dit proefschrift worden zowel online als offline methodes ontwikkeld om 

de transitiematrix van het eerste-orde Markovproces van verkeersmodes te schatten, samen 

met de AR parameters inelke verkeersmode. Het offline schattingsalgoritme gebruikt de 

verwachtingsmaximisering (EM) methode, terwijl het online algoritme gebruik maakt van 

particle filtering (PF). Beide methodes worden in dit proefschrift gevalideerd aan de hand van 

reële verkeersmetingen (waarbij zowel metingen in Belgische als in Indonesische steden 

wordt gebruikt). Tevens werden verkeersdata gegenereerd door een VISSIM simulator 

gebruikt om de schattingen te valideren. 

De EM methode is een iteratief algoritme. Bij elkee E-stap wordt een voldoende statistiek 

geschat die de metingen volledig beschrijft. Deze schatting van de voldoende statistiek wordt 

dan in de M-stap gebruikt om die modelparameters te schatten die de kleinste 

voorspellingsfout geven. Deze nieuwe parameterwaarde wordt dan gebruikt voor een nieuwe 

E-stap, die leidt tot een nieuwe M-stap, tot convergentie wordt bekomen. Ten einde deze EM-

methode toepasbaar te maken voor de SHMmodellen van verkeer wordt in dit proefschrift de 

brekening van de kostenfunctie, die in de M-stap wordt geminimiseerd, vereenvoudigd door 

gebruik te maken van gewogen benadering van de afgevlakte schatting van de meest 

waarschijnlijke actieve mode. Dit levert eenvoudiger berekeningen op dan gebruik te maken 

van de geschatte kans dat elke mode voorkomt. Het is dan eenvoudig om via Lagrange-

vermenigvuldigers de transitiematrix te schatten die de kost minimiseert. Deze schatter wordt 

de Observation and Transition-based most likely modes tracking Particle Filter (OTPF) 

genoemd.  

Zoals voor alle toestandsschatters hangen de prestaties van OTPF sterk af van de a priori 

kennis van een goede benadering van het te schatten model, van de ruiskarakteristieken, en 

van de transitiematrix voor de modes. In dit proefschrift valideren we de offline EM-methode 

ook door schattingen, bekomen aan de hand van metingen in een tijdsvenster van lengte W, te 

gebruiken in een PF dat de toestand voorspelt in een later tijdsvenster, dicht genoeg bij het 

eerste venster zodat dat de parameters niet te veel zijn veranderd. Deze time-window shift 

methode blijkt voldoende nauwkeurig te zijn voor toestandsschatting, en kan dus in principe 

gebruikt worden voor online regelingtoepassingen. In praktijk vereist de EM offline methode 

in combinatie met de time-window shift methode echter een grote waarde W, en dus ook zeer 
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veel geheugencapaciteit en rekencapaciteit, waardoor de methode te traag is voor online 

toepassingen. 

Om dit probleem te verhelpen worden de PF toestandsschatters in dit proefschrift uitgebreid 

tot online schatters van zowel de modelparameters als van de toestand. De klassieke manier 

om dit te bekomen bestaat erin dat de parameters geïnterpreteerd worden als 

toestandsveranderlijken door er een stochastische wandeling bij op te tellen. Dit leidt echter 

tot erg diffuse a posteriori kansvedelingen, met een te grote covariantie van de geschatte 

parameters. Dit niet-triviale probleem wordt vaak opgelost door kernel smoothing toe te 

passen. Dit vereist een gepaste keuze van de kernel parameter hk ϵ [0,1] om de onzekerheid in 

de voorspellingen van het PF zo klein mogelijk te maken. In praktijk gebeurt dit tegenwoordig 

op een ad hoc manier, waarbij de kernel parameter een constante waarde aanneemt gekozen 

op basis van ervaring, zodanig dat geen optimaliteit kan aangetoond worden. In dit 

proefschrift gebruiken we een online optimiseringsalgoritme dat de Kullback-Leibler 

divergentie voor de schatters minimiseert. Aangezien onze modellen hybriede 

systeemmodellen zijn moeten we ook online de transitiematrix schatten van het Markovproces 

dat de werkingsmodes beschrijft. Dit vereist het frequent genereren van mode transities in de 

gegenereerde particles, wat in dit proefschrift gerealiseerd wordt door gebruik te maken van 

Dirichlet toevalsgetallen. In dit proefschrift wordt aangetoond dat de combinatie van een 

adaptieve  OTPF techniek met optimaal kernel smoothing en Dirichlet variabelen leidt tot een 

efficiënte online schattingsmethode die tegelijkertijd de transitiematrix en de AR-parameters 

en de toestand schat. 

Ten slotte combineert dit proefschrift de voorgestelde schattingstechnieken met een 

terugkoppelregeling die lange wachtrijen vermijdt  vooraleer ze aanleiding kunnen geven tot 

blokkering van stroomopwaartse kruispunten. Hiertoe wordt een toestandsterugkoppeling 

ontworpen die de kans begrenst dat de wachtrij een bepaalde grenswaarde overschrijdt. Deze 

regelaar past de rood/groen fractie aan van de verkeerslichten op basis van de geschatte 

wachtrijlengte en van de geschatte verkeersintensiteiten, en schat tegelijkertijd de 

veranderingen in de parameters van het SHModel dat gebruikt wordt voor de 

toestandsschatting. Het ontwerp van dergelijke regelaars vereist de minimisering van een 

kostenfunctie die de kans bevat dat een grenswaarde wordt overschreden. Dergelijke 

kostenfuncties zijn niet-convex. In dit proefschrijft ontwikkelen we een convexe benadering 

ervan die de optimisering computationeel haalbaar maakt. Zo slagen we erin om een 

regelalgoritme te ontwerpen dat gebruik maakt van gezamenlijke schatting van toestand en 
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modelparameters voor het SHModel, en dat een kostenfunctie minimiseert, rekening houdend 

met begrenzingen op de kans dat een wachtrij te lang wordt. Via een case study gebaseerd op 

een VISSIM simulatie wordt aangetoond dat de voorgestelde regelaar voldoet aan alle 

voorwaarden, en leidt tot beter verkeersgedrag dan een regelaar met vaste cyclus voor de 

verkeerslichten en beter dan een adaptieve regelaar met een niet-probabilistische 

kostenfunctie.  
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1  
Introduction 

 

 

The topic of this thesis is the design of an adaptive controller for a signalized 

intersection in urban traffic network, using joint state and model parameter estimation while 

optimizing traffic performance taking into account the risk of global network interactions 

causing performance deterioration. This introductory chapter 1 provides the motivation for the 

research presented in this thesis, and justifies the approach taken in this research for solving 

the traffic signal control problem. The first part of this chapter provides a motivation for the 

traffic control problem under investigation. Next this chapter provides an overview of the 

state of the art, discusses some open problems and explains briefly the objectives and 

contributions of this thesis. The next section presents some background knowledge and some 

notation useful for understanding the approach taken in this thesis, and explains the 

interrelationship between the different parts of the thesis, highlighting the contributions made 

in each chapter. 

 

1.1 Problem statement/Motivation 

The increasing economic and social activity leading to an increasing number of 

vehicles in metropolitan areas result in over-saturated and highly congested traffic conditions 

at some locations in the urban traffic network during the peak periods, or even during a large 

part of the day The service quality deteriorates drastically for the users of the network, 

increasing the average travel times. Increased level of pollution lead to deteriorating living 

conditions in the cities. Provision of new infrastructure is not deemed to be a sustainable 

solution. Thus, a more efficient utilization of the existing infrastructure, using advanced 

online controllers, is a crucial ingredient towards sustainable urban mobility.  

Alleviating congestion and reducing delay in urban traffic networks by implementing 

feedback control in order to optimally utilize the existing infrastructure is one of the currently 
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vital issues of traffic researcher and practitioners. Many studies have addressed this issue over 

the last decades, and many different types of feedback control have been proposed in order to 

deal with this issue of online management and control of large-scale urban network [1],[2],[3].  

A large urban network consists mainly of two types of elements: link roads and 

signalized intersections. The most obvious feedback control action that can be used to 

influence the evolution of the traffic flow is the selection of the switching times of the traffic 

lights at the signalized intersections. Designing good feedback controllers requires a 

sufficiently accurate model of the dynamic behavior of the traffic flow in all elements of the 

network, link roads and intersections. Modeling the traffic flow dynamics for each element in 

an urban network, at the time scale relevant for online control, with a large number of links 

and intersections is a complex task.  

Recently there has been a lot of interest in obtaining a reproducible relationship 

between traffic flow and density, known as the macroscopic fundamental diagram (MFD) 

occurring at the network level under certain conditions (e.g. homogeneous spatial distribution 

of the congestion). This work postulates that average traffic flow and average vehicle density 

are related by a well-defined unimodal curve provided that vehicles are approximately 

uniformly distributed across space in the network under consideration. This notion had been 

initially proposed by Godfrey [63] in the 1960s, and has recently been validated using real 

traffic data [100]. This MFD relationship has been used for the design of perimeter control 

controlling the flow of traffic allowed to enter the network under control. This MFD 

relationship is valid for average traffic flow and density, averaged at a fairly long time scale, 

covering several cycles of the traffic lights in the network under control. In the perspective of 

MFD, urban traffic networks are inherently unstable when congested/oversaturated. This 

instability causes a natural tendency towards spatially inhomogeneous vehicle distributions. 

Hysteresis patterns may also arise for which flows during the onset of congestion are 

significantly different from those during the dissipation of congestion [101] further leading to 

an additional form of instability. 

This thesis works based on the control theoretic framework to design controllers 

selecting red/green fraction of the traffic lights, and hence models describing traffic evolution 

at the time scale of cycles of traffic light is needed to build. This faster time scale requires 

more detailed models than MFD which is based on the averages over slower time scales. The 

traffic model used for selecting red/green switching times should covers the variability of the 
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traffic flow over successive cycles causes the dynamics of propagating of queues. The goal of 

traffic signal is ensuring that as few vehicles as possible have to stop, that the flow of vehicles 

through the intersection should be as "smooth", as uninterrupted, as possible. While at the 

same time guaranteeing safety. In order to keep the model computationally tractable to the 

research presented in this thesis considers one intersection at a time, both in the model and in 

the control design. However, the limitation of the model to one intersection can be relaxed by 

selecting local controllers that avoid spillbacks. Spillback are long queues at one intersection 

that block upstream intersections, causing bad local behavior to spread throughout the 

network. This thesis focuses on the behavior of traffic flows in one single intersection but 

considering traffic flows coming from the adjacent intersections and developing traffic signals 

that avoid spillbacks using a control theoretic approach. If these goals can be achieved it will 

be possible to achieve stable traffic behavior over a longer period of time. In a sense the local 

traffic control of the traffic lights can be used to indirectly modify the MFD in the 

surrounding area, reducing the risk of instability.  

 

1.2 Some background material 

Because this thesis has a cross-disciplinary aspect it is useful to introduce below some of the 

basic background material from the field of traffic control.  

1.2.1 Basic Variables  

In traffic engineering, traffic stream variables fall into two broad categories. Macroscopic 

variables describe the traffic stream as a whole; microscopic variables describe the behavior 

of individual vehicles of pairs of vehicles within the traffic stream. 

The three principal macroscopic parameters that describe a traffic stream are 

(1) flow or flow rate  is defined as ratio of the number of vehicles passing a location in one 

or more lanes of a road during a specified time interval divided by the length of that time 

interval, and it is often expressed as “vehicles per unit time” (in this thesis normally 

veh/sec). 

(2) speed v is defined as a rate of motion in distance per unit time. Travel time is the time 

taken to traverse a defined section of roadway and it is expressed as m/s 
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(3)  density  is defined as the number of vehicles occupying a given length of lane or a road, 

generally expressed as vehicles per m (or veh/km) or vehicles per km per lane. Density is 

difficult to measure directly and it is often computed from speed and flow rate 

measurements, according to the formula: density = flow/speed ( = .v). While density is 

difficult to measure directly, modern detectors can measure occupancy that is defined as 

the proportion of time that a detector is “occupied” or covered, by a vehicle in a defined 

time period.  

In urban network with signalized intersections, the operation of the traffic light can be 

specified using the following variables [94],[96] : 

(1) Cycle length : This is the time needed to complete one full running of all the active 

phases. 

(2) Approach: is a single road, along which traffic arrives at an intersection; the flow of 

traffic along that approach lane, and heading towards a certain outflow direction is 

called a movement. 

(3) Phase: This is the interval of time, part of a cycle, during which a certain set of 

"movements" are allowed coming from a subset of all the approaches, are allowed to 

cross the intersection. There are normally at least two phases per cycle. 

When considering the interaction between neighboring signalized intersections it is 

important to specify the "synchronization" between the traffic lights. In many case the 

same cycle length is used for neighboring intersections. Then one needs to specify the 

shift in switching times between neighboring traffic lights 

(4) Offset : this is the relationship between the start (or finish) of the green phases in 

successive sets of signals within a coordinated system. 

This thesis uses only rate of flow as a traffic variable. The flow rates along the different 

approaches, along with information of traffic light (i.e. cycle length and phase) are sufficient 

to define the evolution of the queue-lengths (provided the initial queue length is known). The 

queue-lengths in turn specify the increment in delay caused by congestion and queueing 

behind red lights; this delay is used to determine the cost function to be minimized by a good 

traffic controller.  

Note that the research presented in this thesis focuses on reducing the increment in the delay 

that is due to congestion, since there is an inevitable minimal travel time for all traffic. 
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. 

1.2.2 Macroscopic Fundamental Diagram 

The Macroscopic fundamental diagram (MFD) is fundamental tool for designing an adaptive 

control approach, to improve urban mobility, and to relieve congestion. MFDs can be used for 

estimation of the level of service on road networks, for designing perimeter control, and 

macroscopic traffic modeling [3].  In the past fundamental diagrams (FDs) were usually used 

for freeway traffic in order to express the flow rate at a given location along a freeway link to 

the density in a small area around that location. More recently Daganzo (see below) has 

extended this idea to MFDs describing the total outflow along all exit lanes leaving a 

specified region, as a function of the total number of vehicles inside that region.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure.1.1 A Typical MFD of a network 

The experiments and simulations made by Geroliminis and Daganzo [100] suggested that at 

least in some instances average flow and density were indeed related to a reproducible curve, 

which has come to be known as “the Macroscopic Fundamental Diagram” (MFD). 
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A typical MFD is illustrated in Fig 1.1. Like the critical density in a link fundamental diagram 

of a freeway, the MFD shows the value of the total number of vehicles in a region that leads 

to the maximal outflow from that region. This maximum is an important parameter called 

critical accumulation, marked as a red spot in Fig 1.1. The value of critical accumulation and 

maximum outflow rate can be directly calculated once the MFD for a given region has been 

derived from the observable traffic data of the network. Two traffic modes of operation can be 

simply distinguished by the point of critical accumulation, one mode corresponding to free 

flow condition (marked as a green curve, where vehicles travel at their own desired speed) 

and one corresponding to congestion (marked as a red curve, where interaction with other 

vehicles block causes significant speed reduction).  

In traffic theory the location where the value of critical accumulation is reached corresponding 

to the maximum flow rate is also called state turning point (marked as a yellow curve). If the 

traffic variables are located on the left side of the state turning point, the road network is in the 

free flow condition. Otherwise the network is congested. That means, the rough traffic modes 

can be identified as long as the MFD is known.  

Remark: It should be highlighted that in this thesis, traffic modes s (i.e. free flow and 

congestion condition) are defined, in line with the terminology of system and control theory, 

are defined only according to the values taken by traffic flow, since thesis considers only 

traffic flow as a variable without considering the density.  

 

1.2.3 Adaptive Stochastic Control 

This section introduces the adaptive stochastic control problem addressed in this thesis. This 

control design is based on the stochastic hybrid model (SHM) which will be developed for 

urban traffic in this thesis. This multi-mode SHM model describes the evolution of the queue-

length at a signalized intersection using as states both continuous traffic flow variables (like 

flow rates) as well as a discrete variables like traffic operations mode and state of traffic 

lights. Continuous variable evolve according to difference equations (in the discrete time 

representation used in this thesis), and discrete variables which evolve according to a discrete 

event (automaton) model. Consider the following a generic hybrid model defined by:  

State update equation is defined in one mode s; the full state model includes the evolution of 

the value of the modes s: 
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The mode evolution is defined as a first order Markov process with given transition matrix  

defining mode transitions. 

At each time step, a noisy measurement of the state is taken, defined by: 
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where .)|(.sp  is the conditional probability density function at mode s. The subscript s will be 

dropped whenever convenient for clarity presentation. Equation (1.3) is more suitable for 

representing in the uncertainty as a probability distribution which can be achieved using the 

joint state-parameter estimation algorithms, as a main contribution in this thesis. By 

integrating joint state-parameter estimation with stochastic control  leads to the framework of 

adaptive stochastic controller.  

In urban traffic case, the states vector 
kt

x are the queue lengths, traffic flow, mode of operation  

and the measurement vector 
kt

y are the traffic flows during green/red period, both in each 

links of a signalized intersection. In real urban application, the traffic flows system can be 

very complex and they can evolve according to different dynamics at different times. These 
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dynamics can be either free flow and congestion condition and it is important to know (i.e. for 

efficient traffic signal) which dynamics the system is in and when a change of dynamics 

occurs, since for example, it might be important to know if a system is in a faulty condition or 

not. This topic will elaborate more detail in next chapter. 

For the controlled system model defined by (1.1-1.2) one must select at time tk a control value  

Uu
kt
 as a function of the observations {yn, n < tk} so that the objective function φ(X,U) is 

minimized. We assume that φ(X,U) is a convex function of X and U, where X and U are a 

compact representation for the trajectory of all states and inputs, generated by the closed loop 

system (1.1-1.2) with the selected control law 
kt

u {yn, n  tk}. Please note that control value is 

a value of u  at time tk and control law refer to a specific algorithm to deliver control value. 

Since the process and measurement noise are random variables, the state trajectory and the 

sequence of selected control inputs are also random variables. Consequently the performance 

of the system must be defined based upon the expected value of the objective function φ, over 

X and U: 

Min E [φ(X,U)]                                                                     (1.4) 

In selecting the control values 
kt

u one should also take into account that a set of constraint 

functions i on the state trajectory and control inputs must be satisfied at all time tk with 

k=1,…N-1,and i is the number of constraint functions. 

The final aim of traffic signal control is to keep the queue length less than a given threshold to 

avoid spillback via a feedback control with a chance constraint. It means that defining traffic 

signal control as only local control, but include chance constraints limiting the risk of long 

queues that could cause interactions between neighboring intersections, where these 

interactions might cause global performance deterioration even though the controllers without 

interaction would be well behaved. 

 

1.3 State of the art and open problem 

Many different real-time urban traffic control (UTC) strategies have been proposed up 

to now, but there is still space for further improvements. In this thesis, the measurement data 

in urban traffic area generated from The Sydney Coordinated Adaptive Traffic System 
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(SCATS) [82]. SCATS is an adaptive urban traffic management system that synchronizes 

traffic signals to optimize traffic flow across a whole city, region or corridor. SCATS controls 

traffic in a region consisting of several interacting intersections by controlling three 

parameters for traffic lights in its domain: cycle time, phase split and offset. By using three 

parameters, SCATS can be a distributed system, in the sense of “cooperating local 

controllers”. Various types of detectors at intersections can be used video cameras as is used 

for the Jakarta data used in this thesis. The SCATS algorithms uses the output of these 

detectors to calculate as controlled variables the following: Original Volume (OV), Degree of 

Saturation (DS) and Reconstituted Volume (VK). OV is the number of vehicles that have 

passed over the detector in one traffic cycle. DS is defined as the ratio of effectively used 

green time to the total available green time. VK is a measurement of how many cars should 

have passed over the detector at the stop line for the current DS. A DS value less than 1 will 

show that current traffic flow for the current cycle is not saturated, otherwise the current 

traffic flow is oversaturated. One popular alternative to SCATS is the Split Offset 

Optimization Technique (SCOOT) [83]  is a system developed in the UK in 1970’s. The 

SCOOT architecture is organized into a fully centralized model, in which data is passed from 

the traffic lights directly to a regional data center where processing occurs. SCOOT also 

employs a second set of induction loops located anywhere from 50 to 300 meter before the 

stop-line (unlike SCATS which only utilizes the single set at the stop-line). The second set of 

detectors provide a count vehicles approaching to the stop line so that the queue length can be 

predicted more accurately. 

The traditional UTC intends to minimize the traffic flow through the whole network, 

using  as an the objective function the total average delay time experienced by the vehicles in 

all queues. Most other papers define the control strategies based on one single traffic model 

without taking into account that different control strategies are suitable for different traffic 

modes. As explained above that traffic behavior consists of at least two different traffic 

modes: free-flowing and congested condition, and possibly also modes corresponding to 

certain faults. In order to be able to represent different modes of traffic behavior and mode 

switches, a mode-dependent model is needed to design a controller that automatically adapts 

the red/green cycles to the current mode of traffic behavior. The adaptation can be realized 

using parameter adaptation of the models, using estimation of the current mode of operation, 

that are used to predict the effects of the control actions. This allows the generation of good 

control laws. Both mode estimation and adaptation are missing in most other papers up to 
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now. Understanding the possibility of improvement control design by using mode estimation 

and adaptation is one of research goal in this thesis.  

Remark: The term “traffic mode” or “mode” as used in this thesis should not be confused 

with the term ”mode” which sometimes refers in traffic engineering as the type of vehicle 

used by the participants in the mobility process that one studies (car or truck or bus or 

motorcycles or bicycle, etc). In this thesis we only consider vehicles as participants in the 

mobility process, even though in practice of course also other vehicles (like motorcycles in the 

traffic study for Jakarta) play an important role. 

Over the last 10 years several model based approaches to urban traffic control have 

been proposed. Varaiya, in his paper [105], proposed the max-pressures feedback policy for 

the control of arbitrary network of signalized intersections.  At the beginning of each cycle, a 

controller selects the duration of every stage at each intersection as a function of all queues in 

the network. A stage is a set of permissible (non-conflicting) phases along which vehicles 

may move at pre-specified saturation rates. Demand is modeled by vehicles entering the 

network at a constant average rate with an arbitrary burst size and moving with pre-specified 

average turn ratios. The movement of vehicles is modeled as a “store and forward” [102] 

queuing network. A controller is said to stabilize a demand if all queues remain bounded. It 

differs from other network controllers analyzed in the literature in three respects. First, max-

pressure requires only local information: the stage durations selected at any intersection 

depends only on queues adjacent to that intersection. Second, max-pressure is provably stable: 

it stabilizes a demand whenever there exists any stabilizing controller. Third, max-pressure 

requires no knowledge of the demand, although it needs turn ratios. The max-pressure policy 

is decentralized: the decision at any intersection depends only on the queue adjacent to that 

intersection; the policies in the other studies are centralized [103].  

Daganzo, in his paper [3], proposed perimeter control using MFDs to avoid 

performance deterioration due to congestion. The basic idea of perimeter control is to limit the 

inflow into a region, by setting the traffic lights at the inflow intersections, so that the number 

of vehicles inside the region always remains close to or lower than the critical accumulation, 

thus maximizing the network outflow. The idea is to hold traffic back (via prolonged red 

phases at traffic signals) upstream of the links to be protected from oversaturation. Following 

up on this idea, Geroliminis [86] pursued a model-predictive control (MPC) approach in 
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deterministic setting and Haddad [87] used a robust control framework, in order to optimally 

select the allowed into inflow into region.  

However, all the approaches work without addressing the congestion problem by 

keeping the queue length less than a threshold avoiding spillback (when demand exceeds 

capacity queues fail to clear during the allocated green times creating oversaturated traffic 

conditions and spillbacks occur when growing queues at the downstream link block the 

arrivals from the upstream link such that vehicle queues cannot discharge at capacity, 

although the signal phase is green). However, this spillback phenomenon needs to be 

estimated in real-time. The evolution of queue-length can be estimated (and predicted in a 

probabilistic sense)  through the SHM hybrid model (the mode-dependent model) for traffic 

evolution. In order to be able to obtain good predictions it is necessary to estimate the model 

parameters. Using the estimated parameters allows the application of good  adaptive local 

controllers. By ensuring that there is as little spillback as possible, this controller avoids 

network interaction that could deteriorate the performance of the overall network even though 

each local intersection seems to have a good controller. Our approach can be classified as a 

decentralized approach as max-pressure policy.  

The research presented in this thesis uses the framework of system and control 

theoretic approach to design a model based feedback controller addressing this problem, 

trying to minimize some cost function. Several recent papers have considered the online 

optimal control of the red/green cycle for traffic lights. In [24], Wardi proposed a gradient-

descent algorithm that adjusts a given mode schedule by changing multiple modes over time-

sets of positive Lebesgue measures, thereby avoiding the inefficiencies inherent in existing 

techniques that change the modes one at a time. Vazquez et al [15] proposed a fluid flow petri 

net (PN) model to develop model predictive control in a deterministic setting. Ilya [9] and 

Haddad [12] proposed a Discrete Event Max-Plus approach with an assumption that the 

arrival and departure flow rate is a constant. This assumption differs from the assumption in 

this thesis, which uses a jump Markov model in order to be able to capture the time-varying 

behavior in traffic flow. This thesis address the congestion problem in one link of a signalized 

intersection by adaptive stochastic control with chance constraint. Compared to [24], our 

approach has a fixed cycle time and a fixed cyclic phases while Wardi proposed the algorithm 

that can change the cycle time and change a cyclic phases where the objective is to minimize a 

cost-performance functional defined on the state trajectory as a function of the sequence of 
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modes and the switchover times between them which makes the computational load is much 

demanding.  

1.4 Objectives and contributions 

The research presented in this thesis follows the idea of Daganzo [3] but merely to act 

only on one exit intersection of the region under control trying to maximize the outflow from 

this intersection along a major road in an urban area, while avoiding spillbacks. The basic idea 

is to apply a local low level intersection controller that is compatible with perimeter control 

for the region to which the intersection belongs. In fact good local control designed according 

to the approach proposed here have the potential, intuitively, to modify the shape of the 

regional MFD leading to better performance of the perimeter controller. Using the mode-

dependent model (or hybrid model) of the traffic flow, the queue length trajectories can be 

estimated, provided the parameters of mode-dependent model have been identified. By 

knowing the evolution of queue-length the risk of spillback can be estimated and monitored in 

real-time. The traffic control is developed by integrating an identification and estimation 

technique approach into a control policy of long queues prior to spillback occurrence. This 

thesis advances the state-of-the-art of traffic signal control in urban links by integrating a 

queue-length predicting approach into a chance constraint based feedback control strategy 

reducing the risk of spillbacks. The stochastic model used in this thesis averages traffic 

variables over the duration of one cycle of the traffic lights (i.e., green and red phases) and 

proposes a fluid flow model as an appropriate model at this time scale. By averaging traffic 

flow variables over the duration of one cycle then the dynamics of propagating of the maximal 

queue lengths per cycle can be properly captured as a function of the flow generated by the 

neighboring intersection. This dynamic model is a prerequisite for a model based feedback 

controller that achieves robust performance despite errors in our predictions (due to model 

inaccuracy, state noise, or to sensor noise). 

As indicated by the title of the thesis, there are two main themes that are discussed in 

this thesis, namely stochastic and adaptive properties of the closed loop system. 

Model predictive control (MPC) is widely used in many applications owing to its 

ability to deal with multivariable complex dynamics and to incorporate system constraints into 

the optimal control problem. However, parametric uncertainties and exogenous disturbances 

are ubiquitous in real-world systems, and the classical MPC framework is inherently limited 

in its ability to account for uncertainties [88]. This consideration has led to the development of 
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numerous robust MPC formulations that deal with uncertainties. The robust MPC approaches 

can be broadly categorized as deterministic and stochastic approaches based on the 

representation of uncertainties and the handling of constraints. In deterministic robust MPC 

approaches (for a review see, e. g., [89]), uncertainties are often assumed to be bounded. The 

control law is determined such that the control objective is minimized with respect to worst-

case uncertainty realizations, and/or such that the constraints are satisfied for all admissible 

values of uncertainties. Hence, robust MPC approaches discard statistical properties of 

uncertainties and are conservative [90] if the worst-case uncertainty realizations have a small 

probability of occurrence. 

In stochastic MPC (SMPC) approaches (e. g., see early work [91],[92],[93]) 

uncertainties are described by probability distributions (instead of by describing these 

variables as belonging to bounded sets, as is done in robust control) This can be implemented 

by using the joint state-parameter estimation algorithms proposed in this thesis. The research 

presented in this thesis develops such a stochastic approach to MPC not only alleviating the 

conservatism of worst-case control, but also enabling proper tuning of the performance 

robustness by allowing pre-specified levels of risk during operation. The trade-off between 

control performance and robustness is achieved using chance (or probabilistic) constraints, 

which ensure the satisfaction of constraints with a desired probability level [5], [6].  

Adaptive control means that the closed loop system has capabilities to do automatic 

parameter adaptation to changing system modes, provided we can estimate the model 

parameters “online” with sufficient accuracy. By putting the algorithm for parameter 

estimation and state prediction in the feedback control loop then the stochastic control 

achieves the desirable properties of an adaptive stochastic control. The research presented in 

this thesis has developed two approaches to do joint parameter estimation and state prediction, 

the essential parts of feedback loop of an adaptive controller. Firstly, the research reported in 

this thesis has developed an offline approach by using expectation maximization (EM) for 

maximizing the posterior probability p(θ |yi…I) of the parameters  of the stochastic hybrid 

model. Secondly, it has been developed an online approach which is an extension of adaptive 

particle filters for combined state and parameter estimation of the hybrid model (mode-

dependent model )of the queue-length dynamic.  

In summary, this thesis introduces the following contributions: 
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a. It develops a stochastic hybrid model for traffic flows and queue lengths in each links 

of a signalized intersection 

b. It develops joint parameter and state estimation algorithm for the stochastic hybrid 

model of queue-length and traffic flow dynamic, both using the offline EM algorithm 

and the online particle filter technique. 

c. It integrates the joint state-parameter estimation with stochastic control with chance 

constraint leading to adaptive stochastic control. 

 

1.5 Layout  

The material presented in this thesis is partly based on the author’s paper [14,15,18,38,39,40]. 

The thesis is divided into seven chapters. The content of the remaining chapters is briefly 

summarized as follows: 

Chapter 1. The present chapter has described the basic problem investigated in the research 

leading to the thesis. 

Chapter.2 proposes a stochastic hybrid model (SHM) for urban traffic flow and queue length  

dynamics at a signalized intersection. This SHM is using only flow rates averaged per 

red/green phase of the traffic light as basic traffic variables, characterizing these flow rates 

using a mode-dependent first-order AR stochastic process. The parameters of the AR process 

take different values depending on the mode of traffic operation. Queue lengths can be 

predicted using the flow rates per cycle, together with information on the red/green phases of 

the traffic light.  

Chapter.3 provides a compact review of the Bayesian recursive estimators both for states 

estimation and parameters estimation, and focusing on the particle filtering (PFs) approach for 

sequential estimation. The extension of PFs to state-parameter estimation is studied and 

developed for dynamics models, including hybrid models like SHM. The applicability of PF 

for these models has been studied by using kernel smoothing in order to reduce the dispersion. 

This chapter presents the existing technique of joint state-parameter estimation for two cases 

of state-parameter estimation of traffic flow with a different sampling time updates for two 

different cases of actual measurement data.   
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Chapter.4 proposes an offline parameter estimation technique for hybrid dynamic system 

model as a powerful approach for capturing the complicated dynamics of urban traffic flow, 

including many sources of uncertainty. The model parameters characterize traffic flow 

conditions that can be classified into three modes and the switch between these three modes is 

controlled by a first-order Markov chain. The study reported in this chapter investigates the 

proposed approach by using actual traffic flow data and confirms its validity by showing that 

the ‘smoothed inferences’ technique and a particle filter based on the identified model provide 

satisfactory state estimation and correctly capture the random variation of the traffic flow. 

Chapter.5 presents an online technique for joint parameter and state estimation for a 

stochastic hybrid model of the queue-length dynamics and its application to queue-length 

estimation and prediction at signalized intersections in urban traffic networks. The main novel 

contributions of this chapter are:   

(a) developing the OTPF algorithm along with an optimal kernel smoothing method (using 

online optimization) for estimating the AR parameters;  

(b) using a Dirichlet distribution to generate the PF samples that allow reliable estimates of 

the transition probability matrix of the modes in the SHM. The proposed method is validated 

in terms of the prediction accuracy for traffic flow and queue length, for a case study 

generated by a VISSIM traffic simulator.  

Chapter.6 describes an original approach to adaptive stochastic control by integrating it with 

the previously derived joint state-parameter estimation technique and with probabilistic risk 

constraints. The risk constraints are by themselves non-convex making the problem 

computationally intractable. The convex bounding method is used to replace the individual 

chance constraints by a conservative convex approximation, that is successfully implemented 

in the stochastic control for avoiding queue spillback in the critical intersection.  The joint 

state-parameter estimation is used to detect in real-time the link with a queue larger than a 

critical queue length qcr. The control that we propose has been compared to other existing 

feedback controllers for traffic lights, and found to achieve better performance. This risk 

constrained has the potential to decrease the likelihood of gridlock on the network. 

Chapter.7 summarizes the important points in each chapter, mainly focusing on the potential 

benefits of the traffic feedback control developed in this thesis by integrating an identification 

and estimation technique approach into a control policy of long queues, reducing the risk of 
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the occurrence of spillovers through a chance constraint. Some future extensions of the 

theoretical aspect of control problem studied here together its possible application in the city 

of Surabaya conclude this chapter. 
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2  
A Stochastic Hybrid Model :  

Traffic flow and Queue-length 

dynamic 
 

Urban traffic networks consist mainly of two types of elements: link roads, forming 

approaches to the signalized intersections, and signalized intersections. The first part of this 

chapter models the traffic flow dynamics using the fluid flow approach in each link road 

forming an approach to an intersection. A model of the interaction between the traffic flow 

along the approaches of a signalized intersection and the red/green cycles of the traffic lights 

at that intersection is described in the second part of this chapter. This interaction is the basic 

phenomenon determining the evolution of the queue lengths. Capturing this propagation of 

queue lengths into a well-defined dynamic model is an important part of the design of a model 

based feedback controller for the traffic lights. The last section of this chapter discusses the 

operation of a signalized intersection by defining a set of event describing the evolution of the 

discrete states, modeled as an automaton. The overall model of the intersection behavior is 

then a stochastic hybrid model (SHM). 

2.1 Introduction : a fluid flow model approach 

This section introduces a stochastic model that considers the traffic flow variables at 

locations along a link road, and at all entrance and exit locations of the signalized 

intersections. This traffic flow variable is defined (and can be measured) by dividing the 

number of vehicles crossing a given location during each red phase, viz. during each green 

phase of the traffic light. Reliable speed and density data are not available in the 

companies/institutes that cooperate with us in this research. and therefore we build models for 

the flow variables only . More specifically, a generic traffic flow is defined as the ratio 

)( 1 kk

t
t tt

N
k

k 




  where 
kt

N  counts the number of vehicles that pass the given location in 

the interval ).,[ 1kk tt  It means that traffic flow is a result of averaging over an interval which 
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here is the duration of one phase of the signal. A fluid flow model (FFM) is proposed as an 

appropriate model at the time scale of successive phases of the traffic lights. This FFM 

describes the evolution over time of the traffic flow at a given location, in a given link or at 

the entrance or exit point of an intersection, by a continuous random variable which expresses 

the average rate  
kt

 , expressed in vehicles per sec, at which vehicles pass a location at time 

tk. This fluidization of traffic flow variables avoids working with large integers, 

approximating integer numbers of vehicles by real number as proposed in [26].  

Paper [12] proposes FFM with discrete-event max-plus model while an FFM with 

stochastic hybrid model is proposed in [14]. The FFM in [15] and [12] do not consider 

random variation of the flow rates, whereas the FFM in [14] assumes that the evolution of 

arrival flow rate and departure flow rate are well defined by the parameters of the certain 

stochastic processes that has capability to describe varying of intensity flow. 

Note that in the FFM, there is an implicit assumption that the vehicles travel 

approximately at equal distances from each other during the interval ),[ 1kk tt  since the flow 

rate is assumed constant during ),[ 1kk tt . This is an approximation that is only acceptable for 

sufficiently small values of the time increments tk+1-tk (and it may not really be true for the 

duration of a red or green phase of a traffic light) but it reduces the computational complexity 

of our algorithms a lot since we do not have to consider individual vehicles. This assumption 

implies that the flow rates 
kt

 are approximately constant over the intervals ),[ 1kk tt . As 

previously mentioned our FFM operates at the time scale of observing variables each time the 

traffic signals switches from red to green or vice versa, and counts the number of passing 

vehicles during red or green phase. The implicit assumption in the FFM model is that vehicles 

are uniformly distributed over the time interval used for defining the flow rate, which in this 

case would mean that vehicle arrivals are approximately  uniformly distributed over one red 

or green phase of the traffic light. 

Most of the past work related to traffic signal control design are based on the 

assumption that traffic flow is deterministic [8],[9],[10],[11]. Several stochastic model for 

traffic flow have also been proposed such as platoon-based model (PBM) [13], fluid flow 

model (FFM) [12,14]. The PBM uses as basic unit a platoon of vehicles that travel at 

approximately the same speed, closely following each other. The PBM describes the state of 

an urban traffic network at a given time by specifying the location of the head of each platoon 

and the size of these platoons along link roads additionally specifying the queue sizes at each 
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approaching lane of each intersection, and the red/green state of the traffic lights. Using the 

PBM, we can predict δL time unit ahead (where δL  is the time that it takes to drive the entire 

length of link road L at the maximum legal speed) the arrival times of the platoons which 

already entered on the link road L upstream of the intersection. [54]. For predictions more 

than δL, the time units ahead the traffic flow coming from the upstream intersection can only 

be replaced with average platoon arrivals models unless information about the state of the 

upstream intersection would be available. This reduces the PBM information to the 

information available in a fluid flow model. The PBM considers as event times the arrival of 

the head or the tail of a platoon (as explained by N.Marinica in his thesis in [54], which allows 

efficient simulations and calculations. The information of a PBM representation is initially 

richer than that of FFM, but it may “diffuse” eventually after passing through several 

intersections. Therefore in this thesis we work with fluid flow rates everywhere.  

The effectiveness of FFM will be elaborated below based on analysing some available traffic 

data that observe the passage time of each vehicle and 

 (1) Analysing the available measurement data 

We are analysing the available measurement in the area of Dendermonde, Belgium as shown 

in Fig.2.1 (data courtesy of the “Vlaamse overheid” - Belgium). The data generated by tube 

sensors located at various locations along the road network, as indicated by the bars in 

Fig.2.2. Each time the axle of a vehicle crosses the sensor location this generates a pressure 

pulse that is detected by the sensor, and whose occurrence time (up to the msec) is stored for 

later analysis. This allows us define the traffic flow fairly accurately (though the errors due to 

missing detections and false detections are significant). The format of the available 

measurement data is as follows: 

037303 13/05/2009 08:00:02 446 02009 

037304 13/05/2009 08:00:02 705 02009 

037305 13/05/2009 08:00:04 740 02009 

037306 13/05/2009 08:00:05 018 02009 

037307 13/05/2009 08:00:17 858 02009 

037308 13/05/2009 08:00:18 061 02009 

037309 13/05/2009 08:01:11 061 02009 

037310 13/05/2009 08:01:11 345 02009 

This program read text file has the following 
format: 
%  037303  13/05/2009  08:00:02  446  02009 
%       (1)            (2)               (3)       (4)     (5) 
% (1) number/counter 
% (2) date 
% (3) time in H:M:S format 
% (4) time in msec 
% (5) identifier 
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The format shows that we have available the almost exact passage times of successive axles of 

vehicles at the sensor location as indicated by third column (number 3) and thus could obtain 

the number of passing vehicles over very short time successive intervals. 

Even though we did not have available the data on the switching times of the traffic lights at 

each intersection it was possible to approximately determine these switching times by 

observing the changes in number of vehicles passing different exit sensors of the traffic light. 

The sensors with number 02010/02012 as indicated by green box, in the link between 

intersection A and B, measured the number of vehicles during a cycle ),[ 1kk tt  defining the 

departure flows 
kt

 from intersection A in the direction of intersection B. Arrival flows 
kt

  of 

intersection B can be determined by using sensors 03004/03005 during a cycle ),[ 1kk tt by 

assuming the constant delay  determined as ratio (L/v), where L= 250 and speed   60 

km/hours .  

In order to determine the queue-length, it is important to classify the arrival and departure 

flow during green and red period (see below) .  

Herein after the period of the cycle is noted [t2k t2(k+1) ). Because the k-th cycle consists of a 

green phase and a red phase then the cycle can be defined as [t2k t2(k+1) ) = [t2k t2k+1)[ t2k+1  [t2k 

t2k+1 t2(k+1) ) , where k=1,2,3… is the index number of cycle. Denote moreover:  

(a) during green phase t2k+1-t2k = Tg,k the arrival flow is noted 
kti 2, and departure flow is 

noted 
kti 2,  

(b) during red phase t2k+2-t2k+1 = Tr,k , the arrival flow is noted
12, kti . The departure flow is 

of course 0 in this case. 

where i is number of the lane. In next section this notation would be explained in more 

formally. Based on information 
kti 2, , 

12, kti and 
kti 2, along with green phase Tg,k and red 

phase Tr,k  then the queue-lengths in that link in signalized intersection B can be estimated by 

assuming that the initial length of queue is known and assuming that there is no measurement 

noise: 

krtikgtitititi TTqq
kkkkk ,,,,,,, 1222222

]0,)([max


                                   (2.1) 
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Figure 2.1.  Area of Dendermonde where the measurements are taken 
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Figure 2.3. Evolution of queue length 

 

Figure.2.4 Arrival flow λ and departure flow μ at intersection B 
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Fig.2.3 shows the comparison the estimated queue-length between with and without max-

constraint. In addition, from the data describing each departure flow at intersection B (as 

indicated by sensor numbers 02010/02012 in the major road from and 020016/02018 in the 

minor road), we are able to extract the red and green periods as shown in Fig.2.4. Careful 

analysis of these traffic data from the Dendermonde case study has shown that FFM is a 

useful and efficient model for calculating the important variables in traffic network such as 

queue-lengths, traffic flows, green/red phase and cycle [t2k t2(k+1) ). This means that counting 

the number of vehicles during each green and red phase provides an efficient means for 

predicting traffic behavior at a reduced the computational cost. FFM reduces the 

computational complexity a lot. However, note that the approximation of piecewise constant 

flow rates λi,G,2k , λi,R,t2k+1 and μi,G,t2k over successive interval [t2k t2(k+1) ) leads to piecewise 

linear trajectories tiq , , which of course is only an approximation of the more complex true 

behavior. In other words the deviation from this uniformity can be seen as some random 

noise. 

2.2 A Stochastic hybrid model 

This section focuses on the framework of a stochastic hybrid model for urban traffic. 

The stochastic hybrid systems (SHM) considered here represent stochastic behavior both in 

the discrete event dynamics and in the continuous dynamics. Their broad modeling 

expressivity has enabled various researchers to use stochastic hybrid systems as models in 

various application domains such as system biology, traffic networks and smart grids. There 

are several modeling formalisms for stochastic hybrid systems. In [22], a general type of 

stochastic hybrid systems, whose continuous dynamics is described by diffusion stochastic 

differential equation is presented. Another framework that is also popular is the piecewise 

deterministic Markov processes [23]. This framework does not feature stochastic differential 

equations, but uses in between random jump at random times a deterministic continuous 

dynamics model described by ordinary differential equations. Autonomous switched-mode 

hybrid dynamical systems are proposed by Wardi in [24]. This switch-mode SHM can be used 

for analyzing the problem of controlling the switching times of traffic lights as shown in 

Sutarto in [25].  

The behavior of the traffic flow in urban networks is characterized by stop-and-go 

phenomena resulting from green/red switching at signalized intersections, from irregular 

arrival stream of vehicles, and from complicated interactions between conflicting traffic 
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streams, and from external disturbances like accidents or incidents that modify the traffic 

carrying capability of the road. In this thesis, the irregular arrival stream of vehicles is 

characterized only by flow rate as a traffic variable measured in “vehicles per time unit”. This 

is obtained by dividing the measured number of vehicles by the duration of the time unit. The 

time unit can be the (possibly variable) duration of green and red phase of traffic light of a 

signalized intersection. This flow rate variables can be modeled by mode dependent AR 

process. These mode represent traffic conditions remaining unchanged during a sufficiently 

long period of time, typically many time units. As a consequence, the term mode here refers 

only to the traffic flow with different levels of intensity that can be grouped into few 

categories (in this thesis we consider sometimes 2 modes, but sometimes the operational 

conditions are grouped into 3 modes). Classification into 2 modes refers to the traffic situation 

representing the free-flowing condition and the congestion condition. This can be somehow 

related to the MFD, considering the cases where the traffic density is to the left or the right of 

the maximal flow rate. Note however that our model only considers the flow rate as a traffic 

variable, while MFD is characterized by flow rate and density. In the offline approach in 

chapter 4 we also consider a 3
rd

 mode called by the faulty condition. The faulty condition can 

be caused by the significant change both in the number of vehicles passing through or in 

unexpected changes in the time unit (which can occur for traffic responsive signals). This 

significant change can be increasing/decreasing and shows up in the data set as a sudden 

increase in the variance of traffic data.  

2.2.1 Queue Length Dynamic 

The flow rate along with traffic light variables (i.e. cycle length and phase) are used to 

define the evolution of the queue-lengths. As discussed above (cf. equation (2.1)) the queue-

length evolves as a piecewise linear functions, being the integral of the difference between 

arrival and departure rate; these arrival and departure rates are described by stochastic AR 

model with mode dependent parameters, which remain constant during each time interval [tk, 

tk+1); the mode changes are modeled by a first order 3-state Markov process. The overall 

traffic model is thus a jump Markov model. In this chapter we describe in detail this stochastic 

hybrid modelling for the traffic flow along one particular approach route to a signalized 

intersection, and indicate how this model is useful in controlling the operation of a signalized 

intersection since we want to control the signalized intersections so as to minimize the 

average delays which in turn depend on the queue length trajectories.  
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In this modeling, we assume the following simplification: 

a) we do not consider the classification of vehicles; 

b) ignore the yellow and all red  

c) we ignore the problem of left turns, and the influence of pedestrian crossings. 

d) we use observation on traffic flow only 

A typical signalized intersection and a red/green sequence are shown in Fig.2.5. The 

intersection is controlled according to two phases. During phase A, the traffic signals T1 and 

T3 have a green light in the interval ),[ 122 kk tt  while in phase B during the interval 

),[ )1(212  kk tt , traffic light  T2 and T4 have a green light. In both phases, the cycle has two 

states: green and red (note that for simplicity we ignore in this thesis the yellow period; we 

also ignore the complications due to left turning traffic).   

t2k

T-cycle_k T-cycle_k+1

Green Green

Green Green

Tg

Tr

Movement 

L1 and L3

Movement 

L2 and L4

t2k+1 t2(k+1)
      

I

L4

L3

L1

L2

Dep_sensor

Arr_sensor

a1 d1

T1
T2

T3
T4

 

Figure.2.5.a Traffic Signal Sequence  Figure.2.5.b Intersection with incoming lanes 

The time instants when the traffic signals T1 and T3 initiates a green period and T2 and 

T4 begins red period are t0,t2,t4….(or t2k with k=0,1,2…). The time instants when the traffic 

signals T1 and T3 initiates a red period and T2 and T4 begins green period are t1,t3,t5….(or t2k+1 

with k=0,1,2…).   

Notation:  

Subscript i=1,2,3,4 indicates the number of the approach lane Li, while the Greek character  

or  indicates that it is an arrival or departure flow. Subscript t indicates the real time, while tk 

denotes the starting time of red and green phases; remember that these flow rates remain 

constant during an interval t  [tk, tk+1) ; 
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example-1:  

The arrival rate of vehicles in traffic movements L1 and L3 in the interval [t2k, t2k+1) are 
kt2,1  

and 
kt2,3 and in the interval [t2k+1,t2(k+1)) are 

12,1 kt and 
12,3 kt . The departure rate of vehicles in 

movements L1 and L3 in the interval [t2k, t2k+1) is 
kt2,1 and 

kt2,3 .  

example-2:  

The arrival rate of vehicles in traffic movements  L2 and L4 in the interval [t2k, t2k+1) are 
kt2,2

and 
kt2,4 and in the interval [t2k+1,t2(k+1)) are 

12,2 kt and 
12,4 kt . The departure rate of vehicles in 

movements L2 and L4 in the interval [t2k+1, t2k+2) is 
12,2 kt and 

12,4 kt  

Consequently, one can see that t2k+1-t2k = Tg,k and t2k+2-t2k+1 = Tr,k, where k  is a cycle 

index. Therefore, Tg,k represents the green time and Tr represents the red time in traffic signal 

T1 and T3. A cycle length Ck=C is equal to Tg,k+Tr,k, where in this thesis, cycle length is 

constant. Furthermore, 
kt2,1 ,

kt2,3 ,
12,1 kt ,

12,3 kt ,
kt2,1 ,

kt2,3 ,
kt2,2 ,

kt2,4 ,
12,2 kt ,

12,4 kt ,

12,2
ktR , 

12,4 kt  ≥ 0 and t2k˂ t2k+1˂ t2k+2, for all k. 

 

Formulation of the queue length trajectories can be expressed equivalently as (a) a piecewise 

affine model and as (b) a max-plus model.  

(a) Piecewise Affine model 

 The evolution of the queue length, for traffic signal T1 and T3, in movements L1 and L3 is 

obtained by: 


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for i=1,3 and k=0,1,2… 

1(.) is the indicator function defined as [70] 
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where _,tiqz   This indicates that queue-length in movement i is bigger than zero. Notation t_ 

in  _,tiq means that we consider the value of the queue length just before time t2k+1, something 

that is well defined because qt is a piecewise continuous function, with left hand limits. 

Similarly, for traffic signals T2 and T4, the evolution of the queue lengths in traffic 

movements L2 and L4 are obtained by 
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for i=2,4 and k=0,1,2,… 

The relation of the queue length between the time instants t2k and t2k+2 are represented by the 

following equations: 
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for i=1,3 and k=0,1,2… 

The equation describing the relationship of the queue length at traffic movement L2 and L4 are 

obtained in a similar manner. 

Please note that in (2.4) and (2.5), the arrival and departure flow rates are nonnegative 

values and the queue-lengths will never become negative (but can be equal to 0), thanks to the 

inclusion of 1(qi,t_) in the equations describing the evolution of queue lengths. Note also that 

these equations justify equation (2.1) as written down in the preceding section.  

(b) Max-Plus Model 

We may write the complete model of queue-lengths evolution in movement L1 (or L3) 

as a function of the occurrence times of discrete events describing switching of traffic lights, 

and zero crossing of queue length variables: 

at the switching time instant t2k+1 for i=1,3 and k=0,1,2… are given by  

]0,)([max ,,,,,, 22212 kgtitititi Tqq
kkkk

 


                                          (2.6) 
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and at the switching time instant t2k+2 

krtititi Tqq
kkk ,,,, 121222 

                                                               (2.7) 

Equation (2.8) is equivalent to equation (2.1) 

The queue lengths for movements L2 (or L4) i=2,4 and k=0,1,2…  are given by 

kgtititi Tqq
kkk ,,,, 2212




                                                                   (2.8) 

]0,)([max ,,,,, 12121222 krtitititi Tqq
kkkk 

                                      (2.9) 

Equations (2.6-2.9) are complete hybrid models of queue-length evolution in each movement 

and where arrival and departure flows are stochastic and are represented by a jump Markov 

model (JMM) that will be described in next section. 

Discussion:  The evolution of queue length is important to design feedback control, especially 

to define the possible cost functions. In this thesis, as for traditional UTC, the cost function 

represents the total average waiting time experienced by all vehicles in all queues: 

dtq
tt

J ti

i

t

tN

N

N

,

4

10

11
 






 

 where q is the queue length at movement i,   is the average arrival flow rate, N is the 

number of time instants and tN-t0 is the time interval considered. One of the advantages of 

using criteria based on time averaged values is that the objective function has a finite value 

even if N or tN tend to infinity, provided that the queue lengths remain finite (which will with 

very high likelihood be guaranteed under our risk constrained controller developed in chapter 

6). This cost function is equivalent to cost function that represents the total average queue 

length over all queues.  

2.2.2 Jump Markov Model (JMM) Structure 

Different from the most of the past work on traffic control where one assumed that traffic 

flow is deterministic, this thesis defines the traffic flow rates as stochastic variables. This 

section describes in detail the complete stochastic hybrid model for one signalized 

intersection, also called further on the jump Markov model (JMM). In order to express this we 

use a mode dependent AR model for a generic traffic flow rate 
kt

 (which could represent the 
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arrival flow rate 
kt

 or the departure flow rate 
kt

 ). Remember that the period of the cycle is 

noted [t2k t2(k+1) ) which consists of green phase and red phase during a period of time when 

the traffic conditions, also called the mode s of operation of the traffic, remains unchanged, 

this variable 
kt

 is modelled by a first-order autoregressive (AR) model: 

kkk ttt ss  


)()(
1

                                                             (2.10.a) 

(where )(s  and )(s  are mode-dependent parameters to be identified, and ....,2,1, k
kt



is an independently identically distributed sequence of zero mean Gaussian random variables 

with variance )(2 s , with )(2 s  also a mode dependent parameter to be identified). The fluid 

flow assumption of this paper implies that the traffic flow is constant during each interval 

[tk,tk+1): 
kt

t  )( for ).,[ 1 kk ttt  The traffic flow implication is that during any interval [θ, 

r)  ),[ 1 kk ttt  the number of vehicles that cross the location where this model is valid is 

).(  rk , and that these vehicles are approximately uniformly distributed over this interval. 

The drift parameter, )(s , indicates the mode shifting effect. The elements in the set of mode 

switching are the labels for discrete states/modes. The transitions probabilities will be defined 

later in the end of this section. 

In this thesis, we use state-variables representation in order to be consistent to the 

representation in filtering and control theory.  The AR process of traffic flow in (2.10.a) can 

be convert to state-space form as follow. 

Define state vector: 

},{},{ , sxxx
kkk tdtct  , where 

ktcx , is a continuous state and s is a discrete state/mode, where 

s= {1,2,3}. 

Focus on the continuous state, we can define state-space form of AR process as an innovation 

model described in the book [104, pp 109] below: 

        State equation                                     
kkk ttctc xssx  

 ,, )()(
1

                                     (2.10.b) 

Measurement equation                      
kkk ttct xssy   ,)()(                                       (2.10.c) 
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Notice that the noise 
kt

 is acting both process and measurement noise, i.e., we have so called 

innovations model. Examination of the equations (2.13.b) and (2.13.c) show that the 
1kt

x is 

precisely 
kt

y , so that 
1kt

x  is known given past measurement. The noise 
kt

  is a sequence of 

independent zero mean random variables with known distribution that depends on sensor. 

Proof:  
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The last equation is equivalent to (2.13.c) 

Q.E.D 

From time to time the mode s(t) of operation of traffic will change, due to external changes of 

the inflow rate, due to incidents that make the operation more or less efficient, or due to 

randomness. As previously mentioned FFM works with time scale )( 1 kk tt   of observing 

variables each time the traffic signals switches from red to green or vice versa, and counts 
kt

N

the number of passing vehicles during red or green period which basically can be seen as a 

ratio, 
)( 1 kk

t
t tt

N
k

k 




  then the value of traffic flow 
kt

 strongly depends both on 
kt

N and 

)( 1 kk tt  . This implies that when the traffic flow is increasing then it could be happen 

because the interval )( 1 kk tt   is decreasing or because the number of vehicles is increasing. 

This note is important because the measurement data generated in the Jakarta case study, 

treated in this thesis come from an adaptive traffic signal (e.g. SCATS system) which means 

that the duration TG,k and TR,k of successive green and of red periods vary over time, 

depending on the traffic condition.    

The mode variable s used above should also be considered as a time varying random process. 

We assume that the mode changes only occur at time instant when traffic signal change from 
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green to red, or vice versa, as shown in Fig.2.5.a  when the value of the traffic flow rate 
kt

 is 

updated by the AR equations. Therefore, we denote the mode as 
kt

s in the interval ).,[ 1kk tt  In 

the traffic flow model introduced in this subsection we consider 3 different values for the 

mode of operation  3,2,1
kt

s : 

 1
kt

s  denotes the desirable mode of operation where traffic is flowing freely without 

too much interference between successive vehicle; 

 2
kt

s  denotes the congested mode where vehicles hinder each other significantly, 

and the system operates inefficiently; 

 3
kt

s  corresponds to a faulty state, describing outliers in the behaviour, possibly 

caused by the significant change  either in the number of vehicles passing through or 

in the duration of the time unit. This significant change can be increasing/decreasing 

and shows up in the data set by increases or decreases in the variance of traffic data. 

This thesis assumes that the mode process 
kt

s  can be modelled by a first order Markov chain, 

i.e. at each time kt  the mode variable is
kt


1
 changes randomly to the value js

kt
  with a 

probability ij= Prob ...),,,|(
321 


kkkk tttt ssisjs  which only depends on the most recent 

mode (or Markov state) 
1kt

s , not on states further in the past. 

Equation (2.13) with its interpretation 
kt

t  )(  for ),[ 1 kk ttt , together with the Markov 

chain model for the mode 
kt

s , and the queueing model of equation (2.9-2.12) provides us with 

a complete mathematical model of traffic flow. The parameters of this model will be 

estimated in the next section according to the parameter estimation both EM method and PF 

method. In total there are 15 parameters to be estimated for one single approach lane Li: 

 For each mode  3,2,1s  the AR model has 3 parameters, )(s , )(s and 

)(2 s , for total of 9 parameters to be estimated 
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 The transition matrix ij of the Markov chain describing the mode process has 

3 rows of 3 elements, satisfying the normalization condition 



3,2,1

,1
j

ij i , for 

a total of 6 free parameters to be estimated.  

 

2.3 Conclusions 

This chapter proposed a stochastic hybrid model for urban traffic flow and queue length  

dynamics at a signalized intersection. SHM is characterized only by flow rates as traffic 

variables. These flow rate variables can be modeled using a mode-dependent first-order AR 

stochastic process. The parameters of the AR process take different values depending on the 

mode of traffic operation. Mode switching occurs according to first-order 3-state Markov 

process. Classification into 3 modes refers to the traffic situation, namely the free-flowing, the 

congestion condition, and faulty condition. The queue-lengths evolves as a piecewise linear 

functions, being the integral of the difference between arrival and departure rate. 
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3  
Bayesian recursive estimation via 

particle filtering  
 

This chapter provides a compact review of the Bayesian recursive estimators both for states 

estimation and parameters estimation, and focusing on the particle filtering (PFs) approach as 

sequential estimation. PFs are flexible simulation based techniques that have become popular 

for approximating the computationally intractable integration needed for Bayesian recursive 

optimal filtering. However, standard PF methods assume knowledge of the model parameters 

while in real applications, the parameters are unknown and should be estimated. How to deal 

with unknown parameter to perform optimal filtering, especially in a model with a reasonably 

large number of parameters (like a SHM model), remains a challenging problem. 

The extension of PFs to state-parameter estimation is studied and developed for dynamics 

model. The applicability of PF for these models has been studied in the research reported in 

this thesis by using kernel smoothing in order to reduce the dispersion which is caused by the 

need to add of random walk to the parameter model, thus causing covariance increases over 

time. The current practice for tuning of the kernel smoothing parameter
kt

h  is still ad-hoc.  

This chapter presents the existing technique of joint state-parameter estimation for two cases 

of state-parameter estimation of traffic flow with a different sampling time updates for two 

different cases of actual measurement data. The result shows that the there is a need to 

develop and to extend the existing technique for stochastic hybrid model. This topic will be 

elaborated and validated in chapter 5. 

 

3.1 Bayesian Estimation 

Particle filters are a tool to perform approximate Bayesian estimation. Consider a system with 

a hidden state X and an observation Y related to the hidden state X. In a probabilistic setting, 

any information about the value x taken by the random variable X before any observation is 
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made can be described using its prior distribution dxxpxX

x

X


 )()( . The conditional 

probability density of Y depends on x and is given by p(y|x) (meaning 

that(Y[y,y+dy)|X=x)=p(y|x).dy) and is called the likelihood function. The likelihood is the 

model for the measurement system (the sensor) because it models how Y depends on X. 

Bayes’ theorem states that, given the observation Y=y, the conditional density of X given that 

Y=y can be calculated by: 











dxxpxyp

xpxyp

dxxyp

xpxyp

yp

xpxyp
yxp

)()|(

)()|(

),(

)()|(

)(

)()|(
)|(

                                                        (3.1) 

where p(y) is the total probability of the observed data and actually plays the role of a 

normalization constant.  

The posterior density represents what is known about X given the observation Y=y. The 

minimum-mean-squared-error (MMSE) estimate or the Bayes’ estimate of the realized value x 

of random variable X given the observation y is the conditional mean of the random variable 

X given the observation y: 

 dxyxpxyXEX )|()|(ˆ                                             (3.2) 

For simplicity, the presentation given herein assumes integration over the total range of the 

Euclidean space. Numerical integration deals with the problem of numerically valuating 

general integrals over complex ranges (but for simplicity of notation we will use Euclidean 

space 
n
), 








n

n

dxxhxgdxxsI ).().()(                                                              (3.3) 

where h(x) is a probability density, i.e. positive function that integrates to unity, 

1)(,0)(  n
dxxhxh  

Transforming the evaluation of an integral into the problem of evaluating an expectation one 

needs a suitable factorization of the integrand s(x)= g(x) h(x). This shows that any expected 
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value can be approximated by the law of large number by a sample mean, leading to a Monte 

Carlo evaluation. In the Bayesian estimation context, the density of interest is the posterior 

density of the state/parameters given the observed data, i.e., h(x)= p(x|y). 

 

The Monte Carlo method relies on the assumption that is possible to draw 1N  samples 

 N

iix
1
distributed according to the probability density h(x). The Monte Carlo estimate of the 

integral (3.3) is formed by taking the average over the set of samples also called particles: 

 






N

i

i

N xg
N

g

1

)(
1

                                                          (3.4) 

Where N is assumed to be large. If the samples in the set  N

i

ix 1  are independent, gN will be an 

unbiased estimate and will almost surely converge, as N , to I, 

1limPr 





 



Ig N
N

                                                                 (3.5) 

by the strong law of large numbers. 

 

In practice it is often difficult to generate samples with density h(x). Importance sampling 

deals resolves this difficulty by using a proposal distribution q(x) which is easy to generate 

samples from. The only general assumption on the importance function q(x) is that its support 

set covers the support of h(x), i.e., that h(x) > 0  q(x) > 0 for all x  
n
. Under this 

assumption, any integral on the form (3.4) can be rewritten  

dxxq
xq

xh
xgdxxhxgI

nn

)(
)(

)(
)()()(  

                                            (3.6) 

A Monte Carlo estimate is computed by generating 1N  independent samples from q(x), 

and forming the weighted sum 

)()(
1

1

i

N

i

i

N xwxg
N

g 


 ,                       where                   
)(

)(
)(

i

i
i

xq

xh
xw                      (3.7) 

are the importance weights.  

If the normalizing factor of the target density h(x) is unknown, the importance weights in (3.8) 

can only be evaluated up to a normalizing factor [75,79] . Then, the weights can be formed 
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using a function proportional to the target density and then normalized afterwards, forming 

the estimate 

)()(

)(

)()(

1
1

1 ii

N

i

N

j

j

N

i

ii

N xgxw

xw

xwxg
g 







                                                 (3.8) 

where              





N

j

j

i
i

xw

xw
xw

1

)(

)(
)(                ,i=1,…,N                         

It is important to note that the target density approximation is given by 






N

i

ij
N xxxwxh

1

)()()(   

 

3.2 Particle filter  

Let us consider the filtering problem in the perspective of the random sample generation. 

Hence, the concept of time and dynamic models will be combined with random number 

generators. 

A rather general state-space model is given by equation (1.1) and (1.2) and an alternative and 

useful formulation is given by (1.3), repeated here for convenience without take into account s 

mode in the representation: 

),(
1 kkk ttt xfx 


                                                               (3.9) 

),(
kkk ttt nxgy                                                               (3.10) 

)|(~

)|(~
11

kkk

kkk

ttt

ttt

xypy

xxpx
                                                                           (3.11) 

In formulation (3.11), the model can be seen as a probability density function, which describe 

both the dynamics and measurement equations. In order to formulate equation (1.1)-(1.2) in 

the form (3.11) we make the following observations, 
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xgypxyp

xfxpxxp




 

                                             (3.12) 

Equation (3.12) represents the probability density function of noise process  and noise  

measurement. 

In filtering problem, the target density is given by filtering density, 

),|()|()(
1:1 


kkkkkk tttttt yyxpxpxh y                                         (3.13) 

where ),...,,(
10 kk tttt yyyy and using Bayes’ theorem (3.1) and the Markov property can be 

written as 
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y

y

yy
y                     (3.14) 

In order to handle the denominator in the above equations it has to be expressed using known 

densities. This can be accomplished by marginalizing the following equation with respect to 

xt, 

)|()|()|,(
11 


kkkkkkk ttttttt xpxypxyp yy                                             (3.15) 

which corresponds to integrating (3.15) with respect to xt, , resulting in 

kn kkkkkk ttttttt dxxpxypyp  
 )|()|()|(

11
yy                                         (3.16) 

Furthermore, in order to derive an expression for the one step ahead prediction density 

)|(
11  kk ttxp y  we employ the marginalization trick once more by integrating the following 

equations with respect to xt, 

)|()|()|(),|()|,(
1111 kkkkkkkkkkkk tttttttttttt xpxxpxpxxpxxp yyyy


                           (3.17) 

resulting in the following expression 

kn kkkkkk ttttttt dxxpxxpxp  
 )|()|()|(

111
yy                                              (3.18) 

 



38 
 

This equation is sometimes referred to as the Chapman-Kolmogorov equation. These 

expressions are important, hence we summarize the conclusions in the following theorem. 

Theorem 3.1  For the dynamic model given by 

)|(~

)|(~
11

kkk

kkk

ttt

ttt

xypy

xxpx
                                                                   (3.19) 

The filtering density )|(
kk ttxp y  and the one step ahead prediction density )|(

1 kk ttxp y


 are 

given by: 
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y                                                            (3.20) 

kn kkkkkk ttttttt dxxpxxpxp  
 )|()|()|(

11
yy                                              (3.21) 

where 

kn kkkkkk ttttttt dxxpxypyp  
 )|()|()|(

11
yy                                                     (3.22) 

In the filtering problem, we use (3.13) and (3.14) which suggests the following choices : 


)()()(

)|()|()|(
1

kt
t

kk

kt
t

kk

kt

kk

xq

tt

xw

tt

xh

tt xpxypxp


 yy                                                            (3.23) 

where )(
kt

xh  is target density, )(
kt

xw  is the importance weight and )(
kt

xq is the importance 

function as indicated in equation (3.7). 

Here we follow Table 3.1 to illustrate sequential estimation PF step by step as follow: 

Algorithm of particle filter starts at time t=0 by initializing the particle and their 

corresponding weights according to 

)(~ 00 xpxi                        i=1,…,N 

N
wi 1

0                             i=1,…,N 

Resulting in the following approximation 
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Table 3.1 PF algorithm 

1. Initialization 

            t=0. For i=1,… , N, sample x0
(i)

 from an initial distribution and set t=1. 

2. Prediction 

 For i=1,…,N, sample )|(~~ )()(

1

i

tt

i

t kkk
xxpx


 

 For i=1,…,N, evaluate the importance weights )~|(~ )()( i

tt

i

t kkk
xypw   

 Normalize the weights 

 


N

i

i

t

i

ti

t

k

k

k

w

w
w

1

~

~

 

3. Resampling 

 Resample N news particle 
)({ i

tk
x  for },...,1 Ni   with replacement 

from the set 
)(~{ i

tk
x  for },...,1 Ni   according to the importance weights  

4. Set t= t+1 and repeat from step 2   

 

At time tk , assume that the following approximation 







N

i

i

ttttN kkkk
xx

N
xp

1

)(
1

)|(ˆ
1111

y                                                          (3.24) 

is available from tk-1. According to Table 3.1 we should now generate N i.i.d. samples N

t

i

tx 1}~{ 

from the importance density )(
kt

xq . From (3.23) we have that  

)|()(
1


kkk ttt xpxq y                                                               (3.25) 

In order to generate samples from )|(
1kk ttxp y  we will make use of the time update (3.20) in 

Theorem 3.1 in the following way, 
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This implies that the proposal density can be chosen as 

)|()(
1

i

tt

i

t kkk
xxpxq


                                                                           (3.27) 

Selecting the  proposal density as (3.27) is known as SIR (Sequential Importance 

Resampling). Hence, according to (3.27) the predicted particles N

t

i

tx 1}~{  are obtained simply by 

passing the filtered particles from the previous time instance N

t

i

tx 1}{  through the process 

dynamics (1.3) 

Nixxpx i
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t kkk
,...,1)|(~~
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                                                   (3.28) 

Or alternatively using the notation of dynamic model and this can be formulated as 

Nixfx i
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t kkk
,...,1)(~
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
                                            (3.29) 

where 
i

tk 1
 is a realization from the process noise )(

11  kkt
tp 

. The next step in algorithm PF is 

to compute the importance weights, which according to (3.23) are given by 

Nixypw i

tt

i

t kkk
,..,1)~|(~                                                  (3.30) 

The acceptance probabilities are then found simply by normalizing the importance weights, 

step 2 in Table.3.1 
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Then the following approximation for the filtering density is obtained: 
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where i

tk
w is given in (3.31). According to (3.31) N

i

i

tk
w 1}{   are affected by the likelihood 

function )|(
kk tt xyp . This makes sense, since the this conditional density reveals how likely 

the obtained measurement 
kt

y is, in case the present state would take the value 
kt

x . The better 

a certain particle explains the received measurement, the higher the probability is that this 

particle is in fact close to the true current value of the state. The normalized importance 

weight 
i

tk
w may be interpreted as the probability of occurrence for each particle. In other 

words, the probability of particle 
i

tk
x being chosen at a single sample is approximately 

i

tk
w and 

after N samples 
i

tk
x will be multiplied approximately N

i

tk
w times. 

 

3.2.1 Resampling 

 

The next step in the algorithm of Table.3.1 (step 3), generates a new set of particles 
N

i

i

tk
x 1}{   

approximating )|(
kk ttxp y  by resampling with replacement among the predicted particles 

N

i

i

tk
x 1}~{  , distributed according to the importance density. The goal is to maintain diversity 

among the samples, avoiding that the variance of the importance weights increases over time 

[69]. This increase in variance leads to degeneracy of the particle filter, when used over a long 

time with many recursions. In practice, after a certain number of recursions, all but one 

particle will have very small normalized weights. The set of samples then no longer provides 

a proper approximate representation of the conditional distribution. A suitable measure of 

variation for the importance weights or degeneracy of an algorithm is the effective sample 

size Neff which is estimated as: 


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where i

tk
w is the normalized weight obtained using (3.31). The value of Neff lies in the interval 

1≤ Neff ≤ N, so a small Neff indicates degeneracy. Neff is a measure of variation of the 

normalized importance weights. If only very few particles have significant weight while 

others are negligible, the Neff  is small; if all the particles are nearly equally weighted, then Neff 

≈ N.  

Resampling is a strategy to overcome this degeneracy of samples in SIS and is a crucial step 

in particle filtering algorithms when the effective samples size Neff falls below a 

predetermined threshold [69]. Resampling eliminates particles with low importance weights 

and replicates samples with high importance weights. It involves mapping the set of weighted 

particles {
i

tk
x ,

i

tk
w } into a new set of particles  Nxi

tk
/1,ˆ  with uniform weights. The resampling 

algorithm is a kind of “black box algorithm”  that takes as input the normalized importance 

weights and particle indices and outputs new indices. It has nothing to do with the particles’ 

dimension, values, and so on. There are four types of basic resampling approaches: 1) 

multinomial resampling, 2) systematic resampling, 3) stratified resampling, and 4) residual 

resampling. In this thesis we use systematic resampling, which is often preferred over the 

others thanks to its simplicity [66]. 

Table 3.2 Systematic Resampling 

The steps are as follows: 

1. Denote z
j
 as the j

th
 cumulative sum element of the weights:  


j

i

ij wz
1

 

Note that z
N
=1. Draw a single uniform sample, v, on the interval(0,1]. For i=1,2,…,N 

compute 

                
N

vi
u i 


)1(

 

2. Set j=1. Perform the next steps for i=1,2,…,N. 

    if u
i
<z

j
 

               x
i
 ← x

j
 

               i  ← i+1 

    else 

               j  ← j+1 

    end if  
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Discussion 

The performance of  the PF heavily depends on whether the particles are located in the 

significant regions of the state space. The particles are propagated through the dynamic model 

and then weighted according to the likelihood function, which determines how closely the 

particles match the measurements. This problem becomes even worse when the initial 

estimation errors are large, for example, a few orders of magnitude larger than the sensor 

accuracy. Consequently, the basic PF quickly suffers the problem of severe particle 

degeneracy (the loss of diversity of the particles). 

 

3.2.2 Joint State-Parameter estimation 

Since a model parameter can be considered as a state that remains constant (or that varies only 

very slowly) it is possible in principle to use recursive Bayesian estimators, and hence also 

particle filters, for jointly estimating the current state of a stochastic system and its 

parameters. However some tricky computational problems must be overcome in order to 

successfully apply this idea.   

To simplify the discussion, here we only treat the model with one single mode s, so that the 

parameters to be estimated include just one group of AR parameter =(, , ). The complete 

model for the dynamics evolution of traffic flow and queue-length evolution in (2.6-2.10), 

depends explicitly on model parameters only written in traffic flow equation (2.10) where k

is the generic notation for arrival flow in movements Li during green period ki 2, and red 

period 12, ki  and also for departure flow ki 2, . In this section, we use k as index rather than tk 

to simplify the notation. The equation (2.10) can be rewritten as follow where for clarity the 

parameter  is explicitly included: 

),,( kkk xfx   ,                         ;1,...,0  Nk                        (3.33.a) 

),,( 1 kkk nxgy   ,                        ;1,...,0  Nk                         (3.33.b) 
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where f is the state update equation, g is the measurement equation. In the traffic model 

introduced in chapter 2 these are viz. for f the AR update equation and the queue length 

update equation (assuming red and green switching times known) for g as shown in (2.10.c).  

PF based estimation algorithms are often used to estimate the unknown parameters θ by 

adding a random walk to the parameters and augmenting the state-space with the parameters 

for joint estimation as expressed by (x, ). Model (3.33.a), assuming random walk noise added 

to parameter values, can be written in compact form as follows: 
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                                             (3.34.a) 

)|()|(~),( 1111 kkkkxkk pxxpx                                   (3.34.b) 

 

where knp  is a random variable with Gaussian distribution ),0;( 1kk WnpN  (with zero mean 

and variance Wt-1) independent of all other random variables, of appropriate strength. This 

random walk is  introduced to generate parameter values moving around in parameter space, 

in order to allow the proper exploration of the parameter space. However, the use of a random 

walk implies an increase in the magnitude of the variance, resulting in posterior distribution 

that are more diffuse than they should be. This issue will be demonstrated under the 

framework of particle filters in the next paragraph. 

By assuming state update, parameter random walk and observation noise are independence 

and if both states and parameters are to be estimated,  joint posterior distribution can be 

defined by using Bayes’ rule : 

(3.35) 

 

Proof: 

       111,,,  kkkkkkkkkkk pxpxypxp yyy 
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Based on the Bayes’ theorem in equation (3.1):
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Q.E.D 

It is clear that we need to deal with the problem of not knowing the form of the density 

)|( 1kkp y to obtain the joint posterior  kkkxp y, . This issue can be demonstrated in the 

framework of particle filters, where in this thesis, we use kernel based density estimation to 

approximate )|( 1kkp y .  

For a general set of a training instance parameter points {θ
i
, i=1,…,N}, N is the number of 

particles and θ  is a test instance parameter point or possible value for the true parameter 

value. We use a kernel-based density estimate of the underlying distribution of the parameter 

z(θ), expressed as a linear mixture of kernels: 

),()(

1






N

i

ii Kwz                                                     (3.36) 

where the w
i
 are weights and nonnegative constant that sum to one, and K is a nonnegative 

kernel function which integrates to one. We define K is the density of a multivariate normal. 

The position of the kernel function would be defined by {θ
i
, i=1,…,N}, N is a number of a 

training points and in particle filter case. 

Kernel density estimation estimates the probability density function by imposing a model 

function on every data point and then adding them together. The function applied to each 

training points is called a kernel function. For example, a Gaussian function can be imposed 

on every single data point, making the center of each Gaussian kernel function the data point 
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that it is based on. The standard deviation on the Gaussian kernel function adjusts the 

dispersion of function of kernel and is called a bandwidth of the kernel function.  

The approach used in this thesis follows the method introduced by Liu and West in the paper 

[20] where )|( 1kkp y is approximated by Gaussian kernel function according to: 

   
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i

kkk WNwp
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111 ,,|  y                                              (3.37) 

Let  and V be the mean value and the variance value of the weighted particles θ, that are 

calculated as follows: 
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The derivation in [20] shows that the distribution in Eq.(3.37) has a mean of 1k  and 

covariance 11k   kk WVV , where V0 is specified by generating 0 according to Gaussian 

random generator. Thus it is clear that, as a consequence of the random walk (the addition of 

independent zero mean noise with covariance 1kW ), the covariance kV  increases over time. 

This called dispersion. 

A natural approach to overcome the issue of dispersion, is the use of kernel smoothing with a 

properly tuned smoothing factor as proposed in [20] : 
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kkk VhmNwp  y                                            (3.39) 

The idea behind this approach is the shrinkage of the kernel width forcing the particles to be 

closer to their prior mean according to: 
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where  N

i

i

tk
m 1}{

1 
 are the shrinkage locations, ]1,0[th  is a kernel parameter, 1k  and 1kV  are 

the Monte Carlo mean and covariance computed using all the particles, with their values and 

weights },...,1,,{ 11 Niw i

k

i

k   as shown in (3.38).  

The optimal selection of the kernel parameter ]1,0[kh  maximally reducing the over-

dispersion in the PF remains a difficult problem.  The current practice for tuning of kh  is ad-

hoc. Liu and West in [20] suggest choosing hk=0.1, whereas Chen in [21] selects hk as the 

optimum for a historical data-set, and then applies this choice for future batches. These ad-hoc 

rules define a constant hk, for which optimality cannot be established w.r.t the online data to 

be analyzed. In chapter 5 we will introduce a better method for selecting the tuning parameter 

hk. 

3.3 Example of traffic state estimation using PF 

The aim of this example is to show how the proposed approach for particle filtering 

estimation explained in section 3.2 can be applied to dynamic evolution equations. 

The model represents traffic flow rate k where k is a short hand for the time index tk of the 

sampling time update. We assume that the flow rate k is generated according to one single 

autoregressive model (AR), not a SHM. The state equation and measurement equation are 

assumed to follow equation (2.10.b) and (2.10.c) by dropping mode s. We examine how to 

jointly estimate the current state and the AR parameters for this model. 

In this example, the joint state-parameter estimation of the state k and the parameter 

},,{   is studied for the two different experimental set-ups:  

a. Case-1: uses data from an arterial road in city of Bandung with sampling time update 

every 15 minutes  

In this case, we will use the discrete time-series model of traffic flow recorded every 15 

minutes during the period of Monday,11st of June 2012 until Friday,15
th

 of June 2012. The 

data is obtained from 00-24 pm each day. Video sensor measurement data is used to validate 

the traffic flow estimator/predictor. Figure.3.1 shows that the traffic flow during the different 

workdays follows a similar pattern. One exception is  Friday between 12 am-14pm, when the 

flow pattern is low, reflecting the fact that in during that period many people go to Mosque for 

Friday prayer. But, everywhere else the daily flow is very similar.  
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Please note that in this example we use online joint state and parameter estimation. We use 

measurement data only on Friday to know the performance of state and parameter particle 

filter (PF) based estimator/prediction. In this case, we use the autoregressive (AR) process as 

shown in equation (3.46) and (3.47). It should be noted that tk is sampling time update every 

15 minute. 

 

Figure.3.1 The pattern of traffic flow 

 

In this simulation, we use kernel smoothing with smoothing factor  01  h   to reduce the 

covariance by using kernel smoothing in (3.40) . Based on past experience we choose h=0.15. 

In this simulation we use   1000,0~ N  ,  1600,0~ Nn  , initial conditions 00   ,and 

}5.0,5.0,5.0{},,{0   with particle number N=500; 

Fig.3.2 shows that the PF predictor gives results close to the actual traffic flow, both for 

prediction 1-cycle ahead or 2-cycle ahead, except for the period 06-07 am. 
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Figure 3.2. Prediction of 15’ ahead (prediction 1) and 30’ ahead (prediction 2) 

b. Case 2 : uses data on the arrival flow at an approach link of a signalized intersection in city 

of Jakarta 

The experiment case-2 uses the same model (2.10.b-2.10.c) as in the case-1, but it uses 

shorter time sampling update intervals, with two different cases being compared with: 

(case-2.a) average traffic flow over each green period: interval= 50 sec – 200 sec; 

(case-2.b) average traffic flow over intervals corresponding to 5 successive green periods:  

250 sec – 1000 sec (summing 5 values as used in cases 2.a) 

The available data consists of the traffic volume in each a green period, as observed by the 

sensors installed for the SCATS traffic control system implemented in that area. Because the 

SCATS system is counting the number of vehicles during the green/red period and the fact 

that SCATS system is an adaptive system then duration of the green/red period is varying 

depending on the intensity of traffic flow in that area. The joint state and parameter estimation 

technique described in section 3.2.3 is applied to these cases. Figure 3.3 shows that PF 

predictor gives an unsatisfactory result for the shorter time update as indicated in the case-2.a. 

The lower graph clearly indicates that the prediction results, during index 60-120, are 

unsatisfactory for the shorter time update interval of case-2.a. It seems that one single AR 
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model does not allows for occasional discrete shifts in the parameter determining the level of 

‘the volatility’. We need the model to explain some form of persistent ‘volatility’ persistence.  

 

Figure.3.3 Performance of the state-parameter estimation for case-2.a 

 

However, if we use AR model with the longer time update interval, corresponding to the 

summation of 5-summation of green period as in case-2.b, the performance of state-parameter 

estimation becomes much better as shown in Fig.3.4. It is reasonable, because the summation 

at longer intervals makes the variability of the data becomes smaller, so the data becomes less 

volatile. It is comparable to the results of such as the case-1.  

These two experiments above show that if we count the number of vehicles passing within a 

given time update in successive green/red phases, the existing joint state-parameter estimation 

technique needs more sophisticated models to improve the performance of prediction.  One 

single AR model cannot sufficiently describe the persistence of the volatility of the arrival 

flow.  One of the possible models that we are looking at in order to remedy this limitation is 
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jump Markov model, because looking at the data in Figure.3.3 one sees from time to time that 

the measurement data jumps to a different mean value and/or a different variances. This 

suggested the need to develop an advanced PF based joint state-parameter estimation for 

stochastic hybrid model as will be discussed in Chapter 5.   

 

Figure.3.4 Performance of the state-parameter estimation for the case-2.b 

 

3.4 Conclusions 

In this chapter, the particle filtering (PFs) based approach for joint states estimation and 

parameters estimation is explored for traffic flow model. The standard PF methods assume 

knowledge of the model parameters while in real applications, the parameters are unknown 

and must be estimated. Joint state-parameter estimation is achieved by using kernel smoothing 

in order to reduce the dispersion which is caused by the need to add of random walk to the 

parameter model. 

By using actual measurement data of traffic flow along an arterial road and at an approach 

link to a signalized intersection, the joint state-parameter estimation with a simple model can 

be potentially applied to estimate traffic flow. However, with shorter sampling time updates 
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(e.g. updating for each green phase) the results show that one single AR model does not 

allows for the occasional discrete shifts in the parameters determining the level of ‘the 

volatility’. This suggests the use of a jump Markov model (JMM) for improved prediction 

performance. This requires us to develop an advanced PF based joint state-parameter 

estimation for JMM will be discussed in Chapter 4 and 5.   
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4  
Parameter Estimation:  

offline approach  
 

 

4.1 Introduction 

A fundamental and widely-applicable approach to the problem of obtaining parametric models 

from observed data involves adopting a statistical framework and then selecting as estimated 

model, that model which maximizes the likelihood of the observed data. Schemes guided by 

this principle are known as Maximum Likelihood (ML) methods and, due to the fact that they 

have been studied for almost a century, they benefit from a very large and sophisticated body 

of supporting theory. This theoretical underpinning allows, for example, important practical 

issues such as error analysis and performance trade-offs to be addressed. However, despite 

their theoretical advantages, the practical deployment of ML methods is not always 

straightforward. This is largely due to the non-convex optimization problems that are often 

implied. Since these cannot be solved in closed-form, they are typically attacked via a 

gradient based search strategy based on Newton’s method or one of its derivatives [27]. 

However, Newton’s method is never guaranteed to converge to the global optimum for a non-

convex problem. So a Newton method will only guarantee that you find a local optimum. 

This chapter explores a different approach to the problem of finding ML estimates of fully-

parametrized state-space models from single/multivariable observations. More specifically, 

the work here employs the Expectation Maximization (EM) algorithm as a means of 

computing ML estimates. The EM algorithm enjoys wide popularity and acceptance in a 

broad variety of fields of applied statistics [28], [29]. However, despite this acceptance and 

success in other fields, it could be argued that in systems and control settings, the EM 

algorithm is not as well understood, accepted and utilized as it may deserve to be.  
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In this chapter, we will develop the parameter estimation of the hybrid model such as jump 

Markov model as described in the previous section.  In total - for a single traffic flow 
kt

  

where α is a generic flow (it can be 
kt2,1 ,

12,1 kt ,
kt2,1  for movement L1) - there are 15 

parameters to be estimated: 

}),(),(),({)( 2  ssss                                                          (4.1) 

 For each mode s ϵ {1,2,3} the AR model in equation (2.13) has 3 parameters, β(s), γ(s) 

and σ
2
(s). 

 The entries of transition probability matrix Π are πij of the Markov chain has 3 rows of 

3 elements, each summing to 1.  

Estimation of the parameters ( )3,2,1),(),(),(( 2 ssss  of the AR-models, and of the 

transition probabilities ( 3,2,1,, jiij ) of the JMM can be performed using an iterative two-

step EM procedure, where  ij are entries of matrix TPM.  Therefore the EM algorithm allows 

us to completely identify the JMM stochastic hybrid model proposed in the previous sections 

as a model for traffic flow. In this chapter, we develop the application of the EM approach, 

originally proposed by Dempster et al [30] and further extended in [31,32,14], to switching 

systems as our JMM, based on forward-backward recursion or ’smoothing’. A good 

introduction and survey paper on EM can be found in [33].  This EM approach is formulated 

in batch or offline form, i.e. it uses a given number of observations obtained over a time 

interval [0,T) to iteratively find better and better estimates of the unknown parameters of a 

model that is valid over the period [0,T). This offline approach needs significant memory 

requirements and processing power for storing and processing large datasets, but this 

approach is shown to be useful and applicable further on in this chapter. 

4.2 Expectation Maximization Algorithm 

Let us give a brief review of the mathematical background to EM algorithm. Let  y denote a 

data vector with the associated probability density fy(y|θ), where the parameter vector θ ϵ ϴ is 

the unknown parameter vector to be estimated. The maximum likelihood (ML) estimate given 

an observation y of y is  

)|(logmaxargˆ 


yfML y


                                                    (4.2) 
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The problem is that often the maximization problem (4.2) is complicated.  

Suppose that we can specify some data x related to y, such that if x is observed, an 

observation y is available too. Remember that our state variables consists of continuous state  

kk ttcx , and discrete state/mode s, where s={1,2,3}, as described in section 2.2.2. The 

probability density function of the complete data x is fx(x,θ). The idea is that the complete 

data x is chosen such that solution of  

)|(logmaxargˆ 


xf xML


                                                              (4.3) 

can be found. 

The EM method is an iterative algorithm working in two steps. In the E-step the sufficient 

statistics of the complete data are estimated, i.e., the expected value of fx(x,θ) conditioned on 

y is computed. This estimated is then used to obtain a new estimated of θ in the so called M-

step. This parameter estimate is then fed back to E-step, and so the method iterates until 

convergence. In mathematical form the method is summarized below: 

 Start, m=0: guess an initial value θ
m

 

 Iterate m  m+1 (until convergence), 

- The E step: Calculate 

Q(θ | θ
m

) = E{log fx(x| θ) | y=y; θ
m

} 

- The M step: solve 



 


 maxarg1m
Q(θ | θ

m
) 

In this section we do reformulate the EM approach proposed by Hamilton [31] in order to get 

a simpler and easier algorithm, changing the cost-function in the M-step by adding a weighted 

term with corresponding smoothed inferences about the currently active mode. The smoothed 

inferences are the probabilities  ;)(
1


ktk stsp y  that the k-th observation comes from mode s 

given all the information 1kty  available prior to time 
kt , where we use the notation 

 
11

,,, 21 


kk tt yyy y .  

Remark: In this chapter to simplify the notation, we use k in order to denote the sampling 

times tk.  
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The reason for this modification is that each observation yk belongs to the s-th mode with 

probability  ,kk yssp  . By using these smoothed inferences we find a better maximum 

likelihood estimate. If we transform our AR model to state-space (SS) form, as explained in 

equation (2.10), then we notice that in the SS model, process noise and measurement noise is 

equivalent and the assumption that the mode sk depends on past observation 1ky  only through 

the value of sk-1, implies that the calculation of the distribution  ;1 kk ssp y  is a problem of 

hidden state estimation of hybrid systems, where   ,,,,....,,, 2

333

2

000   . The key idea 

of this calculation is to perform a forward-backward or ‘smoothing’ filter recursion for each 

possible mode sequence.  

The algorithm starts with an arbitrarily chosen vector of 15 independent parameters, chosen 

randomly but using prior information in order to speed up convergence of the algorithm and 

to increase the likelihood of converging to the global maximum. The EM technique for hybrid 

systems requires a method for recursively approximating the conditional probability

 ;1 kk ssp y , for each index m counting the number of EM iterations. Moreover an 

algorithm for finding the parameter values that achieves the maximum likelihood must be 

available. This differs from the approach proposed in [28] for a general non-linear system, 

where the objective is to find the best estimate of the conditional density  kkyp y| . In the 

case of hybrid systems, as in this thesis, the E-step, indirectly infers about the discrete 

states/modes. Since the mode sk, is unobservable, only the conditional probability of the 

modes  at successive time t, given the observation vector, can be calculated.  

Since the observed trajectory {y1,…, yk} of the measurement depends on the trajectory 

{s1,…,sk} of the past and present modes, and on the parameters, as specified by the 

probability  ;kk ssp y  (given all the data yk, k = 1, 2….,T), it is reasonable if each 

component on the right-hand side of equation (4.4) below has to be weighted with the 

corresponding smoothed inferences. Therefore, the weighted log-likelihood function is given 

by assuming that the noise terms k have a normal distribution as shown in equation (2.10b); 

similar formulae can be written down for other noise distributions):  
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                  (4.4) 

The conversion to the (log-)likelihood function is an important step for obtaining easier  

explicit formulas by solving the nonlinear equation obtained by setting the partial derivatives 

of the log-likelihood function to zero in the M-step. 

A detailed explanation of the EM-algorithm [38],[39] is given below: 

The E-Step 

The E-step consists of forward filtering and backward filtering/smoothing and this step aims 

to calculate the conditional probabilities  m

kk yssp ; . Assume that  
m  is the parameter 

vector calculated in the M-step during the m-th iteration and    sspi  )1(0 . The algorithm 

starts with an arbitrarily (but sensibly, as explained above) chosen vector of initial parameters 

  02

0,30,30,3

2

0,20,20,2

2

0,10,10,1

0 ,,,,,,,,,    

i)  Step E-1: Forward Filtering : for k = 1,2….,T   iterate: 

 
   

    
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ssp






yy

yy
y                               (4.5.a)                

where  kk yyy ,,, 21 y  is the vector of traffic flow measurements available at time k and  

 m

kkks syg ;;| 1y  is the conditional probability density function at of  yk time k assuming 

that the mode s is active at time k: 

   












 
 

 2

2

1

1
2

exp
2

1
;;|

s

kssk

s

m

kkks

yy
syg






y  

 and  
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   m

kk
j

m

js

m

kk jspssp  ;;
3

1
1 yy   
 ,          j=1,2,3 is the number of modes                                

(4.5.b) 

until  m

TT yssp ;  is calculated.  

The starting point for the iteration is chosen as :   m

s

myssp   );1()1(  where 
m

s  is the 

likelihood of being in mode s obtained in the previous iteration m and   is transition 

probability matrix (TPM). 

Proof: 

To simplify the notation in this proof, we drop the symbol .  

The conditional probability density function for the observations yk given the modes sk, sk-1 

and the previous observations yk-1 is  

   












 
 

 2

2

1

11
2

exp
2

1
;,|

s

kssk

s

kkkks

yy
sssyg






y  

The chain rule for conditional probabilities provides then for the joint probability density 

function for the variables yk,, sk, sk-1 given previous observations yk-1 

  )|,(),,|(|,, 111111   kkkkkkkskkkks ssspsssygsssyg yyy  

In order to find the conditional joint probabilities )|,( 11  kkk ssp y we use again the chain rule 

for conditional probabilities: 

)|()|(

)|(),|()|,(

111

111111









kkkk

kkkkkkkk

spsssp

spssspsssp

y

yyy
 

where we use the Markov property. 

The probabilities )|( 11  kksp y  and the joint probabilities )|,( 11  kkk ssp y are obtained using 

the following two steps : 

1. Given )|( 11  kksp y , i=0,1, at the beginning of time k,  
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)|()|()|,( 11111   kkkkkkk spssspssp yy  

2. Once yk is observed, we update the information set yk={yk-1,yk} and the probabilities 

by backwards application of the chain rule and using the law of total probability 
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Q.E.D 

ii)  Step E-2: Backward filtering : for k = 1T , 2T ,..., 1 iterate on 

 
   

 
 




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




y

y
                        (4.6) 

where ij are entries of   . 

See [31] for the proof (taking into account that the structure and terminology used there is 

completely different from what is used in this thesis). 
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The M-Step 

In the M-step of the EM algorithm, new and hopefully more exact maximum likelihood 

estimates 
1m  for all model parameters are calculated. As mentioned previously each 

component of the log-likelihood function has to be weighted with the corresponding smoothed 

inference. In particular, for the model defined by equation (2.10.b) explicit formulas for the 

estimates can be derived by setting the partial derivatives of the log-likelihood function (4.4) 

to zero and solving the resulting system of non-linear equations by a substitution technique: 

  

 
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                                              (4.7) 
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                                                 (4.9) 

Because equations (4.7),(4.8) and (4.9) are nonlinear, it is not possible to solve analytically 

for 
m  as a function of },....,{ 1 Tyy . However, these equations do suggest an appealing 

iterative gradient ascent algorithm for finding the maximum likelihood estimate (or in practice 

a gradient descent for the log-likelihood since the relation between likelihood and log-

likelihood is monotonely decreasing). 

Iterating back from T to 1, as shown in E-step E-2, we obtain  m

T

m

s ssp  ;)1(1
y

 and 

the transition probabilities are estimated by using equation (4.10) (for a proof see [31]). 

Basically, in the proof, the maximum likelihood estimates are obtained by forming the 

Lagrangean in order to estimate the transition probabilities. Following Hamilton in [31] and 

this fits to our traffic case by considering that our jump Markov model, then evaluating the 
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derivative in this expression is made relaxing by the independence of mode transitions on the 

continuous state. The transition probabilities are restricted only by the condition that 0ij , 

and 3,2,1,1)( 321  iiii   
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                               (4.10) 

where 
m

ij  is a entry of the transition probability matrix  obtained during the m-th iteration.  

All values obtained in the M-step are then used as a new parameter vector 

 112)1(11 ,,,   mm

i

m

i

m

i

m    and 
1m

i , 3,2,1i  in the next iteration of the E-step. The 

algorithm is terminated when   1mm for some preset accuracy. It means that one 

continues iterating in this fashion until the change between 
m  and 

1m  is smaller than some 

specified convergence criterion. In the algorithm that we implemented we used the 2L norm, 

but other norms could also be used.  

The EM-algorithm can be implemented in 2 different forms, EM and GEM (Generalized EM) 

[30]. The EM algorithm maximizes the conditional expectation at every iteration, while the 

GEM only ensures that the likelihood increases at each step. Our  implementation follows the 

GEM form. We avoid oscillations between different modes with identical likelihoods by 

updating the model only when the likelihood increases. The algorithm implementing this 

Generalized (G) EM-iteration procedure is shown in Table 5.1 where the equations used in the 

both E-step and the M-step have been explained above. 

Related to the algorithm, the two main problems with its implementation are:  

(1) the conditional expectation is difficult to compute, and therefore we replace it by 

smoothed inferences. Thus we use  the whole data (batch) obtaining more accurate results, 

especially for the estimate of the mode of operation at each time t. The price we pay for more 

accurate evaluation is that in the E-step we need a backward filtering iteration as shown in 

equation (4.6). This by the way automatically makes the algorithm unsuitable for online 

applications, apart from memory and computation time requirements. 
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(2) since the convergence may be to a local maximum that is not the global maximum, a good 

choice of initial conditions is necessary. In our traffic case, we simply choose the initial 

conditions based on intuitive guesses corresponding to similar historical real measurement 

data. In practice we found that the parameter estimates always converged to good estimates 

(global optimality cannot be proven simply because the true parameters are not know, and 

may not even exist in reality if the proposed AR model is an approximation to a much more 

complex model). 

Table.4.1 : GEM Algorithm 

1). Initialization Set m=1. Select ε ϵ R arbitrarily small  

Initialize 
1  to initial guess 

2). Expectation (E) Step  Set  m = m+1 

Given 
m calculate  mL   using equation (4.5) and (4.6) 

3).Maximization (M) Step  Set 
1m  to value of  by using equation (4.7), (4.8), (4.9) 

and (4.10) that maximize  1mL   

4). Convergence check Evaluate  1mL  . If  |  1mL  -  mL  |<  ε, , stop.  

Otherwise go to 2. 

 

Since we use a stochastic model with Gaussian noise, the likelihood functions are bounded 

and the Hessian is always negative definite [27]. Therefore, the sequence converges to a local 

maximum (of the likelihood, a local minimum of the log-likelihood), proving convergence of 

our parameter estimation, assuming identifiability of the model (see [27,34]).  In practice we 

found that the urban traffic model propose in this paper always leads to an identifiable system.  

4.3 Experimental layout  

This section focuses on estimating parameter values for the urban traffic flow model 

introduced in chapter 2, using the GEM-algorithm of section 4.2. The case study uses the data 

over a time window [0,T] for the road layout shown in Fig.4.1 which represents a traffic 

network, in the area of Thamrin Street, Jakarta, Indonesia. The time-window size is important 

to define the model that will be used for estimating traffic flow for the next time-window. We 

will study in the next section the effect of varying time-window size and its practical 
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implication on the performance of the estimator. The accuracy of the estimated traffic flow 

model is crucial for achieving good performance of the model based state estimators and of 

feedback traffic control strategies. 
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Figure.4.1 Configuration of area under investigation 

In this section, we validate our traffic flow model, and the parameter estimation algorithm 

based on this model, using data collected at 2 neighboring intersections, called 313 and 314 as 

shown in Fig.4.1. At each of the locations indicated in Fig.4.1 by a box, a video camera, 

identified by its numbers, tries to detect all passing vehicles using a computer based counting 

algorithm. While false detections and missed vehicles cause significant errors in the data, the 

output of the sensors approximately counts the number of vehicles that cross an entrance 

location during one cycle of the traffic light. 

The data set obtained from these video cameras lists the number of vehicles that cross 

a location per cycle of the local traffic light, as well as the duration of each cycle (between 

120-200 seconds). This provides us with a data set of traffic flow rates averaged per cycle. By 

using these measurement data we build a model describing the dynamics of the traffic flow αk 
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veh/sec passing the location observed by the video camera, and we apply  parameter 

estimation techniques to estimate the model parameters, and finally to validate the model thus 

obtained by using smoothed inference for predicting future values of αk.   

The SCATS system updates the traffic flow measurements on a cycle-by-cycle basis.  

Remark: Please note that the SCATS system is an adaptive system, therefore the cycle-length 

is varying and so the variation in the value of the denominator in the definition of the flow 

rate may cause sudden changes in the measured flows. Note that a good feedback control 

system for traffic lights should increase the cycle length when the vehicle flows increase, 

something that should in fact reduce the variability of the measured flow rates in the data set 

used in this section.  

Fig.4.1 shows that intersection I-313 has arrival flow λL11 which is determined by summing 

the number of passing vehicles detected at sensor location 9,6,7 and 12 divided by the cycle 

length of the intersection I-314. The value of this arrival flow rate as measured during the k-th 

cycle of the traffic lights is further on called λL11,k. The departure rate for intersection 313, 

called μL11,k, is defined by counting the vehicles that pass the sensor location 8,9,10 at 

downstream intersection I-313, divided by the k-th green period of lane L11 at intersection I-

313 (the time delay corresponding to the travel time between intersection 313 and 314 must of 

course be taken into account when using the flow rate λL11 as inflow rate at the downstream 

intersection I-313). Of course this is under the assumption that drivers of vehicles that pass the 

sensor locations 9,6,7 and 12 follow the traffic rules. 

Let Ns,k be the number of vehicles passing sensor location s (s=8,9,10 at intersection n=313) 

during the time intervals [tn,k,tn+1,k), n=313,  then  L11,k = (N7,314,k + N8,314,k + N9,314,k + 

N12,314,k)/(t314,k+1 – t314,k), while L11,k = (N8,313,k + N9,313,k + N10,313,k)/(313,k+1 – 313,k). Note that 

the k-th sample for arrival and for departure flows does not in general correspond to the same 

physical time t. Due to this limitation in our experimental setup, for the time being, we will 

only focus on the study of the development and validation of a model of one single traffic 

flow (not a queue-length) as a hybrid system. The study of queue-length will be discussed in 

the chapter 5 using online Bayesian joint state-parameter estimation and while online control 

applications will be treated in the chapter 6. 

 Aim of the current experiment is to check the practical implementability of our algorithm by 

identifying the parameters   ,,,,,,,,, 2

333

2

222

2

111   of the JMM model for 



65 
 

arrival and departure traffic flows. For this purposes we use as input for the EM-algorithm 

described above the data from the case study shown in fig.4.1. Table 4.2 shows the 18 

parameters of the model for traffic flow thus obtained (where of course the normalization of 

the transition probability matrix  is satisfied; this explains why we go from 15 parameters to 

be estimated to 18 parameters). It turns out to be feasible to identify all possible modes: free 

flow mode, congested mode and faulty mode. By using these parameters as estimated we 

can characterize the AR model of the traffic flow in each of the 3 modes, and the transition 

probability matrix   with entries ij,( i,j = 1,2,3) describing the Markovian mode transition 

process. Since for all estimated values we find that 1s  ensuring stability of the AR model 

for each of the modes, the stationary value  ks yE  can be defined  
s

s
ks yE








1
, where 

s=1, 2 and 3. The values of stationary value  ks yE  can be found in Table.4.2.  

It is clear from the results of parameter estimation in Table 4.2, that the EM technique is able 

to identify the modes. In the case of traffic flow 11L , the first and third modes have an 

average value  ki yE  that is almost the same but with very different values of the variance. 

This might make the results sensitive to how outliers –unlikely or abnormal events or 

observations - in the data set are treated. In estimation techniques, a standard approach to deal 

with this outlier issue is to reject any measurement that is at least three standard deviations 

away from ‘the normal’ measurement. This means that the definition of outlier depends on 

what we consider the normal variation. A value for the variance that is almost tripled,  is a 

strong indication that the third mode is an outlier mode. This is also obvious from Fig.4.2 

when considering the results for the estimated probabilities for those measurement data ky  

marked with a circle, indicating that they belong to the third mode. These points in time 

correspond to events like traffic incidents, persistent counting errors, night time counting 

error.  It is important for the control application to know the system dynamics at each time, 

including at these rare events, and to detect when a change in the AR model parameters 

occurs. Fig.4.2 shows both forward and backward filtering results and it seems that both 

approaches give similar results in terms of predicting the outliers. Overall, the EM algorithm 

is able to correctly identify clusters of mode-1, mode-2 or mode-3 operation, meaning that the  
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Figure 4.2 One-day (0 pm – 24 am) measurement data of 11L  (top graph), JMM based 

estimated probability of mode s = 1,2,3 (second, third and bottom graph) 

 

Figure 4.3. One-day (0 pm – 24 am) measurement data of 11L  (top graph), JMM based 

estimated probability of mode s = 1,2,3 (second, third and bottom graph) 
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EM technique is applicable for modelling free flow and the congested modes as well as the 

faulty/outlier modes. 

Analysis of Fig.4.2 and Table 4.2 shows that the transition probability to the outlier mode for 

traffic flow 11L  is very high. By analyzing the green duration data (not shown here) at times 

when the probability of an outlier is high (mode-3), it becomes clear that this is due to the fact 

that when the traffic volume increases, the green duration is decreasing compared to the 

previous one. This is an undesirable effect of the control system that can be classified as an 

error in the timing of the green switches. This implies that traffic flow at those times increases 

drastically, as shown in Fig.4.2 with a circle marking. Remember, as described in chapter 2 

that traffic flow is a ratio between 
kt

N and )( 1 kk tt  . 

Discussions: It is interesting to analyze this “undesirable phenomena”. It looks like the 

opposite of what we discuss earlier. However, important to note that SCATS works based on 

“coordination” between the intersections and this involves changing the cycle, offsets and also 

the phase split. After discussing it carefully with the traffic engineers who deal with this area, 

author analyzed that, this "undesirable phenomena" may come from when SCATS change the 

phase split, because the phase split is determined in SCATS by attempting to equalize the DS 

on critical approaches. If DS (degree of saturation) value over 1 then SCATS will therefore 

vary cycle length and sub-systems share the same cycle length and use the offset as a way of 

maximizing traffic throughput. When SCATS trying to update itself on a cycle-by-cycle basis 

and to overcome this saturation, SCATS employs a decreasing weighted averaging 

mechanism which will take the values from the last three cycles. This mechanism itself takes 

time to updated the correct ones. Therefore we can say that this “undesirable phenomena” can 

be seen as a “transition time” for updating the cycle and phase split which sometimes does not 

deliver a proper phase split for certain critical approach. 
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Table 4.2. Parameter estimation results 

Traffic flow  11L  Traffic flow 11L  

ns =1 ns =2 ns =3 ns =1 ns =2 ns =3 

1 = 

0.6130 

2 = 

0.9205 

3 = 

0.4579 

1 = 

0.6123 

2 =  

0.8163 

3 = 

0.5033 

1  

0.0950 

2  

0.0330 

3  

0.1459 

1  

0.0608 

2  

0.0180 

3  

0.0373 

2

1 = 

0.0070 

2

2
= 

0.0078 

2

3 = 

0.0222 

2

1 = 

0.0068 

2

2
= 

0.0292 

2

3 = 

0.0045 

 tyE1  

0.245 

 tyE2  

0.415 

 tyE3  

0.269 

 tyE1  

0.157 

 tyE2  

0.098 

 tyE3  

0.075 

Transition Probabilities 



















0.80710.01420.1788

0.00210.99790

0.116400.8836



 

Transition Probabilities 



















0.987800.0122

00.99460.0054

0.00860.00710.9843



 

 

From the TPM in table.4.2, it seems that the index of the free flowing mode is 2 in the case of 

, while it is 1 in the case of . It can also be seen from the estimates that the likelihood of 

remaining in the free flowing mode is very high, in both cases; for the congested mode the 

probability of remaining in it is very high also for  but not so high for . Note also that there 

is never a direct transition from the free flowing mode to the faulty mode, it always happens 

via the congested mode. The explanation for these zeros in the TPM is in-line with the 

operation of SCATS as discusses previous page, that the “faulty condition” rises when 

SCATS faces the saturated condition (equivalent to congested mode).  
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The values of 
2

i , with i=1,2,3, are related to the level of uncertainty of continuous state in 

certain mode. From the table.4.2, it seems that congested mode has a bigger uncertainty than 

free flowing.  

Discussion: In the JMM based EM approach that we proposed, the assumption that the mode 

sk depends on past observation 1ky  only through the value of sk-1 makes the evolution of 

continuous state only depends on the discrete state/modes, which can be classified as an 

unguarded mode transition. Mode transition is only characterized by transition probability 

matrix (TPM). One of the possible model that can reduce the uncertainty about discrete mode 

transitions at any given point in time is by conditioning discrete mode transition on the 

activation of guard conditions. In this perspective, the “potential guard conditions” that can be 

applied to our traffic flow cases, are the parameters of AR process each mode. One possible 

model including  a guard mode transition is a Probabilistic Hybrid Automata (PHA) proposed 

by Santana in [76]. It is an interesting topic for further research. 

In the case of traffic flow 11L , the EM parameter estimation is also able to identify the modes 

as shown in Fig.4.3 and Table 4.2. It should be noted that the horizontal axis of Fig.4.3 is 

cycle duration index of I-314 which is different from the horizontal axis of Fig.4.2 that is 

green-duration index of I-313. This explains the limitation of our experiment, and why we  

focus on the development and validation of a model of traffic flow, not on the queue-length 

yet. 

The performance of this EM algorithm against the weighted log-likelihood function  mL   

can be evaluated and does provide insight in how close the convergence to the true maximum 

likelihood is feasible. We first analyse the convergence of the algorithm in terms of  the 

evaluation of  mL  . Fig.4.4.d shows that, after a short transient period (< 40 iterations) , the 

EM-algorithm decreases the value of the weighted log-likelihood function  mL   - thus also 

increases the likelihood - as the iterations of the parameter estimation proceed, indicating 

convergence of the estimated parameters (assuming identifiability). The convergence of the 

AR parameters ( ),,,,,,,, 2

333

2

222

2

111   for the 3 different modes is shown in 

Fig.4.5.  Both Fig.4.4 and Fig.4.5 show that around m=40 the value of  1mL  -  mL   

converges to an interval of width 2.ε that can be made arbitrarily small by making  arbitrarily 
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small; this corresponds to the convergence check step in Table 4.1. However, the analysis 

does not exclude the possibility that the algorithm converges to a local minimum.   

 

Figure.4.4 Convergence  kL   of the EM algorithm for 11L  : (a)  kL   of mode 1 (b) 

 kL   of mode 2 (c)  kL   of mode 3  (d)   kL   

 

Figure.4.5 Convergence of JMM parameters 
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4.4 Model Validation and Estimation 

In the previous section we analysed the convergence of the log-likelihood parameter 

estimation to an stationary value. To validate whether this stationary value is useful for model 

based state estimation and for online control we compare in this section the evolution of   

measurement ky  and the estimated values },{ , sx kc  , based on a simulation that implements the 

JMM model of equation (2.10), with parameter values shown in Table 4.2, identified by the 

EM-algorithm. In other word, model validation is performed by using the model based 

estimator using the identified model (obtained via EM parameter estimation) and checking 

how accurately this estimator predicts the traffic flow. As mentioned in the previous section, 

modes are not directly observable and hence, ‘the smoothed inferences’ about the mode state 

process are used.  

There are two different ways that we propose in which the smoothed inferences can be used 

for the model based prediction: 

 (a) most probable mode (mpm) ,  

 (b) weighted empirical distribution function (wedf).  

Below we compare the performance of the mpm and the wedf approach as part of the 

algorithm for the prediction of the traffic flow rates. For the mpm approach, we use the natural 

choice of relating each observation with the most probable mode. The evolution of the modes 

is shown in Fig.4.6. The first graph of Fig.4.7, which shows more detailed results of mpm that 

has a good predictive tendency. The second approach, we developed the wedf approach where 

we define weights  ;1 kki sspwf y , and based on these weights, we predict the 

measurement by multiplying the weights wfi and the right-side of equation (2.10.b): 

kkii   1  and then summing the 3 products (as symbolized by ∑ ) which amounts to 

averaging over modes: 

  

3

1 )(ˆ

i

kkiiik wf   

 The second graph of Fig.4.7 shows that wedf gives slightly better prediction results than 

mpm.  
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Figure.4.6 Mode-evolution 

 

Figure.4.7  Measurement data vs model based simulation : mpm  approach ( first graph) and 

wedf (second graph) 
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It should be emphasized that both approaches mpm and wedf  use the smoothed inference that 

was generated by the iterated EM algorithm. These approaches are not easily implementable 

in real time due to the need for a bigger memory to save the complete vector of values for 

 ;1 kk ssp y , but the approach is quite useful for validating the model.  

To overcome the limitation of the offline approach, we developed a method that can be used 

both for validating the model and for estimating traffic flow in an online algorithm. For the 

online state-estimation method, we only use the parameter θ of the JMM in order to estimate 

the traffic flow for the next time-window. In this chapter we use a type of particle filter 

technique called observation and transition-based most likely modes tracking particle filter 

(OTPF) technique for hybrid systems as developed by Tafazoli and Sun [35].  

The performance of any state estimator, including estimators for hybrid systems,  depends on 

the prior knowledge of a good model for the plant dynamics and the noise characteristics, 

including the knowledge of the transition probabilities between discrete modes. The 

identification of such a model has been done in section 4.2 for the parameters of the hybrid 

JMM model in equation (4.8). Below we check the accuracy of a Particle Filter (PF) 

estimator, that uses the parameter values estimated by the EM algorithm as obtained in one 

time window to obtain state estimates in another time window that is very close to the original 

time window, so close that one can expect that the identified model parameters are still valid. 

We do find that this adaptive PF does indeed lead to a sufficiently accurate estimator, 

validating the usefulness of the proposed method for state estimation and for online control 

applications. By sufficiently accurate we mean that the state and mode estimates obtained by 

the adaptive time window shift method are close to those obtained by the offline backward-

forward estimation algorithm. 

In this chapter, we will not discuss in detail the OTPF algorithm that has been implemented in 

this experiment, the interested reader can find details in paper [35], but we provide the OTPF 

based state-parameter estimation algorithm in Chapter.5. Our analysis starts by using the 

parameters estimated by the EM algorithm in order to generate a simulations programme 

implementing the JMM model identified in the preceding time window, and with samples for 

the initial values of traffic flows and traffic modes generated according to some probability 

distribution. The particles are propagated through the dynamic model in each mode.  
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This is done recursively as follows [35]: first collect all the next modes to which the current 

mode has non-zero transition probability, then use the dynamics in each next mode to 

simulate the particles of continuous state/traffic flow separately. Next for each of these modes, 

using the available observations, calculate the average weight of all particles of traffic flow in 

the mode, multiply the average weight with the corresponding transition probability, obtaining 

a compound weight, compare the compound weights from all the modes and then select the 

most likely mode. The next step is to resample particles from the most likely mode. It is 

important to note, that the number of particles N needed is not very high and the filtering 

calculation is still fast. In this chapter we use N=500 

In this paper we use N=500. However the OTPF algorithm still uses a prior distribution (3.27) 

as an importance density that is independent of the current measurement, the state space is 

explored without knowledge of the measurement and hence the filter is sensitive to outliers. 

We will use three different simulation scenarios with different time-window sizes (and 

corresponding time shift in the estimation of the modes) in order to study the performance of 

the JMM based estimators : 

(a). Simulation is tested in the period of index 350-450 with a hybrid model, using the EM-

estimated parameters based on measurement data from the period with index 1: 350 

(corresponding in real time to midnight till approximately 10.30 am). 

(b). Simulation is tested in the period of index 450-550 with a hybrid model, using the EM-

estimated parameters based on measurement data from the period with index 300: 450. 

(c). Simulation is tested in the period of index 575-675 with a hybrid model, using the EM-

estimated parameters based on measurement data from the period with index 475-575. 

Figure.4.8-4.10 shows the simulation of model validation w.r.t the three scenario above. 
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Figure.4.8 Scenario (a) based on JMM model 

 

Figure.4.9 Scenario (b) based on JMM model 
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Figure.4.10. Scenario (c) based on JMM model 

The results for the 3 scenarios above show that: 

(1) EM offline parameter estimation along with a time-window shift technique can be useful 

and practical for updating the parameters of the JMM hybrid model. The results shows that 
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important factor to anticipate the variability of traffic flow coming from neighbouring 

intersections.  This variability should be anticipated by traffic control in terms of green/red 

switching in order to reduce the congestion and to reduce the delay time. Many works in 

traffic engineering consider the prediction of traffic flow in designing traffic light control. 

Interested readers may refer to paper [36,37].  

However, this EM offline parameter estimation along with the time-window shift technique 

has at least two disadvantages: (a) that the performance of state estimator strongly depends on 

the length of the time window shift, (b) that this offline approach needs significant memory 

requirements and processing power for storing and processing large datasets. 

Certainly, the optimal choice of W is a compromise. An EM algorithm will estimate the 

parameters more accurately if the time-window W is long enough. This is reasonable since the 

EM algorithm needs a certain amount of measurement data for accurate parameter 

identification. But of course this will affect  the ability of adaptive filters to detect a change of 

the model parameters sufficiently quickly. In the context of the coordinated control, the online 

parameter estimation approach is a critical part of an adaptive filter and finding the best 

window size W becomes an critical issue. 

In order to cope with these two disadvantages of this offline algorithm, in the next chapter we 

develop the online algorithm by simultaneously performing parameter estimation and state 

estimation and prediction.   

 

4.5 Conclusions 

This chapter proposes a parameter estimation technique for hybrid dynamic system model as a 

powerful approach for capturing the complicated dynamics of urban traffic flow, including 

many sources of uncertainty. The model parameters characterize traffic flow conditions that 

can be classified into three modes and the switch between these three modes is controlled by a 

first-order Markov chain. The model is characterized by a set of parameters to be estimated 

using measured data (e.g. from a video camera overlooking traffic) and it is shown that a 

time-window shift technique may lead to a useful real-time state estimation algorithm that can 

be part of a feedback control loop. 
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The study reported in this chapter investigated the proposed approach by using actual traffic 

flow data and confirmed its validity by showing that the ‘smoothed inferences’ technique and 

a particle filter based on the identified model provide satisfactory state estimation and 

correctly capture the random variation of the traffic flow. 

However, at least there are two disadvantages are to be taken into account:  

(a) the length of the time window shift need carefully to be given in order to deliver a good 

estimator, 

 (b) this offline approach needs a good management in terms of the memory requirements and 

processing power for storing and processing large datasets. 
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5  
Joint state and parameter  

estimation: online Bayesian 

approach 
 

 

 

 

5.1 Introduction 

Implementing advanced traffic signal control strategies requires real-time data processing for 

online estimation of the key state variables as well as of the model parameters, neither of 

which can in practice be measured directly with sufficient accuracy. An extensive literature is 

available on online traffic flow state estimation for freeway traffic and for arterial roads, often 

using sub-optimal Bayesian filters and particle filters [42],[43]. Online joint state-parameter 

estimation for traffic flows in a signalized intersection on the other hand has not received 

much attention yet. Traffic in urban networks is characterized by stop-and-go phenomena 

resulting from green/red switching, irregular arrival stream of vehicles, and from complicated 

interactions between conflicting traffic streams.  In [14] and in Chapter 2 and 4, we showed 

that the variability of urban traffic flow at near traffic lights in the time scale of green/red 

period can be approximated by an autoregressive process (AR), whose model parameters 

change over time depending on the mode of traffic operation (free-flowing, congested and 

faulty); the mode of operation can be represented by a first-order Markov-chain.  

Coordination between traffic lights at neighboring intersections plays a major role in reducing 

congestion and avoiding grid-lock in an urban network. Coordination requires anticipation of 

queue sizes at neighboring intersections as quickly as possible, and this anticipation is only 

possible if a good model is available for predicting future traffic behavior, and in particular 

future queue sizes. In order to use a dynamic queue length model one must estimate the 

parameters of this model through online state-parameter estimation. Automatic adaptation to 

changing system condition becomes possible, provided we can estimate the model parameters 
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online with sufficient accuracy. In the spirit of delivering a basic step to the coordination, we 

have to deal with the computational complexity and accuracy for the estimation. Can we 

propose one of these feasible solution to deal with those problems? This is a question that we 

have to answer. However, note that in this thesis we are not studying the coordination itself.  

In the previous chapter, we used an offline expectation-maximization (EM) algorithm for 

parameter identification. In combination with a time window shift technique this was shown 

in section 5.4 to leads to an adaptive PF traffic flow state estimator. However, in practice W is 

so large that the adaptation of the offline method in section 4.4 is too slow. This is the main 

reason why in this chapter we improve this algorithm, simultaneously performing online 

parameter estimation and online traffic flow and queue length estimation and prediction.  

In this chapter, in terms of modeling, we use the complete model of queue lengths evolution 

and of traffic flow as discussed in chapter 2. As opposed to chapter 4 that focused on the 

modeling of traffic flow by using 3 modes, this chapter focuses on the queue-length dynamic 

by defining a traffic flow model consisting of 2 modes. The reason to use only 2 modes is to 

reduce the computational complexity and hence the time constraint of the algorithm. Based on 

the queue length dynamics with 2 modes of traffic flows, we develop PF algorithms that can 

reliably and efficiently predict the queue length using joint state and parameter estimation for 

our stochastic hybrid model (SHM). 

The extension of particle filters to joint state and parameter estimation for hybrid SHM 

models is non-trivial. The conventional strategy is to add a random walk to the parameters and 

then augment the state-space with the parameters for joint estimation as shown in section 

3.2.2. The use of a random walk however increases the covariance of the parameters 

(dispersion), making the posterior distributions too diffuse. As such, the precision of the 

resulting estimates are inevitably limited and the estimates may not converge. 

The key to yielding converging parameter estimates is to make the variance of the random 

walk decay with time. To achieve this, as explained in chapter.3, Liu and West [20] suggested 

using kernel smoothing with shrinkage for parameter evolution. Hence, the unwanted 

information loss effect or over-dispersion of the samples for the fixed parameter caused by the 

independent random shock npk of (3.34) is corrected by the use of (3.40) which introduces 

negative correlations between k and the random walk npk. The optimal selection of the kernel 

parameter hk ϵ [0,1] maximally reducing the over-dispersion in the PF remains a difficult 

problem. The current practice for tuning of hk is ad-hoc. Liu and West in paper [20] suggested 
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choosing hk=0.1, whereas Chen in [21] selects hk as the optimum for a historical data-set, and 

then applies this choice for future batches. These ad-hoc rules define a constant hk, for which 

optimality cannot be established w.r.t the online data.  

A rule, based on the Kullback-Leibler (KL) divergence optimization, for selecting the optimal 

value for the kernel smoothing parameter 
kt

h has been proposed by Tulsyan in [45] for 

nonlinear model dynamic. In this chapter, we extend this KL divergence optimization to the 

SHM to estimate the AR parameters.  

In order to validate the performance of our algorithm we need data that simultaneously record 

traffic flow rates and queue sizes. It was impossible to obtain reliable real data of sufficient 

detail due to the technological limitations of the traffic sensors of the partners with whom we 

collaborated. Therefore we used synthetic data for the validation of our online joint state and 

parameter estimation algorithms, as developed in this chapter. We generated synthetic traffic 

flow and queue-length data using a VISSIM traffic micro-simulator, including realistic levels 

of state and sensor noise, and used these to simulate realistic values for the sensor output data 

of a system. By comparing the estimated and predicted queue sizes obtained using our PF 

estimator with the synthetic data we show that the joint state and parameter estimation tools 

proposed in this paper exhibits good performance for realistic scenarios. Note that VISSIM 

data were obtained using a microscopic traffic flow model, that is completely different from 

the SHM model that we proposed for performing joint state and parameter estimation. Hence 

there is no undue bias in favor of our algorithms in this validation. 

The main novel contributions of this chapter are:  (a) extending the observation and 

transition-based most likely modes tracking particle filter (OTPF) along with kernel 

smoothing method via online optimization for online joint state-parameter estimation of SHM, 

leading to an adaptive filter;  (b) The use of Dirichlet distributed random samples in order to 

better estimate the transition probability matrix (TPM), describing the transition probability 

matrix  between discrete states.  
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5.2 Problem formulation 

In this chapter we follow the notation and model formulation as explained in chapter 2.  By 

using online measurement data of the existing traffic flow for online parameter estimation, we 

build a dynamic traffic flow model and use this model for adaptively predicting future values 

of the arrival flow rate and the departure flow rate properly describing the variability of these 

traffic flow rates; this ultimately allows prediction the queue-length evolution. 

Let us focus on the traffic flow of a particular interested movement  L1. The description in 

chapter 2.2 implies that one treats  
kt2,1 ,

12,1 kt  and 
kt2,1  as three independent processes: the 

mode of operation for the arrival flow rates in the red 
12,1 kt and in the green period 

kt2,1 of the 

cycle may be different e.g. due to different conditions at adjacent intersections. Surely these 

processes are in practice strongly correlated, but it will be very difficult to obtain sufficiently 

detailed statistics on this correlation and hence, we simplify the model by ignoring this 

correlation. Therefore, the fact that there are 3 flow rates to be estimated, each with 8 

parameters (2 modes, each with 3 AR parameters), and 2 entries for . Since we treat the 3 

flows as independent, we can do the estimation for each one separately; and so we only need 8 

parameters to be estimated by the online algorithm. This is almost half of what we needed 

with 3 modes, explaining the reduction in computational cost. Remember that we assume each 

traffic flow has 2 mode of operation. 

We split up the vehicle counts in a red and a green period as a measurement period because: 

(a) the queue length model in equation (2.6)-(2.9) has two periods, one covering the start of 

the cycle to the end of green, the other between the end of green and the end of the cycle, (b) 

if we look at the values of mean and variance of the traffic flow generated by the VISSIM 

simulator (simulating a signalized intersection during one hour with a constant arrival rate; for 

details see section 6.4) with a cycle length  80 s and green period 35s  we see in Table 5.1 that 

selecting update intervals of around 35sec (typical green period) provide low variance. The 

variance is reduced only marginally by considering a full cycle (80sec). 

 

 

 

 



83 
 

Table 5.1 Mean and variance of traffic flow 

Update period Mean 

(veh/s) 

Var  

(veh/s)^2 

5s 0.1738 0.0354 

20s 0.1738 0.0086 

35s 0.1745 0.0049 

80s 0.1748 0.0038 

 

The complete hybrid model of the queue length (2.6)-(2.9) and of traffic flow (2.10.b)-(2.10c) 

can be presented in one single form by considering for multi-mode s and written as follows: 

State equation: 

),,(
1 kkk ttst xfx 


 ,                        ;1,...,0  Nk                         (5.1) 

Measurement equation: 

),,( 1 kksk nxgy   ,                        ;1,...,0  Nk                         (5.2) 

where :  

)},(),,(),,(,{}{
22121222 ,1,1,1 kkkkkkkk tttttttt sssqx 


 and )(s  is a mode of the system according to 

the flow, where 
kt

 is the generic notation for arrival flow in movements Li during green 

period 
kti 2, and red period 

12, kti  and also for departure flow 
kti 2, . 

 

5.3 Online Joint State-Parameter Estimation  

In this section we develop a complete approach to on-line Bayesian joint state and parameter 

estimation for hybrid stochastic systems )},(),,(),,(,{}{
22121222 ,1,1,1 kkkkkkkk tttttttt sssqx 


  as 

defined by equation (5.1) and (5.2), using an extended state vector representation with its 

parameters θk as one group of AR parameter , ,  as shown in (2.10). We discuss the 

Bayesian framework for particle filtering (PF) and its extension to a hybrid system using the 

OTPF technique. The combined state-parameter estimation will be discussed using the joint 
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posterior distribution. Reducing over dispersion in the PF for a hybrid system needs 

developing two techniques, which are the main contribution of this chapter:  

(a) to select the optimal value of the kernel parameter via online optimization,  

(b) to estimate the transition probabilities using samples of mode transitions generated 

according to a Dirichlet distribution.  

These two techniques leads to the automatic adaptation of the estimator to changing system 

conditions. Carvalho in his paper [24] proposed the multinomial distribution to estimate the 

transition probabilities of Markov switching  stochastic volatility model and simply setting 

hk=0.1.  

The state space mode (5.1.a) combined with a random walk added to the parameters, for the 

augmented state process },{}{
kkk ttt x   and combined with the measurement model (5.2) 

specifies the probability distribution of the data 
kt

y .  

 


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xfx 





  

Remember that ....,2,1, k
kt

 is an independently identically distributed sequence of zero 

mean Gaussian random variables with variance )(2 s , with )(2 s  also a mode dependent 

parameter to be identified. 

This description of the evolution of the augmented state, together with the distribution of the 

initial conditions, provides the necessary information to predict the queue sizes a few cycles 

ahead.  

5.3.1 State estimation of hybrid system 

A number of suggestions have been proposed in order to make the standard PF applicable to 

the state estimation problem of hybrid processes: interacting multiple model particle filtering 

(IMMPF) [49] and observation and transition-based most likely modes tracking particle filter 

(OTPF) [35]. IMMPF consists of three steps: (1) mixing/interaction of the mode-conditioned 

estimates at the beginning of the estimation cycle; (2) mode-conditioned state estimation 

(prediction and measurement update of the state), done independently for each mode by 
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appropriate (mode-matched) filter module; (3) mode probability update and estimation done 

using the outputs of all the mode-conditioned filters. 

In this subsection, we will review the OTPF applied to stochastic hybrid system model (the 

jump Markov model of section 2.2). In this case, one needs to calculate the probability density 

function (pdf) of the hybrid system )|,(
kkk ttt sxp y , where 

kt
x still denotes the state of the AR 

models, while 
kt

s indicates the mode of the system at time tk where s=1,2,…,K. Important to 

note is that in this thesis, the problem is much more complicated not just because we need to 

estimate the mode(or the likelihood of the different modes), but also because we need to 

estimate the transition probability matrix (TPM) for the Markov process describing the mode 

evolution. For estimating the AR parameters and TPM we will discuss in the next section on 

state-parameter estimation. In this subsection we focus on the state estimation assuming that 

AR parameter and TPM are known a priori, which is a standard a requirement in the usual 

applications of the OTPF. 

OTPF, unlike IMMPF, does not combine the discrete state (modes) with the continuous states 

to construct the system states. Instead, the modes are considered as unknown system 

parameters which need to be estimated, something more akin to the joint state-parameter 

estimation explained in the preceding section. After the estimation of the most likely mode 

(we estimate the likelihood of each mode at each time step), the estimation of the hybrid 

system is reduced to an ordinary system and a particle filter can be properly applied. Contrary 

to IMMPF, which takes all modes into account and assigns a fixed number of particles in each 

mode s, OTPF chooses the most likely mode 
kt

ŝ  at each time step and the evolution of all 

particles at the next time step is evaluated according to the model corresponding to this most 

likely mode 
kt

ŝ . This ensures that OTPF has a lower computational load at the price of a less 

accurate result. In this thesis we use further on OTPF. This method is explained detail below. 

State estimation based on OTPF calculates the conditional pdf of hybrid system : 

)|,(
kkk ttt sxp y , },,0,{ kjt tjy

k
y . Since at each time step the system only follows one 

mode, it is reasonable to assume that it is actually only following the most-likely mode 
kt

ŝ :  

)|()|(

),|()|(

),|()|(),(

kktkkk

kkkkk

kkkkkkkk

ttstt

ttttt

tttttttt

xpsp

sxpsp

sxpspsxp

yy

yy

yyy












                                                     (5.3) 
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Since )|(
kk ttsp y


is a constant in (5.3) its effect will be absorbed in the normalization constant 

and will not affect the basic PF algorithm.  

The details of the OTPF implementation are described for a given hybrid system with K 

modes where the system and observation models in each mode are known. The initial mode is 

assumed to be known, otherwise, the most likely mode is chosen, based on a priori 

knowledge of the process.  

Remark: Herein after, in this section, k denotes the sampling time tk.   

First, all the weights i

kw  of particles for  the continuous state of the system in the given mode 

j

ks  are sampled. This follows by the following recurrence procedure: first step collect all the 

modes for which the current mode has non-zero transition probability. Use the dynamics in 

each mode s with non-zero likelihood to predict the next value for each of the N particles 

separately. For each mode s, using the available observations, calculate the average weight of 

all the particles in the mode s, multiply the average weight 


N

i

i
k Nw

1

 with the corresponding 

transition probability, resulting in a compound weight w  as shown in equation (5.4)  table 5.2. 

Equation (5.5) compare the compound weights w  from all the modes and select the most 

likely mode.  

Table 5.2 Standard OTPF Algorithm 

Step 1. Initialization 

The mode at time k=0 is given as s0. For i=1,…,N, from an initial 
Gaussian distribution in mode s0  and set k=1.  

Step 2. Prediction 

- For any mode 
j

ks  such that transition probability j
kk SS

p
1

from mode 

1k
S to 

j

k
S

1  is not zero (j=1,…,K) where K is the number of such 

modes), sample )|(~~
1

i

kks

i

k xxpx j
k


, for i=1,…,N (Note that the same 

notation is used for the particles in different mode for 

simplicity) 

- For each mode 
j

k
S , evaluate the importance weights )~|( i

kks

i

k xypw j
k

  

for i=1,…,N (again note that the same notation is used for the 

weights in different modes for simplicity). 

Step 3. Mode Selection  

a. Average the total particle weights in each mode s*=
j

k
S  and 

multiply by the transition probability: 
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




N

i

i
kj

k
mkm

s

k
Nwpw

11

*

                                                   (5.4) 

b. Find the most likely mode :  

      

*

* {maxarg
m

kmk
ws  for all 

j

k
S , j=1,…,K } with m*=

j

k
m        (5.5) 

Normalize the weights of particles in mode 
tks  

Step 4. Resampling 

a. Resample N new particle ,{ i

kx  for Ni ,....,1  with replacement 

from the particle in mode stk ,{ i

kx for Ni ,....,1 , according to 

the importance weights. 

b. Set for k=k+1 and go to step 2 

 

The next step is to resample particles from the most likely mode. Particles in other modes are 

discarded. It can be argued that this approach may take a long time, waste calculations, and 

does not scale to a  large number of modes. However, in this chapter, the number of modes is 

only 2 and the calculation turns out to be quite efficient. The complete algorithm is described 

and shown in table 5.2 

As shown in [48] OTPF has a lower computational load, compared to IMMPF, but at the 

expense of a loss of accuracy since OTPF is biased and sensitive to observation outliers. In 

this thesis we use OTPF because of its lower computational load. This reduction in 

computational cost is important since we are not only considering the state estimation but 

joint state-parameter estimation where the computational load is demanding. Moreover we 

want to obtain an online implementation, which makes the computational issue even more 

critical.  

5.3.2 State-Parameter estimation for stochastic hybrid system 

In hybrid system, the problem becomes much more complicated because we need to estimate: 

(a) the mode(or likelihood of the modes); (b) parameter of AR process; (c) the transition 

probability matrix (TPM) for the Markov process describing the mode evolution. Can we 

estimate all of them by online estimation? The aim of this section is to developed standard 

OTPF to joint state-parameter estimation by combining kernel smoothing and Dirichlet 

distribution to address this question. 

Originally OTPF was proposed solely for state estimation of hybrid systems, relying on prior 

knowledge of the parameters )( ks , and also of the transition probabilities . Since we do 
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not know the parameters of a model then we must also identify all the parameters of the 

hybrid system model, using the online data observed during the plant operation, thus 

achieving automatic adaptation of the state predictors to the changing system condition. It can 

be achieved by finding a good compromise between computational efficiency and accuracy, 

for estimating the states-parameters and for estimating the most likely mode. The parameters 

of the AR model will be estimated using optimal parameter tuning for kernel smoothing, 

improving on the approach described in chapter 3, while the estimation of the transition 

probability matrix  will be achieved by generating random mode switches according to a 

Dirichlet distribution by updating the parameter nij that are calculated based on the most likely 

mode in OTPF. Here nij is the number of one-step transitions from i to j generate by the 

random sample generation algorithm. 

5.3.2.1 Parameter tuning for Kernel smoothing 

Please see Chapter 3 for introductory issues about kernel smoothing. The goal of kernel 

smoothing is to reduce the over-dispersion and optimal selection of kernel parameter ]1,0[kh  

is the crucial part for the successful application of this technique. We will extend the 

technique proposed by Tulsyan in his paper [45] to stochastic hybrid systems by combining it 

with Dirichlet distribution in the OTPF loop. The novel OTPF for Joint state-parameter 

estimation thus obtained is shown in Table 5.3. 

The technique determines an optimal rule for kh  based on an on-line optimization is proposed 

in [45] . There are two reasons why here one needs an optimal rule. First, because this thesis 

uses SIR PF which is inefficient in handling the situation that supp )|( 1kkp y  is larger or 

smaller compared to supp )|( kkp y  then only a few particles are assigned significant 

weights, where },{ kkk x   . )|( kkp y  can be calculated using Bayes’ rule in (3.35). This 

is because in a SIR PF )|(),|( 11

i

kkk

i

kk xxpyxxq   , then the particles from (3.27) are 

generated without taking the current measurement into consideration. This inefficiency is 

much more of a disadvantage for the multi-model case as SHM. Second, in state-parameter 

estimation as indicated by Liu and West, selecting kernel parameter kh  in order to reduce the 

over-dispersion in the PF is a critical step. This optimal tuning rule proposed in [45] 

minimizes the Kullback-Leibler (KL) divergence D(hk) between )|( 1kkp y and the target 

posterior density )|( kkp y  at each sampling time. This enables adaptation of the SIR PF for 
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combined state-parameter estimation. Proposition 1 provides an optimal tuning rule for 

controlling the kernel width and for making an SIR  PF adaptive. 

Remarks: Remember that },{ , dkck xxx   consist of continuous state and discrete state/modes. 

Hence we have to deal  with part density (giving a conditional density for the continuous state 

variable) and part conditional probability (for the discrete mode). However, OTPF calculates 

the conditional pdf of hybrid system as given in (5.3) that it will not affect the basic SIR PF 

algorithm.  

Proposition 1. The optimal value *

kh of the parameter kh at time k that minimizes the KL 

divergence D( kh ) between the )|( 1kkp y  and target posterior density )|( kkp y , is: 

 

)(ˆminarg

logminarg

]1,0[

1
]1,0[

*

k
h

i

k

N

i

i

k
h

k

hD

wh

k

k



















  

                                                                    (5.6) 

where: )(ˆ
khD is a Sequential Monte-Carlo (SMC) estimate of )( khD . Note that the 

dependence of )(ˆ
khD  on kh can be established from equation (3.40) and  (3.34). 

N

i

i

tk
w 1}{

1 
 

and N

i

i

k 11}{   are the particle weights given in (5.7.a) and (5.7.b), respectively :  









N
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i
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i
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i
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1|
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)|(

)|(




                                                                             (5.7.a) 

)|(1

i

kk

i

k

i

k xypww                                                                            (5.7.b) 

where:                                 

)|(~}{ 1

~

11|  kk

N

i

i

kk p y  and  },{ kkk x 


  

Proof: See [45]. 
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5.3.2.2 Dirichlet distribution 

As mentioned in the introduction section, this chapter focuses on defining SHM traffic flow 

model with 2 discrete modes, free flowing and congested. For estimating the transition 

probabilities of the mode process 
kt

s , we propose an ongoing updated Dirichlet distribution in 

the OTPF. The Dirichlet distribution assigns probabilities to a vector of K integers. The 

distribution depends on K continuous parameters [δ1,δ2] where δk  [0,1] and. 1

1




K

i

k . The 

Dirichlet distribution is suitable for defining a distribution over the random values of the 

categorial distribution, i.e. for specifying the outcome of observing one of K possible 

outcomes. In our case traffic flow model, we set K=2. 

The i-th row {i1,i2} of an estimate of the TPM i  always has row sum equal to 1. Let ̂ i be 

random variables: i ~ D(δi1,δi2), where D denotes a Dirichlet distribution. The reason we 

choose a Dirichlet distribution is that (see [52]); the updated distribution of ̂  given 
kt

s or 

written as |
kt

s , after updating based on new observations (or new particles that are 

generated) is again a Dirichlet distribution, where s={s1,s2}: 

),(~| 2211 iiiit nnDs
k

                                                                       (5.8) 

where nij is the number of one-step transitions from current mode i to next mode j, where 

i,j={1,2}. The next mode j is determined by the most likelihood mode in OTPF. By 

calculating nij one can sequentially update the TPM. 

A natural question to ask regarding the Dirichlet distribution is how to sample from it. We use 

a method based on transforming Gamma-distributed random variables. We will argue that 

generating samples from the Dirichlet distribution using Gamma random variables is more 

computationally efficient than both the urn-drawing method and the stick-breaking methods 

[53].  This method has two steps: 

Step.1: Generate gamma realizations: for p=1,2, draw a number zp from the Gamma 

distribution ),( ipip n   where   is the scale parameter and )( ipip n  is the shape 

parameter. 
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Step 2:  Normalize them  to perform a probability mass function (pmf). Then ̂  is a 

realization of ),( 2211 iiii nnD    and the estimated vector ̂ i (1≤ i ≤ j ), for i=1,2, can now 

be simulated from (5.9) by letting: 





j

p

p

ij

p

p

i

z

z

z

z

1

2

2

1

1

1
ˆˆ                                                                (5.9) 

where ̂ (•) are entries of the estimated vector ̂  i. Important to note that ̂ i is a vector 

notation to represent Dirichlet distribution over a finite number of possible values. 

The most important reason why we use OTPF filters is the ability of the OTPF to provide 

information about the most-likely mode ŝk which in turn allows us to estimate the transition 

probabilities Π using the Dirichlet distribution. 

Table.5.3. OTPF Procedure for Joint state-parameter estimation 

Step 1. Initialization 

The mode at time k=0 is given as s0. For i=1,…,N, from an initial 

distribution in mode s0  from an initial distribution in mode s0 and 

set k=1.  

Step 2. Prediction 

- For any mode 
j

ks  such that transition probability j
kk SS

p
1

from mode 

1k
S to 

j

k
S

1  is not zero (j=1,…,K) where K is the number of such 

modes), sample )|(~~
1

i

kks

i

k xxpx j
k


, for i=1,…,N (Note that the same 

notation is used for the particles in different mode for 

simplicity).  

- For each mode 
j

k
S , evaluate the importance weights )~|( i

kks

i

k xypw j
k

  

for i=1,…,N (again note that the same notation is used for the 

weights in different modes for simplicity). 

Step 3. Kernel smoothing 

- Doing parameter estimation using Kernel Smoothing (3.40) and then 

find the optimal value h*k of the parameter hk at time tk that 

minimizes the KL divergence D(hk) using (6.6) 

Step 4. Mode Selection  

a. Average the total particle weights in each mode s*=
j

k
S  and 

multiply by the transition probability: 






N

i

i
kj

k
mkm
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k
Nwpw

11

*

                                                   (5.4) 



92 
 

b. Find the most likely mode :  

*

* {maxarg
m

kmk
ws  for all 

j

k
S , j=1,…,K } with m*=

j

k
m         (5.5) 

c. Normalize the weights of particles in mode 
tks  

d. Estimate transition probabilities matrices using Dirichlet 

(6.9) 

Step 5. Resampling 

a. Resample N new particle ,{ i

kx  for Ni ,....,1  with replacement 

from the particle in mode stk ,{ i

kx for Ni ,....,1 , according to 

the importance weights. 

b. Set for k=k+1 and go to step 2 

 

Implementation of the OTPF based joint state-parameter estimation for stochastic hybrid 

system as shown in Table 5.3 below, which is the extension of Table 5.2 by adding step 3. 

kernel smoothing and step 4.d estimation TPM. 

 

5.4 Online Bayesian Performance Evaluation 

To test the performance of the proposed estimation and prediction algorithm for the queue 

length in a field experiment is difficult. We have not been able to find data where 

simultaneously traffic flow and queue length where recorded with sufficient accuracy over the 

successive cycles of the traffic light, as considered in our model. Fortunately the advanced 

computational power and the flexibility that state-of-the-art computer-based simulation 

software offers, makes it possible to validate our algorithm using the VISSIM traffic micro-

simulator.  

We use VISSIM as a microscopic traffic simulator generating synthetic traffic data 

implementing a detailed model with the same traffic flow rates as for the hybrid dynamic 

SHM model introduced in Chapter 2. The simulated output can be made more realistic by 

generating the noise as required for realistic representation of traffic irregularity, mode 

changes. Moreover VISSIM allows the user to read out data like current traffic flow, and 

queue length at different locations, data that after adding measurement noise, can be used as 

simulated output of real traffic sensors. These synthetic output data yk simulate the sensor 

output available for online analysis. The output of such a simulation run provides the noisy 

data about traffic flow rates under various conditions, for the time intervals corresponding to 
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the cycle of the traffic lights, used as input for our joint state and parameter PF-estimator as 

described in section 5.3. In order to achieve fast results applicable to online implementation 

our PF particles are generated by our hybrid model of section 5.2, which is very different from 

the microscopic VISSIM model. Hence comparing the queue length obtained via 

microsimulation with the estimations and predictions obtained via the PF estimator provides a 

fair and honest way of validating the correctness of the proposed joint state and parameter 

estimator of Table 5.3. Please note that in the OTPF procedure for joint state and parameter 

estimation, step 3 and step 4.d are the additional  procedure to parameter estimation. 

Our simulation experiment represents the typical situation at one intersection, with 2-way 

approach roads of length 300 m each, the distances between the source generating the traffic 

flow and the first measurement station, resp. the second station being 0m, resp.300m; the 

second station is located at the stop-line. The position of each vehicle is recalculated by the 

VISSIM simulator every 1 second and the distance between vehicles is exponentially 

distributed, with parameters selected so that there are on average 576 vehicles per hour.  

In VISSIM, the author didn’t find the way to change the generated traffic flow during in the 

loop simulation. This makes it difficult to simulate the transition between two different mean 

of traffic flows. The uniform distribution of speed in this validation experiment is 35 to 65 

kph, chosen on the basis of prior experience with VISSIM. The average distance between 

stopped cars and also between cars and stoplines, signal heads, and so forth is 2.0 m, 

uniformly distributed in the interval [1.0m 3.0m]. The lateral behavior parameters allow 

overtaking wherever legal and when traffic flow conditions allow this. We assume that one 

vehicle occupies the full width of one lane in VISSIM. The type of vehicles is mixed traffic 

consisting of cars and motor-cycles. The probabilities of generating cars (resp. motor-cycles) 

is 70% (resp. 30%). The minimum (maximum) length of a car is 4.1 m (4.7 m) and we take 

4.4 m as the average of length of a car. The length of a motor-cycle is 1.4 m. For the sake of 

simplicity, the traffic model implemented in the PF algorithm does not distinguish between 

cars and motorcycles and the length of all vehicles is approximated by the average (0.7*4.4 m 

+ 0.3*1.4 m) = 3.5 m. Based on these parameters setting, in VISSIM, where the experimental 

synthetic data are generated, one treats 
122 ,1,1 ,
kk tt   and 

kt2,1 as strongly correlated processes 

due to the intricate dynamics of traffic flow and queue-length in space-time of the topology of 

network. But in the SHM model, we simplify the model of 
122 ,1,1 ,
kk tt   and 

kt2,1 as three 

independent processes as mentioned previously. We show below that despite these differences 
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between the VISSIM model and the model used in the PF, and many other simplifications 

implemented in the SHM model underlying the joint state and parameter estimation, good 

estimation and prediction results can be obtained. 

The traffic signals in our simulation operate according to a fixed cycle. The cycle length was 

set to 80 second with a green duration of Tg =35 second, amber duration is 3 second (ignored 

in the SHM) and all-to-red is 2 second. The vehicle flow generated at the source location is 

0.16 veh/sec and the simulation time interval is 3600 sec (1hr). In VISSIM, it is noted that the 

number of vehicles is counted by meter according to the classification of the vehicle whether 

it is a car or a motorcycle. In Table.1, the average traffic flow is ≈ 0.17 veh/sec and this value 

is computed based on the average length of vehicles 3.5 m, meaning that one does not 

distinguish between cars and motorcycles. This approach is then used in PF algorithm. The 

difference on the value of traffic flow can be assumed to be the result of the a measurement 

noise in our model. 

For performance evaluation purposes, we consider the VISSIM microscopic approach for 

generating the actual queue-length. The microscopic simulation approach, allows the current 

queue length is to be measured at every time step, including at the switching times, which is 

when we need “the true” (albeit synthetic) queue size in order to compare to what our model 

predicts. The actual VISSIM queue length  is recorded by putting the queue counter in the 

front of stop-line at the end of every red light (cycle-by-cycle).  

In the PF approach, the queue-length is defined based upon the cumulative numbers of 

vehicles traversing sensor locations (see fig.2.5.b with red line for arrival flow and green line 

for departure flow in the lane L1) according to (2.9)-(2.12). The number of vehicles crossing 

sensor locations in the VISSIM model are recorded during successive phases of the traffic 

signal, providing data for calculating time series data 
122 ,1,1 ,
kk tt   and 

kt2,1 as shown in 

Fig.5.1.  

Prediction of traffic flow over one or two cycle ahead is performed by using JMM equation 

(2.10)  . Let assume at time tk , the parameter θ={β,γ,σ
2
} and also mode 

kt
s has been identified 

by joint state-parameter estimation and based on the equation (2.13) then the traffic flow rate 

1kt
  can be predicted and so on for the 

2kt
 . 
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Fig.5.1 show that the PF queue length estimator and predictor gives results close to the 

”synthetic” VISSIM queue length. However, since the VISSIM model was not itself validated 

and hence, it would be more justified to interpret the results as comparison between developed 

model and theoretical model implemented using the VISSIM tool. The biggest difference 

between synthetic and estimated queue length are at index 23; detailed analysis of the 

measurement data indicates that around that time almost all the vehicles that pass the detector 

are cars, causing the PF simplification of ignoring the difference between cars and 

motorcycles to become significant.   

The implementation of the joint state and parameter estimation with optimal tuning kernel 

smoothing was carried out under the following initial conditions: parameters of AR model 

=0.5 variance=0.05, 11=0.9,22=0.9, where (•) are entries of TPM  , certain {0}=30 . It 

turns out that using a particle filter with N=600 samples give a good result in terms of queue 

length  and traffic flow prediction (1-cycle/ 2-cycle ahead) as shown in Fig.5.1-Fig.5.2.  

We show in table 5.3 the root mean square (RMS) error as a measure of performance, 

comparing ”real” (albeit in our experiment synthetic data) against the predicted values 

generated by PF and also against the an average of traffic volume = 21.78 obtained from 

historical data. RMS error is defined as follows: 





M

preddata
RMS

2)(
 

where pred indicate the predicted values by PF and ’average method’ and M is the size of data 

vector. Table 5.4 shows that the performance of the OTPF algorithm of table 5.3 is much 

better than the traditional approach that defines predictions using the average of historical 

approach. 
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Figure.5.1 Queue-length prediction: N=500 

 

Figure.5.2  Arrival flow estimation and prediction  (upper) with optimal tuning h and (lower) 

with h=0.1 
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Table 5.4 RMS performance measure comparison 

Type\N 500 5000 20000 Average 

Pred-1 Pred-2 Pred-1 Pred-2 Pred-1 Pred-2  

VISSIM 296.5 310.5 252.3 253.3 239.6 244.5 890.25 

 

Selecting optimal parameters, like choosing the appropriate number N of particles, or the 

optimal tuning of the kernel parameter are important issues in this joint state-parameter 

estimation, given that the algorithm is computationally much more demanding than for state 

estimation only. The optimal compromise between performance and computational load for 

online applications is a topic for further research. Figure.5.2 compares the PF performance as 

a predictor, when using kernel parameter h=0.1 as suggested by Liu in [20] (lower part) 

versus the better prediction results using the optimal smoothing parameter, using the approach 

explained in section 5.3  

 

Figure.5.3 Mode evolution of the departure flow 
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accurate model describing the future evolution of the predicted variable. Fig.5.3 shows the 
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Gamma distribution ),( ipip n   (see step.1). This Gamma distribution is used to generate 

samples from the Dirichlet distribution by equation (5.9). Implicitly, the online PF with 

optimal tuning kernel smoothing is able to estimate the parameters of the AR process as well 

as transition probabilities Π, where we found 11=0.49 and 22=0.58. These results are 

consistent to the results in Fig.5.3 that the number of jump to another mode is almost 

equivalent to the number of time the mode remains unchanged, which means that the mode 

change frequently but with almost single stationary rate. This a consequence of the setting a 

traffic flow data with a single constant flow rate P=576 veh/hour in VISSIM.  While our 

algorithm detects most of the time the most likely mode it is clear that further improvement is 

needed for accurate mode estimation.  

The experiment uses the MATLAB platform for implementing OTPF procedure in table 5.3 in 

one single loop iteration. The execution of one loop of the algorithm (i.e. updating from tk to 

tk+1) takes less than 1 second meaning that OTPF based joint state-parameter estimation can 

be implemented in real time. 

In the next chapter in the context of implementation of state and parameter estimation as part 

of feedback control, we do simulation cases with generating multi mean traffic flow rate and it 

looks that this online estimation works properly. 

 

5.5 Conclusions 

This chapter has presented an online technique for joint parameter and state estimation for a 

stochastic hybrid model of the queue-length dynamics and its application to queue-length 

estimation and prediction at signalized intersections in urban traffic networks. The key idea of 

this method is to look at the mode as an unknown system parameter. The system is assumed to 

follow the dynamics of this most likely mode.  

The main novel contributions of this chapter are:   

(a) developing the OTPF along with an optimal kernel smoothing method via online 

minimization of a Kullback-Leibler distance, for estimating the AR parameters;  (b) using a 

Dirichlet distribution to generate the PF samples that allow reliable estimates of the transition 

probability matrix (TPM) of SHM.  
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The proposed method is validated in terms of the prediction accuracy for traffic flow and 

queue length by considering a case study using synthetic data of queue-length generated by a 

VISSIM traffic micro-simulator. This validation shows that the proposed online joint state-

parameter estimation method provides satisfactory queue-length estimation and prediction, 

and correctly captures the random variation of the traffic flow. The prediction results of traffic 

flows and queue-length and their computation times shows that this proposed technique can 

be used to develop good anticipating traffic controllers and this will be discussed in Chapter 6. 
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6  
Adaptive Stochastic Predictive 

Control with Chance Constraint 
 

 

Stochastic uncertainties are ubiquitous in complex system (such as the urban traffic networks 

studied in this thesis) and can lead to unacceptable variability of system outputs causing 

significant degradation of closed loop performance. A stochastic system is defined as a 

dynamical system model explicitly representing the source of uncertainties, both process 

uncertainty and sensing uncertainties. The presence of these uncertainties means that the exact 

system state is never known exactly, and that predictions of the effects of control action on 

future behavior are always uncertain. Robust control for linear system [55], linear parameter 

varying system [56], switched linear system [57] have been proposed as a tool for taking these 

system uncertainties into account considering worst case bounds on the system state, 

formulated based upon bounds in the disturbances.  

But in applications that can tolerate some failures the robust control solution tends to be too 

conservative if the worst case realizations in the uncertainty set have a small probability of 

occurrence. In stochastic control approaches, uncertainties are described by probability 

distributions (instead of considering every possible occurrence in some bounded sets as being 

possible). This requires of course that one can obtain the relevant probability distributions 

without excessive computational cost. In this thesis we use the particles generated by PF 

method of chapter 3 to represent these distributions. Such a stochastic control not only 

alleviates the conservatism of worst-case control, but also enables tuning robustness against 

performance by allowing pre-specified levels of risk during operation. The trade-off between 

control performance and robustness is achieved using chance (or probabilistic) constraints, 

which ensure the satisfaction of constraints with a desired probability level. 
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Figure.6.1. Short update interval (green~ 40-120sec) 

 

Figure.6.2. Long update interval (10 minute) 
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A major challenge in stochastic control is the design of chance constrained optimal control 

law in each sample time step k. This implies that we can calculate an estimate of the current 

state using past observations, and the find the value of uk that minimizes a cost, while 

ensuring that certain constraints are satisfied with a given probability. This requires the 

solution at each time k of non-convex stochastic program, that is computationally intractable, 

except for very special cases. In order to obtain a tractable solution, various sample-based 

approximation approaches have been considered. They share the significant advantage of 

coping with generic probability distributions, as long  as a sufficient number of random 

samples  can be obtained. Blackmore in [58] uses a finite number of particles to approximates 

the distribution of the system state of the hybrid model and Blackmore show that the 

approximate problem can be solved using efficient mixed-integer linear programming 

techniques. 

The main contribution of this chapter is to develop and to demonstrate that combining the 

joint state-parameter estimation technique of chapter 5 with, adaptive stochastic control can be 

a good candidate to avoid queue spillback in the critical intersection . In the perspective of the 

paper of Daganzo [64] that a network’s density never be allowed to approach the critical 

value, the control that we propose is a potential technique to decrease the likelihood of 

gridlock on the network. 

 

6.1 Uncertainty in traffic flow 

To use the stochastic control methods developed in this thesis, a description of the uncertainty 

of the system is required. Often linear system models with Gaussian noise are used, leading to 

simple linear calculations. In our specific urban traffic applications (considering also queue-

length dynamic at signalized intersection), the model is highly nonlinear and Gaussian 

assumptions do not hold for the probability distributions of the states.  

The mathematical model of traffic flow rate in the successive intersections along the urban 

link must reflect the random variability due to random perturbations as well as the time of day 

fluctuations. In order to properly control and coordinate the traffic lights along this urban link 

it is crucial to select value of the time update interval that is small enough to allow reaction to 

significant perturbations, but at the same time long enough to be computationally efficient and 

to avoid reacting to short term random perturbations that have little effect on the overall 



103 
 

system performance. Fig.6.1 and Fig.6.2 show the significant differences between short and 

long update interval. Fig.6.1 shows the evolution of the arrival flow at a signalized 

intersection, aggregating vehicles arriving in a short update interval, corresponding to one 

cycle of traffic light ( ~ 40-120 sec). Fig.6.2 on the other hand shows the same traffic flow 

with a longer update interval (10 minute). The results confirms that the choice of the update 

interval is an important factor to define the probability distribution of traffic flow and queue-

length used for the feedback control design. One need feedback on the time scale of one cycle 

or one phases is that this is the fastest time scale at which one can control via traffic lights. So 

basically it is the technology used - in this case traffic  lights - that determines the time scale. 

The reason one need feedback because the variability at any time scale causes perturbations 

(like spillbacks) that are so large that cause global performance deterioration. This in turn 

determines the prediction horizon that should be taken into account for a real-time model-

prediction-based feedback controller of the traffic lights in an urban network. This prediction 

horizon should be a multiple of the time granularity used for the flow rate measurements, so 

the prediction horizon is one of important topic related to the choice of the time update step.   

 

6.2 Identification  

In this thesis, the mode of the traffic operation (e.g., free flowing, congested or faulty) is 

evaluated by the real-time traffic flow information gathered from detectors that were placed 

upstream and downstream to determine the queue-length. Traffic operations evaluation 

methods can be classified into two types: data mining methods and traffic flow parameters 

estimation based on advanced the identification technique.  

In the Chapters 4 and 5, we have developed quantitative parameter identification techniques, 

developing both offline and online algorithms. These identification algorithms can be 

executed jointly with state estimation, and must be incorporated in the feedback control loop 

in order to improve the performance and robustness of the closed loop system. The proposed 

controllers thus achieve the automatic adaptation of the controllers tuning to changing model 

parameters.  

In this chapter, we only examine the online identification approach to simultaneously 

performing parameter estimation and online traffic flow and queue length estimation and 

prediction as discussed in Chapter.5 and integrate it with stochastic control. 
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6.3 Adaptive Stochastic Control  

The schematic diagram of adaptive stochastic control for traffic signal control of a signalized 

intersection is shown in Fig.6.3. Refer to Fig.2.5.b in Chapter 2, in lane L1, we collect a set of 

data about the traffic flow rate of arrival and departure flows and about the signal timing 

sequence. We simplify the problem formulation by assuming that the signal timing sequence 

consists of two phases, red and green only, ignoring the yellow phases and possible all red 

phases, as shown in Fig.2.5.a. 

In this chapter, the data collection is used to identify the parameters using the online 

technique, then we put the estimated values of the parameters into the jump Markov model 

based traffic flow equations in order to estimate the current state of the traffic flow rate. These 

estimates can then be used estimate the current queue length and to predict the evolution of 

the queue length over the prediction horizon using sequential Monte-Carlo method, allowing 

comparison of the performance for different possible choices of the control values (cycle time, 

red/green fraction). Sequential Monte Carlo updates are used since the states estimated at the 

current time step form the basis of the estimation at the next time step. It can be done by 

generating a number of scenarios, corresponding to different choices of the control values, via 

a Monte Carlo simulation of the future behavior. Optimization of the performance among 

these possible scenarios allows selection of a good choice of control values, with small 

queueing delays on the average and satisfaction of the probabilistic constraints, to be defined 

below. 

We propose a new control algorithm, probabilistically constrained predictive control. The 

performance of traffic light are defined by the objective function with constraints on inputs 

and states should be satisfied in the presence of uncertainties. The propagation of probabilistic 

parameter uncertainties and exogenous disturbances through the system model and the 

reformulation of probabilistic constraints to computationally tractable expressions are key 

issues in stochastic control for real application. In this thesis, we use the convex bounding 

method developed by Nemirovski [7] which draws samples for the uncertain parameters and 

bounds the chance constraints with a convex function and then uses the samples to evaluate 

the convex bound. We use the stochastic hybrid model as explained in Chapter 2 in 

combination with approximate convex optimization in order to determine the optimal green 

split allocation for each cycle.  
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Figure.6.3  Schematic diagram of Adaptive Stochastic Control 
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6.4 Adaptive Stochastic Predictive Control with Chance Constraint: a 

Critical Intersection Case 

6.4.1 Introduction 

As described in chapter 1 that the traditional UTC intend to minimize the traffic flow through 

the whole network, where the objective function can be represented as the total average delay 

time experienced by the vehicles in all queues. However, Gayah, in his paper[62], showed that 

in an extremely congested network adaptive traffic signals might have little to no effect on the 

network due to downstream congestion and queue spillbacks. Hence, under this traffic 

conditions, other strategies should be used to mitigate the instability, such as perimeter 

control, which basically use the unimodal relation between average flow and average density 

which has been come to be known as the  MFD, please refer to Chapter 1 to know the detail. 

In this thesis, we follow the idea of Daganzo that the traffic control is developed by 

integrating an identification and estimation technique approach into a control policy of long 

queues prior to spillback occurrence to reduce the risk of spillovers through a chance 

constraint based feedback strategy. In this proposed controller, the risk of spillbacks is 

ensured by using  chance constraint in order to keep the queue length less than threshold to 

avoid spillback. Its unique feature is that the resulting solution ensures a predefined 

probability of satisfying the constraints. The solution will lead to an expected optimal value of 

the cost function by searching for the decision in a feasible region to hold a give threshold 

level, denoted 0<(1-δ)<1. Since δ can be defined by the user, it is possible to select  different 

levels and make a compromise between the cost function value and risk of constraint 

violation.  

In this chapter, we focus on the critical intersection where the traffic lights are set so as to 

maximize the flow of vehicles along the critical congested link; typically they carry the heavy 

traffic load, i.e. the traffic flow rates along the roads connecting the adjacent intersections are 

larger than along the cross roads (as minor road). We will discuss this idea by referring 

Fig.6.4.  

If one considers a critically congested link L1 in Fig.6.4 to regulate its accumulation to the 

uncongested state, we need to manipulate the outflow of the critically congested link by 

applying an efficient control strategy in intersection-I. 
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Figure.6.4 Schematic Example of Critical Intersection Case 

 

Thus, the general idea of a good control strategy is to : 

(a) increase the green duration of the movement L1 at the exit intersection (increase the 

outflow of intersection I) and  

(b) to decrease the corresponding green duration at the downstream intersection 

(intersection II) in order to decrease the inflow at link L1).  

In urban networks with signalized intersections, when demand exceeds capacity queues fail to 

clear during the allocated green times creating oversaturated traffic conditions and spillbacks 

occur when growing queues at the downstream link block the arrivals from the upstream link 

such that vehicle queues cannot discharge at capacity, although the signal phase is green. 

Spillbacks may also occur when left turning vehicles fill up the available storage length and 

block the through movements.  

In this thesis, for the time being, we merely consider the remedy (a) to increase the outflow of 

intersection I. In chapter 5 we introduced joint parameter-state estimation approach that 

detects in real-time which link currently has a long queue larger than critical queue length qcr 

along one direction of the intersection. We apply this estimator of chapter 5 to several 
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intersections, and only apply the control algorithm to those intersections that are "risky" in the 

sense that without control the chance constraints are not satisfied. 

The following chance constraints must be satisfied in a probabilistic manner in the presence of 

uncertainties. These chance constraints express the condition that, for the selected control 

values, over the prediction horizon, the number of vehicles on road L1 remains below the 

threshold qcr with a probability larger than or equal to the user-defined level of probability 1-δ 

of holding  the constraints will be ensured:  

 1][ 11 L

cr

L

pk qqp                                                           (6.1) 

where p=0,1,…,N-1 and N indicates the N-step horizon and set N=3. 

As said before that it is possible to select different levels δ and make a compromise between 

the cost function value and risk of constraint violation. Of course a high confidence threshold 

to ensure the constraint is always preferred. The knowledge of a maximum value (1- δ)
max

 is 

crucial; if a value greater than (1- δ)
max

 is chosen, the feasible region will be empty. 

 

Remark: In this chapter to simplify the notation, we use k to denotes the sampling times tk.  

If this intersection-I indeed constitute a critical intersection then, proper adjustment of the 

signal timing in that intersection holds the potential to improve traffic condition in the critical 

link. The signal timing strategy is applied by integrating the state-parameter estimation and 

adaptive stochastic predictive control with chance constraint (relating to the probability of the 

queue length  being less than the threshold qcr, refer to Fig.6.4 ).  

In this thesis, we tightly integrate stochastic control with joint state-parameter estimation 

leading to adaptive stochastic predictive control. The basic difference between the convex and 

non-convex optimization is that in (i) convex optimization there can be only one optimal 

solution, which is globally optimal or we might prove that there is no feasible solution to the 

problem, while in (ii) nonconvex optimization may have multiple locally optimal points and it 

can take a lot of time to identify whether the problem has no solution or if the solution is 

global. Hence, the efficiency in time of the convex optimization problem is much better. 

By integrating the remedy (a) and (b) previously mentioned (which is equivalent to the use of 

MFD for controller design as proposed by Daganzo [3] and Aboudolas [1]), it will in the 
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future become possible to implement a locally decentralized signal control strategy while 

ensuring at the same time the global coherence of these strategies along the network. In this 

manner, we seek to improve traffic on a critical link at a low cost by acting merely on critical 

intersections, as opposed for instance to network-wide optimization process. . In this thesis we 

consider as a first step chance constraint local controllers, which minimize the risk of global 

interactions. 

 

6.4.2 Problem Formulation 

We consider the isolated signalized intersection as a switching system with fixed-sequences 

consists of two phases (A and B) as shown in Fig.2.5 in chapter 2.  

We follow the SHM complete model as formulated in equation (5.1) in order to predict future 

evolution of the state under the influence of selected control values. We proposes to select, as 

a function of the available observations as summarized by the obtained estimates of the 

current state and parameter values, a value for the control variable Tg,k at sampling instants: k 

∈ [t2k,t2k+1] so as to minimize an objective function, like (6.2) below, while constraints on the 

inputs and states should be satisfied in the presence of uncertainties, with chance constraint in 

equation (6.1). We consider the case when the criterion cost function J is the average queue 

length, positively weighted sum of queue lengths as shown in equation (6.2).  Hence we 

introduce the objective function as follows: 

                                  ][][[

3

1

,22,11


 

p

pkpk qEwgqEwgJ                                        (6.2) 

where wg1 and wg2 are weighting factor for L1 and L2. The reason for selecting a time horizon 

of 3 steps ahead is because of the sufficient results of traffic flow prediction over this time 

horizon and also the fact for automatic adaptation we need a quick anticipation and choosing 

p=3 is reasonable for urban traffic network in the sense that the distance in time between 

intersections is shorter than the three cycle lengths. 

The novelty in the control design proposed in this chapter is to guarantee moreover the 

security of the critical link, since avoiding spillbacks along the critical link (L1) is an 

overriding condition that takes precedence over the performance along the other flow 
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directions(L2). This cost function (6.2) together with chance constraint in equation (6.1) 

defines a controller that ensures avoiding the spillback.  

This optimization calculates the green signal times for N-step horizon Tg,k+p, at the beginning 

of the k-th cycle, but only apply the first value Tg,k, where p=0,1,2. 

Remark: From the perspective of traffic engineering, this cost function can also be seen as a 

level-of-service (LOS) indicator. LOS is defined in the HCM (Highway Capacity Manual) 

[95] as a qualitative measure that reflects user perception of quality of service. Delay has been 

chosen as the reasonable measure for determining signalized intersection LOS and delay is 

proportional to the integral (or sum in the discrete time model considered here) of the queue 

lengths justifying the performance measure or LOS under consideration here. 

 

6.4.2.1 Uncertainties 

The queue length dynamics at traffic movement Li strongly depends on the arrival flow and 

departure flows. Both traffic flow are subject to the uncertainties of the evolution of the traffic 

modes, and on the stochastic parameters θα of AR process.  

 

6.4.2.2 Objective Function and Constraints 

Summarizing the above considerations we now formulate the problem of this section 

formally. This section considers the adaptive stochastic predictive control of the SHM as 

shown in equation (2.6) – (2.10)  while constraints (6.1) on the inputs and states should be 

satisfied in the presence of uncertainties, with the probabilistic limits calculated (or estimated 

via scenarios) according to the probability distribution of the uncertainties as specified above. 

Note that in this SHM we define: 

State variables x are the queue-lengths qtk, modes stk, and arrival/departure flows in each 

competing movements (L1/L3 or L2/L4) as shown in equation (5.1); control variable u is green 

fraction Tg,k whereas measurement variables y are number of passing vehicles per green (red) 

duration at arrival/ departure sensors location. State variables x are predicted by stochastic 

hybrid model (2.6-2.10) through joint state-parameter estimation. 
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Stochastic optimal control problem (6.3) is implemented in this thesis in a N-receding horizon 

fashion, with N=3. The closed loop control that is applied to the system is defined by the 

optimal solution switching time sequence tk, t2(k+1), t3(k+1)… (refer to Fig.2.5.a). Under 

uncertainties in the initial conditions, and uncertainty about the systems parameters, the 

solution trajectories of stochastic hybrid (6.4 -6.9) may violate the constraints (6.10-6.13). In 

this thesis, inputs Tg,k+p are designed to satisfy (6.10-6.12) such that the chance constraints 

(6.13) is fulfilled in a probabilistic manner in the presence of these uncertainties. The value of 

probability distribution of chance constraint can be computed using a convex bounding 

method which will be discussed in detail in the next section. 

In the application of a critical intersection with link L1 and L2, we consider the following 

receding horizon (or model predictive) control problem for a given p number of cycles 

horizon (not necessarily of equal lengths) and starting time t0, compute an optimal switching 

time sequence tk, t2(k+1), t3(k+1)… (refer to Fig.2.7.a) that minimizes the performance criterion 

J, defined in (6.2),can be formulated as follows:  

(P.1)                                     min J                                                                            (6.3) 

Subject to:   ]0,)([max ,2,12,12,1)1(2,1 kgpkpkpkpk Tqq                                (6.4) 

        krpkpkpk Tqq ,)1(2,1)1(2,1)2(2,1                                                        (6.5)       

                    kgpkpkpk Tqq ,2,22,2)1(2,2                                                                 (6.6) 

           ]0,)([max ,)1(2,2)1(2,2)1(2,2)2(2,2 krpkpkpkpk Tqq                          (6.7) 

12,,112,1)1212,,11212,,12,1 )()(   pkpkpkpkpkpkpk wss                 (6.8.a) 

12,,112,11212,,11212,,12,1 )()(   pkpkpkpkpkpkpk wss                (6.8.b) 

12,,112,11212,,11212,,12,1 )()(   pkpkpkpkpkpkpk wss                  (6.8.c) 

12,,212,21212,,2121,,22,2 )()(   pkpkpkpkpkpskpk wss                 (6.9.a) 
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pkpkpkpkpkpkpk wss   2,,22,222,,222,,212,,2 )()(                     (6.9.b) 

pkpkpkpkpkpkpk wss   2,,22,222,,222,,212,2 )()(                 (6.9.c) 

for p=0,1,…,N-1 and N indicates the N-step horizon and set N=3; 

Remember that the evolution of the modes sk according to the transition probability matrix 

(TPM) ij= Prob ...),,,|(
321 


kkkk tttt ssisjs . 

Additionally, the following constraints should must always be satisfied: 

        Cpkrpkg   ,, TT                                                               (6.10) 

                                             max,,min, gpkgg TT  T                                                    (6.11) 

      C,min ≤ C ≤ Cmax                                                             (6.12) 

while the chance constraint limiting the queue-length at movement L1must be satisfied with 

probability larger than 1-δ:  

                                    1][ ,1,1 crpk qqp                                                      (6.13) 

where :  

pkmq ,  :  predicted queue length using equation (2.6) - (2.9) in each movement m (L1/L3 or 

L2/L4) at time instant k+p on the corresponding traffic signal sequence at time t where 

p=0,1,…,N-1 and N indicates the N-step horizon and set N=3. 

pkm 2, , )1(2,  pkm :  arrival flows are detected by arrival sensors as indicated by red-lines in 

Figure 2.5.b, for each movement m (L1/L3 or L2/L4) during the green period Tg (resp. the red 

period Tr) on the corresponding traffic signal sequence of the movement m as shown in 

Fig.2.5.a.  

pkm 2, , 12,  pkm : departure flows are detected by departure sensors as indicated by green-

lines in Figure 2.5.b in each movement m (L1/L3 or L2/L4) during the green period Tg  (resp. 

red period Tr) on the corresponding traffic signal sequence of the movement m as shown in 

Fig.2.5.a.  
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Remember that for p>0 or prediction: arrival flow and departure flow are predicted using state 

equation (2.10.b), by using the parameters of AR   ,,,,,, 2

222

2

111  at index k. It 

means that over the prediction horizon, we use the previous value of   at time k. 

)( 22,, pkpkm s  , )( 1212,,  pkpkm s and )( 22,, pkpkm s  , )( 1212,,  pkpkm s : estimated 

parameters of JMM model (2.10) in modes s at time instant 2k+p for arrival flow λ (departure 

flow μ) in each movement m during the green period Tg (resp. red period Tr).  

,2,, pkmw  , ,12,,  pkmw  :  an i.i.d. sequence of random variables, E [ pkmw 2, ] = 0 and 

Var[ pkmw 2, ] =σ
2
(stk)  

δ ∈ (0,1] is user-specified parameter chosen according to process requirements: δ =0 

corresponds to hard constraints that should hold at all times for all uncertainty realizations;     

δ < 1 allows for constraint violation with probability δ in order to trade-off control 

performance with robustness. 

C, Cmin, and Cmax represent cycle time refer to Fig.2.5.a, lower and upper bound for the cycle 

time respectively. The term Tg,k+p expresses the green signal time variable of lane L1 over the 

N-step horizon. It can be written as Tg,k+p= [ Tg,k Tg,k+1 … Tg,k+p]
T
. This optimization 

calculates the green signal times for N-step horizon Tg(k+p), at the beginning of the k-th cycle 

(or t2k refer to Fig.2.5a), but only apply the first value Tg,k and the next optimization loop is 

started at the (k+1)-th cycle (or t2(k+1) refer to Fig.2.5.a). For each step of the N-step horizon, 

the summation of green time and red time is equal to the cycle time, which may vary between 

a lower and upper value or may constant. Each green time value also has a minimum Tg, min 

and maximum Tg, max which is fixed over the horizon. 

 

6.4.2.3 Convex bounding method  

Because chance constraint is an important issue in the perspective of avoiding spillbacks 

along the critical link, hence this section elaborate in detail of the convex bounding method  , 

proposed by Nemirovski [7], allowing the probabilistic inequality constraints (6.13) to be 

transformed into deterministic constraints. The deterministic constraints strongly depend on 

estimation of queue-length and the resulting problem is a convex program which may 

decrease the computational complexity. 
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The most challenging aspect of solving the optimization program (P.1) is in evaluating and 

satisfying the chance constraints in equation (6.13). We focus on using a sampling technique 

to approximate the chance constraint of the system by using a finite set of particles to 

represent the probability distribution of the system. In this thesis, sampling methods sample 

Ns particles at each time-step from the Gaussian noise source and initial state to obtain the sets 

samples                               :     {w0
1
,…, wN-1

1
,…, w0

Ns
,…, wN-1

Ns
}, 

noise                                    :    {0
1
,…, N-1

1
,…, 0

Ns
,…, N-1

Ns
},                                     (6.14) 

state                                     :     {x0
1
,…, x0

Ns
} 

An approximation of the distribution of the system state, measurement output and control 

input can then be calculated using this set of samples. Please see equation (5.2.a) and (5.2.b) 

and we rewrite here to clarify and again we use k denotes the sampling times tk.: 

),,( 1

j

k

j

ks

j

k xfx    

),,( 0

j

k

jj

k yyu    

where (.) is mapping from observation to control value, for all j=1,…,Ns. Let X
j
 be defined 

as X
j
=[x0

j
,…, xN

j
] and similarly U

j
=[u0

j
,…, uN

j
] 

There are three different sampling approaches that are commonly employed. The first uses 

mixed integer programming to approximate the chance constraints by counting the number of 

constraint violations [58]. The second method enforces the constraints for all of the samples 

and determines the probability that the chance constraints will be satisfied [77]. The third 

method bounds the chance constraints with a convex function and then uses the samples to 

evaluate the convex bound [7]. We apply the third method to a stochastic control with state-

parameter estimation. 

Typically chance constraints deal with the satisfaction of each constraint separately, requiring 

each to be satisfied with probability 1- δi 

  1][ 11 L

cr

L

pk qqp           10),( Up          

where each  is a scalar function and in the case of queue length: crpk qqUX  
ˆ),( . 
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This thesis use the convex bounding method [7] by approximating the probability distribution 

by number of samples. This Monte Carlo approach simplifies the evaluation of the chance 

constraints, which really are upper bounds on the value taken by a probability integral. The 

Monte Carlo method is an efficient way of calculating this integral. The following subsections 

explain in detail how we use sampling to handle these chance constraints by using a finite set 

of particles to represent the probability distribution of the system; this converts the stochastic 

control problem into a deterministic one. 

Consider a single generic individual chance constraint of the form 

    10),( Up  

which is equivalent to: 

    0),( Up                                                        (6.15) 

The probability distribution in equation (6.15) can be calculated via Monte Carlo methods is 

of course dependent on the quality of the Monte Carlo approximation. 

   







N

i

UX
N

UXEUp

1

),((
1

)),((0),(





1

1
 

where 1(.) is the indicator function defined in equation (2.3).  

This indicator function 1(z) is a nonconvex function, this greatly complicates the evaluation of 

the chance constraints (6.15) and solution of the optimization problem (6.3). However, by 

bounding the indicator function by a convex function the optimization program simplifies to a 

convex program. 

Suppose a nonnegative, non-decreasing, convex function RRi : can be found such that for 

any )(1)/(, zz   for all z the following holds: 

)0),(())],(([]/),(([  UXpUXEUE  1  

Consequently, if the following convex constraint is satisfied: 

  ]/),(([ UE                                                        (6.16) 
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then the original chance constraint in equation (6.15) is guaranteed to hold a fortiori. 

The constraint in equation (6.16) holds for any α, but different choices of α may lead to a 

better approximation of the original chance constraint in equation (6.15). Equation (6.16) can 

be written as by following the detail in [7], reducing the conservativeness of the method 

  ]/),(([ UE                                                        (6.17) 

The left-hand side of equation (6.17) is a perspective function )/(  z that is convex in z 

and α for α >0.  

Definition.6.1 [16]: 

If f: R
n
→R then the perspective of f is the function g: R

n+1
→R defined by  

g(x,t) = t f(x/t)  

with domains 

dom g = {(x,t) | x/t ∈ dom f, t>0} 

As shown in [16], the perspective of a convex function is also convex, therefore 

)/,((  U  is convex in X, U and α for α >0. Consequently, the constraint in equation 

(6.17) is convex. By deriving the optimal α
*
 providing the best approximation by solving 

(6.18) can reduce the conservativeness of the method: 

0]/),(([inf
0







UE                                             (6.18) 

Now that the parameter  α  of the convex constraint used to bound the original chance 

constraint has been selected the next step is to determine what form of function to use for  . 

The restrictions on the functions, as stated previously, are that it needs to be a convex function 

and )(1)( zz  for all z. Several candidate for the function are considered in [74]: 

a. Markov    :          
 ]1[)( zz   

b. Chebyshev   : 
2]1[)(  zz  

c. Traditional Chebyshev : 
2)1()( zz   

d. Chernoff/Bernstein  : 
zez )(  
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where 
[.] = max(.,0). Each function places a different penalty on the severity of constraint 

violation. The best approximation is given by the function that is closest to indicator function. 

1

1(z)

(z+1)+

exp(z)
(z+1)+

2

z

 

Figure.6.5. Several convex bounds to approximate the indicator function 1(z) 

In this thesis, we use the traditional Chebyshev function as indicated red curve in Fig.6.5. One 

advantage of using a smooth generating function, such as the traditional Chebyshev, is that we 

can write explicitly the optimality condition setting the gradient to 0 by evaluating the 

expression in (6.19); otherwise; one must resort to an uncertainty sampling method which is 

incurs a higher computational cost. 

Using the traditional Chebyshev function, the  bound is obtained: 

  ])1/),(([ 2UE                                             (6.19) 

Which aftter expanding terms and simplifying can be written as 

0)1(]),([
1

)],([2 2  


 UXEUXE                                              (6.20) 

Minimizing the previous equation over α gives  
2/1

2),(
1

1










 UXE 


 which finally 

yields the constraint 

0)),([)1(()],([ 2/12  UXEUXE 
                                          (6.21) 

It is important to note that this approximate conservative constraint only depends upon the 

first and second moments of the function ),( UX  which can be computed from the convex 

bounding method via the samples allowing the constraints to be transformed into deterministic 

constraints. Note that the probabilistic inequality constraint  depends upon the first and second 
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moments of the function crqqUX  ˆ),(  which it can be computed using state estimation 

PF as described in Chapter 3, where qcr is critical queue length as noted at Fig.6.4.  

In summary, the following problems need to be addressed to efficiently solve (P.1) 

Problem.1. Propagation of probabilistic uncertainties of state dynamic are propagating 

through stochastic hybrid state dynamics (6.4)-(6.9). The problem of propagation over the 

prediction horizon is addressed by using the previous value of   at time k that can be 

achieved using online joint state-parameter estimation. 

Problem.2. Efficient evaluation of the chance-constraints (6.13). Since the probability 

distribution of the chance constraints (6.13) may not be a convex function, it is difficult to 

include them in the optimization program. The convex bounding method uses a suitable 

conservative, convex approximation for the probability distribution of the chance constraints 

as defined above. The resulting problem is a convex program which may decrease the 

computational complexity. 

Remark : 

(a) We assume that the chance constraint only applies to the queue length on road L1 as 

indicated q1 in equation (6.13), but the optimization for the traffic control law also 

takes into account the queue length on L2 (the minor road) through involving the 

queue length dynamics on L2 in equation (6.6) and (6.7) . Please see L1 and L2 as 

indicated in Fig.6.4. 

(b) in the future extension of the method for controlling traffic lights, if one wants to 

consider a complete network, then one needs to consider joint chance constraints, and 

this requires multidimensional integration which makes the sampling approach a lot 

harder. This joint chance constraint will be valuable for coordinating to multiple 

intersection through multi agent system approach. 

 

Using stochastic hybrid model Eq.(6.4-6.9) describing the evolution of the variables qtk, Tg, w 

and n, over the prediction horizon t1, t2,…, t2N the value of probability distribution of chance 

constraint (6.13) can be computed by propagating the uncertainty in qk, Tg, w and n  through a 

convex bounding method as was mentioned in previous section. Hence, the estimation of 

probability distribution of the chance constraint is simply an uncertainty propagation problem. 
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6.5 Simulation Studies 

The aim of this experiment described in this section is to demonstrate how one can control 

efficiently for the case of a critical road link where queues that may spill back upstream of 

critical intersection I (please see Fig.6.4) are created with fixed time signal, when the inflow 

grows too large. In the simulation studies below, we proposed a signal control strategy that 

acts only on the exit intersection along the arterial. We use the adaptive stochastic with chance 

constraint explained in the previous sections. This chance constraint needs the choice of a 

threshold value  to decide whether a link is considered as congested or not, based on a 

queue-length state-estimation strategy that detects queues that exceed the capacity of the 

corresponding approach at the downstream intersection.  

We consider problem (P.1) for the critical intersection on the saturated link, with objective 

function as shown in (6.2).  The simulation studies are based on one signalized intersection 

with competing links and considering link L1 as a major road and link L2 as minor road as 

shown in Fig.6.4 The parameters of the traffic condition are listed below: 

a. Cycle time is fixed to C= 90s for that intersection 

b. Synthetic traffic flow data at the inflow nodes of the network with random Gaussian 

noise are generated with aim to show changing traffic flow condition from one mode 

to another mode over the cycle index (please note in this chapter we use k denotes the 

sampling times tk ): 

a. arrival flow rate during red period : 

i. 12,1 k (movement L1) 

i. with mean 0.4 and variance 0.01 during time index 1-400  

ii. with mean 0.3 and variance 0.01 during time index 401-800 

ii. k2,2 (movement L2) 

i. with mean 0.3 and variance 0.02 during time index 1-400 

ii. with mean 0.2 and variance 001 during time index 401-800 

b. arrival flow rate during green period: 

i. k2,1 (movement L1) 

i. with mean 0.3 and variance 0.01 during time index 1-400 

ii. with mean 0.2 and variance 0.02 during time index 401-800 

ii. 12,2 k  (movement L2) 
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i. with mean 0.4 and variance 0.02 during time index 1-400 

ii. with mean 0.3 and variance 0.01 during time index 401-800 

c. departure flow rate during green period: 

i. k2,1  (movement L1)  

a. with mean 0.8 and variance 0.02 during time 1-800. 

ii. 12,2 k  (movement L2)  

a. with mean 0.5 and variance 0.02 during time 1-400 

b. with mean 0.4 and variance 0.02 during time 401-800 

c. Allowable green period is 45 sec <Tg< 70 sec 

d. Initial random queue length with mean 5 vehicles and variance (1 veh)
2
 

e. The probability of the queue length on road L1 must at all times satisfy the constraint 

that is below the threshold qcr =15 vehicles, with a probability (1-δ) that is 90 % 

during the whole simulation. Note that the chance constraint applies only for critical 

link road L1. 

f. The prediction horizon is selected as N=3. This selection is based on the performance 

assessment on online joint state and parameter estimation that is good performance in 

the prediction horizon up to N=3. 

 

Note: Gaussian assumption is not realistic, but still acceptable because the average values of 

the traffic flows (in this simulation) turn out always to be positive because the standard 

deviation are small compare to the mean value, which in turn generates positive values of 

traffic flows. 

To solve online optimal control problem (P.1), the coefficients of the AR process and the 

transition probabilities of the mode process sk are estimated by joint parameter estimation at 

each discrete time instant using both new measurements and also decision variable Tg,k. Please 

see algorithm-1 in table.6.2 

For online implementation, problem (P.1) is embedded in a receding horizon algorithm. 

Adaptive stochastic MPC is implemented in MATLAB and the optimization is based on 

subroutine fmincon the sequential optimization strategy. Note that the algorithm in table 6.1 

needs algorithm in table.5.3 for state and parameter estimation. 
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Table. 6.1 Adaptive stochastic mpc 

Algorithm of (Receding horizon implementation of Adaptive 

Stochastic MPC 

Input: 1. Initial time step k 

2. Feasible initial control input Tg 

3. Initial state  

)},(),,(),,(,{}1{ 22,11212,122,1,1 kkkkkkkk sssqx    

)},(),,(),,(,{}2{ 22,21212,222,2,2 kkkkkkkk sssqx    

}21{}{ kkk xxx   

 

4. Uncertainty description of parameter vector 

}),(),(),({)( 2

   kkkk ssss where α is a generic flow 

(it can be k2,1 , 12,1 k , k2,1 for movements L1 and L2) 

At discrete time instant k: 

1). Use x1 and Tg(1) to carry out simulation of the SHM using N 

    samples drawn from optimal-tuning kernel smoothing 

    approach. This step is critical step when the traffic  

    condition change: jump to another mode. 

2). Do state estimation and prediction using OTPF with N=3,see 

    table.5.3 in chapter 5 

3). Solve the deterministic optimal control problem (P.1)to  

    determine optimal control policy. For each optimization 

    iteration, this requires repeated parameter estimation at 

    step 1 and also state prediction/ estimation at step 2,  

    such that the (chance) constraints (6.21) are fulfilled in 

    probabilistic manner in the presence of uncertainties.  

4.  Apply the first element  Tg to the stochastic hybrid  

    system (start from step 1 at each time instant k) 

 

Using the parameters listed above, we simulate the evolution of queue length different control 

loops viz. adaptive stochastic mpc with chance constraint (asmpc-cc), adaptive stochastic mpc  



122 
 

with cost function only considering queue-length in L1 (asmpc-diff J) and fixed green duration 

(fixed) Tg=45 secs. Both the asmpc-cc and the asmpc-diff J use stochastic control algorithm 

along with joint state-parameter estimation. The asmpc-diff J considers all the constraint 

equation (6.10)-(6.12), but does not include the probabilistic constraint (6.13) and use a 

different cost function as follows: 

]][[

3

1

,11




p

pkqEwgJ                                                           (6.22) 

The evolution of queue length on link L1 (major road) at a signalized intersection for case 

(P1) is shown in Fig.6.6- Fig.6.8: 

(a) The asmpc-cc fulfills the constraints on the upper limit of queue length in major road 

L1 less than qcr =15. However, there are queue lengths more than 15 but with 

probability of the occurrence less than 10 %. This result fulfill the chance constraint 

condition as indicated in the condition (e). Despite this control value Tg for the 

link/movement L1 is increasing but still it is able to fulfill the constraint on green 

period to stay in the set of allowable green period (45 sec <Tg< 70 sec) as shown in 

Fig.6.6-Fig.6.8. 

(b) The asmpc-diff J has cost function (6.22) that only considering L1. In this case we give 

a highest priority to movement in L1 and the controller generate the maximum green 

period Tg =70 and this makes the queue length in major road L1 has a lowest value 

compared to another controller as shown in Fig.6.6. Consequently the queue length in 

minor road L2 reaches highest value as shown in Fig.6.8 with Tg=20 sec.  

(c) In the fixed control profile, the result, as expected, shows the queue length in major 

road L1 has highest  value compared to the others.  
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Figure.6.6 Queue-length evolution (upper) and green period adapting (lower) for L1 

 

Figure.6.7 Queue-length evolution for L1 (zoom in between index 300-450) 
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Figure.6.8 Queue-length evolution (upper) and green period adaptation (lower) for L4 

To evaluate the performance of the asmp-cc in more general case, we examine by considering 

the longer simulation in order to evaluate better the probability of the chance constraint being 

satisfied. Monte Carlo simulation of the closed-loop system is performed using 800 random 

vectors generated from the Gaussian pdfs of the traffic flows. Fig.6.6 and Fig.6.8 reveal its 

ability in shaping the probability distribution of system states, as well as ensuring the 

fulfillment of state constraints in a stochastic setting. From the whole simulation, the result 

fulfills the requirement that the probability constraint of the queue length is below the 

threshold upper limit of 90 %. This is a good indication that the convex approximation of 

chance constraint using convex bounding method is successfully implemented in this case.  

As we know that performance of the asmpc-cc and the asmpc-diff J strongly depend on the 

quality of the state prediction. The performance of joint state-parameter  prediction is shown 

in Fig.6.9 by using a measure of relative error (RE): 
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where term x̂  in equation (6.23) indicates the results of estimator, 1-predicor and 2-predictor 

for arrival flow 12,1 k . The RE measure allows us to compare the performance of each 

estimators/prediction in the percentage form  in the same graph. 

The result in Fig.6.9 shows that the relative error of joint state-parameter estimation is less 

than 10%, especially excluding the initial time and the transition time around index 20 at the 

time when traffic flow intensity is changing rapidly 

 

Figure 6.9 Performance of joint state-parameter estimator 

6.6 Conclusions 

This chapter proposes the adaptive stochastic control by integrating with joint state-parameter 

estimation technique as proposed in Chapter 5 into the control loop. The convex bounding 

method developed by Nemirovski [7] is used to approximate the individual chance constraint 

on excessive queue lengths that might lead to spillback. This convexification enables the 

successfully implementation of the stochastic control for avoiding queue spillback in the 

critical intersection.  The joint state-parameter estimation is used to detect in real-time the link 

with long queue larger than critical queue length qcr. 

The control that we propose is a potential technique to decrease the likelihood of gridlock on 

the network. One of the future extensions for decreasing the likelihood of gridlock is by 

imposing a joint chance constraint (in our application, a joint chance constraint can be 

represented as a set of constraint on several incoming links each imposing limits on the 
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globally optimal control inputs by decentralized optimization problem under stochastic 

uncertainty with a coupling through a joint chance constraint. This is an interesting topic for 

further research. 
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7  
Conclusions and future works 

 

 

 

7.1 Conclusions 

This results presented in this thesis have developed an adaptive stochastic control, integrating 

a joint state-parameter estimation algorithm with a risk constrained stochastic control for the 

control of an urban traffic signal control. Using a stochastic hybrid model framework, it is 

possible to predict the queue-length evolution at a signalized intersection, using past 

observation of traffic flow in the neighborhood of the intersection on the model represents the 

interaction between the selected traffic light sequences, arrival/departure traffic flow, and the 

queue lengths. This interaction involves both event-driven dynamics and time-driven 

dynamics. The event-driven dynamics is dictated by green-red light switches, by switching of 

the traffic mode of operation, and by events causing some queue lengths to switch from 

positive value to zeros or vice versa. Since the discrete event and discrete time dynamics of 

such models are coupled, partially observable and stochastic, this is a very challenging 

problem in the field of data-driven estimation and control. In general, the traffic flow can be 

modeled as jump Markov model which is a multi–mode model and in each mode is modelled 

by first-order autoregressive (AR) model.  

Because the ultimate aim is to reduce the queue length in each of the incoming lanes, some of 

which are connected to the nearby adjacent  intersection, then the good choice of the signal 

traffic sequence is crucial in order to fulfill the aim of minimizing delays and avoiding 

spillbacks. Different possible selections of the signal traffic sequence are compared, so as to 

develop a feedback control strategy where the objective function can be represented as the 

total average delay time experienced by the vehicles in all queues, ensuring the risk is small of 

having queues that are so long that they cause deterioration of the performance upstream.  

Parameter estimation are used to determine the unknown parameters of the stochastic hybrid 

model. The parameters of the AR process take different values depending on the mode of 
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traffic operation – free flowing, congested or faulty – making this a hybrid stochastic process. 

Mode switching occurs according to a first-order Markov chain. This thesis proposes both an 

offline technique and an online technique for estimating the transition matrix of this 

Markovian mode process and the parameters of the AR models describing flow rates for each 

mode. The offline technique uses an expectation-maximization (EM) technique while the 

online technique utilize a particle filter approach. Both techniques have been validated both 

using actual traffic flow and VISSIM traffic simulator as discussed in previous chapters.  

Online joint state-parameter estimation is based on the key idea of looking at the most likely 

mode as an unknown system parameter. The system is assumed to follow the dynamics of this 

most likely mode. A particle filtering approach is used for jointly estimating the transition 

matrix of the traffic modes, the parameters of the autoregressive (AR) model describing the 

evolution of the traffic flow rates, as well as for estimating and predicting the traffic flow rates 

and the queue length. The method has been made computationally feasible by utilizing an 

optimal-tuning kernel smoothing approach to estimate the parameters of the first order AR 

model in combination with a Dirichlet distribution approach to estimate the transition 

probability matrix of the first-order Markov chain representing the traffic flow modes.  

In this thesis, we merely use the online approach or joint state-parameter estimation to 

integrate with the adaptive stochastic control and the performance of controller is defined by 

the objective function with constraints on the inputs and states that should be satisfied in the 

presence of uncertainties. The identified parameters from parameter estimation, along with 

cycle length and green period, are used as an input, together with the new observations on 

arrival/departure flows, in order to estimate the queue-length. In this thesis we have shown 

that this possible with an accuracy which is sufficient both for feedback control and to detects 

queues that exceed the capacity of the corresponding approach and may block the upstream 

intersection. Therefore, the accurate state estimation is useful to predict the effect of control 

decision over a sufficiently long prediction horizon.  

The proposed stochastic control is demonstrated using a micro-simulated case study to give 

satisfactory results. In fact we found better results than those obtained with others controllers,  

both a fixed controller and an adaptive stochastic with deterministic constraints. The proposed 

controller is able to fulfill all the constraints including the chance constraint which is that the 

probability of the queue length on road L1 is ensured below of some predetermined threshold  

during the whole simulation.  
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There are a set of limitation in this approach as follows: 

a. we use observations on traffic flow only; 

b. Gaussian assumption in modeling of traffic flow might possibly to a negative estimate 

of traffic flow; 

c. cycle length is a constant 

d. our SHM can be classified as unguarded transition.  

 

7.2 Future works 

In this section, we list some open problems that can be elaborated in further research and that 

will help removing the limitations that are still limiting the practical application of the 

methods proposed in this thesis.. We can classify the future research topics under three main 

headers: 

7.2.1 Interesting improvements of the fluid flow model approach 

a. Fluid flow model for another application 

It may be interesting to see how our fluid flow approach, including detection of zero crossings 

of queues can be used for other system such as manufacturing system [72]. 

b. Fluid flow model for perimeter control 

The fluid flow approach that we used in this thesis in order to define the queue length 

evolution can be applied to larger urban network in order to be able to support into perimeter 

control design. This model is currently under development in order to estimate the queue 

length and traffic flow for the case of large network in city of Surabaya, Indonesia which 

cover almost 60 signalized intersections. This will then be used as a basis tool for developing 

perimeter control for this large urban area. 

c. Stochastic hybrid model with Guarded Transition 

As discussed in chapter 4 an important improvement to our unguarded SHM would be to 

include guarded transition, where the switching between different modes of operation depends 

on the queue length and on the traffic flow state. The stability condition of the AR model can 

be used to characterize the guard condition [76] in our stochastic hybrid model. 
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7.2.2 Possible improvements to the parameter estimation algorithms 

a. Offline Technique :  

Offline EM technique can be potentially extended to assist an algorithm for traffic estimation, 

particularly for urban roadway sections, with missing data, representing failure of detector. 

One possible approach is to extend the flow model with an ARIMA-based approach [73]. This 

could also be extended taking into account the correlation between the flow in the section of 

interest and its adjacent stream approaches (upstream and/or downstream). 

In the context of developing stochastic hybrid model with guarded transition, one possible 

approach is to follow the spirit of a method that is proposed by Santana in his paper [76]. 

b. Online Technique : Particle filter approach 

In our online joint state-parameter estimation technique, one of parameter that we estimated is 

the transition probabilities matrix (TPM). This TPM is estimated based on the most likely 

mode in OTPF filter along with Dirichlet distribution. The different approach proposed by 

Mihaylova in [71] by using Changepoint approach with auxiliary particle filter (APF) leads to 

adaptive parameter estimation. This approach assumes that the set of possible values of the 

TPM is a priori  given. It is interesting that by making this assumption, we may compare to 

the performance between OTPF and APF for joint state-parameter estimation. 

7.2.3 Adaptive Stochastic Control with Chance Constraint 

The perimeter control along with the proposed control in this thesis will be developed to the 

case of large network in city of Surabaya, Indonesia which covers almost 60 signalized 

intersections. In this case, we would like to propose traffic signal control in congested urban 

arterials by integrating a clustering approach (through state-estimation as we propose in this 

thesis) into a feedback control policy avoiding the occurrence of long queues, that might cause 

spillback reducing the risk that congestion could spread globally. First, we plan to introduce 

an arterial clustering approach that detects in real-time the links with long queues along one 

direction of the arterial, clustering them together if they are consecutive and then identifying 

the entrance and exit intersections of each cluster. These intersections indeed constitute 

critical junctions and therefore, proper adjustment of the signal timing settings in those 

intersections has the potential to improve traffic conditions in the whole arterial. The 

adjustment can be realized by implementing a traffic signal control strategy that acts not only 

on the exit intersection as thesis did, but also to acts on entrance intersections along the 
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arterial. This can be performed by using adaptive stochastic with chance constraint proposed 

in this thesis. Thus, it will enable implementation of a locally smaller-sized (and 

computationally simpler) decentralized traffic signal control strategies while ensuring at the 

same time the global coherence of these strategies along the arterial. In this framework, we 

will seek to improve traffic on arterial at a very low cost by acting merely on critical 

intersections, as opposed for instance to network-wide optimization strategies line SCATS or 

SCOOT. Hence, the purpose of our approach is to develop a signal control strategy based on 

the arterial clustering approach that enables to act only locally on specific intersections. 

Including an advanced detection of oversaturated states and a specific focus on queue 

spillovers prevention, it can lead to a computationally feasible significant reduction of 

congestion and thus improves the network traffic conditions. 

The one possibility that could be developed is to optimize the cycle-length in the supervisor 

level of  a network. 

 

7.3 Summary of Contributions 

The contribution of this thesis can be found in the list of publications as bellows: 

1. HY Sutarto, René Boel and Endra Joelianto ” EM-Parameter estimation for 

stochastic hybrid model applied to urban traffic flow estimation”, IET Control Theory 

and Applications, Volume 9, Issue 11, 2015  

2. HY Sutarto and Endra Joelianto, ”Expectation-Maximization Based Parameter 

Identification for HMM of Urban Traffic Flow”, Int.J.Appl.Math.Stat;Vol.53;Issue 

No.2. 2015  

3. HY Sutarto, René Boel and A.Nugroho ”On-line Bayesian State-Parameter 

Estimation in Stochastic Hybrid Model Applied to Queue-Length Estimation” (2015-

Under-reviewed)  

4. HY Sutarto and Endra Joelianto, ”Modeling, Identification, Estimation and 

Simulation of Urban Traffic Flow in Jakarta and Bandung”, Journal of Mechatronics, 

Electrical Power, and Vehicular Technology, Vol 6 No 1,2015  

5. HY Sutarto and René Boel, ”Adaptive Stochastic Control with Chance Constraints 

for Urban Traffic Signal Control : A Stochastic Hybrid Model Approach” , Preprints 
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6. Renato,Vasquez, HY Sutarto, René Boel and Manuel Silva, ”Hybrid Petri net model 

of a traffic intersection in a urban network”, IEEE Multi-conference on Systems and 

Control, Yokohama, Japan, sept 2010.  

7. HY Sutarto , Endra Joelianto and Taufik.S Sumardi, “Estimation and Prediction of 

road traffic flow using particle filter for real-time traffic control”, 2nd IEEE 

Conference on Control, Systems & Industrial Informatics, 2013  

 

EU Project Meeting and National Meetings 

1. H.Y Sutarto and René Boel ,” Hybrid Automata Model Approach for Coordinating  

Traffic Signal Control”, 29th Benelux Meeting on Systems and Control, Heeze-  

Netherland, 2010  

      2.  H.Y Sutarto and René Boel ,” Road traffic modeling with fluid Petri nets” 2nd  

Project-Meeting DISC (Distributed Supervisory Control of Large Plants- EU- FP7.ICT 

program), Ghent, Belgium ,April 2009  

1. H.Y Sutarto and René Boel, ” Fluid flow models for road traffic control” 3rd Project- 

Meeting DISC (Distributed Supervisory Control of Large Plants- EU-FP7.ICT  

program), Universidad Zaragoza, Spain, Sept 2009  

2. H.Y Sutarto and René Boel, ” Modeling, estimation and control of road traffic using  

fluid flow model” 4th Project- Meeting DISC (Distributed Supervisory Control of  

Large Plants- EU-FP7.ICT program), INRIA- Rennes, France, March 2010  

3. H.Y Sutarto and René Boel,” Application of Infinitesimal Perturbation Analysis for  

Coordinating road traffic network through Fluid Flow model”, 5th Project- Meeting 

DISC (Distributed Supervisory Control of Large Plants- EU-FP7.ICT program), TU-

Berlin, Germany, Sept 2010  

4. H.Y Sutarto and René Boel,” Queue size estimation for signalized intersections “, 6th  

Project Meeting DISC (Distributed Supervisory Control of Large Plants- EU-  

FP7.ICT program), CWI, The Netherlands, March 2011  

5. H.Y Sutarto and René Boel, “Statistical validation of fluid flow models and their use  

for control of urban traffic ”, 7th Project Meeting DISC (Distributed Supervisory  

Control of Large Plants- EU-FP7.ICT program), Institute of Mathematics, Brno, 

Czech,  Nov, 2011 
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6. H.Y Sutarto and René Boel ,”Perturbation analysis and sample-path optimization : 

stochastic flow models of urban traffic networks case”, Interuniversity Attraction Pole 

IAP VI/4 DYSCO Study Day,2009  

7.  H.Y Sutarto and René Boel,” Coordinating Road Traffic Network”, 11de FirW 

Doctoraatssymposium, Universiteit Gent,Dec 2010 
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