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1.1 Aquaculture production 

 

Aquaculture, known as the farming of aquatic organisms, plays an important role in the 

global economic growth and is considered as an agro-industrial activity with the highest 

growth rate worldwide in the last five decades (Figure 1). Aquaculture began to be 

significant at the global level in the late 1960s when total fisheries production was about 

60 million tonnes, of which about 1 million tonnes were farmed. From that point on, 

aquaculture production grew progressively more rapidly than the capture fisheries, and 

by the late 1980s production was in excess of 10 million tonnes per year. According to 

the latest available statistics reported by the FAO (2014), world aquaculture production 

attained another all-time height of 90.4 million tonnes in 2012 and accounted for about 

144.4 billion US$, with an average annual growth rate of 6.2% in the period 2000-2012.  

 

 
Figure 1. World capture fisheries and aquaculture production (FAO, 2014) 

 

Aquaculture production is vulnerable to adverse impacts of disease and environmental 

conditions. Disease outbreaks have been increasingly recognized as a significant 

constraint to the aquaculture sector, affecting the economic and social-economic 

development of the industry in many countries.  

Crustacean production represents one of the most economically important global 

aquaculture activities, accounting for about US$31 billion annually (FAO, 2015). 

Culture of crustaceans, especially penaeid shrimp, is an important aquaculture activity 

in South East Asia and Latin America. Among various species cultured, white leg 
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shrimp, Penaeus vannamei, is considered as a major species contributing to global 

shrimp aquaculture production. According to the FAO (2012), the total farmed 

production of P. vannamei increased steadily in the period 1980-1998. In 1999, the 

production of P. vannamei rapidly decreased and significantly declined in 2000 due to 

white spot syndrome virus. It was estimated that around 40% of production, 

representing a value of over 3 billion US dollar, was lost due to diseases. The production 

of P. vannamei increased again in the next decade due to the rapid expansion of this 

species in Asian countries (Figure 2).   

 

 
Figure 2. Global production of Penaeus vannamei from 1987 till 2013  
(Source: http://www.fao.org/fishery/culturedspecies/Litopenaeus_vannamei/en)  
 

1.2 Penaeid shrimp biology 

 
1.2.1 Taxonomy 

 
Penaeid shrimp belong to the largest phylum in the animal kingdom, the Arthropoda, 

characterized by jointed appendages and an exoskeleton or cuticle that is periodically 

moulted. There are thousands of terrestrial species in this phylum, and a large, 

predominately aquatic subphylum, the Crustacea. The subphylum Crustacea contains 

about 42,000 species belonging to 10 classes. The class Malacostraca contains about 

three-fourths of the known species and includes crayfish, lobsters, shrimps and crabs 

(Bailey-Brock, 1992).  

 

Phylum: Arthropoda 
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 Subphylum: Crustacea 

  Class:  Malacostraca 

   Order:  Decapoda 

    Superfamily: Penaeoidea 

     Family: Penaeidae 

      Genus: Penaeus 

      Species: Penaeus vannamei 

 

1.2.2 Morphology 

 
The external morphology of P. vannamei (Figure 3) is composed of three parts: pereon, 

pleon and telson. The pereon where the head and thorax are fused into the cephalothorax 

has 13 segments (5 in the head and 8 in the thorax). Each segment of the cephalothorax 

bears a pair of bi- or triramous appendages, which perform sensory or feeding functions 

(two antennae, a set of mandibles and 5 pairs of maxillae). The last 5 limbs of the 

cephalothorax are the pereiopods (legs), of which the first 3 are equipped with chelae 

used for grabbing food and the last 2 used for walking. The exoskeleton of the 

cephalothorax (carapace) covers the gills with a protective gill chamber 

(branchiostegite) and forms a dorsal keel-shaped rostrum between the eyes. The pleon 

(abdomen) has six segments, mainly composed of muscle. The first 5 with paired 

pleopods (legs) are used for swimming and the sixth is the uropod. The telson is 

composed of 2 pairs of uropods and used for escaping in case of danger (Ruppert, 1994).  

 

 
Figure 3. External morphology of penaeid shrimp (Corteel, 2013) 

(pleon) (pereon) 
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The internal morphology of penaeid shrimp is illustrated in Figure 4. Penaeid shrimp 

have an open circulatory system. They have a muscular heart that is dorsally located in 

the cephalothorax. It functions by pumping out hemolymph through anterior, posterior 

and ventral arteries. Hematopoietic tissue lies dorsally on the stomach and in the onset 

of the maxillipeds, and has a main function in haemocyte production (van de Braak et 

al., 2002a). Lymphoid organs lie as a pair of lobes at the end of the subgastric arteries, 

ventrally of the stomach and just anterior of where the stomach enters the 

hepatopancreas. The function of the lymphoid organ is primarily involved in 

elimination of bacteria from the haemolymph (Martin et al., 1996; van de Braak et al., 

2002b). The digestive system consists of mouth, esophagus, foregut, midgut and 

hindgut. The foregut is located dorsally in the cephalothorax. The midgut starts at the 

end of the stomach. The hindgut is located in the posterior half of the 6th abdominal 

segment. The digestive tract is responsible for ingestion, mechanical digestion, 

chemical and biochemical hydrolysis and cellular absorption (Ceccaldi, 1989). 

 
Figure 4. Internal morphology of penaeid shrimp (Corteel, 2013) 

  
1.2.3 Life cycle of penaeid shrimp 

 
The life cycle of penaeid shrimp consists of several distinct stages such as eggs, 

nauplius, zoea, mysis, and postlarvae that are found in a variety of habitats (Figure 5). 

Juveniles often prefer brackish water and coastal estuaries, while adults are usually 
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found offshore at higher salinities and greater depth. Every female of penaeid shrimp 

produces between 50,000-1,000,000 eggs per spawning (Rosenberry, 1997). The eggs 

hatch into the first larval stage, which is the nauplius. The nauplii do not feed, but use 

their yolk reserves for development. After five moults (instars), the nauplii 

metamorphose into zoea stage. The zoeas feed on microalgae and metamorphose into 

mysis. The mysis feed on algae and zooplankton. The mysis then will go through a final 

metamorphosis and develop into postlarvae (PLs).  

 
Figure 5. Life cycle of penaeid shrimp (Bailey-Brock, 1992) 

 

1.3 Penaeid shrimp diseases with emphasis on vibriosis and white spot syndrome 

virus 

 
Penaeid shrimp culture has boomed rapidly all over the world, especially in Asia and 

South America. With the rapid expansion, however, more disease problems occurred 

(Lightner, 2011). Among the diseases of penaeid shrimp, those caused by bacteria and 

viruses have gained more attention.  

 
1.3.1 Vibriosis 

 
Vibriosis is one of the most important diseases for shrimp culture because of its close 

association with low survival in the hatchery and the grow-out pond (Lavilla-Pitogo et 

al., 1998; Chen et al., 2000). Vibriosis is caused by Gram-negative, rod shapes, 

facultative anaerobes, motile bacteria in the family of Vibrionaceae. Various species of 
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Vibrio such as Vibrio harveyi (Prayitno & Latchford, 1995), V. campbellii-like 

(Hameed, 1995), V. parahaemolyticus (Tran et al., 2013; Lee et al., 2015), V. 

alginolyticus (Lipton, 2003; Liu et al., 2004), which belong to the harveyi clade, and V. 

anguillarium (Lightner, 1996), have been described as pathogenic species that affect 

penaeid shrimp. These bacteria are also known to take advantage of ecological changes 

in the culture system and to cause periodic diseases in shrimp. The effect and severity 

of disease in shrimp are mainly related to the type of Vibrio in combination with stress 

factors, like water quality (pH, salinity, temperature, ammonia…), as well as feed and 

shrimp quality at the time of stocking (Saulnier et al., 2000). Mortality of shrimp caused 

by Vibrio has been reported in the Philippines (Lavilla-Pitogo et al., 1990), Australia 

(Hirst, 1995), South America (Alvarez et al., 1998), Mexico (Vandenberghe et al., 

1999), India (Jayasree et al., 2006) and South East Asia (Vietnam, Malaysia and 

Thailand) (Zorriehzahra & Banaederakhshan, 2015). 

Many virulence factors have been identified in the harveyi clade, including 

haemolysins, proteases, phospholipases and chitinase (Ruwandeepika et al., 2012). 

Haemolysin is an exotoxin that attacks blood cell membranes and causes cell rupture. 

Haemolysins are produced by many different species of bacteria including Escherichia 

coli, Pseudomonas aeruginosa and harveyi clade vibrio (Zhang and Austin, 2000). 

Proteases represent an important group of lytic enzymes and have been reported in 

V. alginolyticus, V. harveyi and V. parahaemolyticus. Proteases have been found to 

digest a range of host proteins, including gelatin, fibronectin and collagen. Lipases may 

also cause damage to host tissues. However, little is known about their involvement in 

the pathogenesis of vibrios belonging to the harveyi clade (Ruwandeepika et al., 2012). 

Chitinases are enzymes that are produced by many marine organisms. They play a 

potential role in adhesion and penetration of pathogen into host tissues.  

Clinical signs of vibriosis in crustaceans include lethargy, slow growth, slow 

metamorphosis, tissue and appendage necrosis, body malformation, bioluminescence, 

muscle opacity and melanisation (Aguirre-Guzmán et al. 2004). 

 
1.3.2 White spot syndrome virus 

 
White spot syndrome virus (WSSV), a major pathogen of penaeid shrimp, is a pathogen 

of major economic importance in shrimp aquaculture throughout the world. WSSV was 

first reported in farmed Penaeus japonicus from Japan in 1992/1993, but was thought 
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to have been imported with live infected postlarvae from mainland China. At roughly 

the same time, it was discovered in cultured Penaeus monodon, Penaeus japonicus and 

Penaeus penicillatus in Taiwan. WSSV then spread rapidly throughout most of the 

shrimp growing regions of Asia such as Thailand, India, Indonesia, Malaysia, Vietnam, 

the Philippines, and Iran (Durand, 1996; Lo et al., 1996a; Karunasagar et al., 1997; 

Kasornchandra et al., 1998; Magbanua et al., 2000; Rajan et al., 2000; Bondad-

Reantaso, 2001; Dieu et al., 2004). In 1995, WSSV was detected for the first time in 

farmed Penaeus setiferus in Texas and South Carolina in the U.S (Lightner, 1996; 

Wang et al., 1999). Later on, outbreaks of white spot syndrome were also found in other 

shrimp farming areas including South, North and Central America, Europe and the 

Middle East (Walker & Mohan, 2009; Sanchez-Paz, 2010; Lightner et al., 2012).  

 
1.3.2.1 Morphology and classification  

 
White spot syndrome virus (WSSV) is an enveloped, non-occluded and rod-shaped 

DNA virus with a bacilliform to ovoid or ellipsoid shape. The viral envelope, having a 

thickness of 6-7 nm, is a lipidic, trilaminar membranous structure with two electron 

transparent layers divided by an electron opaque layer (Wonteerasupaya et al., 1995; 

Durand et al., 1997; Nadala et al., 1998). The nucleocapsid is located inside the 

envelope and has a striated appearance and a size of 420 ± 18 nm in length and 68 ± 5 

nm in width (Wonteerasupaya et al., 1995; Hameed et al., 1998). The genome size of 

WSSV is about 300 kbp and is considered as the largest that has been found until now 

(van Hulten et al., 2001; Yang et al., 2001).  
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Figure 6. Morphology of WSSV virion. Negative contrast electron micrographs of (a) 
an intact WSSV virion with tail-like extension and (b) nucleocapsid. (c) layered 
structures of a WSSV virion (Leu et al., 2009). 
 
WSSV was originally classified as an unassigned member of the Baculoviridae family, 

but later was re-classified as a new virus family, the Nimaviridae (genus Whispovirus) 

(van Hulten et al., 2001). Initially, the disease was thought to be caused by different 

viral agents and a variety of names for the viral agents were given in every region where 

the disease appeared such as hypodermal and haemotopoietic necrosis baculovirus 

(HHNBV), rod-shaped nuclear virus of P. japonicus (RV-Pj), systemic ectodermal and 

mesodermal baculovirus (SEMBV), white spot baculovirus (WSBV), and P. monodon 

non-occluded baculovirus (PMNOB) (Durand et al., 1997; Karunasagar et al., 1997; 

Chou et al., 1998; Hameed et al., 1998). Later, it was recognized that a single viral agent 

was responsible for these reports and finally an informal consensus was reached and 

the viral agent was given the name “White Spot Syndrome Virus” (WSSV).   

 
1.3.2.2 Structural proteins 

 
More than 40 WSSV structural proteins with a size from 60 to 6,077 amino acids have 

been characterized. Of these, 25 have been found in the envelope (VP12, VP19, VP22, 

VP24, VP28, VP31, VP36B, VP38A, VP39, VP41, VP41A, VP41B, VP51B, VP52A, 

VP52B, VP53, VP53A, VP68, VP110, VP124, VP150, VP187, VP281, VP292, 

VP466), six in the nucleocapsid (VP15, VP35, VP51C, VP60B, VP388, VP664) and 

four in the tegument (a putative structure located between the envelope and 
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nucleocapsid) (VP26, VP36A, VP39A, VP95) (Escobedo�Bonilla et al., 2008; Leu et 

al., 2009).  

The interaction between WSSV structural proteins and host proteins plays an important 

role in viral infection. This virus-host interaction may trigger host immune responses 

against the invader as well as some modifications of host gene expression to facilitate 

virus replication (Liang et al., 2015). Several WSSV structural proteins and cellular 

proteins of shrimp have been reported in relation to the process of viral attachment and 

entry into the host cells (table 1). 

 
Table 1. WSSV-host proteins interactions (Bas et al., 2016) 

 
Viral protein Host protein Species 
VP24, VP32, VP39B, VP41A, 
VP51B, VP53A, VP53B, VP60A, 
VP110, VP124, VP337 

Chitin-binding protein 
(PmCBP) 

Penaeus monodon 

VP53A Glut1 Penaeus monodon 
VP95, VP28, VP26, VP24, VP19 C-type lectin (LvCTL1) Penaeus vannamei 
VP28 C-type lectin (FcLec3) Fennerropenaeus 

chinesis 
VP26, VP28 C-type lectins (MjLecA, 

MjLecB, MjLecC) 
Marsupenaeus 
japonicus 

VP28 C-type lectins (MjsvCL) M. japonicus 
VP187 β-Integrin M. japonicus, P. 

clarkii 
VP26, VP31, VP37, VP90, 
VP136 

β-Integrin Penaeus vannamei 

VP15, VP28 Calreticulin (PlCRT) P. leniusculus 
VP466 Rab (PjRab) P. japonicus 
VP28 Rab7 (PmRab7) P. monodon 
ORF514 PCNA (lvPCNA) P. vannamei 
WSSV PK1 Ferritin (lvFerritin) P. vannamei 
WSV083 FAK (MjFAK) M. japonicus 
AAP1 (WSSV449) Caspase (PmCaspase) P. monodon 
WSSV134, WSSV332 Caspase (PmCasp) P. monodon 
WSSV249 Ubc (PvUbc) P. vannamei 
ICP11 Histones P. monodon 
VP9 RACK1 (PmRACK1) P. monodon 
VP15 FKBP46 (PmFKBP46) P. monodon 
VP15 CRT (PlgCRT) P. leniusculus 
WSSV-miRNA Dorsha, Dicer, Ago1 - 
VP14 Arginine kinase (LvAK) P. vannamei 
ORF427 PPs P. vannamei 
WSSV IE1, WSSV056 Retinoblastoma protein 

(Lv-RBL) 
P. vannamei 
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The functions of most of these proteins have not been fully elucidated. VP15 appears 

to be a DNA binding protein (Witteveldt et al., 2005). Neutralization assays suggested 

that envelope proteins VP24, VP28, VP31, VP36B, VP68, VP76, VP281 and VP466 

are involved in early stages of WSSV replication (van Hulten et al., 2001b; Huang et 

al., 2005; Li et al., 2005; Wu et al., 2005; Hongyan Li et al., 2006; Li Li et al., 2006; 

Xie & Yang, 2006). VP28 is one of the envelope proteins and is considered to play an 

important role in the initial steps of systemic WSSV infection in shrimp (van Hulten et 

al., 2001b; Wu et al., 2005). Yi et al. (2004) reported that VP28 was observed as early 

as 3 hours post inoculation. VP28 might also be involved in attachment, binding the 

virus to shrimp cells, and helping it to enter into cell cytoplasm (Yi et al., 2004), because 

there is a strong hydrophobic region present at the N-terminus of VP28, including a 

putative trans-membrane region (van Hulten et al., 2001b). This biological structure of 

VP28 suggests that it might play a role as attachment protein. VP664, a major capsid 

protein, consists of a remarkable long polypeptide of 6,077 amino acids and is encoded 

by a giant genome sequence of 18,234 nucleotides (Leu et al., 2005). This protein has 

a mass of 664 kDa and is considered as the largest viral structure protein ever found 

(Leu et al., 2005). Based on research done by Li et al. (2015), a hypothesis of WSSV 

replication and assembly inside susceptible cells is given. First, viral particles will 

attach to the membrane and then enter the cell via endocytosis. In the early endosome, 

the envelope and nucleocapsid of WSSV start to separate. The envelope probably fuses 

with the endosome membrane and the nucleocapsid is released into the cytoplasm. The 

nucleocapsid migrates close to the cell nuclei and injects its genome into the nuclus via 

a nuclear pore. Inside the nucleus, the transcription starts and the mRNAs of immediate-

early gene are produced. This gene subsequently migrates back to the cytoplasm, where 

it is translated into proteins by free ribosomes. Afterwards, the capsid protein VP664 is 

expressed and later also envelope protein VP28. The viral genome multiplies inside the 

cell nuclei and the viral capsids become assembled around the viral genome. As a result, 

the nucleocapsids are formed. The nucleocapsids then bud at the inner nuclear 

membrane with the envelope protein VP28. Finally, the new WSSV particles are 

released via cell lysis and start a new cycle in other susceptible cells.  
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1.3.2.3 WSSV infection 

 
Host range 

 
WSSV has a remarkable broad host range among crustacea. This virus can infect 

marine, brackish and freshwater decapods, such as penaeid shrimp, crayfish, crabs, 

spiny lobsters and hermit crabs (Lo et al., 1996; Flegel, 1997; Wang et al., 1998; 

Rajendran et al., 1999; Flegel, 2006). Over 90 species of arthropods have been reported 

as hosts or carriers of WSSV (Sánchez-Paz, A., 2010).  

 
Clinical signs 

 
The clinical signs of white spot syndrome in infected penaeid shrimp are composed of 

white spots (0.5-3 mm in diameter) which are the result of calcified deposits embedded 

within the exoskeleton and epidermis, reduction in food consumption, reddish 

discoloration of body and appendages due to the expansion of chromatophores, reduced 

preening and response to stimulus, loose cuticle, swelling of gill covers 

(branchiostegites) due to accumulation of fluid (Balakrishnan et al., 2012). 

WSSV infected shrimp normally concentrate near the pond edge in the field and display 

clinical signs within 1 or 2 days before the first mortality occurs. Cumulative mortality 

may reach 100% within 3 to 10 days after the onset of diseases (Lightner, 1996). 

Juvenile shrimp of all ages and sizes are susceptible to white spot syndrome but massive 

mortality mainly occurs 1 or 2 months after post-larvae stocking. 

 
Pathogenesis 

 
WSSV infects a wide range of target tissues of ectodermal and mesodermal origins such 

as epidermis, gills, foregut, hind gut, antennal gland, lymphoid organ, heart, eye-stalk, 

gonads and hematopoietic cells. In early stages of viral infection, the nuclei of infected 

cells become hypertrophied with marginalized chromatin, and contain inclusion bodies 

that stain intensively eosinophilic. In the later stages of infection, the inclusion expands 

to fill the whole nucleus and stain basophilic (Bas et al., 2016). 

How WSSV enters shrimp remains unclear. A study of Chang et al. (1996) on early 

juvenile of Penaeus monodon reported that the primary sites of WSSV infection are the 

subcuticular epithelial cells of stomach and cells in gills, integument and connective 

tissue of the hepatopancreas. Another study with M. japonicus showed that epithelial 
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cells in the midgut trunk may be a transient site of WSSV replication (Di Leonardo et 

al., 2005). An oral route challenge P. vannamei using a standardized inoculation 

technique indicated that WSSV most probably enters via gills and epithelial cells in the 

foregut (Escobedo-Bonilla et al., 2007). The mechanism of viral spread from the 

primary sites to other target organs has been controversial. Some studies have shown 

that WSSV infects haemocytes of Penaeus merguiensis, Marsupenaeus japonicus and 

Palaemon sp. and travels throughout the body in these cells to reach target organs 

(Wang et al., 2002; Di Leonardo et al., 2005). Other studies have indicated that 

circulating haemocytes of Penaeus monodon, Procambarus clarkii and Penaeus 

vannamei are refractory to WSSV infection (van de Braak et al., 2002; Shi et al., 2005, 

Escobedo-Bonilla et al., 2007). It means that WSSV might reach other target tissues 

through haemolymph circulation in a cell-free form. 

 
 1.4 Crustacean immunity 

 
Crustaceans have a well-developed innate immunity that responds against antigens on 

the surface of potential pathogens. This innate immunity is activated when pathogen-

associated molecular patterns are recognized by soluble or by cell surface host proteins, 

such as antimicrobial, clotting and pattern recognition proteins, which, in turn, activate 

humoral or cellular effector mechanisms to destroy invading pathogens. The innate 

immune system of crustaceans is composed of humoral and cellular defense 

mechanisms. Humoral defense includes the production of antimicrobial peptides, 

reactive oxygen intermediates and the complex enzymatic cascades that regulate 

coagulation or melanization of haemolymph. In contrast, cellular defense refers to the 

direct action of haemocytes like phagocytosis, nodulation and encapsulation (Söderhäll, 

1999; Jiravanichpaisal et al., 2006; Smith, 2010). However, there is an overlap between 

humoral and cellular defense. Haemocytes are considered as an important source of 

many humoral molecules, while many humoral factors also affect haemocyte function 

(Jiravanichpaisal et al., 2006). The first step of internal defense is the recognition of 

invading microorganisms, which is mediated by the haemocytes and plasma proteins 

(Vargas-Albores & Yepiz-Plascencia, 2000). Haemocytes can recognize invading 

pathogens either directly by interaction of surface receptors on haemocytes with 

molecules on the pathogen, or indirectly by recognition of humoral receptors that bind 

to the surface of the invader. An overview of crustacean immune responses is illustrated 
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in Figure 7. 

 

 
Figure 7. Innate immune responses of crustaceans (Jiravanichpaisal et al., 2006) 

 
It is generally accepted that invertebrates lack a complex adaptive immune response 

due to the fact that there is no evidence of antigen-specific humoral compound 

production similar to antibodies in vertebrates. There are no T cells, B cells or major 

histocompatibility complex molecules (MHC) in invertebrate immune systems (Little 

et al., 2005). However, the recent experimental data from shrimp and other arthropods 

demonstrated that invertebrates possess some form of memory immune response. The 

memory-like phenomenon are termed “immune priming”. For instance, vaccinated 

shrimp with DNA plasmids carrying a white spot syndrome virus (WSSV) envelope 

protein gene (vp28 or vp281) could protect shrimp against WSSV infection (Rout et 

al., 2007). This study indicated that the immune priming effect in shrimp is present for 

3 to 7 weeks. In some cases, the immune priming effect might extend for almost lifetime 

of the animal and may even be transmitted to the next generation. For example, in the 

copepod Daphnia magna, offspring from mothers primed with the pathogenic bacteria 

Pasteuria ramose suffered less from a reduction in fitness when subsequently infected 

with this bacteria (Little et al., 2003). Recently, evidence of a mechanism for a more 

specific immune response capacity has been discovered in invertebrates. Down 

syndrome cell adhesion molecule (Dscam) (reviewed by Hauton et al., 2015), a member 
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of the immunoglobulin super family (IgSF), plays an essential role in the alternative 

adaptive immune system of invertebrates. Dscam was identified and characterized in 

crustaceans and insects such as penaeid shrimp (Penaeus vannamei, P. monodon), 

crayfish (Pacifastacus leniusculus), Chinese mitten crab (Eriocheir sinensis), honey 

bee (Apis mellifera) and mosquito (Anopheles gambiae) (Chou et al., 2009; Chou et al., 

2011; Watthanasurorot et al., 2011; Wang et al., 2013; Schwarz and Evans, 2013; Dong 

et al., 2012). The Dscam molecule has a hyper-variable extracellular region that can 

facilitate phagocytosis of the specific invading pathogens through alternative splicing 

by recognizing pathogens including bacteria Escherichia coli, Streptococcus aureus, 

Vibrio alginolyticus and WSSV (Watthanasurorot et al. 2011, Lin et al. 2013, Wang et 

al. 2013).  

 
1.4.1 Recognition of non-self molecules 

 
The innate immune system is evolutionarily conserved and is involved in the 

recognition of invading microorganism, which is mediated by the haemocytes and 

plasma proteins (Vargas-Albores et al., 1996). It recognizes microorganisms by their 

characteristic pathogen-associated molecular patterns (PAMPs), such as peptidoglycan, 

lipopolysaccharide from bacteria, and β-1,3-glucans from fungal cell walls. Upon 

recognition, these receptors activate distinct signaling cascades that regulate specific 

immune-related proteins aimed at eliminating pathogenic microorganisms. Several 

pattern recognition proteins (PRPs) like lipopolysaccharide-binding protein, β-1,3-

glucan binding protein, peptidoglycan-binding protein, lipopolysaccharide and β-1,3-

glucan binding protein recognize and respond to microbial intruders (Sritunyalucksana 

& Söderhäll, 2000). Besides, lectins and toll-like receptors also belong to PRPs. Lectins 

can work directly as agglutinins or opsonins (Marques & Barracco, 2000). Compared 

to other arthropod groups, such as insects and crabs, the involvement of lectins in 

shrimp non-self-recognition is still much less well established. However, lectins have 

the ability to bind carbohydrates and promote the agglutination of different cells like 

bacteria and other invading pathogens. It was assumed that these molecules maybe 

regarded as having a potential role in invertebrate non-self-recognition reactions 

(Marques & Barracco, 2000). This binding directly activates the haemocytes resulting 

in their degranulation and subsequent activation of prophenoloxidase (proPO) system 

(Söderhäll et al., 1990; Söderhäll & Cerenius, 1992). 
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1.4.2 Cellular immunity 

 
1.4.2.1 Phagocytosis 

 
Phagocytosis is one of the major defense mechanisms when foreign particles or 

microorganisms intrude their host. It is a primitive defense mechanism, conserved in 

both vertebrates and invertebrates. The phagocytic process is thought to occur in two 

steps, with the first step involving physio-chemical adherence of the foreign particles 

to the lining of the haemocoel and the second step involving attachment of haemocytes 

to the sites of bacterial adherence (Martin et al., 1996), leading to the engulfment of 

particles into the cell and subsequent formation of phagosomes to stimulate microbial 

digestion. Target recognition can either occur through direct cell-target interaction or 

can be mediated by cell adhesion molecules, such as peroxinectin (Johansson et al., 

1999). Phagocytosis is believed to be one of the major cellular defense mechanisms in 

crustaceans. Certain types of haemocytes can phagocytose either biotic targets such as 

bacteria, yeast, and apoptotic cells or abiotic targets like synthetic beads or India ink 

particles (Hernández et al., 1999; Jiravanichpaisal et al., 2006; Smith, 2010). The 

haemocyte types that are responsible for phagocytic reaction have been reported to 

differ among invertebrates and even within crustacean species. 

Smith & Söderhäll (1983) reported that phagocytic activity of the crayfish, Astacus 

astacus and Pacifastacus leniusculus, was evident only for hyaline cells and semi-

granular cells. In red swamp crayfish, Procambarus clarkii, hyalinocytes are 

considered as phagocytes (Söderhäll et al., 1986); semi-granulocytes, which have 

limited phagocytic capacities, would be specialized in particle encapsulation and 

granulocytes would participate in the pro-phenoloxidase (proPO) system (Söderhäll & 

Smith, 1983). Another study conducted by Söderhäll et al. (1986) also reported hyaline 

cells of the shore crab, Carcinus maenas, as the primary phagocytic cells, which were 

capable of engulfing both Gram-negative and Gram-positive bacteria. In penaeid 

shrimp, Penaeus indicus, semi-granular and granular cells were responsible for 

phagocytosis (Jayasree, 2009). In ridgeback prawn, Sicyonia ingentis, phagocytosis of 

the Gram-negative marine bacterium (Cytophaga sp.) was accomplished primarily by 

small granule haemocytes, rarely by large granule haemocytes, and never by hyaline 

cells (Hose et al., 1990). In freshwater prawn, Macrobrachium rosenbergii, 

phagocytosis was observed to be primarily carried out by granular cells and semi-
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granular cells (Gargioni, 1998; Sung et al., 2000). 

 
1.4.2.2 Nodulation and encapsulation 

 
Nodulation/encapsulation is a process that responds to infection and is a part of cellular 

defense reaction of crustacean against invading microorganisms. Nodulation refers to 

multiple haemocytes binding to aggregates of bacteria, while encapsulation refers to 

the binding of haemocytes to larger targets like parasites. Nodulation and encapsulation 

are actually the same process, albeit against different targets. When the body cavity is 

invaded by a large number of foreign particles, like bacteria, fungi or parasites, which 

cannot be removed by phagocytosis, nodulation/encapsulation is formed. During a 

nodulation/encapsulation response, there is a co-operation of different types of 

haemocytes that can recognize and attach to the foreign target and one another, 

eventually forming a smooth capsule comprising overlapping cellular layers. 

Kobayashi et al. (1990) and Liu et al. (2005) proved that peroxinectin, a cell adhesion 

molecule, plays an important role in nodulation/encapsulation enhancement. The 

biological activity of peroxinectin is related to the activation of the proPO system 

(Johansson et al., 1995). Under normal conditions, this protein is synthesized and stored 

in granules of semi-granular and granular cells in an inactive form. In response to a 

stimulus, peroxinectin is released from the haemocytes by degranulation and activated 

outside the cells to mediate haemocytes attachment (Johansson & Söderhäll, 1988). 

This process kills pathogens or, at least, restricts their movement and growth in the 

haemocoel cavity. The nodulated/encapsulated organism seems to be killed by 

asphyxia, toxic action of quinones or semi-quinones via the proPO activation cascade 

(precursors of melanin), free radicals reactive oxygen intermediates and antimicrobial 

peptides (Nappi et al., 1995; Gillespie et al., 1997; Nappi et al., 2000). 

 
1.4.2.3 Reactive oxygen species (ROS) 

 
Reactive oxygen species (ROS) are evolutionarily conserved in crustaceans. ROS are 

involved in processes of cellular immunity in which foreign particles or 

microorganisms are internalized into the phagocytic cells, followed by the release of 

enzymes and generation of reactive oxygen species. ROS also play a positive role in 

the phagocytic activity of crustacean haemocytes. Upon stimulation, phagocytic cells 

increase O2 consumption and produce several reactive oxygen intermediates such as 
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superoxide ions (O-
2), hydrogen peroxide (H2O2), hydroxyl radicals (OH-), and singlet 

oxygen (1O2). ROS were first discovered in the shore crab, Carcinus maenas (Bell & 

Smith, 1993). They showed that superoxide production was generated by hyaline cells 

using phorbol myristate acetate (PMA) as elicitor. Then, several approaches have been 

used to evaluate the superoxide production with different elicitors during phagocytic 

processes in shrimp (Muñoz et al., 2000; Jayasree, 2009). Although, ROS play an 

important role in host defense, high concentrations of ROS produce oxidative stress and 

increase the risk of cell damage (Lambeth, 2004; Guertler et al., 2010). 

 
1.4.3 Humoral immunity 

 
1.4.3.1 Clotting process 

 
Since crustacean have an open circulatory system, wounds must be sealed immediately 

to prevent blood loss and also hinder pathogenic microorganisms from entering and 

spreading throughout the haemocoel. The activity that contributes to stopping loss of 

body fluids is called clotting. Haemolymph clotting is an important part of the innate 

immune system, which overlaps with the humoral/cellular boundary and involves a 

combination of soluble and cell-derived factors (Johansson et al., 1999; Theopold et al., 

2002; Jiravanichpaisal et al., 2006). The clotting system has been shown to depend on 

the activity of the calcium-dependent enzyme trans-glutaminase (TGase), which has 

cross-linking activity. Clotting occurs through polymerization of a clotting protein in 

plasma and is catalyzed by a calcium ion dependent TGase (Yeh et al., 1998; Hall et 

al., 1999; Wang et al., 2001). Haemolymph clotting is induced when TGase is released 

from haemocytes or tissues, and starts cross-linking plasma derived clotting protein in 

the presence of Ca2+.  

Montaño-Pérez et al. (1999) purified the clotting protein of white leg shrimp, Penaeus 

vannamei, by using affinity chromatography. The protein was found to be a 

lipoglycoprotein and consisted of two 210-kDa subunits covalently bound by disulfide 

bridges. Every 210 kDa subunit has lysine and glutamine side chains, which are 

covalently cross-linked to each other by TGase. TGase was also purified and 

characterized. It is a homodimeric cytosolic protein with 84.2 kDa subunits, abundant 

in haemocytes and hepatopancrease (Yeh et al., 2006).  

In insects, the clotting system consists of four steps: (i) primary or soft clotting step - 

in this step, degranulation of haemocytes leads to the establishment of extracellular 
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aggregates which serve to seal the wound; (ii) hard clotting step - activation of the 

proPO cascade/tranglutaminase subsequently leads to crosslinking of the clot; (iii) scab 

formation step - plasmatocytes are attracted, spread across the clot and seal it off from 

the haemocoel; (iv) replaced scab step - regeneration of the epidermis and growing 

across the wound site (Theopold et al., 2004). 

 
1.4.3.2 Prophenoloxidase (proPO) system and melanisation 

 
ProPO system is considered to be one of the main non-self recognition and defense 

systems in invertebrates (Söderhäll & Cerenius, 1998). The proPO system can be 

activated by minute amounts of microbial components like lipopolysaccharide, 

peptidoglycan from bacteria and β-1, 3-glucan from fungi (Söderhäll & Cerenius, 

1998). This activation causes degranulation in granular and semi-granular cells and 

release of prophenoloxidase-activating enzyme (ppA) (Aspán et al., 1990; Barracco et 

al., 1991). Via limited proteolysis in the presence of calcium (Ca2+), ppA becomes 

active and cleaves proPO into active phenoloxidase (PO). The PO, an active form of 

proPO, is responsible for the melanisation process in arthropods where melanin 

synthesis is involved in the process of sclerotisation and wound healing of the cuticle 

as well as in defense reactions (nodule formation and encapsulation) against invading 

microorganisms entering the haemocoel. This active PO will catalyse both o-

hydroxylation of monophenols and the oxidation of phenols to quinones. Finally, 

quinones are converted to melanin, a brown pigment (Figure 8) (Ratcliffe et al., 1985; 

Cerenius & Söderhäll, 2004). 
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Figure 8. Overview of the arthropod prophenoloxidase (proPO)-activating system 
(Cerenius & Söderhäll, 2004) (βGBP: β-glucan binding protein; LGBP: 
lipopolysaccharide and β-1,3-glucan binding protein; PGBP: peptidoglucan binding 
protein; ppA: prophenoloxidase-activating enzyme). 
 

1.4.3.3 Antimicrobial peptides 

 
Antimicrobial peptides (AMPs), ubiquitously found in all living kingdoms from 

bacteria to mammals including fungi and plants, are small molecules with a mass less 

than 10 kDa. AMPs  are a major component of the innate immunity in invertebrates and 

play an important role in the innate immune defense with an ability to neutralize and/or 

kill invading microorganisms (Brown & Hancock, 2006). They are primarily known as 

natural antibiotics because of their rapid and efficient antimicrobial effects against a 

broad range of microorganisms, including Gram-positive and Gram-negative bacteria, 

yeast, filamentous fungi and, to a lesser extent, protozoans and enveloped viruses (Bulet 
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et al., 2004; Yount et al., 2006; Guaní-Guerra et al., 2010; Rosa & Barracco, 2010). 

They are synthesized and stored in granule haemocytes (Destoumieux et al., 2000; Rosa 

& Barracco, 2010). The major classes of antimicrobial peptides include (i) α-helices, 

(ii) β-sheet and small proteins, (iii) peptides with thio-ether rings, (iv) peptides with an 

over-representation of one or two amino acids, (v) lipopeptides, and (vi) macrocyclic 

cystine knot peptides (Epand & Vogel, 1999). The majority of antimicrobial peptides 

are amphiphilic, displaying both hydrophilic and hydrophobic surfaces. These peptides 

generally act by forming pores in microbial membranes or otherwise disrupting 

membrane integrity of the cell target (Tam et al., 2000), which is facilitated by their 

amphiphilic structure. The cationic portion of the peptide is first attracted to the 

negatively charged bacterial and fungal cell walls and/or membranes, and following 

this first electrostatic interaction, the peptide inserts into and permeabilizes the 

microbial cell membranes through its hydrophobic portion. The microorganisms are 

then destroyed via membrane destabilization and/or pore formation (Brogden, 2005; 

Yount et al., 2006; Rosa & Barracco, 2010). Beyond this direct interaction with 

microbial membranes, AMPs may have additional mechanisms to inactivate pathogens. 

They can be translocated into the cytoplasm of the microorganism where they act on 

specific intracellular targets. Once inside, the peptides interfere with several essential 

metabolic functions, such as protein, nucleic acid and cell wall synthesis, leading to 

bacterial cell death (Kamysz et al., 2002; Brogden, 2005; Yount et al., 2006; Hale & 

Hancock, 2007; Nicolas, 2009).  

The first AMP isolated from plasma and haemocytes of penaeid shrimp, Litopenaeus 

vannamei, was penaeidins (Destoumieux et al., 1997). So far, the penaeidins have been 

discovered from at least eight shrimp species (Song and Li, 2014). The masses of these 

penaeidins are around 5.5-6.5 kDa and fully characterized at amino acid levels (Pen-1, 

Pen-2, and Pen-3a) (Destoumieux et al., 2000). They are composed of a N-terminal 

proline domain and a cyclic C-terminal domain containing three intra-molecular 

disulfide bridges. Penaeidins have both antibacterial and antifungal properties. The 

antibacterial properties are mainly direct against Gram-positive bacteria with either 

bactericidal or bacteriostatic effects. These peptides have no effect on the activity of 

Gram-negative pathogenic Vibrio spp. However, these peptides can inhibit the growth 

of a large range of filamentous fungi like Fusarium oxysporum (Destoumieux et al., 

1997; Destoumieux et al., 2000).  
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Beside penaeidins, other AMPs like crustins, anti-lipopolysaccharide factors (ALFs) 

and lysozymes (Bartlett et al., 2002; Hikima et al., 2003; Sotelo-Mundo et al., 2003; 

Supungul et al., 2004; Amparyup et al., 2008a; Amparyup et al., 2008b) have also been 

discovered in crustacean species. 

Crustins are defined as multi-domain cationic antibacterial polypeptides (7-14 kDa) that 

contain one whey acidic protein (WAP) domain at the C-terminus (Smith et al., 2008) 

and have a mass of 11.5 kDa protein. Crustins were first reported in the granular 

haemocytes of the shore crab, Carcinus maenas that exhibits specific activity towards 

Gram-positive bacteria (Relf et al., 1999), and recently have been reported in 

Litopenaeus vannamei and L. setiferus (Bartlett et al., 2002). Three main types of 

crustins were identified as type I, II and III based on their structural features (Smith et 

al., 2008). Type I crustins, mainly present in crabs (Relf et al., 1999; Imjongjirak et al., 

2009; Sperstad et al., 2009a; Mu et al., 2010; Yue et al., 2010), lobsters (Stoss et al., 

2004; Hauton et al., 2006; Christie et al., 2007; Pisuttharachai et al., 2009), crayfish 

(Jiravanichpaisal et al., 2007; Shi et al., 2009), freshwater prawn (Dai et al., 2009), and 

shrimp (Sun et al., 2010), comprise the members most related to carcinin and possess a 

cysteine-rich region of variable length between the leader sequence and the WAP 

domain. On the other hand, type II crustins are characterized by the presence of a 

hydrophobic region containing an overrepresentation of glycine residues upstream of 

the cysteine-rich and WAP domains found in type I. This type of crustins is reported in 

penaeid shrimp (Bartlett et al., 2002; Rattanachai et al., 2004; Supungul et al., 2004; de 

Lorgeril et al., 2005; Rosa et al., 2007; Zhang et al., 2007; Antony et al., 2011) and 

crayfish (Jiravanichpaisal et al., 2007). Conversely, type III crustins, found in shrimp 

and crayfish species (Jiménez-Vega et al., 2004; Jia et al., 2008; Amparyup et al., 

2008a; Du et al., 2010), possess a short PRP-rich region between the leader sequence 

and the single WAP domain, but do not contain the characteristic cysteine-rich domain 

present in both type I and II crustins nor the glycine region motif. 

Anti-lipopolysaccharide factors (ALFs), initially purified and characterized from 

haemocytes of the horseshoe crabs, Limulus polyphemus and Tachypleus tridentatus 

(Tanaka et al., 1982; Ohashi et al., 1984), are small basic proteins that inhibit the 

lipopolysaccharide (LPS)-mediated coagulation cascade. Recently, several ALFs have 

been isolated and characterized from various prawns, crabs, lobsters and crayfish 

(Supungul et al., 2004; Liu et al., 2006; Nagoshi et al., 2006; Imjongjirak et al., 2007). 

ALFs have strong antibacterial activity against, in particular, Gram-negative bacteria 
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but also display activity against Gram-positive bacteria and fungi (De la Vega et al., 

2008; Jiang et al., 2015). 

Lysozyme, one of the first discovered antibacterial proteins, is widely distributed in 

invertebrate animals (Söderhäll, 1999; Zhao et al., 2007) and is considered as a 

molecule involved in non-specific innate immunity. Lysozyme is thought as one of the 

main enzymes that exist in the lysosome (Misra et al., 2004). The biological function 

of this enzyme is believed to be self-defense from bacterial infection, because it induces 

bacterial cell lysis by hydrolyzing β-1,4-glycosidic linkages between N-

acetylglucosamine and N-acetylmuramic acid of the peptidoglycan layer in the bacterial 

cell wall (Bachali et al., 2002; Yao et al., 2008). Six types of lysozymes are classified 

(Hikima et al., 2003): (i) chicken-type lysozyme (c-type), (ii) goose-type lysozyme (g-

type), (iii) plant-type lysozyme, (iv) T4-phage lysozyme (phage-type), (v) bacterial-

type lysozyme and (vi) invertebrate-type lysozyme (i-type). In shrimp, lysozyme was 

found to display antimicrobial activity against both Gram-negative and Gram-positive 

bacteria including Vibrio species that are pathogenic to shrimp (Hikima et al., 2003; 

Tyagi et al., 2007; Xing et al., 2009; Supungul et al., 2010). 

 
1.4.4 Apoptosis 

 
Apoptosis, also termed programmed cell death, is a critically important cellular process 

for the survival of multicellular organisms by getting rid of damaged or infected cells 

that may interfere with normal function (Vicencio et al., 2008). The apoptotic cells are 

characterized by morphological changes that include condensation of nuclear 

chromatin, formation of apoptotic bodies, cytoplasmic vacuolization, and blebbing of 

the cell membrane. The major players of apoptosis are a group of caspases, a family of 

structurally related cysteine proteases. Caspases play a vital role at various stages of the 

apoptotic process, which involves an intricate cascade of events including interactions 

among several protein families (Jin & El-Deiry, 2005). During viral infection, apoptosis 

plays a key role in reducing viral replication by containing the virus within the cell and 

limiting the spread of viral particles (Liu et al., 2009; Menze et al., 2010; Flegel & 

Sritunyalucksana, 2011; Xu et al., 2014). 
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1.4.5 RNA interference 

 
RNA interference (RNAi) is a biological process that mediates gene silencing in a 

sequence specific manner and plays a crucial role in controlling virus replication. The 

mechanism and the function of the biochemical molecules that are fundamental to a 

functional RNAi pathway have been extensively studied during the last decade. The 

administration of dsRNA or small interference RNA (siRNA) specific to particular viral 

genes could protect shrimp against WSSV infection. Robalino et al. (2004, 2005) 

demonstrated that the treatment of penaeid shrimp, Penaeus vannamei, with sequence-

specific RNA leads to increased resistance to viral infection. Another study on Penaeus 

monodon reported that shrimp infected with WSSV following treatment with dsRNA 

showed a much lower mortality (Westenberg et al., 2005). However, the basic research 

and application of RNAi in shrimp aquaculture are still in early developmental stages.   

 
1.4.6 Crustacean haemocytes and their functions 

 
Crustacean haemocytes play an important role in the host immune response including 

recognition, phagocytosis, melanization, cytotoxicity and cell-cell communication. 

Classification of the haemocytes in crustaceans is based mainly on the presence of 

cytoplasmic granules and the size of cells. Basically, three types of circulating 

haemocytes: (i) hyaline cells, (ii) semigranular cells, and (iii) granular cells, are 

involved in the cellular immune reactions (Söderhäll & Smith, 1983; van de Braak et 

al., 1996; Vargas�Albores et al., 2005; Li & Shields, 2007; Smith, 2010; Hong et al., 

2013). Recently, five types of haemocytes were identified in spider crab, Hyas araneus 

(L.) (Roulston & Smith, 2011) and penaeid shrimp, Litopenaeus vannamei (Dantas-

Lima et al., 2013). 

 

 
Figure 9. Morphology of haemocytes from penaeid shrimp, Litopenaeus vannamei, 
stained with haematoxilin & eosin, a: hyaline cells (sub 1), b-c: prohaemocyte-like cells 
(sub 2 and sub 3), d: semi-granular cells (sub 4), e: granular cells (sub 5) (Dantas-Lima 
et al., 2013). 

a b c d e 
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Hyaline cells have a spindle or ovoid shape with few small basophilic and eosinophilic 

granules. Semi-granular cells have an ovoid shape and contain several eosinophilic 

granules. Granular cells have a spherical shape and consist of many large eosinophilic 

granules. Prohaemocyte-like cells have a small and spherical or slightly oval shape and 

possess only a thin ring of basophilic cytoplasm around a central nucleus.  

An in vitro experiment showed that prohaemocyte-like cells display only very weak 

adherence to glass with no evidence of cytoplasmic spreading, whereas hyalinocytes 

and semi-granulocytes are known to present strong adherence to the substrate and 

display acute spreading behaviour. Adherence appears to be more limited in the 

granular cells (Vargas�Albores et al., 2005; Roulston & Smith, 2011; Dantas�Lima 

et al., 2013). Each cell type is active in defense reactions and carries out different 

functions in immunity. In crayfish, Astacus astacus, Pacifastacus leniusculus, 

Procambarus clarkii, the hyaline cells are mainly involved in phagocytosis, the semi-

granular cells, which have limited phagocytic capacities, would be specialized in 

particle encapsulation, while the granular cells participate in storage and release of the 

prophenoloxidase (proPO) (Smith & Söderhäll, 1983). In penaeid shrimp, Penaeus 

indicus, semi-granular and granular cells are responsible for phagocytosis (Jayasree, 

2009) while hyaline and semi-granular cells of Penaeus vannamei mainly function in 

the phagocytosis of pathogenic and non-pathogenic bacteria (Tuan et al., 2015). In 

ridgeback prawn, Sicyonia ingentis, phagocytosis of the Gram-negative marine 

bacterium (Cytophaga sp.) is accomplished primarily by small granule haemocytes, 

rarely by large granule haemocytes, and never by hyaline cells (Hose et al., 1990).  

Both semi-granular and granular cells can be induced to degranulate by foreign 

molecules, such as lipopolysaccharides (LPS) or β-1,3-glucans. The semi-granular cells 

are the first haemocyte type to react to foreign particles in vivo and they respond by 

degranulation (Johansson and Söderhäll, 1985), releasing the proPO system including 

the cell adhesion/degranulating factor peroxinectin from their granules into the plasma 

(Johansson et al., 1995).  

 
1.5 Separation of biological particles 

 
Several techniques such as density gradient centrifugation, fluorescent activated cell 

sorting, magnetic activated cell sorting and monoclonal antibodies have been developed 

for the purification of specific types of biological particles. Selection of the technique, 



27 
 

however, depends on the characteristics of the biological particles and the objectives of 

the study. Density gradient centrifugation is probably preferable. Percoll (colloidal 

silica), Ficoll (high molecular weight organics), iodixanol (iodinated organic 

compounds), sucrose (small hydrophilic organic molecules), caesium chloride (CsCl; 

salt of alkali metal) and sodium bromide (NaBr; inorganic salt) are the media mostly 

selected (Lawrence & Steward, 2010). In general, iodixanol and Percoll have more 

advantages than other media. These media have a low viscosity, are non-toxic to cells 

and have the capacity to form self-generating gradients. 

The viscosity influences not only the speed of the separation but also the structure of 

the particles. The non-toxicity of these products excludes the need for washing steps 

(Graham, 2001). The capacity to form self-generating gradients depends more on the 

centrifugation time. Percoll tends to form non-linear S-shaped gradients in short 

centrifugation time and nearly linear gradients in longer centrifugation time. The 

density curve of Percoll gradient presents two steep regions on the top and at the bottom 

of the gradient. Between those regions, there is a wide and shallow region with a shorter 

density range. Therefore, these gradients tend to excessively concentrate cells in the 

steep areas on the top and at the bottom of the gradient and to disperse them in the 

shallow area in-between (Graham, 2001). In contrast, iodixanol can form a linear, 

continuous gradient more easily by diffusion of preformed discontinuous gradients.   

Iodixanol, a non-ionic iodinated compound with a molecular mass of 1550, was 

developed in the early 1990s as an X-ray contrast medium and has been subjected to 

rigorous clinical testing. It is considered as non-toxic to cells and can be made iso-

osmotic at all useful densities. It also has low viscosity and osmolality. Besides, 

iodixanol is capable of forming self-generating gradients in 1 to 3 h. Its systematic 

chemical name is 5,5′-[(2-hydroxy-1,3-propanediyl)-(acetylamino)] bis-[N,N-bis(2,3-

dihydroxypreopyl)-2,4,6-triiodo-1,3-benzenecarboxamide. 

 
1.6 Methods for crustacean haemocyte separation 

 
In order to study crustacean haemocytes in an optimal way, it is preferable to work with 

isolated populations of different cell types. Density gradient centrifugation is the first 

technique used for separating crustacean haemocytes into subpopulations. This 

technique was developed by Söderhäll and Smith (1983) for several marine crab species 

such as Carcinus maenus, Cancer pagurus, Macropipus depurator, Eupagurus 
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bernhardus and Nephrops noriegicus. The success of the isolation of haemocytes 

depends on the efficiency of the anti-coagulant used. Haemolymph of marine crab was 

collected in a low pH citrate-EDTA anticoagulant buffer and separated by 

centrifugation on a continuous density gradient of Percoll. After the separation in this 

type of density gradient, hyaline and granular cells were separated. In this technique, 

citric acid serves to delay cellular breakdown, while EDTA inhibits prophenoloxidase 

(proPO) activation and prevents the clotting reaction, which is dependent on Ca2+ and 

transglutaminase (Hall et al., 1999). Low pH in this buffer, in combination with citrate, 

glucose and NaCl, provides an optimal medium for maintenance of cell integrity 

without significant loss of cell viability. With some modification, this methodology was 

applied to separate haemocytes of the crayfish Astacus astacus (Smith & Söderhäll, 

1983), the mussel Mytilus edulis (Pipe et al., 1997), the swimming crab Liocarcinus 

depurator (Hammond & Smith, 2002), the penaeid shrimp (Liu et al., 2005; Vargas�

Albores et al., 2005), the Caribbean spiny lobster, Panulirus argus (Li & Shields, 2007), 

and the spider crab Hyas araneus (Roulston & Smith, 2011).  

Fluorescence activated cell sorting (FACS) is another option for separation of 

crustacean haemocytes. It is a simple, reproducible, and sensitive method. However, 

there are no data on the in vitro culture of separated cells after sorting. Furthermore, 

there are no fully characterized monoclonal antibodies available to sort certain 

subpopulations. Several attempts were made to produce monoclonal antibody markers 

specific for certain haemocyte subpopulations of crustacea (van de Braak et al., 2000; 

Sung & Sun, 2002; Wu et al., 2008). Unfortunately, none of these specific markers are 

commercially available.  

Recently, another method using different concentrations of iodixanol was successful 

not only for separation of haemocyte subpopulations of penaeid shrimp, Litopenaeus 

vannamei, but also for in vitro culture of separated haemocytes (Dantas-Lima et al., 

2013).  

 
 1.7 Crustacean haemocyte culture  

 
Crustacean haemocyte cultures have been studied for the last two decades and the 

survival time of these haemocytes has been reported (Ellender et al., 1992; Chen & 

Wang, 1999; Itami et al., 1999; Jiang et al., 2006; Li & Shields, 2007; Jose et al., 2010; 

Roulston & Smith, 2011; Dantas-Lima et al., 2012; Dantas-Lima et al., 2013), ranging 
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from 2-4 days (Chen & Wang, 1999) to 3-4 weeks (Ellender et al., 1992). 

Culture medium is the most important element having an impact on the survival of 

animal cells (Mothersill & Austin, 2000). Many attempts have focused on the selection 

and optimization of culture medium in order to prolong the survival of crustacean cells 

and haemocytes. Generally, a selected culture medium must supply all essential 

nutrients for cellular growth, such as amino acid, salts, and vitamins. Out of 17 

publications, Leibovitz’s medium has been a popular choice for crustacean haemocyte 

culture due to its strong buffering capacity.  

Regardless to the choice of basic culture medium, the culture medium must be adjusted 

to the physico-chemical requirements of crustacean cells, depending on whether the 

species are freshwater or marine water. For instance, a double concentration of 

Leibovitz’s medium (2x-L15) is used to culture of marine crustacean haemocytes, while 

a single concentration (L15) is applied to freshwater ones. Three main factors must be 

considered. The osmolality should be adjusted to 400-500 mOsmol/kg for freshwater 

species and to 700-1000 mOsmol/kg for marine species. The pH of the culture medium 

should be relatively alkaline (7.0-7.4) (Toullec, 1999). Last but not least, the 

temperature for penaeid shrimp haemocyte culture should be between 25-28oC 

(Toullec, 1999; Jose et al., 2011; Dantas-Lima et al., 2012). Besides, other supplements 

like mammalian serum and antibiotics are also considered to be essential for 

maintaining in vitro cultures of crustacean haemocytes. 
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Knowledge on crustacean immunology is mainly based on research with crayfish. 

Mainly processes mediated by circulating haemocytes such as phagocytosis, 

encapsulation, coagulation and cytotoxic reaction have been elucidated. However, the 

knowledge on shrimp’s immune system, Penaeus (Litopenaeus) vannamei, is still 

limited. Currently, the research on the immunity of penaeid shrimp is expanding 

because of the economic importance of shrimp aquaculture throughout the world and 

the significant impact of infectious diseases. Diseases could be prevented by regularly 

monitoring the immune state of the shrimp to detect as early as possible any abnormal 

condition. In order to develop effective strategies for disease control in shrimp culture, 

it is necessary to acquire thorough knowledge on shrimp immune system, especially 

the role of each type of haemocytes in shrimp defense. Therefore, the general objective 

of this thesis was to obtain a better understanding of the functions of haemocyte 

subpopulations in the defense system of Penaeus (Litopenaeus) vannamei. 

 

The specific objectives of this thesis were: 

 

(1)! To develop a technique for separating haemocyte subpopulations and to 

characterize these subpopulations. 

 

(2)! To study the differences in uptake and killing of pathogenic and non-pathogenic 

bacteria by different haemocyte subpopulations.  

 

(3)! To investigate the uptake and disassembly of white spot syndrome virus by 

haemocyte subpopulations and the induction of apoptosis. 

!
!
!
!
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Abstract 

!
Methodologies for separation of immune cell subpopulations are essential tools in 

immunology studies. Up to date, only one methodology for separating crustacean 

haemocyte subpopulations using Percoll density gradient centrifugation has been 

described. 

In the present work, a new methodology to separate Penaeus vannamei haemocyte 

subpopulations was developed, using a two-step iodixanol density gradient 

centrifugation. P. vannamei haemolymph was collected with anticoagulant and 

centrifuged through a first gradient (densities from 1.063 to 1.109 g/ml) for 10 min at 

2000 g. Three bands were formed: two bands with lower density close together, and a 

third band with higher density. The first two were collected together, whilst the third 

band was collected separately. The volume fraction in-between these bands contained 

dispersed cells and was also collected. The suspension containing the mixture of the 

first two bands was centrifuged through a second gradient (densities from 1.047 to 

1.087 g/ml) for 15 min at 2000 g. Two bands were formed and collected individually. 

All the cell suspensions were used for in vitro culture (cell survival evaluation) and for 

evaluation of cell morphology by flow cytometry and light microscopy. Each of the 

three bands contained a major cell type with distinct morphology and behaviour. The 

dispersed cell fraction contained a mixture of two different cell types, which were 

distinct from the cell types in the bands. By order of appearance from the top of the 

gradient, the cell types were named: subpopulations (Sub) 1 (band 1), Sub 2 (band 2), 

Sub 3 + 4 (dispersed cells) and Sub 5 (band 3). The purity level (percentage of the major 

cell type) of Sub 1, 2 and 5 was 95.0 ± 1.0%, 97.7 ± 1.2% and 99.4 ± 0.8%, respectively. 

Cells of Sub 2 showed the best survival time in vitro (up to 96 h) followed by cells from 

Sub 1, Sub 3 + 4 and Sub 5. Phagocytic activity was detected in Sub 1 and 4. 

This methodology allowed the separation and characterization of five morphologically 

distinct and physiologically active P. vannamei haemocyte subpopulations, from which 

three were isolated with a very high degree of purity. Therefore, we consider this 

methodology a valuable alternative for the traditional crustacean haemocyte separation 

procedure in Percoll. !
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1.!Introduction 

 

Haemolymph (blood of invertebrates) is composed of a liquid and a cellular fraction. 

The liquid fraction is named plasma. The cellular fraction is solely composed of 

haemocytes, the shrimp immune cells. Haemocytes are key players in invertebrate 

immunity since they mediate, directly or indirectly, all known invertebrate immune 

reactions. Crustacean haemocytes are traditionally divided into subcategories or 

subpopulations according to their morphological characteristics and/or functionality. 

Three morphologically distinct subpopulations have been described: (i) hyalinocytes or 

hyaline cells, (ii) semi-granulocytes or semi-granular cells, (iii) granulocytes or 

granular cells (Li, Shields, 2007; Söderhäll, Smith, 1983; van de Braak et al., 1996; 

Vargas-Albores et al., 2005). When stained with histological dyes, hyalinocytes display 

a spindle/ovoid shape and few small basophilic and eosinophilic granules, semi-

granulocytes an ovoid shape and several medium-large eosinophilic granules and 

granulocytes a spherical shape and many large eosinophilic granules (Roulston, Smith, 

2011; Smith, 2010). When exposed to foreign environments or substances, hyalinocytes 

and semi-granulocytes present strong adherence to the substrate and acute spreading 

behaviour. Adherence is more limited in granular cells (Roulston, Smith, 2011; Vargas-

Albores et al., 2005). However, there is still some inconsistency in the description of 

the morphology, functionality and proportion of each of these cell types. This may be 

due to species-specific differences, but also the subjective classification of semi-

granulocytes. 

A protocol to separate crustacean haemocytes using a percoll density gradient was 

developed for the first time by Söderhäll and Smith (1983). This protocol was 

afterwards adapted to other invertebrate species (Falwell et al., 2011; Hammond, Smith, 

2002; Li, Shields, 2007; Liu et al., 2005; Pipe et al., 1997; Roulston, Smith, 2011; 

Smith, Söderhäll, 1983; 1991; Sperstad et al., 2010; Sritunyalucksana et al., 2001; 

Vargas-Albores et al., 2005). This methodology allowed the separation of haemocyte 

subpopulations with no apparent deleterious effects since the cell functionality was 

preserved in most of the cases. Nevertheless, due to the density that is intrinsic to each 

cell type, only granulocytes were isolated efficiently. 

Iodixanol is an alternative separation medium to percoll. Both media share suitable 

characteristics for an efficient separation of cells, cell organelles, and other subcellular 

structures. Nevertheless, iodixanol possesses some advantages over percoll. While 



53 
 

percoll has a very low osmolality (Pertoft et al., 1978) and as such often requires sucrose 

for the preparation of stock solutions, iodixanol has an osmolality of 290 mOsmol/kg 

(Solomon, 2005), what makes the preparation of isosmotic solutions easier. Percoll is 

light scattering at all wavelengths (Jenkins et al., 1979) and thus needs to be removed 

prior to most flow cytometry and spectrophotometry analysis. Iodixanol on the other 

hand, only exhibits absorbance at the UV range (Jacobsen, 2000). Another advantage 

of iodixanol is the formation of linear continuous gradients by passive diffusion of the 

preformed discontinuous gradient. This excludes the need of ultracentrifugation as for 

percoll self-forming gradients. The shape of iodixanol continuous gradients can be 

easily customized by manipulating the concentration and volume of the initial gradient 

fractions and diffusion time (Axis-Shield, 2012). On the other hand, self-forming 

percoll gradients present non-linear S-shaped gradients with two steep density profiles 

on top and bottom of the gradient and a shallow zone in between (Amersham 

Biosciences, 2001). These gradients have limited manipulation possibilities. The 

damage of cells centrifuged in percoll was previously reported (Juan et al., 2012; 

Oliveira et al., 2011). Conversely, no literature reporting cell damage by iodixanol 

centrifugation was found. 

To the best of our knowledge, the present work described for the first time a procedure 

to efficiently separate highly pure P. vannamei haemocyte subpopulations using 

iodixanol density gradient centrifugations. The high purity of the subpopulations was 

obtained by centrifuging the haemocytes through a sequence of two differently shaped 

iodixanol density gradients. Additionally, cell subpopulations were subjected to 

morphological and viability analyses.  

 

2.!Materials and methods 

  

2.1!Shrimp and experimental conditions 

 

Penaeus (Litopenaeus) vannamei post-larvae which were certified to be specific 

pathogen free (SPF) for WSSV, TSV, YHV and IHHNV were imported from Piti 

Syaqua Farm, Syaqua Siam Co. Ltd., Thailand. Upon arrival, they were reared in a 

recirculation system at the Laboratory of Aquaculture and Artemia Reference Center 

(ARC), Ghent University, Belgium until they reached an adult size. Water temperature 

was kept at 27 ± 1°C, pH at 7.8-8.1 and salinity at 35 ± 1ppt. A biological filter and 
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regular water changes kept the total ammonia below 0.5 mg/L and nitrite below 0.15 

mg/L. The room was illuminated 12 hours a day by dimmed TL-light.  

For this study, adult shrimp with a mean body weight of 40 ± 10 g in C moult stage 

(inter-moult stage) (Corteel et al., 2012) were selected. They were transported to the 

Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University and 

acclimatized at 27 °C for 1 hour before extracting haemolymph. 

!
2.2!Iodixanol density gradient preparation 

 

A discontinuous density gradient composed of 2.5 ml iodixanol (Optiprep, Axis-Shield) 

fractions of different concentrations was prepared by fraction under-layering (Figure 

1). The fractions were loaded in 15 mL non-pyrogenic polypropylene centrifuge tubes 

(SARSTEDT) using 2 ml syringes and 20G (0.9x70mm) needles. The gradient 

concentration profile (from the top to the bottom of the tube) was: 10%, 15% and 20%. 

The iodixanol solutions were prepared by diluting the stock solution (60% iodixanol) 

in shrimp PBS (shPBS; PBS adjusted to 900 mOsmol/kg with NaCl; pH 7.4). This 

preparation was kept for 18 h at 4°C to allow the formation of a continuous gradient. 

Afterwards, the gradient was either used for haemocyte separation or entirely collected 

in 0.5 ml fractions for determination of its density profile. The density was determined 

by measuring the absorbance at 244 nm (Nanodrop 2000 spectrophotometer), following 

the procedure specified by the Optiprep manufacturer (Axis-Shield, UK). Briefly, a set 

of solutions with known iodixanol concentrations (5, 10, 15, 20, 25 and 30%) were 

prepared in distilled water (DW) and further diluted 1:1000 (v/v). The absorbance was 

measured and the iodixanol concentration converted into density (g ml-1) using the 

formula indicated by the manufacturer. A standard curve expressing absorbance vs. 

density was made and a correlation formula was calculated. The absorbance of the 

gradient samples was measured following the same procedure and its density calculated 

using the correlation formula. 

!
!
!
!
!
!
!
!
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2.3!Haemolymph extraction and haemocyte separation 

 

Haemolymph was extracted with cold Marine Anticoagulant as described by Dantas-

Lima et al. (2012). Briefly, haemolymph was collected with syringes filled with 

anticoagulant at a proportion of 1:1 with the required volume of haemolymph. The 

collection was done from the ventral sinus located at the second tail segment and 

immediately layered carefully on top of the iodixanol gradient using a pipette (Figure 

1). This preparation was centrifuged in a swinging bucket centrifuge (Rotina 380R, 

Hettich Lab Technology) at 2000 g for 10 minutes at 4°C. The haemocyte bands that 

were formed in the gradient were collected and the haemocytes were either used for in 

vitro culture and survival evaluation or fixed for morphological (H&E staining) and 

flow cytometry analysis. The separated haemocytes were fixed in an equal volume of 

Marine Fixative at double concentration (2% glutaraldehyde with 2% saccharose in 

seawater) (Cima, 2010) for 30 minutes at 4°C. 

! !
2.4!Morphological characterization 

 

2.4.1! Light microscopy and live cell imaging of haemocyte cultures 

 

Haemocyte cultures were observed under a light microscope (Olympus IX50) 1 h after 

seeding. Morphological characteristics of haemocytes and purity of the cultures 

(percentage of the major cell type) were evaluated for each cell band and fraction. 

Additionally, live cell imaging videos were made using ImageJ software and the 

behaviour of the cells was registered (Abramoff, 2004). 

!
2.4.2! Flow cytometry 

 

Fixed haemocytes were analysed on a FACS Aria III (Beckton Dickinson). Analysis 

was performed using the 488 nm laser. Statistics were obtained by the FACS Diva 

software (Version 6.1.3, Beckton Dickinson). The relative size and granularity 

(subcellular complexity) were assessed by forward scatter height (FSC-H) and side 

scatter area (SSC-A), respectively. For each sample, at least 20,000 events were 

counted. Results were expressed as contour plot graphs indicating the relative size 

(FSC) and granularity (SSC) of the cells of each band. 
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!
2.4.3! Light microscopy of fixed haemocytes  

 

Fixed haemocytes were cytospinned (Cytospin 3, Shandon) at 700 rpm for 5 minutes 

onto glass slides. After drying, cells were stained with Haematoxylin and Eosin (H&E) 

in an automatic staining machine (Linear Stainer II SAKURA). Slides were dipped in 

each staining bath for 105 seconds. The bath sequence was: 1x distilled water (DW), 

2x haematoxylin, 2x DW, 3x eosin, 2x DW, a dehydration series of 50%, 70%, 80%, 

94%, 100% ethanol and finally 2x in xylene. After drying, slides were mounted with 

DPX mounting medium. Cells were observed under light microscope (Olympus BX61) 

and pictures were taken. The size and morphological characteristics of cells were 

evaluated. 

!
2.5!Haemocyte in vitro culture and survival evaluation 

 

Haemocyte survival evaluation was done as previously described by Dantas-Lima et 

al. (2012). Cell bands were collected from the gradient and immediately diluted with 

Haemocyte Medium (HM; 2xL-15 medium, 10.5% Chen’s salts, 10% FBS, 1% 

penicilline/streptomycine; pH 7.5; 900 mOsmol/kg). Cells were seeded in 24-well 

plates (Nunc® Nunclon™ Δ Surface) in which round glass coverslips were previously 

brought in each well. A volume of 400 µl of cell suspension (150,000 cells well-1) was 

seeded in each well. Samples were taken at 0, 2 and 24 h and after every 24 h until the 

end of each experiment. Cells were stained with EMA (ethidium monoazide bromide) 

dye for 30 minutes and with Hoechst dye for 10 minutes. At the end of the procedure, 

haemocytes were fixed and mounted on glass slides. Survival was evaluated under 

fluorescence microscope and expressed as total number of living cells per well over 

time. Each experiment was repeated 3 times and the average values were calculated. 

!
2.6!Validation of the functionality of separated haemocyte subpopulations 

 

2.6.1! Production of inactivated GFP-labelled bacterial stocks 

 

GFP-labelled Vibrio campbellii (LMG 21363) was obtained as previously described by 
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(Dantas-Lima et al., 2012). Briefly, V. campbellii was transformed with a plasmid 

containing Green Fluorescent Protein (GFP), which was carried by Escherichia coli 

DH5α. After transfection colonies of GFP-labelled V. campbellii were isolated based 

on their antibiotic resistance and subsequently grown in marine broth, washed and 

stored at -80 °C in 20% glycerol. 

 

2.6.2! Detection of phagocytic activity 

 

GFP-labelled V. campbellii were sub-cultured twice in HM containing selective 

antibiotics (20 µl of bacterial suspension in 20 ml of HM for 12 h and 14 h at 27°C). 

Suspensions were washed as described above. The concentration of bacteria in the 

suspension was determined by optical density at 600 nm (OD600) and by the 

conversion formula CFU/ml = (10 x OD600 - 1) x 108. 

Cultures of separated haemocyte subpopulations (150,000 cells well-1) were inoculated 

with 100 bacteria per haemocyte at 1 h after seeding. Samples were taken at 0 and 1 h 

after inoculation. Before sampling, wells were washed 2 times with HM. At the 

moment of sampling, cells were fixed with 4% PF for 10 min, permeabilized with 0.1% 

Triton X-100 for 5 min and stained with Texas Red-labelled phalloidin (Invitrogen, 

Life Technologies™) diluted in PBS (4 units ml-1) for 1 h at 37°C. Ten minutes before 

the end of this staining, Hoechst (0.01 mg ml-1) was added. After, cells were washed 

and mounted on glass slides. The detection of phagocytic activity (haemocytes 

uptaking bacteria) was made using confocal microscopy. Sequential confocal pictures 

in three different wavelength emission channels (Hoechst: 461 nm; Texas Red: 615 

nm; and GFP: 509 nm) were taken from the cell base to its apex. This was made in!10!
cells!that!presented!signs!of!phagocytosis.!!
 

3.!Results 

  

3.1!Separation of haemocytes in iodixanol density gradients  

 

After 18h of incubation at 4°C, the iodixanol gradient became nearly linear. The density 

profile from the top to the bottom of the tube was: 1.063, 1.063, 1.064, 1.067, 1.070, 

1.075, 1.080, 1.084, 1.089, 1.093, 1.095, 1.100, 1.105, 1.110, 1.109 g/ml (Figure 2A). 

After centrifugation, three cell bands were clearly formed (Figure 1). They were 
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collected and starting from the top of the gradient, they were named Band 1, 2 and 3. 

The volume in between bands 2 and 3 was also collected. Although this volume 

contained a substantial amount of cells, they did not form a sharp band. Therefore, this 

fraction was described as “dispersed cells”. The tube’s volumetric graduation was used 

as a marker for the location of the bands in the gradient. Bands 1 and 2 were located in 

between the marks of 4.3-5 ml and band 3 in between the marks of 2.5-3 ml (Figure 1). 

Bands 1 and 2 were physically too close to each other to allow their individual 

collection without cross-contamination. Thus, they were collected together in a volume 

of 1 ml, diluted in 2 ml of shPBS and loaded in another gradient. This gradient was 

designed to promote the physical separation of the bands. From then on, the first 

gradient and the new gradient were named Gradient 1 and Gradient 2, respectively. The 

procedure for preparing Gradient 2 was similar as for Gradient 1. It was composed of 

2.5 ml iodixanol fractions with concentrations of 7%, 10%, 13% and 16%. Its density 

profile after 18h at 4°C was: 1.047, 1.046, 1.048, 1.050, 1.052, 1.054, 1.058, 1.060, 

1.062, 1.064, 1.069, 1.071, 1.076, 1.077, 1.078, 1.082, 1.084, 1.087 g/ml (Figure 2B). 

The suspension containing Band 1 and 2 was loaded on Gradient 2 and centrifuged at 

2000 g for 15 minutes at 4°C. The formed bands were more diffuse than in Gradient 1 

(more difficult to visualize), but also more physically separated. This allowed their 

individual collection with a low cross-contamination. Band 1 was located in between 

the marks of 4-4.5 ml and Band 2 in between the marks of 3-3.5 ml (Figure 1). The 

approximate average buoyant density in iodixanol of the cells from Band 1 was 1.075, 

Band 2 was 1.078 and Band 3 was 1.095 g/ml (Figure 2).  

!
!
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!
 
Figure 1. Diagram illustrating the preparation of continuous iodixanol density gradients 
and centrifugation procedure for separation of P. vannamei haemocyte subpopulations. 
The gradients were prepared by under-layering of 2.5 ml iodixanol fractions with 
different concentrations. An incubation step (18h at 4°C) allowed the diffusion of the 
fractions and the formation of linear continuous gradients. The haemocyte separation 
procedure included 2 centrifugation steps with two different gradients. This procedure 
was necessary because bands 1 and 2 obtained in gradient 1 were to close to each other 
to be collected individually without cell type cross-contamination. The centrifugation 
of these two bands in gradient 2, which had narower density profile (see figure 2A), 
promoted the physical separation of bands 1 and 2, allowing their individual collection 
without significant cross-contamination (high purity). 
!
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!
Figure 2. Iodixanol density gradients used in the present work (A and B) and self-
forming percoll gradients using several initial concentrations (C) (Adapted from 
Amersham Biosciences, 2001). The iodixanol gradients display a continuous and 
nearly linear density profile. The vertical bars represent the haemocyte bands indicating 
their position in the gradients. They also indicate the approximate buoyant density of 
each cell type. Percoll gradient density curves represent self-forming gradients with 
starting concentrations of stock isotonic percoll from 20% to 90% in 0.15 M NaCl. 
Running conditions were: 23º angle-head rotor 30000 g for 15 minutes. The vertical 
bars represent the approximate positions of the bands in the gradient according to the 
work of Liu et al. (2005) on P. vannamei haemocyte separation. The 70% gradient 
profile was created using similar conditions to the ones this author used. 
!
3.2!Morphological characterization 

 

3.2.1! Light microscopy and live cell imaging of haemocyte cultures 

 

Figure 3 and live cell imaging videos provided visual details of the morphology and 

behaviour of cells in culture. Cells from Band 1 adhered very strongly to the glass by 

means of pseudopod-like projections, which was translated in a high degree of cell 

spreading. Cells from Band 2 on the other hand, presented a very limited spreading 

activity and adherence to the glass. These cells were easily resuspended by gentle 
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pipetting. Cells from Band 3 adhered strongly to the glass with moderate spreading. 

The “dispersed cells” fraction enclosed 2 cell types; small cells and big cells with a 

similar morphology to the cells from Band 2 and 3, respectively. From then on, the 

different haemocytes were classified as subpopulations (Sub): Sub 1 (Band 1), Sub 2 

(Band 2), Sub 3 (small cells of dispersed cells), Sub 4 (big cells from dispersed cells) 

and Sub 5 (Band 3). The purity (percentage of the major cell type) of Sub 1, 2 and 5 

was 95.0 ± 1.0%, 97.7 ± 1.2% and 99.4 ± 0.8%, respectively. Since Sub 3 and 4 were 

mixed in the “dispersed cells” fraction, the purity level could not be evaluated. Starting 

from 24 h of culture, it was common to observe cellular breakdown due to cellular over-

spreading in Sub 1. In Sub 2 and 3, some cell lysis was observed after 1 h of culture 

and some clustering activity after 24 h of culture. Cells of Sub 4 and 5 started to show 

signs of apoptosis (nuclear condensation and fragmentation) and degranulation after 2 

h of culture. Massive apoptosis was observed at 24 h. 

The live cell-imaging videos revealed differences in cellular motility and morphology 

and confirmed population’s purity level. Sub 1 cells adhered and spread strongly over 

the glass but did not display an intense movement. In contrast, Sub 2 and 3 cells 

remained mostly rounded and exhibited very limited pseudopod-like projections and 

adherence. The movement displayed by these cells was mainly caused by brownian 

motion. Cells of Sub 4 and 5 demonstrated more intense activity, both by diapedesis 

and cytoplasmic granules displacement. 

!
3.2.2! Flow cytometry 

 

For each subpopulation, the values of forward and side scatter were related with the 

cell diameter and granularity, respectively. The standard deviations were supplied for 

each average value. Cells of Sub 1 had a small average diameter (126.4 ± 4.6) and 

presented the lowest granularity (2.3 ± 0.1) (Figure 3 and Table 1). Sub 2 contained the 

smallest cells (107.2 ± 4.5), which were more granular (3.7 ± 0.5) than cells of Sub 1. 

The cells of Sub 3 were slightly bigger (118.2 ± 9.4) and less granular (3.4 ± 0.6) than 

Sub 2 cells. Sub 4 cells were bigger (171.5 ± 16.3) but less granular (6.0 ± 2.9) than 

cells of Sub 5. The latter were the biggest cells (166.2 ± 6.0) with the highest granularity 

(10.6 ± 2.9). 

!
!
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3.2.3! Light microscopy of fixed haemocytes 

 

The H&E staining of fixed cell cytospins provided morphological details of separated 

haemocytes (Figure 3). The average cell diameter was the smallest in Sub 2 (7.5 ± 

1.3µm) followed by Sub 3 (7.8 ± 0.9µm), Sub 1 (8.6 ± 0.8 µm), Sub 5 (9.9 ± 1.0 µm) 

and finally Sub 4 (10.5 ± 1.5µm). The nucleus/cytoplasm ratio was high in Sub1 and 3 

and very high in Sub 2. In Sub 4 and 5 this ratio was low. The cytoplasm was 

eosinophilic in all the cells but with a more intense staining in Sub 4 and 5. The 

granularity content increased from the cells on top of the gradient (Sub 1) to the ones 

at the bottom (Sub 5). These granules were always basophilic (when present) in Sub 1, 

2 and 3. Sub 4 presented a high number of granules that were predominately 

eosinophilic with sporadic appearance of basophilic ones. This situation was the same 

in Sub 5, although the number of granules and their staining intensity was higher. The 

nuclei of cells in Sub 1 and 4 were in general large with dispersed chromatin 

(euchromatin). The nuclei of cells in Sub 2 and 3 were small, folded and with very 

condensed chromatin (heterochromatin). Sub 5 cells had in general small and 

condensed nuclei. Table 1 presents a resume of the parameters described above. 

!
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Figure 3. Analysis of individual P. vannamei haemocyte bands by in vitro culture, H&E staining and flow cytometry. Subpopulation 1 (Sub 1) 
showed cells that attached strongly to glass, had an average diameter size, contained little or no basophilic granules in the cytoplasm and a high 
nucleus/cytoplasmic ratio (N:C). Subpopulation 2 (Sub 2) enclosed cells that did not attach or attached very weakly to glass, had a small diameter 
size, contained few small basophilic cytoplasmatic granules and had a very high N:C ratio. The dispersed cells fraction enclosed two cell types, 
cells of Subpopulation 3 (Sub 3) and cells of Subpopulation 4 (Sub 4). Subpopulation 3 cells behaved similarly to Subpopulation 2 cells but had a 
higher N:C ratio and diameter. Subpopulation 4 cells behaved similarly to Subpopulation 5 (Sub 5) cells but the granularity was lower and the 
diameter was the biggest. Subpopulation 5 attached moderately to glass, their diameter was big, contained a high amount of large 
eosinophilic/basophilic granules and low N:C ratio. Scale bars in living cells and H&E staining = 20 µm and in individual cells = 5 µm.
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Table 1. Characteristics of the haemocyte bands and diffused cells fraction by Flow 
Cytometry (FC) and Light Microscopy (LM). The values of haemocyte average size 
and granularity were obtained from FC forward scatter (FSC) and side scatter (SSC), 
respectively. The FC calibration and settings were kept between measurements. The 
percentage of each subpopulation in the whole haemocyte population was determined 
by cell counts before seeding into the culture plates. The purity % represents the 
percentage of the major cell type in each subpopulation counted by LM.  
 

 
 

3.3!Survival evaluation 

 

The survival evaluation for each haemocyte subpopulation is presented in Figure 4. The 

cells of Sub 2 showed the best survival performance, followed by the cells of Sub1, 

Sub 3+4 and finally Sub 5. Living cells were detected up to 96, 48, 24 and 24 hours in 

Sub 2, Sub 1, Sub 3+4 and Sub 5, respectively. 

!
  

Figure 4. In vitro survival of separated P. vannamei haemocyte subpopulations.  

 

 

Attachment to glass                   % of the total % of Purity  Average density 

Subpopulation FC (FSC) LM (µm) FC (SSC) LM LM LM LM (g/ml)

1 126.4±4.6 8.6±0.8 2.3±0.1 Very 
low/Basophilic Yes/Very strong 41.7±3.3 95.0±1.0 1.075

2 107.2±4.5 7.5±1.3 3.7±0.5  Low/Basophilic No/Very weak 48.8±3.3 97.7±1.2 1.078

3 118.2±9.4 7.8±0.9 3.4±0.6 Low/Basophilic No/Very weak - ! !

4 171.5±16.3 10.5±1.5 6.0±2.9
Moderate/ 

Eosinophilic and 
basophilic

Yes/Strong - ! !

5 166.2±6.0 9.9±1.0 10.6±2.9 High/ Eosinophilic 
and basophilic Yes/Strong 5.3±0.7 99.4±0.8 1.095
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3.4!Detection of phagocytic activity 

 

After 1 h of co-culture with GFP-labelled V. campbellii, phagocytosis was only 

detected in Sub 1 and Sub 4. The remaining subpopulations did not show any uptake 

(internalization) of bacteria (Figure 5). 

 
Figure 5. Phagocytosis of V. campbellii by separated P. vannamei haemocyte 
subpopulations at 1 hour post inoculation (hpi). The images in A provide a general view 
of the cultures at 1 hpi. The image sequences presented for Sub 1 (B) and Sub 4 (C) are 
a magnification of the images presented in A. These images are a sequence of confocal 
microscopy pictures taken from the cell base (1) to its apex (4). This ilustrates the 
process of bacteria uptake and therefore proves that cells from Sub 1 and Sub 4 express 
phagocytic activity. F-actin fibres are stained with phalloidin-Texas Red (red), the 
nucleus is stained with Hoechst (blue) and GFP-labelled V. campbellii exhibit green 
fluorescence. Scale bars: A= 15 µm; B= 8 µm; C= 5 µm. 
!
!
!
!
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4. Discussion 

!
The centrifugation of P. vannamei haemocytes through iodixanol density gradients 

allowed the isolation and collection of three visibly distinct haemocyte bands. 

Additionally, the cells collected from the interphase between those bands (dispersed 

cells) also presented morphological differences with the cells from the neighbouring 

bands. 

Since Bands 1 and 2 were too close to each other to be collected without cross-

contamination (Figure 1), we composed a new gradient (Gradient 2) especially 

designed to promote the physical separation of these two bands. The principle was to 

compose a gradient with a narrower density range (Gradient 1: 10-20% iodixanol; 

Gradient 2: 7-16% iodixanol) in a higher total volume (Gradient 1: 7.5 ml; Gradient 2: 

10 ml). This created a gradient density profile curve with a smaller slope (narrower 

density range per unit of volume), when compared with Gradient 1 (Figure 2). Although 

the average density of cells of Sub 1 and 2 was similar (1.075 and 1.078, respectively) 

this strategy promoted their physical separation and consequently their collection with 

a high purity level was possible.  

The analysis of the haemocyte bands revealed the existence of 5 haemocyte 

morphotypes or subpopulations. Two of them were easily identified based on existing 

literature (reviewed by Jiravanichpaisal et al., 2006). Sub 1 exhibited all the 

characteristics typically attributed to hyalinocytes and Sub 5 were clearly granulocytes. 

The classification of Sub 2, 3 and 4 was not that straightforward. Sub 4 resembled 

typical semi-granulocytes. The classification of the haemocytes of Sub 2 and 3 was 

very difficult. These cells were smaller but more granular than hyalinocytes and 

interestingly did not adhere to glass and presented folds in the nucleus. These 

characteristics suggested that Sub 2 could be classified as small hyaline cells 

(Rodriguez et al., 1995), small granule haemocytes or lymphocyte-like hyalinocytes 

(Hose et al., 1987; Vargas-Albores et al., 2005) and prohaemocytes or immature 

haemocytes (Roulston and Smith, 2011). 

The objective of the present work was to develop a system to efficiently separate 

biologically-active haemocyte subpopulations. The efficiency was proven by the 

identification of 2 currently undescribed P. vannamei haemocyte subpopulations, the 

high degree of purity of the separated subpopulations and the reproducibility of the 

procedures. The experiments on the in vitro cell viability and phagocytic activity 
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proved that the isolated cells were biologically-active. However, in order to make a 

clear classification of these cell types, the performance of detailed histochemical and 

functional studies will be necessary. 

The density profiles of the iodixanol gradients used in this study and several Percoll 

gradients are presented in Figure 2. The Percoll self-forming gradients traditionally 

used to separate crustacean haemocyte subpopulations are prepared with initial 

concentrations of 60-70% Percoll (Liu et al., 2005; Roulston and Smith, 2011; 

Söderhäll and Smith, 1983). The density curve of these gradients presents two steep 

regions on the top and at the bottom of the gradient. Between those regions, there is a 

high range of density values per unit of volume. In-between those regions, there is a 

wide and shallow region with a shorter density range. Therefore, these gradients tend 

to excessively concentrate cells in the steep areas on the top and at the bottom of the 

gradient and to disperse them in the shallow area in between (Graham, 2001). Our 

iodixanol density gradients were nearly linear, displaying a constant density increment 

over the entire gradient. This potentiated the formation and visualization of individual 

cell bands. Therefore, we considered this property an advantage of our procedure over 

the traditional one using Percoll.  

To the best of our knowledge, this is the first report describing the separation of 

crustacean haemocytes using iodixanol density gradients. This efficient and 

reproducible separation procedure, allowed the identification of five P. vannamei 

haemocyte subpopulations. From those, three were separated with a high degree of 

purity. It was proven that these cells were alive over different time periods and 

functionally active, and as such suitable to be used in further functionality studies. This 

procedure appears to be a valuable alternative for the traditional separation in Percoll 

gradients. 

!
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Abstract 

 

Phagocytosis is an important function of both invertebrate and vertebrate blood cells. 

In this study, the phagocytic activity of haemocyte subpopulations of penaeid shrimp, 

Litopenaeus vannamei, (Boone), against pathogenic and non-pathogenic particles was 

investigated in vitro. The haemocytes of penaeid shrimp were firstly separated by 

centrifugation on a continuous density gradient of iodixanol into 4 fractions with 5 

subpopulations (sub), of which sub 1 (hyalinocytes) and sub 4 (semi-granulocytes) 

mainly function in phagocytosis of both pathogenic and non-pathogenic bacteria as well 

as fluorescent polystyrene beads. It was found that these haemocyte subpopulations 

engulfed virulent Vibrio campbellii and Vibrio harveyi at a higher rate than non-virulent 

Escherichia coli and polystyrene beads. When these bacteria were mixed with shrimp 

haemocyte subpopulations and incubated for 180 min, the percentage of culturable 

intracellular V. campbellii (25.5 ± 6.0%) recovered was significant higher than the 

percentage recovered from V. harveyi (13.5 ± 1.1%). No culturable intracellular E. coli 

was observed in this study. In contrast with V. harveyi and E. coli, V. campbellii 

containing endosomes did not acidify in time. Incubation of haemocyte subpopulations 

with the most virulent V. campbellii strain resulted in a significant drop in haemocyte 

viability (41.4 ± 6.3% in sub 1 and 30.2 ± 15.1% in sub 4) after 180 min post inoculation 

in comparison with the less virulent V. harveyi (84.1 ± 5.6% in sub 1 and 83.4 ± 4.1% 

in sub 4) and non-virulent E. coli (92.7 ± 2.8% in sub 1 and 92.3 ± 5.6% in sub 4) and 

polystyrene beads (91.9 ± 1.6% in sub 1 and 84.4 ± 3.4% in sub 4). These findings may 

be a valuable tool for monitoring shrimp health and immunological studies. 
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1. Introduction 

 

Penaeus (Litopenaeus) vannamei is one of the most commonly cultured species of 

penaeid shrimp in the Western hemisphere (Menz & Blake, 1980) and accounts for 

more than 95% of the total production (Lightner, 2011). With the rapid expansion, more 

disease problems have occurred (Lightner, 2011). One approach to control diseases in 

shrimp is to increase their internal defense against pathogens. 

Immunity in crustacea is defined as a non-specific internal defense response that 

includes both humoral and cellular components, which cooperate to eliminate 

microorganisms. The blood cells (haemocytes) of crustacea play an important role in 

the defense reactions against pathogenic and non-pathogenic microorganisms, parasites 

and other foreign targets that might enter into the haemocoel (Bachere et al., 2004; Jose 

et al., 2010; Matozzo & Marin, 2010). The ability of blood cells to recognize non-self 

particles has been studied in a variety of species and recognition has been found to 

result in a number of cell-associated responses such as coagulation, phagocytosis, 

encapsulation and nodule formation (Hose et al., 1987; Johansson & Söderhäll, 1989; 

Hose et al., 1990). 

Crustacean haemocytes are traditionally divided on the basis of morphology into three 

distinct subpopulations: (i) hyaline cells which possess an ovoid shape and have few 

small basophilic and eosinophilic granules, (ii) semi-granular cells which have an ovoid 

shape and contain a variable number of small eosinophilic granules, and (iii) granular 

cells which have a spherical shape and contain many large eosinophilic granules 

(Söderhäll & Smith, 1983; Van de Braak et al., 1996; Li & Shields, 2007; Smith, 2010; 

Hong et al., 2013). Recently, haemocytes of penaeid shrimp (Litopenaeus vannamei) 

were separated into 5 subpopulations (Dantas-Lima et al., 2013). 

Phagocytosis is one of the major defense mechanisms when foreign particles or micro-

organisms intrude their host. The phagocytic process is thought to occur in two steps, 

with the first step involving physio-chemical adherence of the foreign particles to the 

lining of the haemocoel and the second step involving attachment of haemocytes to the 

sites of bacterial adherence (Martin et al., 1996), leading to the engulfment of particles 

into the cell and subsequent formation of phagosomes to stimulate the microbial 

digestion. 

Although the contributions of both hyalinocytes and granulocytes in cellular immune 

responses in haemolymph of crustacea are broadly studied (Smith & Söderhäll, 1983; 
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Goldenberg et al., 1984; Söderhäll et al., 1986), the haemocyte types involved in the 

phagocytic reaction have been reported to differ among crustacean species. Smith & 

Söderhäll (1983) reported that phagocytic activity of the crayfish, Astacus astacus and 

Pacifastacus leniusculus, was evident only for hyaline cells and semi-granular cells. In 

red swamp crayfish, Procambarus clarkii, hyalinocytes are considered as phagocytes 

(Söderhäll et al., 1986); semi-granulocytes, which have limited phagocytic capacities, 

would be specialized in particle encapsulation and granulocytes would participate in 

the pro-phenoloxidase (proPO) system (Söderhäll & Smith, 1983). Another study 

conducted by Söderhäll et al (1986) also reported phagocytic activity for hyaline cells 

of the crab, Carcinus maenas. In penaeid shrimp, Penaeus indicus, semi-granular and 

granular cells were responsible for phagocytosis (Jayasree, 2009). In ridgeback prawn, 

Sicyonia ingentis, phagocytosis of the Gram-negative marine bacterium (Cytophaga 

sp.) was accomplished primarily by small granule haemocytes, rarely by large granule 

haemocytes, and never by hyaline cells (Hose et al., 1990). In a previous study, the 

haemocyte subpopulations of penaeid shrimp were separated into 5 separated 

populations by centrifugation in a two-step continuous density gradient of iodixanol 

(Dantas-Lima et al., 2013). 

The aims of the work described here were to investigate the phagocytic activity of 

Litopenaeus vannamei haemocyte subpopulations towards pathogenic and non-

pathogenic bacteria as well as fluorescent polystyrene beads and to analyse the fate of 

both bacteria and cell upon ingestion. 

 

2. Materials and methods 

 

2.1 Experimental animals 

 

Specific pathogen-free (SPF) penaeid shrimp, Litopenaeus vannamei, with a mean 

body weight of 25 ± 5 g in inter-molt (C) stage (Corteel et al., 2012) were used. The 

shrimp were imported from Holland and were reared in a recirculation system at the 

Laboratory of Artemia & Reference Center (ARC), Faculty of Bioscience Engineering, 

Ghent University, Belgium. They were fed twice daily at a total rate of 5% of their 

mean body weight. Water temperature was kept at 27 ± 1o C, pH 7.5-8.0, and salinity 

at 35 ± 1 g l-1. Regular water changes and bio-filters kept total ammonia-N below 0.5 

mg l–1 and nitrite-N below 0.15 mg l–1. 
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2.2 Bacteria and culture conditions 

 

The bacteria Vibrio campbellii (LMG 21363) and Vibrio harveyi (BB 120), that are 

pathogenic to penaeid shrimp, and Escherichia coli DH5α, that is non-pathogenic to 

penaeid shrimp, were obtained from the Laboratory of Artemia and Reference Center, 

Ghent University, Belgium. These bacteria were labeled with Green Fluorescent 

Protein (GFP) and Fluorescent Isothiocyanate (FITC) as follows: 

GFP-labeled V. campbellii and V. harveyi were obtained as previously described by 

Dantas-Lima et al  (2012). Firstly, these bacteria were transfected with a plasmid 

containing Green Fluorescent Protein (GFP), which was carried by E. coli DH5α. After 

transfection, colonies of GFP-labelled bacteria were isolated based on their antibiotic 

resistance (Phuoc et al., 2009) and grown in marine broth, washed and stored at -80° C 

in 20% glycerol. 

From the stock, 20 µl of bacterial suspension were sub-cultured in 20 ml haemocyte 

medium (2x Leibovitz’s (L-15) basal medium (Sigma-Aldrich), 10.5% Chen’s salts, 

10% foetal calf serum, pH 7.55) containing 100 mg l-1 of rifampicin and kanamycin for 

12 h at 27o C in a shaker at 90 rotations per minute (rpm). Then, the bacteria were sub-

cultured again at the same conditions for 14 h. The suspension was washed and 

centrifuged three times at 2000 g for 10 minutes. The concentration of bacteria in the 

suspension was determined through spectrophotometry at an absorbance of 600 nm 

(OD600) and through the conversion formula from the standard curve, CFU/ml = 

(10xOD600-1)x108 for V. campbellii and CFU/ml = (40xOD600-2)x107 for V.  harveyi. 

FITC-labeled E. coli were labeled by a modification of the procedure of Weingart et al 

(1999). Briefly, bacteria were cultured in Luria-Bertani broth (LB) for 24 h at 37o C in 

a shaker at 90 rotations per minute (rpm). The suspension was washed three times in 

100 mM NaHCO3, pH 9 at 2000 g for 10 min. Optical density readings at 600 nm were 

used to calculate microbial cell densities. An OD value of 1.0 corresponds to 1.2x109 

cells ml-1 (McFarland standard). The pellet was re-suspended in 100 mM NaHCO3, pH 

9 containing 0.5 mg ml-1 fluorescein isothiocyanate (FITC, Sigma-Aldrich; F7250) and 

incubated in the dark for 1 h at room temperature. After incubation, bacteria were 

pelleted and washed in the same manner until a clear supernatant was observed. The 

final pellet containing the fluorescent-labeled bacteria was re-suspended in 1 ml 

haemocyte medium and used for in vitro challenge. 
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2.3 Haemolymph collection and haemocyte separation 

 

Haemolymph collection 

 

Haemolymph was extracted from the ventral sinus located at the base of the second 

abdominal pleonite, using a pre-cooled 2 ml syringe with 20 gauge needle (0.9x25mm) 

filled with pre-cooled marine anti-coagulant (450 mM NaCl, 100 mM glucose, 30 mM 

tri-sodium citrate, 26 mM citric acid, 10 mM EDTA, pH 5.4) (Söderhäll & Smith, 1983) 

in a proportion of 1:1 with the required volume of haemolymph. Care was taken to 

disinfect the area with 70% ethanol before haemolymph withdrawal to prevent the entry 

of opportunistic micro-organisms into the haemocoel.  

 

Haemocyte separation  

 

The different haemocyte subpopulations of Litopenaeus vannamei were separated by a 

two-step continuous density gradient of iodixanol (Optiprep 60%, Axis-Shield, UK) as 

described by Dantas-Lima et al (2013). The two gradients were prepared by under-

layering of 2.5 ml of each iodixanol concentration (10%, 15%, 20% iodixanol for the 

first gradient and 7%, 10%, 13%, 16% iodixanol for the second gradient) into 15 ml 

non-pyrogenic Sarstedt tube, and incubated at 4o C for 18 h to allow the formation of a 

continuous gradient.  

Haemolymph was extracted, poured into pre-cooled 15 ml non-pyrogenic 

polypropylene centrifuge tube (Sarstedt, Germany) and immediately layered onto the 

first gradient (10%, 15%, 20% iodixanol; 2.5 ml per fraction). This gradient was 

centrifuged at 2000 g for 10 min at 4o C with a Beckman CPR centrifuge (Rotina 380R, 

Hettich Lab Technology, Germany). Three sharp cell bands (band 1, band 2 and band 

3 determined as subpopulation 1 (sub 1 - hyalinocytes), 2 (sub 2 - prohaemocytes) and 

5 (sub 5 - granulocytes)) (Dantas-Lima et al., 2013) and one dispersed cell band in 

between band 2 and band 3 containing a mixture of subpopulation 3 and 4 (sub 3+4 - 

prohaemocytes + semigranulocytes) were formed. The first two bands (band 1 and band 

2) from the top were very close to each other, and impossible to harvest without cross-

contamination. To improve the purity, these two bands were collected together in 1 ml 

and put into a pre-cooled 15 ml tube containing 2 ml sPBS (shrimp phosphate buffered 
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saline, 18.1g NaCl in 1l of PBS: 137 mM NaCl, 2.68 mM KCl, 10 mM Na2HPO4, 1.75 

mM KH2PO4, pH 7.4), and layered onto the second gradient (7%, 10%, 13%, 16% 

iodixanol; 2.5 ml per fraction). The second gradient was then centrifuged at 2000 g for 

15 min at 4o C with Beckman CPR centrifuge. Afterwards, band 1 (sub 1) and band 2 

(sub 2) were physically separated.  

To separate haemocytes of sub 3 and 4 of the dispersed cell band, we took advantage 

of the differential adhesion characteristics of cells from sub 3 and sub 4 to glass insert. 

Haemocytes were seeded in Nunc® 24-well cell culture plates with glass inserts for 1 h. 

Haemocytes of sub 4 strongly adhered to the insert surface whereas haemocytes of sub 

3 did not.  

 

2.4 Phagocytic assays 

 

Haemocyte subpopulations from each band on the first and the second gradient were 

seeded into Nunc® 24-well cell culture plates supplied with glass inserts at a 

concentration of 3x105 cells well-1. Plates were incubated at 27o C for 1 h allowing 

haemocytes of subpopulation 1 (sub 1), 4 (sub 4) and 5 (sub 5) to attach on the 

substratum. Non-adherent haemocytes of subpopulation 2 (sub 2) and 3 (sub 3) were 

suspended by pipetting gently up and down six times and put into the new Nunc® 24-

well cell culture plates.  Afterwards, the bacterium suspension (GFP-labeled V. 

campbellii, V. harveyi, and FITC-labeled E. coli) and fluorescent polystyrene beads (1 

µm in size) at a ratio of 1 bacteria or bead per haemocyte were added. The glass inserts 

containing haemocytes of sub 1, sub 4, sub 5 and the supernatant containing 

haemocytes of sub 2, sub 3 were collected at different time points of 0, 30, 60, 120, 180 

min post inoculation. For evaluation of the uptake kinetics of foreign particles by 

haemocytes of sub 1, sub 4 and sub 5, the glass inserts with haemocytes were transferred 

to a new Nunc® 24-well cell culture plates, washed three times with cold HM and 

immediately fixed with 500 µl of paraformaldehyde 4% for 10 min. Samples were then 

washed once with PBS (phosphate buffered saline), permeabilized with Triton X-100 

0.1% for 5 min, and washed two times with PBS. After that, samples were stained with 

200 µl phalloidin Texas Red® diluted in PBS (4 units ml-1) and incubated at 37° C for 

1 h, rinsed three times with PBS (5 min each), and stained with 200 µl Hoechst (1:100 

dilution of Hoechst stock in PBS, stock solution 1 mg ml-1) for 15 min at room 

temperature. Finally, the samples were washed and mounted upside down on a drop of 



79 
 

glycerine. For the evaluation of the uptake kinetics of foreign particles by non-adherent 

haemocytes of sub 2 sub 3, the supernatant with haemocytes were collected and 

transferred to eppendorf tubes, fixed with paraformaldehyde 4% for 10 min and 

permeabilized with Triton X-100 0.1% for 5 min. Washing steps were performed in 

eppendorf tubes by centrifugation at 500 g for 5 min at 4° C. Then fixed haemocytes of 

sub 2 and sub 3 were cytospinned (Shandon Cytospin 3, Thermo Scientific, USA) at 

700 rpm for 5 min onto glass slides. Afterwards, samples were stained with phalloidin 

Texas Red® and Hoechst as described above. 

The percentage of phagocytic haemocytes and the phagocytic index was evaluated in 9 

visual fields by confocal microscopy. In every field, the total number of cells and 

number of phagocytic cells were counted.  

 

PR (phagocytic rate) = (Number of cells showing phagocytosis/total number of cells) x 

100 

PI (phagocytic index) = Number of engulfed bacteria/number of phagocytic cells 

 

2.5 Intracellular killing of bacteria by separated haemocytes 

 

To determine the fate of intracellular bacteria post-phagocytosis, haemocyte 

subpopulations were infected with bacteria (V. campbellii, V. harveyi, and E. coli) for 

2 h, washed twice with HM and treated with gentamycin (100 µg ml-1 for Vibrio species 

and 50 µg ml-1 for E. coli) for 1 h to kill extracellular bacteria. Gentamycin was 

discarded and the cells were washed three times with HM and directly lysed in 400 µl 

cold PBS containing 0.1% Triton X-100 for 10 min. After lysis, serial dilutions were 

plated out in marine agar containing selective antibiotics (V. campbellii, V. harveyi) 

and Luria-Bertani agar (E. coli) to quantify the number of culturable intracellular 

bacteria as colony forming units (CFU) per well. Then the percentage of culturable 

intracellular bacteria was calculated as follow:  

Percentage of culturable intracellular bacteria (%) = (Number of culturable intracellular 

bacteria/number of phagocytosed bacteria) x 100 

Each experiment was repeated three times and the average values were calculated. 
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2.6 Detection of phagolysosome acidification with pHrodo labeling 

 

The pHrodoTM green dye, a novel fluorogenic dye that dramatically increases the 

fluorescence as the pH of its surroundings becomes more acidic, was used to label 

bacteria with a concentration of 0.1 mg ml-1 according to the manufacturer’s manual. 

The pHrodo-based system could measure the acidification of particles upon infection.  

Haemocyte subpopulations were inoculated with the pHrodo-labeled V. campbellii, V. 

harveyi and E. coli (1 bacteria/haemocyte) for 3 h. Then, samples were collected, fixed 

with 4% PF for 10 min, permeabilized with 0.1% Triton X-100 for 5 min and stained 

with Texas Red-labeled phalloidin (Invitrogen, Life Technologies™) diluted in PBS (4 

units ml-1) for 1 h at 37° C. Ten minutes before the end of this staining, Hoechst (0.01 

mg ml-1) was added. Finally, they were analyzed by confocal microscopy. 

 

2.7 Effect of bacteria on the viability of haemocytes within subpopulations 

 

The cytotoxic effect of bacteria on the survival of haemocyte subpopulations from 

penaeid shrimp was assessed in vitro using ethidium bromide monoazide (EMA, 

Sigma-Aldrich) and Hoechst (Invitrogen, Life Technologies) staining as described by 

Dantas-Lima et al. (2012). EMA binds to nucleic acid in cells with damaged 

membranes and was used for the detection of non-viable cells.  

Haemocyte subpopulations were seeded in 24-well cell culture plate (3x105 cells well-

1). Each well was supplied with a glass insert. After one hour of incubation at 27o C, 

allowing the cells to attach onto the substratum, the bacterium suspension (GFP-labeled 

V. campbellii, V. harveyi, and FITC-labeled E. coli) and fluorescent polystyrene beads 

(1 µm in size) with the ratio of one bacteria or bead per haemocyte were added. As a 

control, haemocytes were incubated in HM. The haemocytes were sampled at 0, 30, 60, 

120 and 180 min post inoculation and immediately stained with 200 µl of EMA 

(ethidium bromide monoazide, 1:50 dilution of EMA stock in HM). Samples were then 

incubated for 30 min on ice and in the dark, followed by exposure to incandescent light 

for 10 min, washed once with cold HM and fixed with 500 µl paraformaldehyde 4% 

for 10 min. Cells were then washed once with PBS (phosphate buffered saline), stained 

with 200 µl of Hoechst (0.01mg ml-1) (Invitrogen, Life Technologies) for 10 min, 

washed again and mounted on glass slides with 2 µl of anti-fading mounting medium 
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(glycerine-DABCO). The survival rate was evaluated in 9 visual fields of the inverted 

fluorescence microscope (Leica DM IRBE). In every field, the total number of cells 

and number of dead cells were counted. The total number of cells was determined by 

counting the cell nuclei stained by Hoechst counter staining (blue); the number of dead 

cells was assessed by counting the cells stained by EMA (red). 

Survival rate (%) = (1 - (number of dead cells/total number of cells)) x 100 

Each experiment was repeated three times and the average values were calculated. 

 

2.8 Statistical analysis 

 

All treatments were performed in three different experiments. The effect of treatments 

was statistically analyzed by analysis of variance (ANOVA). Differences were 

considered significant at p<0.05. All statistical analyses were conducted by SPSS 

software. 

 

3. Results 

 

3.1 Kinetic uptake of GFP-labeled V. campbellii and V. harveyi, FITC-labeled E. coli, 

and fluorescent polystyrene beads 

 

Haemocytes from two subpopulations (sub 1 and sub 4) of penaeid shrimp were able to 

phagocytose a variety of biological particles (V. campbellii, V. harveyi, and E. coli) as 

well as fluorescent polystyrene beads (Fig. 1−3). The percentage of sub 1 and sub 4 that 

contained ingested bacteria and beads varied according to the type of particles. The 

percentage of sub 1 and sub 4, which ingested the non-virulent E. coli and beads, was 

significantly lower (p<0.05) than the percentage that contained virulent V. campbellii 

and V. harveyi. Haemocytes of sub 2, sub 3 and sub 5 did not internalize bacteria/beads, 

indicating that these hemocyte subpopulations do not have phagocytic capacities (Fig. 

4). 
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Figure 1. Kinetic uptake of GFP-labeled V. campbellii and V. harveyi, FITC-labeled E. 
coli, and fluorescent beads by haemocytes of sub 1 and sub 4. Data (mean ± SE; n = 3) 
with different letters were significantly different (p < 0.05). 
 

After 60 min of incubation, the percentage of haemocytes of sub 1 taking up V. 

campbellii, V. harveyi, E. coli and polystyrene beads was 5.1 ± 1.5, 10.6 ± 1.1, 3.1 ± 

0.4, 6.8 ± 1.0, respectively; while the percentage of bacteria (V. campbellii, V. harveyi, 

E. coli) and polystyrene beads engulfed by haemocytes of sub 4 was 4.9 ± 1.2, 6.8 ± 

0.9, 1.6 ± 0.7, 4.7 ± 1.6, respectively. This percentage increased to 45.2 ± 3.9, 25.4 ± 

1.1, 12.2 ± 1.9, 15.5 ± 1 in sub 1 and 27.3 ± 2.9, 15.7 ± 0.6, 7.9 ± 1.1, and 9.1 ± 1.3 in 

sub 4 after 180 min of post incubation. 
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Figure 2. Kinetic uptake of V. campbellii and V. harveyi, E. coli and beads by 
haemocytes of sub 1. Scale bar: 15 µm. 
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Figure 3. Kinetic uptake of V. campbellii and V. harveyi, E. coli and beads by 
haemocytes of sub 4. Scale bar: 15 µm. 

 
Figure 4. Absence of bacteria and bead uptake in sub 2, 3 and 5. Scale bar: 15 µm. 
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Figure 5. Number of bacteria/beads taken up by phagocytic haemocytes of sub 1 and 
sub 4. Error bars are standard error of mean (n = 3). 
 

To determine the phagocytic index (PI), at least two hundred haemocytes in each group 

were analysed. The PI after 60 min of incubation in sub 1 and sub 4 were 1.5 ± 0.3, 1.2 

± 0.1 for V. campbellii; 1.4 ± 0.1, 1.4 ± 0.1 for V. harveyi, 1.1 ± 0.3, 1.3 ± 0.1 for E. 

coli, and 1.4 ± 0.1, 1.3 ± 0.1 for polystyrene beads, respectively (Fig. 5). After 180 min 

post incubation, the PI of sub 1 and sub 4 were 2.1 ± 0.2, 1.9 ± 0.2 for V. campbellii; 

1.9 ± 0.1, 2.1 ± 0.1 for V. harveyi, 1.5 ± 0.2, 1.5 ± 0.3 for E. coli, and 1.8 ± 0.1, 1.5 ± 

0.1 for polystyrene beads, respectively. 

 

3.2 Intracellular killing of bacteria by haemocyte subpopulations 

 

To determine the fate of intracellular bacteria post-phagocytosis, haemocytes of sub 1 

and sub 4 were inoculated with pathogenic V. campbellii, V. harveyi and non-

pathogenic E. coli bacteria for 2 h, washed and treated with gentamycin. The percentage 

of culturable intracellular bacteria in phagocytic cells was assessed by CFU counts 

obtained by inoculating lysates of infected cells at specific time points post-

phagocytosis on marine agar for Vibrio species and LB-agar for E. coli. The percentage 

of internalized culturable V. campbellii, V. harveyi, and E. coli in sub 1, just after 

inoculation, was 23.9 ± 5.9%, 30.2 ± 6.1%, and 3.4 ± 0.2%, respectively. After 180 min 

post inoculation, there was a rapid drop in the percentage of culturable V. harveyi (13.5 

± 1.1%); while the percentage of culturable V. campbellii slightly increased (25.5 ± 

6.0%). 
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The same case was also observed in sub 4. Just after inoculation, the percentage of 

internalized culturable V. campbellii, V. harveyi, and E. coli was 20.3 ± 6.3%, 7.9 ± 

5.9%, and 6.2 ± 0.3%, respectively. After 180 min post inoculation, there was a slightly 

drop in the percentage of culturable V. harveyi (6.5 ± 1.8%); while the percentage of 

culturable V. campbellii slightly increased (24.1 ± 6.4%). No culturable E. coli was 

observed at 180 min post inoculation in sub 1 and sub 4. For the control group, bacteria 

were not detected, showing the effectiveness of a 100 µg ml-1 dose of gentamycin for 

killing extracellular bacteria (Fig. 6). 

 

 
 

Figure 6. Intracellular culturability of bacteria after exposure to phagocytic haemocytes 
of sub 1 and sub 4. Data (mean ± SE; n = 3) with different letters were significantly 
different (p < 0.05). 
 

3.3 Acidification of pHrodo-labeled bacteria upon internalization 

 

In phagocytic cells, pathogens are internalized into phagosomes, which undergo a 

gradual maturation by fusion with lysosomes to become the phagolysosome, an 

efficient microbicidal compartment. A pH-sensitive dye, non-fluorescent at neutral pH 

typically found in the extracellular environment, can be used to label bacteria and 

monitor their acidification upon engulfment in a mature phagosome simply by 

examining whether these pHrodo-labeled bacteria fluoresce.  

To investigate the acidification of internalized pathogenic and non-pathogenic bacteria, 

these bacteria were labeled with pHrodo and examined by confocal microscopy. The 

results indicated that non-pathogenic bacteria (E. coli) as well as less pathogenic 

bacteria (V. harveyi) were engulfed by sub 1 and 4 of Litopenaeus vannamei into an 
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acidified mature phagosome at 3 h after inoculation, whereas the pathogenic bacteria 

(V. campbellii) did not end up in a phagosome that undergoes acidification (Fig. 7−8). 

 

 

Figure 7. Phagocytosis of pHrodo-labeled bacteria (V. campbellii, V. harveyi, and E. 
coli) by haemocytes of sub 1 under confocal microscopy. Bacteria became green during 
acidification. Scale bar: 15 µm. 
 

 
Figure 8. Phagocytosis of pHrodo-labeled bacteria (V. campbellii, V. harveyi, and E. 
coli) by haemocytes of sub 4 under confocal microscopy. Bacteria became green during 
acidification. Scale bar: 15 µm. 
 

3.4 Viability of different haemocyte subpopulations from Litopenaeus vannamei 

 

The exposure of haemocyte subpopulations to abiotic and biotic particles induced 

significant changes in cell viability, and the results are reported in Fig. 9. Incubation of 

haemocyte monolayers for 30 min with both pathogenic and non-pathogenic particles 

did not significantly affect haemocyte survival. However, after 180 min post 

inoculation, V. campbellii induced a dramatic decrease of haemocyte survival in 

comparison with V. harveyi, E. coli, polystyrene beads and control group. The 

haemocyte viability in sub 1 and sub 4 was 41.4 ± 6.3% and 30.2 ± 15.1% for V. 

campbellii; 84.1 ± 5.6% and 83.4 ± 4.1% for V. harveyi; 92.7 ± 2.8% and 92.3 ± 5.6% 
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for E. coli; 83.8 ± 7.9% and 83.4 ± 4.0% for polystyrene beads, and 91.9 ± 1.6% and 

84.4 ± 3.4% without bacteria, respectively. 

 

 
 

Figure 9. Effect of beads and bacterial species on survival of haemocytes of sub 1 and 
sub 4 as determined by ethidium monoazide bromide (EMA). Error bars are standard 
error of mean (n = 3). 
 

4. Discussion 

 

The results obtained in this study showed different in vitro responses of penaeid shrimp 

haemocytes to pathogenic and non-pathogenic bacteria as well as polystyrene beads in 

terms of phagocytosis, bactericidal capacity and survival of haemocytes. 

Penaeid shrimp hemocytes are able to phagocytose both biotic particles, such as 

bacteria, yeasts and apoptotic cells, as well as abiotic targets, such as fluorescent 

polystyrene beads. A previous study has shown that sub 1 (hyalinocytes) and sub 4 

(semi-granulocytes) efficiently phagocytosed the pathogenic bacteria V. campbellii in 

vitro (Dantas-Lima et al., 2013). In the current study, we demonstrated that these 

subpopulations were the only ones involved in phagocytosis of both pathogenic and 

non-pathogenic bacteria as well as abiotic particles like fluorescent polystyrene beads. 

The pathogenic bacteria (V. campbellii) was engulfed by a much larger percentage of 

cells compared to V. harveyi, E. coli and beads. The role of the non-phagocytic 

haemocytes of sub 2 and sub 3 in defense is unknown. They most probably perform 

immunological functions different from phagocytosis.  
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To the best of our knowledge, this is the first report where the phagocytic activity of 

Litopenaeus vannamei haemocyte subpopulations was studied in vitro. The maximum 

level of phagocytosis of bacteria recorded in haemocytes of sub 1 (hyalinocytes) and 

sub 4 (semi-granulocytes) in the present study was 45% and 27%, respectively. This is 

different from the level reported by Jayasree et al.  (2009) on Penaeus indicus. They 

found a higher percentage of phagocytosis of Vibrio alginolyticus in semi-granular 

(91%), no phagocytosis in hyalinocytes, but some in granular cells (33%). However, 

the authors did not mention the ratio between bacteria and haemocytes. Hose and 

Martin (1989) also achieved high phagocytic rates of gram-negative bacterium 

Cytophaga sp. in semi-granulocytes (31-90%) of ridgeback prawn Sicyonia ingentis. 

Kondo et al. (1992) reported that all three types of kuruma prawn haemocytes are 

involved in phagocytosis of sheep red blood cells. However, they concluded that the 

phagocytic activities of semi-granular and granular cells were much higher than that of 

hyaline cells. All these results seem to be different to our experiments, in which hyaline 

cells (sub 1) and semi-granular cells (sub 4) are the main cell types involved in 

phagocytosis. The lower value and the difference of cell types participating in 

phagocytosis in our research may have been caused by (1) species differences, (2) 

culture medium, (3) type of particles and (4) opsonization of particles before 

inoculation (more details: see general discussion). 

Both pathogenic and non-pathogenic bacteria were phagocytosed by penaeid shrimp 

haemocytes, however, only non-pathogenic bacteria were destroyed upon 

phagocytosis. When these bacteria were mixed with shrimp haemocyte subpopulations 

and incubated for 180 min, the percentage of culturable intracellular V. campbellii 

recovered was significantly higher than the percentage recovered from V. harveyi group 

treated in the same manner (p<0.05). No culturable intracellular E. coli was observed 

under the same condition. The present data suggest that haemocytes of sub 1 and 4 are 

responsible for most of the bacterial killing of non-pathogenic bacteria, but failed to 

kill pathogenic ones. The absence of acidification of the endosome carrying the bacteria 

V. campbellii was demonstrated in the present study by the use of pHrodo-labeled 

bacteria indicating that these pathogenic bacteria most probably inhibited phagosome 

maturation and phagosome-lysosome fusion. An interesting observation was observed 

during the uptake experiment. The majority of V. campbellii cells were rod-shaped 

immediately after ingestion but converted into a coccal form after 2 h of incubation 

(Fig. 2 and 3). It was speculated that the conversion from rod-shaped to a coccal form 
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may represent a survival strategy of the bacteria against the intracellular killing by 

phagocytic cells. Similarly in mammalian phagocytes, both pathogenic and non-

pathogenic Streptococcus suis are engulfed, but only non-pathogenic bacteria are killed 

whereas the pathogenic strain survives and even grows intracellularly (Williams, 1990). 

Also in insect, most of the E. coli strains are killed by phagocytic plasmatocytes 

(swelling of intracellular bacteria, nuclear and cytoplasmic disruption) after 120 min 

post inoculation (Rowley & Ratcliffe, 1976). Another study in mussel also reported that 

phagocytic haemocytes are able to engulf pathogenic vibrio species (Vibrio 

aestuarianus 01/032 and Vibrio splendidus LGP32) in vitro (Balbi et al., 2013) and that 

just like for Vibrio harveyi in our study they are able to kill about 50% of bacteria within 

90 min. 

V. campbellii caused the greatest drop of haemocyte viability. The other two strains of 

bacteria (V. harveyi and E. coli) as well as polystyrene beads did not have an effect on 

haemocyte viability when compared with the control group. Experiments with 

extracellular products of these bacteria indicated that they were not toxic to shrimp 

haemocytes (data not shown). Therefore, it seems that V. campbellii possesses a 

cytotoxic effect upon ingestion. Our results are in agreement with the findings of 

Nottage & Birkbeck, 1990. They reported that certain vibrio strains were toxic to 

Mytilus edulis haemocytes when present in large numbers. Another study conducted by 

Lambert et al., 2001 also showed that Vibrio pectinicida can cause a decrease in 

haemocyte viability of the scallop Pecten maximus upon contact with live bacteria. In 

the future, more work will be done to better understand the mechanisms of the 

haemocyte killing by V. campbellii upon uptake. 
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Kinetic analysis of internalization of white spot syndrome virus 

(WSSV) by haemocyte subpopulations of the penaeid shrimp, 

Litopenaeus vannamei (Boone), and the outcome for virus and 
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Abstract 

 

Little is known about the innate antiviral defense of shrimp haemocytes. In this context, 

the haemocytes of penaeid shrimp Litopenaeus vannamei (Boone) were separated by 

iodixanol density gradient centrifugation into 5 subpopulations (sub): sub 1 

(hyalinocytes), sub 2 & 3 (pro-hyalinocytes), sub 4 (semi-granulocytes) and sub 5 

(granulocytes) and exposed to beads, white spot syndrome virus (WSSV) and UV-

killed WSSV. In a first experiment, the uptake of beads, white spot syndrome virus 

(WSSV) and UV-killed WSSV by these different haemocyte subpopulations was 

investigated using confocal microscopy. Only haemocytes of sub 1, 4 and 5 were 

internalizing beads, WSSV and UV-killed WSSV. Beads were engulfed by a much 

larger percentage of cells (91.2 % in sub 1; 84.1% in sub 4 and 58.1% in sub 5) 

compared to WSSV (9.6% in sub 1; 10.5% in sub 4 and 7.9% in sub 5) and UV-killed 

WSSV (12.9% in sub 1; 13.3% in sub 4 and 11.8% in sub 5). In a second experiment, 

it was shown that upon internalization, WSS virions lost their envelope most probably 

by fusion with the cellular membrane of the endosome (starting between 30 and 60 min 

post inoculation) and that afterwards the capsid started to become disintegrated (from 

360 min post inoculation). Expression of new viral proteins was not observed. 

Incubation of haemocyte subpopulations with WSSV but not with UV-killed WSSV 

and polystyrene beads resulted in a significant drop in haemocyte viability. In order to 

find the underlying mechanism, a third experiment was performed in which haemocyte 

subpopulations were exposed to a short WSSV DNA fragment (VP19) and CpG ODNs. 

These small DNA fragments induced cell death. In conclusion, WSSV is efficiently 

internalized by hyalinocytes, semi-granulocytes and granulocytes, after which the virus 

loses its envelope; as soon as the capsids start to disintegrate, cell death is activated, 

which in part may be explained by the exposure of viral DNA to cellular sensing 

molecules. 
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1. Introduction 

 

Crustacean immunity is defined as a non-specific internal defense response that 

includes both humoral and cellular components, in which the blood cells (haemocytes) 

play an important role in the defense reactions against microorganisms, parasites and 

other foreign materials that might enter into the haemocoel (Bachere et al., 2004; Jose 

et al., 2010; Matozzo & Marin, 2010). The haemocytes are directly involved in 

recognition, coagulation, phagocytosis, encapsulation, nodule formation, and cytotoxic 

reaction (Hose et al., 1987; Johansson & Söderhäll, 1989; Hose et al., 1990). 

Haemocytes are traditionally classified into three distinct subpopulations: hyaline cells, 

semi-granular cells and granular cells, according to the number and size of granules 

(Söderhäll & Smith, 1983; van de Braak et al., 1996; Li & Shields, 2007; Smith, 2010; 

Hong et al., 2013). Recently, haemocytes of penaeid shrimp (Litopenaeus vannamei) 

were separated into 5 subpopulations (Dantas-Lima et al., 2013). The haemocytes of 

two additional subpopulations resemble the so-called pro-hyalinocytes. These 

subpopulations need further characterization. 

Phagocytosis is one of the major defense mechanisms when foreign particles intrude 

their host. The phagocytic process is thought to occur in two steps: first, the attachment 

of the particles to the cell surface and second, the internalization into the cytoplasm. 

This process has extensively been studied by the authors for bacteria (Tuan et al., 2015), 

however, information on the uptake of viruses is scarce. 

White spot syndrome virus (WSSV), the most serious pathogen in penaeid shrimp (Lo 

et al., 1996a) was reported since 1992-1993 throughout the world (Durand et al., 1996; 

Lo et al., 1996b; Karunasagar et al., 1997; Kasornchandra et al., 1998; Magbanua et al., 

2000; Rajan et al., 2000; Bondad-Reantaso et al., 2001; Dieu et al., 2004). It was 

originally classified as an unassigned member of the Baculoviridae family, but has been 

later re-classified as a new virus family, the Nimaviridae (genus Whispovirus) (van 

Hulten et al., 2001). WSSV is an enveloped, non-occluded and rod-shaped DNA virus 

with a bacilliform to ovoid or ellipsoid shape. The viral envelope, having a thickness 

of 6-7 nm, is a lipidic, trilaminar membranous structure with two electron transparent 

layers divided by an electron opaque layer (Wonteerasupaya et al., 1995; Durand et al., 

1997; Nadala et al., 1998). The nucleocapsid is located inside the envelope and has a 

striated appearance and a size of 420 ± 18 nm in length and 68 ± 5 nm in width 

(Wonteerasupaya et al., 1995; Hameed et al., 1998). WSSV has a remarkable broad 
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host range among crustaceans. It can infect a wide range of aquatic crustaceans living 

in marine, brackish and fresh water (Lo et al., 1996b; Flegel, 1997; Peng et al., 1998; 

Wang et al., 1998; Rajendran et al., 1999; Flegel, 2006) and can cause extensive 

mortality in shrimp pond within a period of 3 to 7 days and massive production losses 

to aquaculture industry (Lightner, 1996). Curing and preventing WSSV disease is still 

impossible, because the basic mechanisms of WSSV infection and replication are 

poorly understood. 

In literature, there are conflicting data regarding the susceptibility of crustacean 

haemocytes to WSSV. Some researchers have claimed that haemocytes of crustacean 

are susceptible to WSSV (Wang et al., 2002; Jiang et al., 2006; Jiravanichpaisal et al., 

2006a). Others mentioned that crustacean haemocytes could not support WSSV 

replication (Itami et al., 1999; Shi et al., 2005; Escobedo-Bonilla et al., 2007; Wu et al., 

2015). In addition, WSSV has been found to induce apoptosis in host haemocytes 

during an experimental WSSV infection in shrimp (Hameed et al., 2006; 

Jiravanichpaisal et al., 2006a). The aims of the present work were to (i) investigate the 

kinetics of the uptake of both intact and UV-inactivated WSSV in the different 

haemocyte subpopulations of Litopenaeus vannamei as well as fluorescent polystyrene 

beads, (ii) to analyze the fate of virus and cell upon ingestion and (iii) to examine 

underlying mechanisms. 

 

2. Materials and methods 

 

2.1 Experimental animals 

 

Specific pathogen-free (SPF) penaeid shrimp, Litopenaeus vannamei, with a mean 

body weight of 25 ± 5 g in inter-molt (C) stage (Corteel et al., 2012) were used. The 

shrimp were imported from Holland and were reared in a recirculation system at the 

Laboratory of Artemia & Reference Center (ARC), Faculty of Bioscience Engineering, 

Ghent University, Belgium. They were fed twice daily at a total rate of 5% of their 

mean body weight. Water temperature was kept at 27 ± 1o C, pH 7.5-8.0, and salinity 

at 35 ± 1 g l-1. Regular water changes and bio-filters kept the total ammonia-N below 

0.5 mg l–1 and nitrite-N below 0.15 mg l–1. 
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2.2 Preparation of viral inoculum 

 

To prepare purified virus, shrimp (15 ± 5g) were intramuscular injected with 50 µl of a 

ten times diluted white spot syndrome virus stock. This WSSV stock was isolated from 

naturally infected Penaeus monodon in 1996 in Thailand and passaged once in crayfish. 

Shrimp were monitored every 6 h over 72 h. When shrimp became moribund, 

haemolymph was withdrawn directly from the ventral sinus located at the base of the 

second abdominal pleonite, using a pre-cooled 2 ml syringe with 20-gauge needle 

(0.9x25mm). Haemolymph was centrifuged at 500 g for 10 min at 4°C and the 

supernatant was collected, pooled together, and centrifuged again in the same way. The 

supernatant was filtered through a 0.4µm Millipore filter membrane. WSSV was 

purified by a discontinuous iodixanol-gradient ultracentrifugation (Dantas‐Lima et al., 

2013). 

 

2.3 Treatment with UV-irradiated virus 

 

WSSV was ultraviolet (UV) irradiated at 1000 mJ/cm2 for 10 min to inactivate its 

infectivity. The UV-irradiated virus was injected into penaeid shrimp. The loss of 

infectivity was confirmed as previously described by Escobedo-Bonilla et al. (2005).  

 

2.4 Titration of WSSV suspension prepared from purified virus 

 

In vivo WSSV titration: the infectivity titer in the gradient samples was assessed as 

previously described by Escobedo-Bonilla et al. (2005). Briefly, samples were diluted 

in steps, with dilutions ranging from 10-4 to 10-8. Fifty microlitres of each dilution was 

intramuscularly injected in the junction between the third and fourth abdominal 

segment of shrimp. Five shrimp (2-5g/shrimp) were used per dilution. Shrimps were 

housed individually in 10 l aquarium tank supplied with aeration. The temperature was 

maintained at 27 ± 1°C. Over the course of 5 days, dead and surviving shrimp were 

collected and the cephalothorax was dissected longitudinally, embedded in 2% 

methylcellulose (Fluka) and quickly frozen at -20°C. Cryosections of 5 µm were made 

and immediately fixed in absolute methanol at -20°C for 20 min. Sections were washed 

three times for 5 min each in phosphate buffered saline (PBS) and incubated for 1 h at 

37°C with W29 monoclonal antibody (kindly provided by Parin Chaivisuthangkura, 
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Srinakharinwirot University, Thailand) against VP28 (Poulos et al., 2001). Then they 

were washed three times for 5 min each in PBS and incubated for 1 h at 37°C with 0.02 

µg ml-1 of fluorescein isothiocyanate (FITC)-labelled goat anti-mouse IgG antibodies 

(F-2761 Molecular Probes, The Netherlands). Normal goat serum was added at 10% 

(v:v) in both antibody suspensions. Finally, the stained sections were analyzed by 

fluorescence microscopy (Leica DM IRBE) to confirm the presence or absence of 

WSSV infection in dead and surviving shrimp. The infectivity titer was calculated from 

these infection data using the Reed and Muench formula (Reed & Muench, 1938) and 

expressed as shrimp infectious dose 50% endpoint (SID50).  

 

The titer of purified virus in the gradient sample was 106.1SID50 ml-1. 

 

Quantification of viral particles by confocal microscopy: the number of viral particles 

in the samples was estimated using the method described by Dantas-Lima et al. (2013). 

Briefly, the samples collected after purification were tenfold diluted in PBS. Red 

fluorescent 0.2 µm polystyrene beads (Fluospheres, Invitrogen) at a concentration of 

108 ml-1 and collagen type I (Sigma) at a ratio of 1:15 (v/v) were added to each sample. 

Three microlitres of these suspensions were placed on glass slides coated with 3-

aminopropyl- triethoxysilane (Sigma), allowed to dry for 20 min at 37oC and 

immediately fixed with 4% paraformaldehyde for 10 min at room temperature. These 

smears were stained by indirect immunofluorescence as described above for staining of 

shrimp tissues. The number of beads and viral particles was counted using confocal 

microscopy. The concentration of viral particles was determined by calculating its 

proportion to the number of fluorescent beads that were added to each sample at a 

known concentration.  

It was shown that 1 ml of purified viral particle suspension contained 7.2 x 108 WSSV 

particles.  

 

2.5 Haemolymph extraction and haemocyte separation 

 

Haemolymph was extracted from the ventral sinus located at the base of the second 

abdominal pleonite, using a pre-cooled 2 ml syringe with 20 gauge needle (0.9x25mm) 

filled with pre-cooled marine anti-coagulant (450 mM NaCl, 100 mM glucose, 30 mM 

tri-sodium citrate, 26 mM citric acid, 10 mM EDTA, pH 5.4) (Söderhäll & Smith, 1983) 
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in a proportion of 1:1 with the required volume of haemolymph. Care was taken to 

disinfect the area with 70% ethanol before haemolymph withdrawal to prevent the entry 

of opportunistic microorganisms into the haemocoel.  

The different haemocyte subpopulations of Litopenaeus vannamei were separated by a 

two-step continuous density gradient of iodixanol (Optiprep 60%, Axis-Shield, UK) as 

described by Dantas-Lima et al. (2013). The two gradients were prepared by under-

layering 2.5 ml of each iodixanol concentration (10%, 15%, 20% iodixanol for the first 

gradient and 7%, 10%, 13%, 16% iodixanol for the second gradient) into a 15 ml non-

pyrogenic Sarstedt tube, and incubated at 4oC for 18 h to allow the formation of a 

continuous gradient.  

Haemolymph was extracted, poured into pre-cooled 15 ml non-pyrogenic 

polypropylene centrifuge tube (Sarstedt, Germany) and immediately layered onto the 

first gradient (10%, 15%, 20% iodixanol; 2.5 ml per fraction). This gradient was 

centrifuged at 2000 g for 10 min at 4oC with a Beckman CPR centrifuge (Rotina 380R, 

Hettich Lab Technology, Germany). Three sharp cell bands (band 1, band 2 and band 

3 determined as subpopulation 1 (sub 1), 2 (sub 2) and 5 (sub 5)) (Dantas-Lima et al., 

2013) and one dispersed cell band in between band 2 and band 3 containing a mixture 

of subpopulation 3 and 4 (sub 3+4) were formed. The first two bands (band 1 and band 

2) from the top were located very close to each other, and impossible to harvest without 

cross-contamination. To improve the purity, these two bands were collected together in 

1 ml and put into a pre-cooled 15 ml tube containing 2 ml sPBS (shrimp phosphate 

buffered saline, 18.1g NaCl in 1 l of PBS: 137 mM NaCl, 2.68 mM KCl, 10 mM 

Na2HPO4, 1.75 mM KH2PO4, pH 7.4), and layered onto the second gradient (7%, 10%, 

13%, 16% iodixanol; 2.5 ml per fraction). The second gradient was then centrifuged at 

2000 g for 15 min at 4oC with Beckman CPR centrifuge. Afterwards, band 1 (sub 1) 

and band 2 (sub 2) were physically separated.  

To separate haemocytes of sub 3 and 4 of the dispersed cell band, we took advantage 

of the differential adhesion characteristics of cells from sub 3 and sub 4 to glass inserts. 

Haemocytes were seeded in Nunc® 24-well cell culture plates with glass inserts for 1 

h. Haemocytes of sub 4 strongly adhered to the insert surface, whereas haemocytes of 

sub 3 did not.  
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2.6 Internalization of WSSV by haemocyte subpopulations of penaeid shrimp 

 

Haemocyte subpopulations from each band of the first and the second gradient were 

seeded into Nunc® 24-well cell culture plates supplied with glass inserts at a 

concentration of 1x105 cells well-1. Plates were incubated at 27oC for 1 h allowing 

haemocytes of subpopulation 1 (sub 1), 4 (sub 4) and 5 (sub 5) to attach on the 

substratum. Non-adherent haemocytes of subpopulation 2 (sub 2) and 3 (sub 3) were 

suspended by pipetting gently up and down six times and were put into Nunc® 24-well 

cell culture plates.  Afterwards, the viral suspension and fluorescent polystyrene beads 

(0.2 µm in size) at a ratio of 100 viral particles or beads per haemocyte were added. 

The glass inserts containing haemocytes of sub 1, sub 4, sub 5 and the supernatant 

containing non-adherent haemocytes of sub 2, sub 3 were collected at different time 

points of 30, 60, 120, 180, 360 and 720 min post inoculation.  

For evaluation of the internalization kinetics of foreign particles by adherent 

haemocytes of sub 1, sub 4 and sub 5, the glass inserts with haemocytes were transferred 

to new Nunc® 24-well cell culture plates, washed three times with cold HM and 

immediately fixed with 500 µl of paraformaldehyde 4% for 10 min. Samples were then 

washed once with PBS (phosphate buffered saline), permeabilized with Triton X-100 

0.1% for 5 min, washed two times with PBS and incubated for 1 h at 37oC with 200 µl 

of monoclonal antibody W29 (1:50 in PBS) against VP28 envelop protein. Then, they 

were washed three times for 5 min each in PBS and incubated for 1 h at 37oC with 0.02 

µg ml–1 of fluorescein isothiocyanate (FITC)-labeled goat anti-mouse IgG antibodies 

(F-2761 Molecular Probes). Normal goat serum was added at 10% (v:v) in both 

antibody suspensions. Afterwards, they were washed again and stained with 200 µl 

phalloidin Texas Red® diluted in PBS (4 units ml-1) for 1 h at 37oC, rinsed three times 

with PBS (5 min each), and stained with 200 µl Hoechst (1:100 dilution of Hoechst 

stock in PBS, stock solution 1 mg ml-1) for 10 min at room temperature. Finally, the 

samples were washed and mounted upside down on a drop of glycerine.  

For evaluation of the uptake kinetics of foreign particles by non-adherent haemocytes 

of sub 2 and sub 3, the supernatant with non-adherent haemocytes were collected and 

transferred to eppendorf tubes, fixed with paraformaldehyde 4% for 10 min and 

permeabilized with Triton X-100 0.1% for 5 min. Washing steps were performed in 

eppendorf tubes by centrifugation at 500 g for 5 min at 4oC. Then, fixed haemocytes of 
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sub 2 and sub 3 were cytospinned (Shandon Cytospin 3, Thermo Scientific, USA) at 

700 rpm (50 g) for 5 min onto glass slides. Afterwards, samples were stained with 

primary antibody, secondary antibody, phalloidin Texas Red® and Hoechst as described 

above. 

The percentage of endocytosis in haemocytes and the endocytosis index was evaluated 

in 9 visual fields by confocal microscopy, using the following calculation: 

 

ER (Endocytosis rate) = (Number of cells showing endocytosis/total number of cells) 

x 100 

EI (Endocytosis index) = Number of engulfed particles/number of endocytosis cells 

Sequential confocal pictures were taken from the cell base to its apex to determine 

internalized particles. 

 

2.7 Kinetics of WSSV disassembly in cytoplasmic endosome of shrimp haemocytes 

within subpopulation 1, 4 and 5  

 

1x105 cells well-1 were seeded into Nunc® 24-well cell culture plates supplied with glass 

insert. After 1 h of incubation at 27oC allowing cells to attach onto the glass insert, the 

virus suspension (100 viral particles/haemocyte) was added. The glass inserts were 

sampled at 30, 60, 120, 180, 360 and 720 mpi and washed 3 times with cold HM. Then 

they were fixed with 500 µl paraformaldehyde (4%) for 10 minutes, permeabilized with 

triton X-100 0.1% for 5 minutes, and washed two times with PBS. 200 µl of primary 

antibody solution W29 against VP28 envelope protein (1:50 in PBS together with 10% 

normal goat serum) was added and incubated at 37oC for 1h. Then, they were washed 

three times for 5 min each in PBS and incubated for 1 h at 37oC with fluorescein 

isothiocyanate (FITC)-labeled goat anti-mouse IgG antibodies (F-2761 Molecular 

Probes) (GαM-FITC; 1:200 in PBS together with 10% normal goat serum). The 

samples were stained with 200 µl of rabbit polyclonal antibody WSSV419 (1:200 in 

PBS together with 10% normal goat serum), which is directed against WSSV 

nucleocapsid protein VP664 (Leu et al., 2005) and goat anti-rabbit IgG Alexa Fluor 647 

(1:300 in PBS together with 10% normal goat serum). Each antibody was incubated for 

1 h at 37oC. Samples were washed after each incubation and stained afterwards with 
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200 µl Hoechst (1:100 dilution of Hoechst stock in PBS, stock solution 1 mg ml-1) for 

10 min at room temperature. Finally, the samples were washed and mounted upside 

down on a drop of glycerine. 

 

2.8 Effect of WSSV on the viability of haemocytes within subpopulation 1, 4 and 5 

 

The effect of virus on the survival of haemocyte subpopulations of penaeid shrimp was 

assessed in vitro using ethidium bromide monoazide (EMA, Sigma-Aldrich) and 

Hoechst (Invitrogen, Life Technologies) staining as described by Dantas-Lima et al. 

(2012). EMA binds to nucleic acid in cells with damaged membranes and is used for 

the detection of non-viable cells.  

Haemocyte subpopulations were seeded in 24-well cell culture plates (1x105 cells well-

1). Each well was supplied with a glass insert. After one hour of incubation at 27oC, 

allowing the cells to attach onto the substratum, the viral inoculum (live and UV-killed 

WSSV) and fluorescent polystyrene beads (0.2 µm in size) with the ratio of 100 viral 

particles or beads per haemocyte were added. The glass inserts were sampled at 0, 30, 

60, 120 and 180, 360 and 720 min post inoculation and immediately stained with 200 

µl of EMA (ethidium bromide monoazide, 1:50 dilution of EMA stock in HM). 

Samples were then incubated for 30 min on ice and in the dark, followed by exposure 

to incandescent light for 10 min, washed twice with cold HM and fixed with 500 µl 

paraformaldehyde 4% for 10 min. Cells were then washed once with PBS (phosphate 

buffered saline), stained with 200 µl of Hoechst (0.01 mg ml-1) (Invitrogen, Life 

Technologies) for 10 min, washed again and mounted on glass slides with 2 µl of anti-

fading mounting medium (glycerine-DABCO). The survival rate was evaluated in 9 

visual fields of the inverted fluorescence microscope (Leica DM IRBE). In every field, 

the total number of cells and number of dead cells were counted. The total number of 

cells was determined by counting the cell nuclei stained by Hoechst counter staining 

(blue) while the number of dead cells was assessed by counting the cells stained by 

EMA (red). 

 

Survival rate (%) = (1 - (number of dead cells/total number of cells)) x 100 

 

Each experiment was repeated three times and the average values were calculated. 
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2.9 Effect of a small DNA WSSV fragment (111 bp) and CpG oligodeoxynucleotides on 

the viability of haemocytes within subpopulation 1, 4 and 5 

 

DNA extraction: DNA was extracted from WSSV-Thai 1 stock using the QIAamp 

DNA mini kit (Qiagen, California, USA) and amplified by polymerase chain reaction. 

Primers were designed in a conserved region of the VP19 coding sequence using the 

Primer3Plus website (Li et al., 2015). The VP19 DNA fragment was amplified in a 50 

µl of polymerase chain reaction mixture using the primers designed previously in our 

lab (forward primer 5’-ATTGGTATCCTCGTCCTGGC-3’ and reverse primer 5’-

GTTATCGTTGGCAGTGTCGTC-3’). Fragment length (111 bp) with a sequence 

ATTGGTATCCTCGTCCTGGCCGTCATGAATGTATGGATGGGACCAAAGAA

GGACAGCGATTCTGACACTGATAAGGACACCGATGATGATGACGACACTG

CCAACGATAAC was cut from the band of agarose gel electrophoresis. This band was 

then purified using the Nucleospin® Gel and PCR clean-up kit (Macherey-Nagel, 

Duren, Germany). The amount of DNA fragment was determined using the Nanodrop 

2000 system. 

 

Exposure of haemocytes to small DNA WSSV fragment and CpG: to determine the 

effect of a small fragment of WSSV DNA and CpG ODNs on the viability of 

haemocytes, separated haemocytes of penaeid shrimp were seeded on a glass insert in 

24-well cell culture plate (1x105 cells well-1). After one hour of incubation at 27oC, 

allowing the cells to attach onto the substratum, the small WSSV DNA fragment and 

CpG oligodeoxynucleotides (CpG ODNs 2006, 5’-

TCGTCGTTTTGTCGTTTTGTCGTT-3’, purchased from Invivogen-USA) at a dose 

of 1 µg/ml were added. The haemocytes on glass inserts were sampled at 0, 180, 360 

and 720 min post inoculation and stained with EMA and Hoechst as described above.    
 

2.10 Statistical analysis 

 

All exposures were performed in three different experiments. The effect of exposures 

was statistically analyzed by analysis of variance (ANOVA). Differences were 

considered significant at p < 0.05. All statistical analyses were conducted by SPSS 

software. 
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3. Results 

 

3.1 Kinetic analysis of internalization of WSSV by haemocyte subpopulations of 

penaeid shrimp  

 

To analyze the internalization kinetics of WSSV (both intact and UV-inactivated 

WSSV) and fluorescent polystyrene beads by shrimp haemocyte subpopulations, the 

cells were seeded in 24-well culture plates with glass inserts and incubated with beads 

or virus at a MOI of 100. Beads and viral internalization were analyzed by using 

confocal microscopy at different time points.  

Haemocytes from sub 1, sub 4 and sub 5 of penaeid shrimp were able to endocytose 

WSSV and UV-inactivated WSSV as well as fluorescent polystyrene beads. The 

percentage of haemocytes of sub 1, sub 4 and sub 5 that contained endocytosed WSSV 

and beads varied according to the type of particles. After 30 min of incubation, the 

percentage of haemocytes that taking up WSSV, UV-inactivated WSSV and 

polystyrene beads was 5.7 ± 0.4%, 7.7 ± 0.8%, 40.5 ± 6.0% in sub 1; 4.0 ± 1.6%, 5.0 ± 

2.5%, 35.4 ± 7.2% in sub 4 and 3.9 ± 1.6%, 8.4 ± 0.6%, 14.6 ± 1.7% in sub 5, 

respectively. The number of internalized WSSV, UV-inactivated WSSV and 

polystyrene beads per internalizing cell was 1.7 ± 0.5, 1.4 ± 0.1, 2.0 ± 0.1 in sub 1; 1.6 

± 0.1, 1.4 ± 0.1, 2.0 ± 0.4 in sub 4 and 1.4 ± 0.1, 1.4 ± 0.1, 1.5 ± 0.1 in sub 5, 

respectively. 

The percentage and the number of WSSV, UV-inactivated WSSV and polystyrene 

beads that internalized by haemocytes of sub 1, 4 and 5 was significantly different at 

720 mpi (p < 0.05). At this time point, the percentage of haemocytes that phagocytosed 

WSSV, UV-inactivated WSSV and polystyrene beads was 9.6 ± 2.4%, 12.9 ± 0.4%, 

91.2 ± 8.5% in sub 1; 10.5 ± 3.0%, 13.3 ± 0.7%, 84.1 ± 6.6% in sub 4 and 7.9 ± 0.5%, 

11.8 ± 0.6%, 58.1 ± 5.9% in sub 5, respectively. The number of internalized WSSV, 

UV-inactivated WSSV and polystyrene beads per internalizing cell was 1.4 ± 0.1, 2.0 

± 0.1, 4.8 ± 0.3 in sub 1; 1.7 ± 0.1, 1.9 ± 0.3, 4.2 ± 0.2 in sub 4 and 1.4 ± 0.1, 1.6 ± 0.3, 

2.7 ± 0.3 in sub 5, respectively.  
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Figure 1. Uptake process of polystyrene beads, WSSV and UV-killed WSSV in 
haemocytes of sub 1. Data (mean ± SE; n = 3) with different letters were significantly 
different (p < 0.05). Scale bars: 15 µm. 
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Figure 2. Uptake process of polystyrene beads, WSSV and UV-killed WSSV in 
haemocytes of sub 4. Data (mean ± SE; n = 3) with different letters were significantly 
different (p < 0.05). Scale bars: 15 µm. 
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Figure 3. Uptake process of polystyrene beads, WSSV and UV-killed WSSV in 
haemocytes of sub 5. Data (mean ± SE; n = 3) with different letters were significantly 
different (p < 0.05). Scale bars: 15 µm. 
 

Haemocytes of sub 2 and sub 3 did not internalize WSSV/beads, indicating that these 

haemocyte subpopulations do not have phagocytic capacities for small particles. 
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Figure 4. The images are a sequence of confocal microscopy pictures taken from the 
cell base (1) to its apex (4). This illustrates the process of virus internalization and 
therefore proves that cells from sub 1, sub 4 and sub 5 express endocytic activity. 
 

3.2 Kinetics of WSSV disassembly in cytoplasmic endosome of shrimp haemocytes 

within subpopulation 1, 4 and 5  

 

Intact WSSV virions (colocalization of nucleocapsid and envelope) were observed in 

the cytoplasm of penaeid shrimp haemocytes shortly after incubation. At 30 mpi, the 
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envelope and capsid of WSSV started to separate as demonstrated by staining with W29 

(mouse monoclonal antibodies directed against WSSV envelope VP28) and WSSV419 

(rabbit polyclonal antibodies against WSSV capsid protein VP664). The number of 

complete virions (co-localization of VP28 and VP664), single VP28 and single VP664 

was 1.76 ± 0.21, 1.19 ± 0.13 and 1.55 ± 0.17 particles per positive cell in sub 1; 1.46 ± 

0.06, 1.12 ± 0.08 and 1.50 ± 0.21 particles per positive cell in sub 4; 1.61 ± 0.13, 1.22 

± 0.20 and 1.33 ± 0.16 particles per positive cell in sub 5. At 180 mpi, the number of 

single VP28 and VP664 positive particles reached a maximum level (1.94 ± 0.04 and 

2.07 ± 0.01 particles per positive cell in sub 1; 2.15 ± 0.21 and 2.36 ± 0.10 particles per 

positive in sub 4; 1.94 ± 0.01 and 2.11 ± 0.02 particles per positive cell in sub 5), while 

the complete virions dropped to a minimum (0.04 ± 0.0 particles per positive cell in sub 

1; 0.08 ± 0.01 particles per positive cell in sub 4; 0.25 ± 0.02 particles per positive cell 

in sub 5). Later on, the capsids started to disintegrate (reduction from 2.07 ± 0.01 

particles per positive cell at 180 min pi to 1.44 ± 0.05 particles per positive cell at 720 

min pi in sub 1; from 2.36 ± 0.1 particles per positive cell at 180 min pi to 1.81 ± 0.01 

particles per positive cell at 720 min pi in sub 4; from 2.11 ± 0.02 particles per positive 

cell at 180 min pi to 1.49 ± 0.37 particles per positive cell at 720 min pi in sub 5). 
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Figure 5. Kinetics of WSSV disassembly in cytoplasmic endosome of penaeid shrimp 
haemocytes within sub 1. Error bars are standard error of mean (n = 3). Scale bar: 5 
µm. 
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Figure 6. Kinetics of WSSV disassembly in cytoplasmic endosome of penaeid shrimp 
haemocytes within sub 4. Error bars are standard error of mean (n = 3). Scale bar: 5 
µm. 
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Figure 7. Kinetics of WSSV disassembly in cytoplasmic endosome of penaeid shrimp 
haemocytes within sub 5. Error bars are standard error of mean (n = 3). Scale bar: 5 
µm. 
 

3.3 Effect of WSSV on the viability of haemocytes within subpopulations  

 

The exposure of haemocyte subpopulations to abiotic and biotic particles induced 

significant changes in cell viability. Incubation of haemocyte monolayers for 30 min 

with both abiotic and biotic particles did not significantly affect haemocyte survival. 

However, after 720 min post inoculation, WSSV induced a dramatic decrease of 

haemocyte survival in comparison with UV-inactivated WSSV and polystyrene beads. 

The haemocyte viability in sub 1, 4 and 5 was 49.6 ± 5.2%, 38.5 ± 5.7%, and 12.2 ± 

1.1% for WSSV; 83.8 ± 2.3%, 81.1 ± 5.8%, and 46.9 ± 4.2% for UV-inactivated 

WSSV; 82.9 ± 8.2%, 70.7 ± 16.7% and 39.4 ± 7.5% for polystyrene beads; 82.8 ± 5.4%, 

70.8 ± 1.8% and 49.7 ± 6.1% for mock exposure, respectively. 
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Figure 8. Effect of beads, WSSV and UV-killed WSSV on survival of haemocytes of 
sub 1, 4 and 5 as determined by ethidium monoazide bromide (EMA). Data (mean ± 
SE; n = 3) with different letters were significantly different (p < 0.05). 
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3.4 Effect of small WSSV DNA fragment (VP19) and CpG oligodeoxynucleotides on the 

viability of haemocytes within subpopulations  

 

Small WSSV DNA fragment (VP19) and CpG ODNs were added to shrimp haemocyte 

subpopulations as described above to determine if there was any effect of DNA genetic 

material on the viability of shrimp haemocytes within the different subpopulations. The 

percentage of viable haemocytes within sub 1, 4 and 5 upon mock exposure decreased 

slightly during the observation period of 180 mpi (99.1 ± 0.2% in sub 1; 97.5 ± 2.0% 

in sub 4; 91.0 ± 7.5% in sub 5). Both WSSV DNA fragment and CpG ODNs potently 

induced cell death and caused a statistically significant difference of cell viability in 

culture at 720 mpi (79.5 ± 12.7% and 84.9 ± 1.8% in sub 1; 73.4 ± 13.9% and 77.8 ± 

2.2% in sub 4; 50.8 ± 8.4% and 58.0 ± 3.3% in sub 5). UV treatment of the WSSV 

DNA fragment did not affect the viability. 
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Figure 9. Effect of short DNA fragment of WSSV (111 bp) and CpG on survival of 
haemocytes of sub 1, 4 and 5 as determined by ethidium monoazide bromide (EMA). 
Data (mean ± SE; n = 3) with different letters were significantly different (p < 0.05). 
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4. Discussion 

 

The haemocyte subpopulations of penaeid shrimp can be separated into five different 

subpopulations by centrifugation in a two-step continuous density gradient of iodixanol 

(Dantas-Lima et al., 2013). Each subpopulation has different functions and is involved 

in different defense reactions. A previous study has shown that haemocytes of sub 1 

(hyalinocytes) and sub 4 (semi-granulocytes) efficiently phagocytose large abiotic 

particles (fluorescent polystyrene beads with a diameter of 1 µm) and biotic particles 

(pathogenic and non-pathogenic bacteria) in vitro (Dantas-Lima et al., 2013; Tuan et 

al., 2015). In the current study, we demonstrated that the same subpopulations, together 

with haemocytes of sub 5 (granulocytes) were the ones involved in endocytosis of small 

abiotic (fluorescent polystyrene beads with a diameter of 0.2 µm) and biotic particles 

(WSSV and UV-killed WSSV). The role of the non-phagocytic haemocytes of sub 2 

and sub 3 in defense is totally not clear and more research is necessary to elucidate their 

immunological function. 

To the best of our knowledge, this is the first report where the endocytic activity of the 

five different haemocyte subpopulations of P. vannamei was studied in vitro. WSS 

virions appear to bind directly to cell surface molecules that subsequently mediate 

internalization in hyalinocytes, semi-granulocytes and granulocytes. This binding is 

most probably mediated by viral attachment proteins on the surface of the virus particle 

(viral ligands) and certain virus receptors on the target cells. VP28 of WSSV has been 

considered as attachment and penetration protein (Yi et al., 2004). This protein has a 

strong hydrophobic region and can bind to the shrimp cells, and then help the virus to 

enter the cytoplasm. By confocal microscopy, it is interesting to note that some virus 

particles were present as single particles while others grouped together on certain areas 

of the cell surface. These findings suggest that WSSV accumulates at areas with high 

endocytic activity on the plasma membrane. Besides, we also observed that a lot of 

virus particles were sticking to the cell membrane, but did not internalize. This suggests 

that WSSV has the ability to escape immune recognition by host haemocytes. Another 

possibility is that the host cells recognized WSSV and initiate an efficient immune 

response to block the endocytosis. This explains also the five to 10 fold lower 

percentages of cells that take up WSSV in comparison with abiotic beads.       

After entry, the virus envelope and nucleocapsid started to separate from each other. 

The nucleocapsid seemed to be transported to the region nearby the nucleus. This 
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process resembles well the early stage of a WSSV infection of secondary cells of the 

lymphoid organ as earlier demonstrated by Li et al. (2015). However, the uptake of 

WSSV by haemocytes of penaeid shrimp did not result in efficient expression of new 

viral proteins. It looks like the viral replication cycle is blocked at the viral genome 

expression in the nucleus. How the replication was blocked is not clear. It is possible 

that there is a cellular mechanism that inhibits viral replication in endocytic 

haemocytes. This antiviral mechanism could restrict infection at the 

transcriptional/translational level. Another explanation could be that virus may enter 

latency. A similar phenomenon was reported in human monocytes by Noriega et al. 

(2014). These authors demonstrated that human cytomegalovirus utilizes cellular 

miRNAs to repress expression of viral transcripts. Another reason could be the 

activation of cell death before viral protein expression. By committing suicide, cells 

become recognized and are targets for adjacent non-infected haemocytes. Upon uptake, 

these cells become eliminated. This system fully blocks viral spread.   

Viruses can be distinguished from other organisms because they are obligatory 

intracellular pathogens. They absolutely require living host cells in order to replicate. 

In the current experiment, WSSV, the most serious pathogen to penaeid shrimp, 

induced cell death, which was found to be time-dependent as the percentage of 

apoptotic haemocytes increased with the time course of the infection. More than 80% 

of haemocytes of sub 5 and 50% of haemocytes of sub 1 and 4 were dead at 720 mpi. 

Our findings are in agreement with the finding of Wongprasert et al. (2003) who 

reported that 60% of haemocytes of Penaeus indicus were dead during an in vivo WSSV 

infection. By administering CpG oligodeoxynucleotides and a short WSSV DNA 

fragment (VP19) to shrimp haemocytes in vitro, cells also died, showing that DNA on 

itself may activate cell death. The molecular mechanism involved in CpG ODNs and 

viral DNA mediated cell death is unknown. It is very well possible that CpG ODNs and 

viral DNA are sensed by Toll like receptors and then activate Toll and JAK/STAT 

signaling pathway, resulting in the death of cells as earlier has been shown for 

mammalian cells (Liang et al., 2010; Sun et al., 2013). By committing suicide, the virus 

can no longer replicate and the dead haemocytes, that contain fragmented viruses, are 

destroyed by neighboring haemocytes. This is a beautiful example of the strong 

antiviral innate immunity in shrimp.  

In conclusion, our study showed that WSSV is efficiently internalized by hyalinocytes, 

semi-granulocytes and granulocytes of penaeid shrimp. Upon internalization, the virus 
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is losing its envelope and the capsid becomes disintegrated, however new viral proteins 

are not expressed. WSSV internalization leads to cell death and it was shown that 

released DNA may be responsible for this. In the future, more research will be 

performed to better understand the mechanism of the haemocyte killing by WSSV upon 

endocytosis. 

 

Acknowledgements 

 

This study was supported by a PhD scholarship of the Vietnamese Overseas 

Scholarship Program. We would like to thank all the people from the Laboratory of 

Virology, Faculty of Veterinary Medicine and the Laboratory of Aquaculture & 

Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, 

Belgium for their kind support and guidance. We acknowledge Prof. Parin 

Chaivisuthangkura and Prof. Chu Fang Lo for providing antibodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



123 
 

References 

Bachere E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights 
into the anti‐microbial defense of marine invertebrates: the penaeid shrimps and the 
oyster Crassostrea gigas. Immunological Reviews, 198, 149-168. 

Bondad-Reantaso MG, McGladdery SE, East L, Subasinghe R (2001) Asia Diagnostic Guide 
to Aquatic Animal Diseases, FAO Fisheries Technical Paper No. 402, Supplement 2. 
Rome, 240p. 

Corteel M, Dantas-Lima JJ, Wille M, Alday-Sanz V, Pensaert MB, Sorgeloos P, Nauwynck HJ 
(2012) Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. 
monodon. Aquacult International, 20, 13-18. 

Dantas-Lima J, Corteel M, Oanh D, Bossier P, Sorgeloos P, Nauwynck H (2012) Development 
of two haemocyte culture systems (in attachment and in suspension) for shrimp 
immunity studies. Aquaculture, 366, 17-26. 

Dantas-Lima JJ, Tuan VV, Corteel M, Grauwet K, An NTT, Sorgeloos P, Nauwynck HJ (2013) 
Separation of Penaeus vannamei haemocyte subpopulations by iodixanol density 
gradient centrifugation. Aquaculture, 408–409, 128-135. 

Dantas‐Lima J, Corteel M, Cornelissen M, Bossier P, Sorgeloos P, Nauwynck H (2013) 
Purification of white spot syndrome virus by iodixanol density gradient centrifugation. 
Journal of Fish Diseases, 36, 841-851. 

Dieu BTM, Marks H, Siebenga JJ, Goldbach RW, Zuidema D, Duong TP, Vlak JM (2004) 
Molecular epidemiology of white spot syndrome virus within Vietnam. Journal of 
General Virology, 85, 3607-3618. 

Durand S, Lightner D, Nunan L, Redman R, Mari J, Bonami J-R (1996) Application of gene 
probes as diagnostic tools for white spot baculovirus (WSBV) of penaeid shrimp. 
Diseases of Aquatic Organisms, 27, 59-66. 

Durand S, Lightner D, Redman R, Bonami J-R (1997) Ultrastructure and morphogenesis of 
white spot syndrome baculovirus (WSSV). Diseases of Aquatic Organisms, 29, 205-
211. 

Escobedo-Bonilla CM, Wille M, Sanz VA, Sorgeloos P, Pensaert MB, Nauwynck HJ (2005) 
In vivo titration of white spot syndrome virus (WSSV) in specific pathogen-free 
Litopenaeus vannamei by intramuscular and oral routes. Diseases of Aquatic 
Organisms, 66, 163-170. 

Escobedo-Bonilla CM, Wille M, Sanz VA, Sorgeloos P, Pensaert MB, Nauwynck HJ (2007) 
Pathogenesis of a Thai strain of white spot syndrome virus (WSSV) in juvenile, 
specific pathogen-free Litopenaeus vannamei. Diseases of Aquatic Organisms, 74, 85-
94. 

Flegel TW (1997) Major viral diseases of the black tiger prawn (Penaeus monodon) in 
Thailand. World Journal of Microbiology and Biotechnology, 13, 433-442. 

Flegel TW (2006) Detection of major penaeid shrimp viruses in Asia, a historical perspective 
with emphasis on Thailand. Aquaculture, 258, 1-33. 

Hameed AS, Anilkumar M, Raj MS, Jayaraman K (1998) Studies on the pathogenicity of 
systemic ectodermal and mesodermal baculovirus and its detection in shrimp by 
immunological methods. Aquaculture, 160, 31-45. 



124 
 

Hameed AS, Sarathi M, Sudhakaran R, Balasubramanian G, Musthaq SS (2006) Quantitative 
assessment of apoptotic hemocytes in white spot syndrome virus (WSSV)-infected 
penaeid shrimp, Penaeus monodon and Penaeus indicus, by flow cytometric analysis. 
Aquaculture, 256, 111-120. 

Hong Y, Yang X, Cheng Y, Liang P, Zhang J, Li M, Shen C, Yang Z, Wang C (2013) Effects 
of pH, temperature, and osmolarity on the morphology and survival rate of primary 
hemocyte cultures from the Mitten Crab, Eriocheir sinensis. In vitro Cellular & 
Developmental Biology-Animal, 49, 716-727. 

Hose JE, Martin GG, Gerard AS (1990) A decapod hemocyte classification scheme integrating 
morphology, cytochemistry, and function. The Biological Bulletin, 178, 33-45. 

Hose JE, Martin GG, Van Anh N, Lucas J, Rosenstein T (1987) Cytochemical features of 
shrimp hemocytes. The Biological Bulletin, 173, 178-187. 

Itami T, Maeda M, Kondo M, Takahashi Y (1999) Primary culture of lymphoid organ cells and 
haemocytes of kuruma shrimp, Penaeus japonicus. Methods in Cell Science, 21, 237-
244. 

Jiang Y-S, Zhan W-B, Wang S-B, Xing J (2006) Development of primary shrimp hemocyte 
cultures of Penaeus chinensis to study white spot syndrome virus (WSSV) infection. 
Aquaculture, 253, 114-119. 

Jiravanichpaisal P, Sricharoen S, Söderhäll I, Söderhäll K (2006a) White spot syndrome virus 
(WSSV) interaction with crayfish haemocytes. Fish & Shellfish Immunology, 20, 718-
727. 

Johansson MW, Söderhäll K (1989) A cell adhesion factor from crayfish haemocytes has 
degranulating activity towards crayfish granular cells. Insect Biochemistry, 19, 183-
190. 

Jose S, Mohandas A, Philip R, Bright Singh I (2010) Primary hemocyte culture of Penaeus 
monodon as an in vitro model for white spot syndrome virus titration, viral and immune 
related gene expression and cytotoxicity assays. Journal of Invertebrate Pathology, 
105, 312-321. 

Karunasagar I, Otta S, Karunasagar I (1997) Histopathological and bacteriological study of 
white spot syndrome of Penaeus monodon along the west coast of India. Aquaculture, 
153, 9-13. 

Kasornchandra J, Boonyaratpalin S, Itami T (1998) Detection of white-spot syndrome in 
cultured penaeid shrimp in Asia: Microscopic observation and polymerase chain 
reaction. Aquaculture, 164, 243-251. 

Leu JH, Tsai JM, Wang HC, Wang AHJ, Wang CH, Kou GH, Lo CF (2005) The unique stacked 
rings in the nucleocapsid of the white spot syndrome virus virion are formed by the 
major structural protein VP664, the largest viral structural protein ever found. Journal 
of Virology, 79, 140-149. 

Li C, Shields JD (2007) Primary culture of hemocytes from the Caribbean spiny lobster 
Panulirus argus and their susceptibility to Panulirus argus Virus 1 (PaV1). Journal of 
Invertebrate Pathology, 94, 48-55. 

Li W, Desmarets LMB, De Gryse GMA, Theuns S, Van Tuan V, Van Thuong K, Bossier P, 
Nauwynck HJ (2015) Virus replication cycle of white spot syndrome virus in 



125 
 

secondary cell cultures from the lymphoid organ of Litopenaeus vannamei. Journal of 
General Virology, 96, 2844-2854. 

Liang X, Moseman EA, Farrar MA, Bachanova V, Weisdorf DJ, Blazar BR, Chen W (2010) 
Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic 
pathway in human chronic lymphocytic leukemia B cells. Blood, 115, 5041-5052. 

Lightner DV (1996) A handbook of shrimp pathology and diagnostic procedures for diseases 
of cultured penaeid shrimp. World Aquaculture Society, Baton Rouge, Louisiana, 
USA. 

Lo C, Ho C, Peng S, Chen C, Hsu H, Chiu Y, Chang C, Liu K, Su M, Wang C, Kou G (1996a) 
White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, 
crabs and other arthropods. Diseases of Aquatic Organisms, 27, 215-225. 

Lo C-F, Leu J-H, Ho C, Chen C, Peng S, Chen Y, Chou C, Yeh P, Huang C, Chou H (1996b) 
Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid 
shrimps using polymerase chain reaction. Diseases of Aquatic Organisms 25:, 133-
141. 

Magbanua FO, Natividad KT, Migo VP, Alfafara CG, de la Peña FO, Miranda RO, Albaladejo 
JD, Nadala Jr E, Loh PC, Mahilum-Tapay L (2000) White spot syndrome virus 
(WSSV) in cultured Penaeus monodon in the Philippines. Diseases of Aquatic 
Organisms, 42, 77-82. 

Matozzo V, Marin MG (2010) The role of haemocytes from the crab Carcinus aestuarii 
(Crustacea, Decapoda) in immune responses: A first survey. Fish & Shellfish 
Immunology, 28, 534-541. 

Nadala E, Tapay LM, Loh PC (1998) Characterization of a non-occluded baculovirus-like agent 
pathogenic to penaeid shrimp. Diseases of Aquatic Organisms, 33, 221-229. 

Noriega VM, Haye KK, Kraus TA, Kowalsky SR, Ge Y, Moran TM, Tortorella D (2014) 
Human cytomegalovirus modulates monocyte-mediated innate immune responses 
during short-term experimental latency in vitro. Journal of Virology, 16, 9391-9405. 

Peng SE, Lo CF, Ho CH, Chang CF, Kou GH (1998) Detection of white spot baculovirus 
(WSBV) in giant freshwater prawn, Macrobrachium rosenbergii, using polymerase 
chain reaction. Aquaculture, 164, 253-262. 

Poulos BT, Pantoja CR, Bradley-Dunlop D, Aguilar and Lightner DV (2001) Development and 
application of monoclonal antibodies for the detection of white spot syndrome virus of 
penaeid shrimp. Diseases of Aquatic Organisms, 47, 13-23. 

Rajan P, Ramasamy P, Purushothaman V, Brennan G (2000) White spot baculovirus syndrome 
in the Indian shrimp Penaeus monodon and P. indicus. Aquaculture, 184, 31-44. 

Rajendran KV, Vijayan KK, Santiago TC, Krol RM (1999) Experimental host range and 
histopathology of white spot syndrome virus (WSSV) infection in shrimp, prawns, 
crabs and lobsters from India. Journal of Fish Diseases, 22, 183-191. 

Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. American 
Journal of Epidemiology, 27, 493-497. 

Shi Z, Wang H, Zhang J, Xie Y, Li L, Chen X, Edgerton BF, Bonami JR (2005) Response of 
crayfish, Procambarus clarkii, haemocytes infected by white spot syndrome virus. 
Journal of Fish Diseases, 28, 151-156. 



126 
 

Smith VJ (2010) Immunology of invertebrates: cellular. eLS. John Wiley & Sons, Ltd. 

Söderhäll K, Smith VJ (1983) Separation of the haemocyte populations of Carcinus maenas 
and other marine decapods, and prophenoloxidase distribution. Developmental & 
Comparative Immunology, 7, 229-239. 

Sun R, Qiu L, Yue F, Wang L, Liu R, Zhou Z, Zhang H, Song L (2013) Hemocytic immune 
responses triggered by CpG ODNs in shrimp Litopenaeus vannamei. Fish & Shellfish 
Immunology, 34, 38-45. 

Tuan V, Dantas‐Lima J, Thuong K, Li W, Grauwet K, Bossier P, Nauwynck H (2015) 
Differences in uptake and killing of pathogenic and non‐pathogenic bacteria by 
haemocyte subpopulations of penaeid shrimp, Litopenaeus vannamei (Boone). Journal 
of Fish Diseases, 39, 163-174. 

van de Braak C, Faber R, Boon J (1996) Cellular and humoral characteristics of Penaeus 
monodon (Fabricius, 1798) haemolymph. Comparative Haematology International, 6, 
194-203. 

van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, 
Lankhorst RK, Vlak JM (2001) The white spot syndrome virus DNA genome 
sequence. Virology, 286, 7-22. 

Wang Y, Liu W, Seah J, Lam C, Xiang J, Korzh V, Kwang J (2002) White spot syndrome virus 
(WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis. Diseases of 
Aquatic Organisms, 52, 249-259. 

Wang Y-C, Lo C-F, Chang P-S, Kou G-H (1998) Experimental infection of white spot 
baculovirus in some cultured and wild decapods in Taiwan. Aquaculture, 164, 221-
231. 

Wongprasert K, Khanobdee K, Glunukarn SS, Meeratana P, Withyachumnarnkul B (2003) 
Time-course and levels of apoptosis in various tissues of black tiger shrimp Penaeus 
monodon infected with white spot syndrome virus. Diseases of Aquatic Organisms, 55, 
3-10. 

Wonteerasupaya C, Vickers JE, Sriurairatana S, Nash GL, Akarajamorn A, Boonsaeng V, 
Panyim S, Tassanakajon A, Withyachumnarnkul B, Flegel T (1995) A non-occluded, 
systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and 
causes high mortality in the black tiger prawn Penaeus monodon. Diseases of Aquatic 
Organisms, 21, 69-77. 

Wu J, Li F, Huang J, Xu L, Yang F (2015) Crayfish hematopoietic tissue cells but not 
hemocytes are permissive for white spot syndrome virus replication. Fish & Shellfish 
Immunology, 43, 67-74. 

Yi G, Wang Z, Qi Y, Yao L, Qian J, Hu L (2004) Vp28 of shrimp white spot syndrome virus 
is involved in the attachment and penetration into shrimp cells. Journal of Biochemistry 
and Molecular Biology, 37, 726-734. 

 

 

 



127 
 

Chapter 6 
------------------------------------------------------------------------------------------------------- 

 

General discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

Crustacean aquaculture is one of the fastest growing animal production industries all 

over the world. The increasing importance of crustaceans in both fisheries and 

aquaculture has stimulated the research for getting a better understanding of their 

general physiology. Since crustacean aquaculture is highly affected by infectious 

diseases (bacteria and viruses), disease control is considered as a priority. However, to 

control the diseases, it is necessary to understand thoroughly the nature of the host 

immune system, especially the role of the different types of haemocytes in defense 

reactions.  

Crustacean haemocytes are very reactive and unstable in culture. After removal from 

the haemocoel, some cell types are rapidly clumping or lysed while others adhere to the 

surface of the culture vessel and are very mobile. Therefore, research on functional 

characteristics of these cells is more difficult than with vertebrate blood cells. In 

previous mixed haemocyte cultures, most of granular and semi-granular cells become 

disrupted and release their contents into the culture media within 12 hpi. This negatively 

impacts the survival of the other cell types. Therefore, to study the characteristics of 

each haemocyte type, it is crucial to separate them and culture them individually 

(chapter 3).  

 

Development of techniques for separation of haemocyte subpopulations of 

Litopenaeus vannamei 

 
Crustacean haemocytes are traditionally divided on the basis of morphology and 

number and size of granules into three distinct subpopulations: (i) hyaline cells which 

possess an ovoid shape and have few small basophilic and eosinophilic granules, (ii) 

semi-granular cells which have an ovoid shape and contain a variable number of small 

eosinophilic granules, and (iii) granular cells which have a spherical shape and contain 

many large eosinophilic granules (Söderhäll & Smith, 1983; van de Braak et al., 1996; 

Li & Shields, 2007; Hong et al., 2013; Sunjian et al., 2014). Classification of the 

crustacean haemocytes has been discussed for the last two decades. Up till now, only 

one procedure based on a Percoll density gradient (Söderhäll & Smith, 1983) was 

described. This procedure allowed the separation of haemocyte types with no apparent 

deleterious effects since the cell functionality was preserved in most of the cases. 

However, only granulocytes were isolated efficiently. 

To improve the separation of crustacean haemocytes, especially from Litopenaeus 
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vannamei, we selected iodixanol as an alternative separation medium to Percoll.  

Although both media share suitable characteristics for an efficient separation of cells, 

cell organelles, and other subcellular structures, iodixanol has more advantages. The 

density gradients of iodixanol are nearly linear, while the density gradients of Percoll 

present two steep regions, one at the top and one at the bottom of the gradient. In these 

regions, there is a high range of density values per volume unit. The Percoll gradients 

tend to concentrate cells in sharp bands at the top and bottom of the gradient, and 

therefore they may have problems in separating haemocytes with rather similar buoyant 

densities. The nearly linear profile of iodixanol density gradients can promote the 

formation and visualization of more individual cell bands compared to Percoll 

gradients. Using iodixanol density gradients, five haemocyte subtypes (subpopulations) 

of Litopenaeus vannamei were identified, from which three were isolated with a very 

high degree of purity. The purity of these cells was determined based on the percentage 

of major cell types in each band. Cells from band 3 (sub 5) had the highest purity 

(99.4%) followed by cells from band 2 (sub 2: 97.7%) and band 1 (sub 1: 95%). Since 

cells of sub 3 and sub 4 were mixed in the dispersed cell band, we could not evaluate 

the purity level. These subpopulations could be distinguished by flow cytometry and 

biological activities as determined by light microscopy. Two of them were easily 

identified based on existing literature (Jiravanichpaisal et al., 2006). Subpopulation 

(sub) 1 exhibited all the characteristics of hyalinocytes such as strong adhesion to glass 

with extensive spreading, high nucleus/cytoplasmic ratio, and absence (or low level) of 

cytoplasmic granules. The classification of haemocytes of sub 2 and sub 3 (50% of the 

haemocytes) was much more difficult. The morphology of these cells did not fit in the 

definition of hyalinocytes, semi-granulocytes or granulocytes. These cells were smaller 

but more granular than hyalinocytes and had a very high nucleus/cytoplasmic ratio. 

Interestingly, these haemocytes did not adhere to glass and presented folds in the 

nucleus. Because these haemocytes did not attach to the substrate, they easily 

disappeared during washing steps of culture. This could be the reason why these 

subpopulations were not recorded as haemocyte subpopulations in the past studies. 

Based on these characteristics, it was speculated that these haemocyte subpopulations 

could be classified as small hyaline cells (Rodriguez et al., 1995), small granule 

haemocytes or lymphocyte-like hyalinocytes (Hose et al., 1987; Vargas-Albores et al., 

2005) and pro-haemocytes or immature haemocytes (Roulston & Smith, 2011). 

Haemocytes of sub 4 had the characteristics of semi-granulocytes while haemocytes of 
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sub 5 were clearly granulocytes: moderate adhesion to glass, small nucleus/cytoplasmic 

ratio and presence of a lot of big granules in cytoplasm.  

A previous experiment showed that a mixture of whole haemocyte subpopulations 

could not survive longer than 48 hpi in vitro (Dantas-Lima et al., 2012), due to 

disruption and degranulation of the haemocytes. Even some cell types (granulocytes 

and semi-granulocytes) started to release their contents into the culture media within 6-

12 hpi (own observations). As a result, they died in the culture suspension. They could 

even impact the survival of other cell types. Therefore, to overcome these problems, 

the haemocyte subpopulations were separated and cultured individually. The results of 

our study showed that individual cell cultures could prolong their survival. The 

haemocytes of sub 1 and sub 2 had the best survival performance. These cells could be 

kept alive up to 120 h (as demonstrated in Figure 3 of chapter 3). The haemocytes of 

sub 3+4 and sub 5 were less stable. They were maintained in culture until 48 h. All 

subpopulations demonstrated a viability of over 50% in the first 12 h of culture. 

 
Phagocytic capacity of different haemocyte subpopulations 

 
Haemocytes are excellent biological material to study the interaction between host and 

pathogen because the internal defense system of crustaceans relies mainly on the 

activity of these cells. Since individual subtypes/subpopulations of haemocytes are 

likely involved in different aspects of the cellular immune response, we assessed the 

functional characteristics of haemocytes after purification by determining the 

phagocytic capability of the different subpopulations of haemocytes towards abiotic 

and biotic particles and the fate of biotic particles and cells upon infection. In the 

present study, the uptake of large particles such as bacteria (chapter 4) and small 

particles such as viruses (chapter 5) were analyzed.  

Phagocytosis is considered as the most primitive immune-defense process. It represents 

an important defense mechanism in vertebrates and invertebrates. The phagocytic 

process consists of recognition, adherence, ingestion, destruction and disposal. 

Recognition of foreign materials is achieved by the direct interaction of surface 

receptors on haemocytes with molecules on the invading organisms, leading to the 

engulfment of particles into cell and subsequent formation of phagosomes to initiate 

the digestion of microbes.  
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Circulating haemocytes in crustaceans are the main cell type that perform the 

phagocytosis process and are considered to be crucial to eliminate foreign particles. In 

the current study, it was demonstrated that hyalinocytes (sub 1) and semi-granulocytes 

(sub 4) of Litopenaeus vannamei were the main cell types involved in phagocytosis of 

both pathogenic and non-pathogenic bacteria as well as fluorescent polystyrene beads. 

The role of non-phagocytic pro-hyalinocytes (sub 2 and sub 3) and granulocytes (sub 

5) in anti-bacterial defense is unknown. They most probably perform immunological 

functions different from phagocytosis. Our results are in agreement with the finding of 

Roulston and Smith (2011). These authors demonstrated that pro-haemocytes or 

immature haemocytes have no phagocytic activity.   

Phagocytosis by penaeid shrimp haemocytes is a strong but apparently non-specific 

process. Hyalinocytes (sub 1) and semi-granulocytes (sub 4) are extremely active and 

engulf a wide range of particles from abiotic polystyrene beads to pathogenic and non-

pathogenic bacteria. The hyalinocytes (sub 1) of Litopenaeus vannamei are the major 

phagocytic cells with approximately 45% of cells engulfing foreign materials, while the 

semi-granulocytes (sub 4) have a more limited phagocytic capacity (27% of the cells). 

In comparison with other studies, the phagocytic activity and the haemocyte types 

involved in the phagocytic reaction in our study was different. The reasons could be:  

(a) Animal species: many authors reported that the cell types participating in 

phagocytosis are dependent on the animal species. Hyalinocytes and semi-granulocytes 

are considered as the most important phagocytic cells in freshwater crayfish (Smith & 

Söderhäll, 1983). In contrast, only hyalinocytes of Chinese mitten crab (Eriocheir 

sinensis) and tiger shrimp (Penaeus monodon) are involved in phagocytosis (Sung and 

Sun, 2002; Sunjian et al., 2014). The present thesis demonstrated that hyalinocytes (sub 

1) and semi-granulocytes (sub 4) of white leg shrimp (Litopenaeus vannamei) were the 

main cell types involved in phagocytosis. 

(b) Bacterial species: the percentage of cells involved in phagocytosis is dependent on 

the bacteria used. Indeed, in the current study, different bacteria species such as Vibrio 

campbellii, Vibrio harveyi and E. coli were used in the phagocytic assay. We found that 

Vibrio campbellii was engulfed by a higher percentage of cells (45%) in comparison 

with Vibrio harveyi (25%) and E. coli (13%). Because there are no other reports 

available in literatures comparing the phagocytosis of different bacteria in the same 

haemocytes of a certain crustacea species. We could not compare our results with 

previous publications.  
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(c) Opsonization of particles: Sahoo et al. (2007) reported that opsinized bacteria 

Aeromonas hydrophila with prawn serum increased phagocytic activity. Opsonized 

bacteria were cleared from the circulation in Macrobrachium rosenbergii faster than 

non-opsonized bacteria, suggesting that opsonins in serum were one of the most 

important factors enhancing phagocytosis in prawn. Similarly, in lobster Homarus 

americanus, activated haemocytes showed increased phagocytosis of opsonized sheep 

red blood cells (Goldenberg et al., 1984). Jayasree (2009) also confirmed that opsonized 

bacteria Vibrio alginolyticus in cell-free haemolymph before addition to the haemocyte 

cultures increased the phagocytosis rate. The main reason could be due to availability 

of opsonin binding sites on haemocyte membranes. Lectins or agglutinins (Kondo et 

al., 1992) and peroxinectin (Johansson et al., 1995) are considered as opsonic factors 

in crustaceans. In the current study, we did not opsonize the bacteria or beads before 

inoculation with shrimp haemocytes. May be as a result of that, the percentage of 

phagocytic cells in our study was lower. 

Following phagocytosis, certain bacterial species are killed or at least hampered in their 

growth by penaeid shrimp haemocytes. Vibrio campbellii and Vibrio harveyi are 

considered as pathogenic bacteria in aquaculture. They induce serious disease and elicit 

strong immune response from the host to fight against invaders, whereas E. coli used 

in the experiment is considered as non-pathogenic bacteria to penaeid shrimp. Our 

study demonstrated that haemocytes of sub 1 and sub 4 of Litopenaeus vannamei could 

phagocytose and destroy non-pathogenic bacteria after 180 min of incubation, but failed 

to kill pathogenic ones. It is not fully understood why certain bacteria are more 

susceptible/resistant to be killed by penaeid shrimp haemocytes. The failure in killing 

pathogenic bacteria could be due to the capability of these bacteria to inhibit phagosome 

maturation and phagosome-lysosome fusion. In order to do this, bacteria may respond 

by a conversion of its morphology from rod-shaped to a coccal form (own 

observations). This conversion may represent a survival strategy of the bacteria against 

the intracellular killing by phagocytic cells.  

The exposure of haemocyte subpopulations to abiotic and biotic particles also induced 

significant changes in cell viability. The data presented in chapter 4 showed that the 

survival of penaeid shrimp haemocytes decreased significantly at 180 mpi after 

phagocytosis of pathogenic bacteria Vibrio campbellii. In contrast, phagocytosis of 

non-pathogenic bacteria had no such effect on the survival of these cells. These findings 

suggest that V. campbellii could have a cytotoxic effect upon ingestion. The study of 



134 
 

Nottage & Birkbeck (1990) indicated that certain vibrio strains were toxic to Mytilus 

edulis haemocytes when present in large numbers. In addition, Lambert et al. (2001) 

also confirmed that Vibrio pectinicida can cause a decrease in haemocyte viability of 

the scallop Pecten maximus upon contact with live bacteria.  

The invasive activity of pathogenic bacteria is usually associated with the potential to 

inhibit the humoral and cellular defense of the host. In insects, the particular 

haemocytes reported to be phagocytic varies among insect taxa. For instance, granular 

cells and plasmatocytes of Lepidoptera (butterflies) are the only haemocyte types 

reported to be phagocytic, while plasmatocytes of Drosophila and wax moth (Galleria 

mellonella) are the main phagocytic haemocytes (Ratcliffe et al., 1984; Elrod-Erickson 

et al., 2000). These phagocytic cells are capable of phagocytosing bacteria of different 

pathogenicities. Upon phagocytosis, the virulent strain induced a significant drop in 

haemocyte viability. These bacteria released enzymatic factors such as phospholipase 

C and other toxins such as hemolysin that kill phagocytic cells. In mammals, 

neutrophils and macrophages are considered as professional phagocytic cells. These 

cells actively engulf microbes and kill them. However, some pathogenic bacteria such 

as Streptococcus suis, S. aureus, Campylobacter jejuni, Staphylococcus aureus can 

survive upon phagocytosis (Kiehlbauch et al., 1985; William, 1990; Kubica et al., 

2008). These bacteria appear to be resistant to bactericidal actions inside the phagocytic 

vacuoles of phagocytic cells. As a results, the bacteria grow intracellular and kill 

phagocytic cells. 

 
Kinetics of WSSV entry and fate of both WSSV and cells upon infection  

 
Viral diseases have the most devastating impact on aquaculture industry. So far, about 

20 types of viruses have been reported in penaeid shrimp, among which white spot 

syndrome virus (WSSV) has been responsible for major losses in shrimp culture. The 

control of viral diseases plays an important role in shrimp culture, however little 

information is available on the basic mechanisms of WSSV infection and replication. 

To better understand the interaction between virus and host, techniques for culture and 

maintenance of viruses and their host cells in vitro are important. In chapter 5 of this 

study, haemocytes of penaeid shrimp, Litopenaeus vannamei, were separated into 5 

subpopulations and used to examine the kinetics of WSSV entry and fate of both WSSV 

and cells upon infection. Generally, viruses can enter a cell via two pathways: (1) direct 
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fusion with the plasma membrane or (2) receptor-mediated endocytosis. So far, no 

evidence existed that WSSV can enter shrimp cells by direct fusion. The interaction 

between viral proteins and host cell membranes plays a crucial role in helping the virus 

to enter into host cells. Yi et al. (2004) mentioned that WSSV envelope protein VP28 

was responsible for binding to and entering shrimp cells. In the present thesis, the 

observation of VP28 inside the host cells suggested that the entry of WSSV is not based 

on fusion of the viral envelope to the host cells, but on a process of endocytosis. 

Recently, studies of Huang et al. (2013) and Li et al. (2015) confirmed that WSSV uses 

endocytosis to enter shrimp cells. Besides VP28, other structural proteins of WSSV 

such as VP37, VP466, VP26 have been reported to interact with host cell components 

(Xie et al., 2005; Wu et al., 2005; Liu et al., 2009). Our study showed that WSS virions 

can be bound and internalized by 3 out of 5 different haemocyte subpopulations of 

penaeid shrimp (sub 1 (hyalinocytes), sub 4 (semi-granulocytes) and sub 5 

(granulocytes)). This penetration was probably mediated by a small GTP-binding 

protein, PmRab7 (Sritunyalucksana et al., 2006). It is interesting to note that 

haemocytes within sub 5 (granulocytes) have an ability to internalize WSSV, but fail 

to take up bacteria. The reason is not fully understood. It could be that some virus 

binding receptors are specifically localized on the surface membranes of granuloctyes. 

Liang et al. (2015) demonstrated the presence of ATPsyn beta subunit (named as BP53) 

on the membrane of some circulating haemocytes of Penaeus vannamei, which may 

serve as a receptor for WSSV binding.   

After entry, the virus envelope and nucleocapsid started to separate from each other. 

This process was most probably due to the uncoating of the virus in the endosome 

complex (Li et al., 2015) with the viral envelope staying in the endosome and the 

nucleocapsid getting free in the cytosol. The nucleocapsids were then transported to the 

region close to the cell nucleus. It is possible that viral DNA was entering the nucleus. 

Because new viral proteins were not expressed later on, one can conclude that genome 

transcription and translation into new viral proteins did not occur. How the replication 

was blocked is not clear. It is possible that there is a cellular mechanism that inhibits 

viral replication in endocytic haemocytes. This antiviral mechanism could restrict 

infection at the transcriptional/translational level. Another explanation could be that 

haemocytes commit suicide upon sensing WSSV. Indeed, sensing DNA by toll like 

receptors may activate an interference phenomenon and/or activate apoptosis. These 

outcomes have extensively been studied and reported for mammals.  
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Although viral particles were internalized by shrimp haemocytes, there were still a lot 

of viral particles sticking to the cell membrane without being internalized. It is possible 

that the host cells recognize WSSV as a foreign particle and initiate an efficient immune 

response to prevent the entry of virus into cells. This is indicative for the existence of a 

WSSV internalization block. Another explanation could be that WSSV has the ability 

to escape immune recognition by host haemocytes. Further research is necessary to 

unravel the underlying mechanism of this viral immune evasion system.  

The results of chapter 5 showed that the cell death in penaeid shrimp haemocytes 

occurred at the early stage of virus infection/internalization. It was assumed that WSSV 

activated a programmed cell death (apoptosis). Apoptosis is considered as an innate 

cellular response to limit viral replication. The induction of early cell death could 

severely limit virus production and eliminate spread of progeny virus from host cells. 

It is very surprising that WSSV did not develop a mechanism to block this antiviral 

activity. By committing suicide, cells become recognized and are targets for adjacent 

non-infected haemocytes. Upon uptake, these cells become eliminated. This system 

fully blocks viral spread.   

In literature, some publications mentioned that WSSV can infect penaeid shrimp 

haemocytes (Penaeus merguiensis, Penaeus chinensis) (Wang et al., 2002; Jiang et al., 

2005). Based on the presence of virus particles in vacuoles and nucleus of semi-

granulocytes and granulocytes, these authors concluded that WSSV infects shrimp 

haemocytes and assembles in the nucleus of these infected cells. However, we do not 

agree with this conclusion. We think that the presence of virus particles inside shrimp 

haemocytes could be the result of endocytosis. The results of our study have 

demonstrated that the uptake of WSSV by haemocytes of penaeid shrimp (Litopenaeus 

vannamei) did not result in efficient expression of new viral proteins. It means that free 

circulating haemocytes of Litopenaeus vannamei are not targets for replication of virus. 

As far as we know, cells from ectodermal and mesodermal origin, such as epidermis, 

gills, foregut, hindgut, antennal, lymphoid organ, heart, gonads, haematopoietic tissue 

are targets for virus replication. Virus infection severely damages these organs and 

causes organ dysfunctions. This may explain why, upon WSSV infection, the 

cumulative mortality of cultured shrimp can reach 100% in a short period of time 

(within 3-10 days).  

The results of cell death upon internalization of WSSV in our study may partly explain 

the previous work of our promoter (Phuoc et al., 2008).  In this study, shrimp were first 
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injected with WSSV and 24 h later with a non lethal dose of bacteria Vibrio campbellii. 

It was shown that WSSV and Vibrio co-infection displays a particular dynamic. Shrimp 

died very quickly after being injected with V. campbellii, however that study could not 

provide mechanistic insights. The results of the present thesis might supply mechanistic 

insights into the study of Phuoc et al (2008). WSSV interferes with shrimp haemocytes 

and severely affects them, basically inducing apoptosis in some type of haemocytes. 

Thus, WSSV infection might considerably reduce the amount of active circulating 

haemocytes. Our study demonstrated that more than 50% of haemocytes within sub 1 

(hyalinocytes) and sub 4 (semi-granulocytes), which are considered as the main 

phagocytic cells, were dead at 720 mpi after inoculation with WSSV. Based on these 

results, we could hypothesize that the severe reduction of these types of haemocytes 

may seriously damage the immune system of shrimp and may explain why, after WSSV 

infection and subsequent exposure to a non-lethal dose of bacteria, shrimp die very 

quickly, basically because of a lack of haemocytes to eliminate Vibrio by phagocytosis 

from the haemolymph. Another study of Wongprasert et al. (2003) also indicated that 

in vivo the total haemocyte count of shrimp Penaeus monodon significantly drops after 

WSSV injection. Taken together, WSSV infection causes a dramatically reduction of 

penaeid shrimp haemocytes, which probably weakens shrimp and makes them more 

susceptible to bacterial infection.  

 
Conclusions and future perspectives 

 
The research described in this thesis has successfully led to an efficient way for 

separating penaeid shrimp haemocytes. Five haemocyte subpopulations were classified 

by using a two-step continuous density gradient of iodixanol: hyalinocytes (sub 1), 

semi-granulocytes (sub 4), granulocytes (sub 5), and immature hyaline cells or pro-

hyalinocytes (sub 2 and sub 3). These haemocyte subpopulations are ideal for studying 

the interaction between pathogens (bacteria and virus) and the different haemocyte 

types (uptake, inactivation, cell death, pathogen escape mechanisms). Understanding 

these mechanisms may allow us to think on strategies to prevent and/or control virus 

infections in shrimp culture. 

The present PhD thesis raises the following questions which could be dealt with in 

future research: 

(1) How can pathogenic bacteria such as Vibrio campbellii survive upon phagocytosis? 
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More work will be done to shed additional light on the survival strategies used by these 

bacteria. Our experiments provide a useful technique for separating penaeid shrimp 

haemocytes and comparing the fate of pathogenic and non-pathogenic bacteria upon 

phagocytosis. This work should be extended with other bacteria species or isolates of 

known pathogenesis.  

(2) How can WSSV escape from immune recognition by penaeid shrimp haemocytes?  

(3) What are the functions of haemocytes within sub 2 and sub 3? Although the 

morphology of these haemocyte subpopulations were characterized in some decapods 

(Hose et al., 1987; Rodriguez et al., 1995; Vargas-Albores et al., 2005; Roulston and 

Smith, 2011), the functional characteristics are not fully elucidated. Roulston and Smith 

(2011) indicated that these cells have no phagocytic capacity, which is in agreement 

with our findings. These cells constitute more than half of circulating haemocytes in 

Litopenaeus vannamei. They are actively moving in the culture medium and hardly 

attach to substrates. Based on the morphology of these cells, they look like lymphocytes 

in mammals.  
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Summary 

 

Crustaceans, like other invertebrates, have no adaptive immunity. They fully rely on 

the innate immune system for their internal defense against foreign material. Innate 

immunity consists of both humoral and cellular factors mediated primarily by 

circulating haemocytes. Research on crustacean immunity, especially penaeid shrimp 

(Litopenaeus vannamei), plays a crucial role due to the economic importance of shrimp 

aquaculture throughout the world and the significant impact of infectious diseases. To 

obtain a better understanding of the immune system, it is important to separate shrimp 

haemocyte subpopulations and to determine the role of each type of haemocytes in 

defense reactions.  

In chapter 1, an overview of aquaculture production and associated problems is given, 

mainly focused on penaeid shrimp, Litopenaeus vannamei. Besides, the knowledge on 

the crustacean immune system is reviewed and the techniques for haemocyte separation 

are described.  

In chapter 2, the aims of the thesis are summarized: (i) development of a technique for 

separating penaeid shrimp (Litopenaeus vannamei) haemocyte subpopulations and (ii) 

analysis of antibacterial and antiviral activities of these haemocyte subpopulations. 

In chapter 3, a new methodology for separation of Penaeus (Litopenaeus) vannamei 

haemocyte subpopulations was developed, using a two-step continuous density 

gradient with different concentration of iodixanol. Haemolymph was extracted with 

anticoagulant, layered on the first gradient and centrifuged at 2000 g for 10 min. Three 

sharp cell bands and one dispersed cell band were formed. The first two bands were 

collected together and layered on a second gradient. This gradient was centrifuged at 

2000 g for 15 min. Two bands were physically separated. The separated cells were used 

for in vitro culture to evaluate their survival and phagocytic activity. The morphology 

of each cell type was determined by flow cytometry and light microscopy. Each of the 

three bands contained a major cell type with distinct morphology and was designated 

subpopulation 1 (band 1), subpopulation 2 (band 2) and subpopulation 5 (band 3). The 

dispersed cell band contained a mixture of subpopulation 3 and 4. The purity level of 

subpopulation 1, 2 and 5 was 95.0 ± 1.0%, 97.7 ± 1.2% and 99.4 ± 0.8%, respectively. 

In vitro culture of separated cells showed that cells of subpopulation 2 had the best 

survival (up to 96 h) followed by cells of subpopulation 1, subpopulation 3 + 4 and 

finally subpopulation 5. Phagocytic activity was only detected in subpopulation 1 and 
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4. 

In chapter 4, haemocyte subpopulations of penaeid shrimp were separated and cultured 

individually in vitro to evaluate the phagocytic activity against pathogenic and non-

pathogenic particles. The results showed that haemocytes of subpopulation 1 

(hyalinocytes) and 4 (semi-granulocytes) have a main function in phagocytosis of both 

pathogenic and non-pathogenic bacteria as well as fluorescent polystyrene beads. These 

haemocyte subpopulations engulfed virulent Vibrio campbellii and Vibrio harveyi at a 

higher level than non-virulent Escherichia coli and polystyrene beads. The percentage 

of viable intracellular V. campbellii (25.5 ± 6.0%) recovered at 180 mpi was significant 

higher than the percentage recovered from V. harveyi (13.5 ± 1.1%). No viable 

intracellular E. coli was observed in this study. In contrast with V. harveyi and E. coli, 

V. campbellii containing endosomes did not acidify in time. Virulent V. campbellii 

caused a significant drop in haemocyte viability (41.4 ± 6.3% in sub 1 and 30.2 ± 15.1% 

in sub 4) after 180 min post inoculation in comparison with the V. harveyi (84.1 ± 5.6% 

in sub 1 and 83.4 ± 4.1% in sub 4) and E. coli (92.7 ± 2.8% in sub 1 and 92.3 ± 5.6% 

in sub 4) and polystyrene beads (91.9 ± 1.6% in sub 1 and 84.4 ± 3.4% in sub 4).  

In chapter 5, beads, white spot syndrome virus (WSSV) and UV-inactivated WSSV 

were used to investigate the uptake kinetics of different haemocyte subpopulations of 

penaeid shrimp (Litopenaeus vannamei) using laser scan confocal microscope. It was 

shown that haemocytes of subpopulation 1, 4 and 5 engulfed beads at a higher rate than 

WSSV and UV-inactivated WSSV. No bead/virus uptake was observed in haemocytes 

of subpopulation 2 and 3. The envelope of WSSV virions was lost after internalization 

but the capsid did not disintegrate further (remained visible). It is possibly that the 

envelope was fused with the cellular membrane of the endosome. New viral proteins 

were not expressed. Incubation of haemocyte subpopulations with WSSV but not with 

UV-inactivated WSSV and polystyrene beads resulted in a significant drop in 

haemocyte viability. To fully understand the underlying mechanisms, haemocyte 

subpopulations of penaeid shrimp were exposed to short WSSV DNA fragment (VP19) 

and CpG ODNs. The results showed that these dsDNA fragmnets induced cell death. 

Taken together, WSSV is efficiently internalized by haemocytes within subpopulation 

1 (hyalinocytes), 4 (semi-granulocytes) and 5 (granulocytes) and upon internalization, 

the virus is losing its envelope but the capsid remains intact. This process is activating 

cell death, which in part may be explained by the internalization of viral DNA with 

cellular sensing molecules. 
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In chapter 6, the main findings of this thesis are discussed. The new haemocyte 

separation method, generated in this thesis, was considered to be of great value for 

present and future studies on the bacterial and antiviral activities of shrimp haemocytes. 
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Samenvatting 

 

Schaaldieren, zoals andere ongewervelde dieren, hebben geen adaptieve immuniteit. 

Voor hun interne verdediging tegen vreemd materiaal zijn ze volledig afhankelijk van 

het aangeboren immuunsysteem. De aangeboren immuniteit bestaat uit zowel humorale 

en cellulaire factoren, voornamelijk gemedieerd door circulerende bloedcellen. 

Onderzoek naar de immuniteit van schaaldieren, voornamelijk van peneïde garnalen 

(Litopenaeus vannamei), is cruciaal wegens het economische belang van de 

garnaalaquacultuur in de hele wereld en de aanzienlijke impact van infectieuze 

pathogenen. Om een beter begrip van het immuunsysteem te verkrijgen, is het 

belangrijk om de verschillende bloedcelsubpopulaties van garnalen te onderscheiden 

en de rol van elk type bloedcel in de afweerreactie te bepalen. 

In hoofdstuk 1 wordt een overzicht, met nadruk op peneïde garnalen (Litopenaeus 

vannamei), gegeven omtrent het productieproces van de aquacultuur en de daarmee 

geassocieerde problemen. Overigens wordt de huidige kennis van het immuunsysteem 

van schaaldieren en de scheidingstechnieken van de bloedcelsubpopulaties beschreven. 

In hoofdstuk 2 worden de doelstellingen van het proefschrift samengevat: (i) de 

ontwikkeling van een scheidingstechniek van de verscheidene bloedcelsubpopulaties 

van peneïde garnalen (Litopenaeus vannamei) en (ii) de analyse van de antibacteriële 

en antivirale activiteit van deze bloedcelsubpopulaties . 

In hoofdstuk 3 werd een nieuwe methode voor het scheiden van Penaeus 

(Litopenaeus) vannamei bloedcelsubpopulaties ontwikkeld met behulp van een 

tweestaps continue dichtheidsgradiënt met verschillende concentraties van iodixanol. 

Hemolymfe werd geëxtraheerd met anticoagulans, op de eerste gradiënt gebracht en 

gecentrifugeerd bij 2000 g gedurende 10 min. Drie scherpe zones van cellen en één 

diffuse celzone werden gevormd. De eerste twee zones werden samen verzameld en op 

een tweede gradiënt aangebracht. Deze gradiënt werd gedurende 15 min bij 2000 g 

gecentrifugeerd. Hierbij werden twee celzones fysiek gescheiden. De gescheiden cellen 

werden gebruikt in een in vitro cultuur om hun overleving en fagocytose activiteit te 

evalueren. De morfologie van elk celtype werd bepaald met behulp van flowcytometrie 

en lichtmicroscopie. Elk van de drie zones bevatte een belangrijk celtype met een 

verschillende morfologie en werd benoemd als subpopulatie 1 (groep 1), subpopulatie 

2 (groep 2) en subpopulatie 5 (groep 3). De diffuse celzone bevatte beide subpopulaties 

3 en 4. De zuiverheid van subpopulatie 1, 2 en 5 was 95,0 ± 1,0%, 97,7 ± 1,2% en 99,4 
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± 0,8%, respectievelijk. In vitro cultivatie van gescheiden cellen toonde aan dat the 

cellen van subpopulatie 2 het langste in vitro overleefden (tot 96 uur), gevolgd door 

cellen van subpopulatie 1, subpopulatie 3 + 4 en tenslotte subpopulatie 5. Er werd enkel 

fagocytaire activiteit in subpopulatie 1 en 4 gedetecteerd. 

In hoofdstuk 4 werden de bloedcelsubpopulaties van peneïde garnalen gescheiden en 

afzonderlijk in vitro gecultiveerd om de fagocytaire activiteit tegen pathogene en niet-

pathogene partikels te evalueren. De resultaten toonden aan dat bloedcellen van 

subpopulatie 1 (hyalinocytes) en 4 (semi-granulocyten) een belangrijke functie hebben 

in the fagocytose van zowel pathogene en niet-pathogene bacteriën en fluorescerende 

polystyreenpartikels. Deze bloedcelsubpopulaties namen de virulente Vibrio campbellii 

en Vibrio harveyi meer op dan de avirulente Escherichia coli en de 

polystyreenpartikels. Het percentage levensvatbare opgenomen V. campbellii (25,5 ± 

6,0%) geanalyseerd bij 180 mpi was significant hoger dan het percentage opgenomen 

V. harveyi (13,5 ± 1,1%). Geen levensvatbare intracellulaire E. coli werd waargenomen 

in deze studie. In tegenstelling met V. harveyi en E. coli, verzuurden V. campbellii-

bevattende endosomen niet. Na 180 minuten na incoluatie veroorzaakte de virulente V. 

campbellii een aanzienlijke daling in levensvatbaarheid van de bloedcellen (41,4 ± 

6,3% in sub 1 en 30,2 ± 15,1% in sub 4) in vergelijking met V. harveyi (84,1 ± 5,6% in 

sub 1 en 83,4 ± 4,1% in sub 4), E. coli (92,7 ± 2,8% in sub 1 en 92,3 ± 5,6% in sub 4) 

en polystyreenpartikels (91,9 ± 1,6% in sub 1 en 84,4 ± 3,4% in sub 4). 

In hoofdstuk 5 werden partikels, wittevlekkenvirus (WSSV) en UV-geïnactiveerd 

WSSV gebruikt met behulp van een laser scan confocale microscoop om de opname-

kinetiek van verschillende bloedcelsubpopulaties van peneïde garnalen (Litopenaeus 

vannamei) te onderzoeken. Er werd aangetoond dat bloedcellen van subpopulatie 1, 4 

en 5 de partikels met een hogere snelheid opnamen dan WSSV en UV-geïnactiveerd 

WSSV. Opname van partikels en virus werd niet waargenomen bij bloedcellen van 

subpopulatie 2 en 3. De envelop van WSSV-virions werd verloren na internalisatie, 

maar het kapsied desintegreerde niet verder (bleef zichtbaar). Waarschijnlijk fuseerde 

het envelop met het celmembraan van het endosoom. Nieuwe virale eiwitten kwamen 

niet tot expressie. Incubatie van bloedcelsubpopulaties met WSSV, maar niet met UV-

geïnactiveerd WSSV en polystyreenpartikels, resulteerde in een aanzienlijke daling van 

de levensvatbaarheid van de bloedcellen. Om de onderliggende mechanismen volledig 

te begrijpen werden bloedcelsubpopulaties van peneïde garnalen blootgesteld aan een 

kort WSSV DNA-fragment (VP19) en CpG ODNs. De resultaten toonden aan dat deze 
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dsDNA-fragmenten celdood induceerden. Samengevat, WSSV wordt efficiënt 

geïnternaliseerd door bloedcellen van subpopulatie 1 (hyalinocytes), 4 (semi-

granulocyten) en 5 (granulocyten), en bij internalisering verliest het virus zijn envelop, 

terwijl het kapsied intact blijft. Dit proces induceert celdood, wat gedeeltelijk kan 

worden verklaard door de internalisatie van viraal DNA gevolgd door een interactie 

met cellulaire sensormolecules. 

In hoofdstuk 6 worden de belangrijkste bevindingen van dit proefschrift besproken. 

De nieuwe scheidingsmethode van bloedcellen, gegenereerd in dit proefschrift, is van 

grote waarde voor huidige en toekomstige studies omtrent de bacteriële en anti-virale 

activiteiten van bloedcellen van garnalen. 
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