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1 
Bovine gastro-intestinal disorders associated with 

C. perfringens type A 

 

Bovine enterotoxaemia 

Enterotoxaemia is a condition where toxins produced in the intestine are absorbed in the general 

circulation and cause toxic effects in other organs. According to this definition, an 

enterotoxaemia can be caused by multiple bacteria, including Escherichia coli and some 

pathogenic Clostridium species. However, the term is most frequently used to delineate the 

disease caused by Clostridium perfringens. Enterotoxaemia caused by C. perfringens can occur 

in different hosts, but the disease is most common in young, rapidly growing ruminants, 

although also foals and piglets are sometimes affected96,138,181. 

Bovine enterotoxaemia, also known as (necro-)haemorrhagic enteritis, is an acute or peracute 

syndrome classically reported as sudden death without previous symptoms. Sometimes 

preceding symptoms of abdominal pain or colic and neurological disorders are described96,216. 

Enterotoxaemia is less common in cattle than in small ruminants, often only affecting a single 

animal or a very limited number of animals in the same herd96,110. Although the morbidity is 

rather low, mortality is close to 100%, making it an economically important disease96. 

Aetiology 

Bovine enterotoxaemia is associated with an imbalance in the small intestinal microbiota 

composition, leading to uncontrolled C. perfringens multiplication and toxin production. This 

massive toxin production is believed to be responsible for both local and systemic effects, 

leading to rapid death. Based on the production of four major toxins (alpha, beta, epsilon and 

iota toxin) C. perfringens strains are classified into five toxinotypes (types A, B, C, D and E)152. 
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Bovine enterotoxaemia has been linked to different C. perfringens toxinotypes40,80,185. 

However, the C. perfringens toxinotype most frequently associated with bovine 

enterotoxaemia, is type A31,110,118,152. C. perfringens is ubiquitous in the environment and is also 

a member of the normal gut microbiota of man and animals181. Therefore, it is generally 

accepted that predisposing factors or risk factors, contributing to an impaired homeostasis of 

the gut ecosystem, are required to cause disease. In the literature, stressful environmental 

conditions and sudden changes in the diet are the most commonly reported risk factors151. Stress 

may be caused by several factors, including regrouping or transporting the animals and medical 

interventions, and may have an effect on the intestinal microbiota by induction of paralytic 

ileus96,235. Also an increased consumption of a high-energy and protein diet is a plausible risk 

factor for enterotoxaemia. It is known in other animal species that high levels of dietary crude 

protein result in increased numbers of intestinal C. perfringens37,106,107.  

Bovine enterotoxaemia caused by C. perfringens type A affects mainly suckling and veal calves 

in good to excellent body condition up to eight months of age. In Wallonia, a mortality rate of 

4.7% was described in 1999108. The majority of the affected animals (89%) were of the double 

muscled Belgian Blue beef cattle breed, suggesting a possible genetic influence for the 

susceptibility to enterotoxaemia. However, beef cattle breed calves in Wallonia are mainly 

raised as suckling calves, whereas dairy breed calves are separated from the cow as soon as 

possible. Hence, as the majority of the affected animals are suckling calves, dietary difference 

can also be responsible for the difference in disease susceptibility. Flanders is more specialized 

in veal production and less calves are raised as suckling calves than in Wallonia. Also in veal 

calves, predominantly beef cattle breeds are affected, accounting for 20% of total mortalities 

on average, compared to 4% in dairy and mixed breed veal calves between 2007 and 200996,151. 

In addition to a possible breed influence, dietary differences between veal production systems 

are also here suspected to have a great effect as an eliciting factor96,151,213. Whereas dairy breed 

veal calves receive milk powders with very little animal protein, beef calves still receive a high 

amount of skimmed milk powder. An important risk period for bovine enterotoxaemia is 

situated at the end of the production cycle, where calves are fed high amounts of highly 

concentrated milk proteins151. Whereas dairy or traditional beef calves receive on average a 

maximum of 6 litres milk replacer per day at a concentration of 125 g/L, veal calves receive at 

the end of fattening as much of 16 litres daily, at a concentration ranging from 150 to 190 g/L212. 

The predisposition of these calves may be linked to their higher feed intake. 
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Clinical symptoms and lesions 

Bovine enterotoxaemia caused by C. perfringens type A is characterized by sudden death, 

mostly without premonitory symptoms. Post-mortem, a rapid putrefaction of the abdomen with 

gas production and a putrid smell is observed96. At necropsy, diffuse small intestinal 

haemorrhages with bloody intestinal content is observed134 (Figure 1). These macroscopic 

lesions are mainly located in the small intestine, but sometimes also in the large intestine110. 

Microscopically, the intestinal lesions consist of haemorrhages and cell necrosis extending from 

the tip of the villi to the base of the crypts, and infiltration of neutrophils and lymphocytes96,235 

(Figure 2). In the intestinal lumen, clusters of C. perfringens bacteria can be found, localized in 

the necrotic areas. However, they are typically not found in the mucosa of the intestinal wall110. 

Lesions typical for toxaemia are not consistently present in internal organs110,235. 

Experimental reproduction in a calf intestinal loop model of necro-haemorrhagic lesions, 

comparable with the lesions seen in field cases, generated more insight into the sequence of 

histopathological events during lesion development213. The primary lesions in the pathogenesis 

of necro-haemorrhagic enteritis were epithelial cell detachment and congestion of the 

capillaries, followed shortly thereafter by necrosis of the intestinal villi and haemorrhages. 

When severe necrosis is present, a clear demarcation line can be observed, separating the 

necrotic tips of the villi from the underlying viable tissue. 

Next to C. perfringens type A, bovine enterotoxaemia can also be associated with 

C. perfringens type B, C, D and E. 

Type C enterotoxaemia is 

characterized by sudden death in 

neonatal calves less than 10 days of 

age178. The intestinal lesions are 

similar to those described for type A 

enterotoxaemia with severe necrosis 

and haemorrhages in the small 

intestine and neutrophil 

infiltration58,139. C. perfringens type D 

enterotoxaemia is an important 

disease in sheep and goats80,210. In 

sheep, this disease is acute and fatal, 

Figure 1 

Diffuse haemorrhagic enteritis in the small intestine of a case 
of bovine enterotoxaemia. 
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characterized predominantly by neural signs with usually minor and inconsistent intestinal 

changes. In goats, the disease is most commonly an enterocolitis, though lung and brain oedema 

can occur as well. There are only a few reports about this condition in cattle, but it seems that 

the lesions are similar to those observed in sheep enterotoxaemia (e.g. focal symmetrical 

encephalomalacia in the brain)80,120,129. Despite the limited number of reports describing natural 

cases of bovine type D enterotoxaemia, the disease is extensively investigated103,110,113. 

Experimental reproduction of the disease in cattle has confirmed similar clinical and 

pathological characteristics as the disease in sheep51. The presence of neurological signs and 

absence of intestinal necrosis clearly indicate that type A and type D enterotoxaemia are two 

completely different diseases. Next to type A, C and D, bovine enterotoxaemia is sporadically 

associated with C. perfringens type B and E40,58,156,185. Only one report describing type B 

enterotoxaemia in cattle was found40. This report provides only limited information, but bloody 

diarrhoea, haemorrhagic enteritis and haemorrhages in all vital organs were described40. Type 

E enterotoxaemia is considered an infrequent cause of haemorrhagic enteritis and sudden death 

in neonatal calves185, however, one report also describes type E enterotoxaemia in adult cows156. 
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Figure 2 

Small intestine of a field case of bovine enterotoxaemia.  

The intestinal section showed multiple regions with necrosis. (A) The intestinal villi adjacent to the necrosis are 

congested with oedema of the lamina propria and epithelial cell detachment. (B) Segment of severe, diffuse 

necrosis involving the whole mucosa. (C) Focal, necro-haemorrhagic lesion with (1) submucosal and (2) mucosal 

haemorrhages, (3) infiltration of viable and dead neutrophils and (4) a pseudomembrane composed of fibrin, 

necrotic cells, cell debris and neutrophils in the intestinal lumen. (HE staining) 
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Other gastro-intestinal C. perfringens type A-associated 
diseases 

In this thesis, we focus on type A bovine enterotoxaemia, also described as 

(necro-)haemorrhagic enteritis. However, multiple other C. perfringens type A-associated 

bovine alimentary tract disorders are described in the literature. Some of these diseases show 

remarkable similarities in aetiology, clinical symptoms and histological findings and are briefly 

described below.  

Abomasitis in young calves 

There is a thin line between clostridial abomasitis and type A bovine enterotoxaemia in young 

calves. Reports describing abomasitis are scant, but all describe sudden death, abomasal 

necrosis, haemorrhages and bloat184. The role of C. perfringens type A has been confirmed by 

experimental reproduction of the disease through intraruminal inoculation of C. perfringens 

type A cultures160. In naturally occurring cases, next to the abomasal lesions, duodenal oedema, 

necrosis and haemorrhages are often described184,219. As with bovine enterotoxaemia, dietary 

issues, such as overfeeding, or conditions which effect decreased gut motility probably 

contribute to the occurrence of the disease184.  

Abomasal ulcerations 

Abomasal ulcerations are regarded as an important economic concern in all types of calf-rearing 

systems112. Non-perforating ulcers with or without severe blood loss, as well as perforating 

ulcers with local and diffuse peritonitis can be observed219. Clinically, there are almost no signs 

or symptoms. Ulcers are a common finding at slaughter in veal calves, but also sudden deaths, 

due to perforating ulcers are reported (1.9% of total mortality)112,151,220. The underlying cause 

is unclear and it probably concerns a multifactorial disorder214. C. perfringens has often been 

suggested to be associated with bovine abomasal ulcerations, but no studies confirmed this 

relationship and other pathogens may be responsible for this disease as well214,219. On histology, 

abomasal ulcers may appear as demarcated mucosal areas of coagulative necrosis and 

haemorrhages, with moderate infiltration of neutrophils and macrophages219. As with 

abomasitis in young calves, also small intestinal necrosis and inflammation are reported219. In 

accordance with other gastro-intestinal C. perfringens type A-associated diseases, stress and 

dietary factors including overfeeding, are proposed as predisposing factors112.  
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Table 1 

Description of the main characteristics of enterotoxaemia96,110,130,134,213, haemorrhagic bowel 
syndrome3,13,41,149,171, abomasitis160,184,219 and abomasal ulcerations112,214,219,220. 

 Enterotoxaemia 
Haemorrhagic bowel 

syndrome 
Abomasitis Abomasal ulcerations 

Alternative 

nomenclature 

Necrotic, Haemorrhagic 

or Necro-haemorrhagic 

enteritis 

Jejunal haemorrhage 

syndrome, 

Jejunal haematoma 

 Clostridial abomasal 

disease 

Disease 

progress 

Sudden death Rapid progress or 

sudden death 

Sudden death Mostly subclinical with 

almost no signs or 

symptoms, 

sometimes acute with 

sudden death 

Characteristics Lesions in the small 

intestine, mostly 

jejunum:  

 Necrosis  

 Haemorrhages  

 Oedema 

 Epithelial cell 

detachment 

 Neutrophil influx 

Lesions in the jejunum 

and sometimes 

duodenum: 

 Necrosis 

 Haemorrhages 

 Oedema 

 Epithelial cell 

detachment 

 Neutrophil 

influx 

 Intraluminal 

blood clots 

Abomasal lesions: 

 Necrosis 

 Haemorrhages 

 

Often with duodenal 

lesions: 

 Necrosis 

 Oedema 

 Haemorrhages 

Abomasal lesions: 

 Necrosis 

 Haemorrhages 

 Neutrophil influx 

Acute form often with 

small intestinal lesions: 

 Necrosis 

 Oedema 

 Neutrophil influx 

Age 1-8 months of age Adult cattle Neonatal calves Calves in the 

preruminant stage or 

in the transitional 

phase 

Aetiological 

agent 

C. perfringens type A Strong association with 

C. perfringens type A 

C. perfringens type A Associated with 

C. perfringens type A 

Risk factors Increased consumption 

of high-energy diet, 

Stressful conditions 

Increased consumption 

of high-energy diet 

Over-feeding, 

 

Conditions which 

decrease gut motility 

Over-feeding, 

 

Stressful conditions, 

Mechanical stress to 

abomasal mucosa 

 

Haemorrhagic bowel syndrome 

Haemorrhagic bowel syndrome (HBS) is a disorder affecting adult dairy cows. It is 

characterized by intraluminal and intramural small intestinal haemorrhages and necrosis with 

subsequent clot formation and intestinal obstruction3,41. Clinically, a sudden onset of colic or 

ileus can be observed, typically associated with blood in the faeces. This is the most typical 

presentation, but the animals can also be found dead without premonitory signs149,171. A case 

fatality rate exceeding 85% has been reported37. Although the cause of HBS is unknown, several 

investigators have revealed a strong association between HBS and the presence of 

file:///C:/Users/Evy/Google%20Drive/UGent/Doctoraat/Doctoraatsthesis/Inleiding/inl2.docx%23_ENREF_37
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C. perfringens type A41. On histology, severe segmental submucosal haemorrhages and oedema 

of the small intestine is observed. This is often accompanied by a mixture of segmental necrosis, 

ulceration, or complete detachment of the epithelium with infiltration of neutrophils and the 

presence of Gram-positive rods41. Similar to other Clostridium-associated enteric diseases, 

increased consumption of a high-energy and protein diet seems to be the most plausible risk 

factor13. 

 

It should be noted that for abomasal ulcerations, the role of C. perfringens type A is 

questionable, whereas the involvement of C. perfringens type A in bovine enterotoxaemia, HBS 

and abomasitis is more clear. Up to now, it is not clear whether bovine enterotoxaemia, HBS 

and abomasitis are truly different diseases or whether they should be considered as clinical or 

pathological variants of the same disease. The same inconclusiveness is also reflected in the 

literature in the description of haemorrhagic bowel syndrome in calves168 or enterotoxaemia in 

a three-year-old cow83. All three syndromes are associated with C. perfringens type A infection 

and are characterized by sudden death associated with haemorrhages, necrosis and 

predominantly neutrophil influx. The same risk factors predispose for all three syndromes. It is 

therefore not unlikely that a common pathological mechanism underlies these gastro-intestinal 

diseases (Table 1), and as a consequence, the results presented in this thesis may be of 

importance for all of these syndromes.  
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2 
C. perfringens strain specificity in relation to disease  

 

Certain anaerobic bacteria are pathogenic to humans and animals. Their main virulence 

determinants consist of secreted toxins, which are often produced by species belonging to the 

Clostridium genus. The genus Clostridium consists of a diverse group of anaerobic, Gram-

positive bacteria which have the ability to form heat-resistant endospores. More than 120 

described species make up this genus, but few can induce disease. Pathogenic clostridia are 

non-invasive bacteria, but they secrete potent extracellular toxins that act at a distance from the 

bacteria and cause all the symptoms and lesions of the clostridial diseases. The clostridia 

produce more toxins than any other bacterial genus, and each type of toxin induces one or more 

specific syndromes153.  

Clostridium perfringens ranks amongst the most widespread bacteria, with an ubiquitous 

environmental distribution in soil, sewage, food, faeces, and the normal intestinal microbiota 

of humans and animals181. However, this Gram-positive, anaerobic spore former is also one of 

the most common pathogens, causing a spectrum of important human and animal diseases 

ranging from histotoxic to enteric infections152,181. Intestinal infections caused by 

C. perfringens are often generically called enterotoxaemias because toxins produced in the 

intestine may be absorbed into the general circulation. However, while this is true for many 

C. perfringens toxins, some toxins produced in the intestine act only locally, while others act 

both locally and systemically186,208,211. 

The virulence of C. perfringens is mediated in large part by its intimidating toxin arsenal. The 

organism lacks many enzymes for amino acid biosynthesis and therefore must obtain various 

essential materials from its host by producing several toxins and degradative enzymes174. As a 

species, C. perfringens produces at least 16 toxins and extracellular enzymes72,89,152. However, 

no single strain produces this entire toxin panoply, resulting in considerable variation in the 
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repertoire of toxins produced by different strains of this bacterium. These strain-to-strain 

differences in toxin production permits the classification of C. perfringens isolates into five 

toxinotypes, based on the presence of genes encoding for four so-called major toxins: alpha, 

beta, epsilon and iota toxin (Table 2). Besides expressing one or more of the typing toxins, 

C. perfringens strains can produce additional toxins including, but not limited to enterotoxin 

(CPE) or necrotic enteritis B-like toxin (NetB), which are also very important in certain 

diseases89,167. 

 

Table 2 

Classification of Clostridium perfringens based on the presence of the genes encoding for the four major 
toxins152,206. 

Toxin 
C. perfringens toxinotype 

Cellular target (mode of action) 
A B C D E 

Alpha + + + + + Membrane (phospholipid destruction) 

Beta  + +   Membrane (pore formation) 

Epsilon  +  +  Membrane (pore formation) 

Iota     + Actin (cytoskeleton destruction) 

 

 

The different toxinotypes of C. perfringens are associated with particular human or animal 

diseases, indicating that variations in toxin production profoundly influence the virulence 

properties of C. perfringens isolates (Table 3)152. These isolate-to-isolate differences in toxin 

production also help explain the pathogenic versatility of C. perfringens. Strains of type B to E 

are mostly associated with disease and only sporadically isolated as a member of the normal 

intestinal microbiota. Type A strains are also associated with disease, but can equally well be 

commensal in the gastro-intestinal tract of humans and animals72,181. Rather than being the 

result of a single toxin, virulence of different C. perfringens isolates is considered as a 

multifactorial trait, with different determinants contributing to adaptation of the organism to its 

niche and to the induction of pathology195. Below a description is given of the function and role 

of the different known C. perfringens toxins in disease, starting with the plasmid-encoded 

toxins used for toxinotyping (beta, iota, epsilon) and other plasmid-encoded toxins, followed 

by the 2 toxins that are present in all C. perfringens strains, i.e. the alpha toxin and 

perfringolysin O, and some enzymes.  
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Table 3 

Main diseases associated with C. perfringens in humans and animals99,152,211.  

Type Toxins produced Human disease(s) Animal disease(s) 

A Alpha toxin* Gas gangrene (myonecrosis) Gas gangrene (myonecrosis) 

Yellow lamb disease in sheep 

Enteritis in piglets 

Enterotoxaemia (necro-haemorrhagic 

enteritis), abomasitis and haemorrhagic 

bowel disease in cattle 

 Alpha toxin, 

enterotoxin 

Food poisoning,  

Non-foodborne gastrointestinal 

diseases 

Enteritis in dogs, pigs, horses, foals, and 

goats 

 Alpha toxin, NetB Not reported Necrotic enteritis in chickens 

 Alpha toxin, beta2 

toxin 

Not reported Possible enteritis in pigs 

Possible enterocolitis in horses 

B Alpha toxin, beta 

toxin, epsilon toxin 

Not reported Necro-haemorrhagic enteritis of sheep 

(lamb dysentery) 

C Alpha toxin, beta 

toxin 

Human necrotic enteritis 

(enteritis necroticans, pigbel, 

darmbrand) 

Necrotic enteritis of neonatal individuals of 

several animal species (horse, cattle, pigs) 

Enterotoxaemia in sheep (struck) 

D Alpha toxin, epsilon 

toxin* 

Not reported Enterotoxaemia in lambs, sheep, calves and 

goats 

E Alpha toxin, iota 

toxin 

Not reported Suspected, but not confirmed association 

with gastrointestinal disease of cattle, 

sheep and rabbits. 

* Critical toxin(s) for virulence. Perfringolysin O is not directly responsible for disease, but also contributes to the 

virulence during gas gangrene and bovine enterotoxaemia, and has a possible synergism with epsilon toxin in 

enterotoxaemia. 

 

Plasmid-encoded toxins produced by C. perfringens type A 

It is commonly accepted that, when causing enteritis and enterotoxaemia, C. perfringens often 

relies upon specific toxins other than those shared with all C. perfringens isolates (alpha toxin, 

perfringolysin O, …). Those toxins involved in most intestinal infections are encoded by genes 

located on extrachromosomal elements or in variable regions of the chromosome. The array of 

toxins produced by a single strain can greatly vary and is characteristic for the diseases it can 

induce. The role of the major toxins from C. perfringens type B-E (beta, iota, epsilon toxin) in 

intestinal disease is well documented. Also certain subtypes of type A strains produce specific, 
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disease-associated toxins, namely C. perfringens enterotoxin (CPE), Beta2 toxin (CPB2), 

necrotic enteritis B-like toxin (NetB) and NetF, among others. 

Beta toxin is a necrotizing, pore-forming toxin that is considered to be responsible for the fatal 

intestinal necrosis seen in type C infections in several animal species (e.g. piglets) and humans. 

Beta toxin is highly sensitive to the action of proteolytic enzymes such as trypsin. As a 

consequence of the trypsin inhibiting effect of colostrum to prevent proteolytic degradation of 

immunoglobulins during the first days of life, also beta toxin is protected. Therefore neonates 

are highly susceptible to C. perfringens type C infections. In addition type C disease also occurs 

occasionally in adult animals and humans ingesting significant amounts of food with trypsin 

inhibitors, such as sweet potatoes and soy bean, and also in patients with reduced pancreatic 

function206,208. Although type C enterotoxaemia in neonatal calves is commonly described in 

textbooks, only minimal evidence concerning the role of beta toxin (and type C strains) is 

available58. 

Epsilon toxin is a pore-forming toxin responsible for the neurologic signs caused by type D 

strains. It is produced as a relatively inactive protoxin that needs proteolytic activation to obtain 

its full functionality. Epsilon toxin reaches the blood circulation by absorption through the gut 

mucosa and causes widespread vascular damage and increased vascular permeability in the 

brain and intestine80,113. The toxin rapidly crosses the blood-brain barrier, binds to neuronal 

cells and causes mortality52,191. Type D enterotoxaemia is an important disease in sheep and 

goats. However, epsilon toxin differentially affects sheep and goats, as the former have more 

overt brain lesions, where the latter are more affected in the gut191. Less frequently, type D 

enterotoxaemia is also described in calves, with clinical signs similar to those in sheep46,191. 

Iota toxin is a binary toxin composed of a cell-binding component (Ib) and a complementary 

enzyme component (Ia). Ib binds to the receptor on the target cells and translocates Ia into the 

cytosol of the cells. Ia ADP-ribosylates actin, thereby blocking the polymerization of actin, 

eventually leading to cell rounding and death165. Type E strains are the only C. perfringens 

strains producing iota toxin. Type E is a putatively uncommon cause of enterotoxaemia in 

lambs, calves and rabbits93. However, Songer reported the isolation of type E strains from 

neonatal calves with haemorrhagic enteritis185.   

C. perfringens enterotoxin can be produced by type A, C, D and E strains, but production has 

not been shown for any known type B strain99,209. This toxin is important for C. perfringens 

type A food poisoning in humans as well as many cases of non-food-borne human 
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gastrointestinal diseases, such as antibiotic-associated diarrhoea159. Enterotoxigenic type A 

strains are also implicated in diarrheal conditions in pigs, dogs and goats118,182. Unlike the other 

toxins, enterotoxin is produced during sporulation206. The toxin interacts with epithelial tight 

junction proteins and induces leakage of water and ions through pores or channels in the plasma 

membrane of host cells115,177. Most, but not all, C. perfringens type A food poisoning strains 

carry their enterotoxin gene (cpe) on the chromosome. In contrast, the cpe gene of type A non-

food-borne human disease strains and strains isolated from veterinary cases is plasmid-

borne27,29.  

Beta2 toxin is a pore-forming toxin that is associated with enteritis in neonatal pigs92,229 and 

gentamicin-associated diarrhoea in horses12,74,225. The cpb2 gene coding for this toxin can be 

present in a consensus or atypical allele and is found in both type A and type C strains of 

C. perfringens60. Beta2 toxin positive C. perfringens strains are widespread and can be isolated 

from various wild and domestic animals and humans, but also from food, soil and 

sludge78,81,155,217. A possible role of beta2 toxin in bovine enterotoxaemia was suggested in 2002 

when Manteca et al. induced necrotic lesions with a beta2 producing type A strain in a ligated 

loop experiment109. However, this was only tested in one intestinal loop in one calf, and the 

strain also produced large amounts of alpha toxin. In addition, no isogenic strain deficient in 

beta2 toxin was used as a control. Therefore, effects of other factors cannot be excluded. More 

recently, Morris et al. (2011) and Valgaeren et al. (2013) were able to induce necrotic lesions 

in an intestinal loop model by inoculation of type A strains not producing the beta2 toxin130,213. 

Taking these results together with the observation that there is also no correlation between the 

isolation of cpb2 positive strains and the occurrence of enterotoxaemia217, the role of beta2 

toxin in bovine enterotoxaemia seems rather limited. The actual role in other enteric diseases is 

also not clear and recent papers suggest a limited role of beta2 toxin in disease4 and that beta2 

toxin positive C. perfringens type A strains merely reflect the normal intestinal microbiota95. 

NetB is a pore-forming toxin essential for the development of necrotic enteritis in broiler 

chickens89. NetB is expressed by virulent type A strains and causes necrosis of the small 

intestine in the chicken. The toxin interacts with cholesterol and pore formation is enhanced by 

its presence in bilayers169. The action of NetB seems to be species-specific and not all cell lines 

are equally sensitive for the toxin action of NetB, suggesting the involvement of a still 

unidentified protein receptor88,169. 
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NetF is a novel pore-forming toxin in C. perfringens type A strains, associated with two distinct 

severe enteric diseases, canine haemorrhagic gastroenteritis and foal necrotizing enteritis119. 

The toxin is highly cytotoxic for an equine cell line, while cell lines from other animal hosts 

are less susceptible, suggesting a specific receptor for the toxin119. Because of the novelty of 

this toxin, it is only described in one paper and the importance of NetF in the pathogenesis still 

needs to be clarified. In a previous paper from the same research group, C. perfringens type A 

strains isolated from foals and adult horses with acute enterocolitis were not cytotoxic for the 

equine cell line, strongly suggesting the absence of NetF in those isolates63. 

The controversial role of C. perfringens type A strains in 
disease 

Although the role of other toxinotypes of C. perfringens in diseases originating in the intestine 

is well documented, the involvement of C. perfringens type A strains is rather controversial and 

often questioned. For many years, the involvement of C. perfringens type A strains in intestinal 

disorders was commonly accepted99,152,199,211. More recently, this idea has shifted towards 

underrating the role of type A strains in enteric disease, leading to the postulation that type A 

strains are only important for histotoxic infections (gas gangrene) and that enteric diseases are 

generally caused by type B-E or type A subtypes, producing specific toxins such as enterotoxin 

and NetB206,209. The idea prevails that common virulence factors inherent to all C. perfringens 

strains (and as a result thereof, present in the healthy intestinal tract) are not sufficient for 

induction of intestinal diseases. The controversy around type A strains in intestinal disease 

should not come as a surprise. As type A strains can be present in the normal microbiota, 

isolation of this toxinotype is not indicative of disease. Also detection of its major toxin, alpha 

toxin, has little diagnostic value, as it can be present in the faeces of healthy animals36. 

Therefore, diagnosis of enteric type A disease is not straightforward and experimental 

reproduction of disease is needed to confirm the role of type A in disease. By making the 

statement that type A strains are not involved in gastro-intestinal disorders, numerous reports 

describing type A-associated enteric diseases in both humans and animals63,110,175,179,183,210, as 

well as experimental data underlining the involvement of type A strains are 

ignored31,47,129,130,213. Because of this reduced focus on type A strains in gastro-intestinal 

diseases, the importance of the common C. perfringens toxins (alpha toxin, perfringolysin O) 

and virulence factors (e.g. enzymes) is poorly documented. 
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For bovine type A enterotoxaemia, as for the majority of enteric diseases thought to be evoked 

by type A strains, no unique, disease-specific toxin is known. The disease cannot be reproduced 

experimentally after oral or intraduodenal inoculation of C. perfringens type A strains140. 

However, necro-haemorrhagic lesions, comparable to those seen in natural cases, can be 

induced in calf intestinal loop models by C. perfringens strains from healthy and 

enterotoxaemic cattle as well as from other host species, confirming the importance of type A 

strains in the pathogenesis109,130,213. Because of the observation that strains from both bovine 

and non-bovine origin can induce necro-haemorrhagic lesions, it is likely that, in contrast to 

most C. perfringens-associated enteric diseases in other animals, no disease-specific toxin is 

involved in the pathogenesis of bovine enterotoxaemia, and that the causative toxin(s) is (are) 

produced by all C. perfringens type A strains. A possible role of alpha toxin in the pathogenesis 

of bovine enterotoxaemia was demonstrated in a calf intestinal loop model. Exposure of the 

small intestine to alpha toxin resulted in epithelial cell detachment, villus tip blunting, erosion, 

mild inflammation and haemorrhages of the lamina propria. However, no necrosis could be 

observed, suggesting that alpha toxin is not the only common virulence factor involved129. 

Recently, the involvement of alpha toxin in the induction of necro-haemorrhagic lesions has 

been shown by inoculation of mutant strains in a calf intestinal loop model222. Although the 

ability to induce necro-haemorrhagic intestinal lesions was significantly reduced in alpha toxin-

deficient strains, these strains were not unable to induce lesions. Therefore, it cannot be ruled 

out that other commonly produced C. perfringens virulence factors may be involved in the 

pathogenesis of bovine enterotoxaemia. A review of these potential virulence factors is given 

in the following sections, followed by a hypothesis on the key events in C. perfringens type A-

induced intestinal necrosis (Figure 7). 

Alpha toxin 

Molecular architecture of alpha toxin 

Alpha toxin is a zinc-dependent phospholipase C (PLC) enzyme produced by all C. perfringens 

strains, although type A strains usually produce higher amounts than other toxinotypes138. The 

toxin is secreted by means of a signal peptide (28 first amino acids), resulting in a mature protein 

of 370 amino acids (43 kDa). Alpha toxin is composed of two domains, an α-helical N-terminal 

domain (residues 1-246), and a β-sandwich C-terminal domain (residues 256-370), which are 

joined by a short flexible linker region (residues 247-255)198. The N-terminal domain harbours 
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the active site, which is located within a cleft and contains two to three zinc ions, essential for 

the catalytic activity. Two flexible loops (residues 55-93 and 132-149) are located on either 

side of the active cleft and undergo a change of conformation between the open (active) and 

closed (inactive) form of the toxin (Figure 3)39. In the open conformation, the active site is 

accessible for substrate binding, whereas in the closed form, the two loops obstruct the active 

site, rendering the toxin inactive. The first loop domain (residues 55-93) has a ganglioside-

binding site and may play an important role in tethering of alpha toxin to the membrane147. The 

C-terminal domain of alpha toxin is essential for membrane-binding and is structurally similar 

to eukaryotic phospholipid-binding C2 domains199. The C-terminal domain directs alpha toxin 

to, and interacts with, the membrane, thereby correctly positioning the catalytic domain for its 

activity66. Calcium-ions are essential for the phospholipid binding by conferring a positive 

charge on the polar head groups of membrane phospholipids, thereby favouring interactions 

with the negatively charged toxin domain116,127 and allowing insertion of portions of the C-

terminal domain into the bilayer56. Membrane binding probably induces a conformational 

change in the N-terminal domain from the closed to open configuration, thereby uncovering the 

active site39,153.  

 

 

 

Biological activity and mode of action 

Alpha toxin causes membrane damage to a variety of erythrocytes and cultured mammalian 

cells and is known to be haemolytic, cytotoxic, myotoxic and lethal. Alpha toxin is 

preferentially active towards phosphatidylcholine (PC or lecithin) and sphingomyelin (SM), 

two major components of the outer leaflet of eukaryotic cell membranes. The N-terminal 

Figure 3 

Ribbon diagram of the closed structure of alpha 

toxin. 

In blue is the N-terminal domain. In green is the C-

terminal domain. A short linker region exists 

between the two domains. In brick red are the 

two loop regions, which differ between the closed 

and open structures. The active site zinc ions are 

shown in dark blue198. 
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domain possesses full activity towards phosphatidylcholine but lacks the sphingomyelinase 

activity and is not haemolytic or cytotoxic198. The C-terminal domain is devoid of enzymatic 

activity, but interaction between the N- and C-terminal domains is essential to confer 

sphingomyelinase activity, haemolytic activity and cytotoxicity to the toxin56.  At high 

concentrations, alpha toxin induces massive degradation of PC and SM, followed by membrane 

disruption and cell lysis164. Although alpha toxin is a potent haemolysin, the lysis of 

erythrocytes is only seen after intravenous administration of toxin in experimental animals or 

in cases of clostridial septicaemia198. Therefore, it is believed that alpha toxin preferentially acts 

in a more subtle way, perturbing the metabolism of the host cells to the advantage of the 

pathogen and the disadvantage of the host198.  

The sensitivity to membrane damage of different cells varies markedly depending on the 

cellular capacity to up-regulate PC synthesis as well as the proportion of phospholipids, 

cholesterol and gangliosides in the cell membrane56,203. Membrane damage by alpha toxin 

reflects the balance between the phospholipid degradation caused by the toxin and the synthesis 

of the phospholipids by the cell. In order to perform its action, alpha toxin must first bind to the 

plasma membrane of the target cell and acquire its active conformation56. The composition of 

the outer leaflet of the plasma membrane can influence both the binding of alpha toxin and its 

proper positioning towards the substrates199. The presence of cholesterol increases alpha toxin 

binding and its activity in liposomes135,203,204. The stimulatory effects of cholesterol can be 

largely explained in terms of its negative intrinsic curvature, which facilitates insertion of alpha 

toxin in the membrane204. Furthermore, gangliosides, particularly those rich in sialic acid, exert 

a protective effect on cultured cells against alpha toxin, whereas other cell surface 

glycoconjugates do not55,56. The exact mechanism behind this protective effect is not yet fully 

elucidated, but might be explained by the bulky head groups of gangliosides which protrude 

from the interface and create a polar and hydrated microenvironment. This alters the availability 

of the phospholipid substrates in ganglioside-containing membranes due to either steric effects 

or to the electrostatic changes induced at the interface55. Because the upregulation of PC 

synthesis to compensate for phospholipid degradation imposes an increased consumption of 

ATP, the cellular susceptibility to membrane disruption by alpha toxin also depends on the 

energy metabolism of the cell. Metabolic changes in cells of ischaemic tissues sensitize them 

to the cytotoxic effect of alpha toxin56.  

As mentioned before, cells exposed to alpha toxin do not always show membrane disruption 

and more subtle effects may be of greater importance in disease. At sublytic concentrations, 
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alpha toxin causes limited hydrolysis of PC and SM, generating the second messengers 

diacylglycerol (DAG) and ceramide respectively. This triggers various intracellular signal 

transduction pathways leading to uncontrolled production of several intracellular mediators198. 

The intracellular pathways induced by alpha toxin are still subject of debate and may depend 

on cell types. Ceramide production can activate protein phosphatases as well as various protein 

kinases involved in signal transduction pathways associated with cell death and cell cycle 

arrest56. DAG production can activate the arachidonic acid metabolism, resulting in the 

formation of thromboxanes, leukotrienes and prostaglandins, which contribute to local 

inflammation and vasoconstriction56. DAG may be formed as result of the enzymatic action of 

alpha toxin itself, or by activation of endogenous phospholipases through binding of alpha toxin 

with a GTP-binding protein or a TrkA receptor on the plasma membrane146,147,194. DAG triggers 

the activation of protein kinase C (PKC), which in turn can activate various signalling 

cascades87,126,164. It has been demonstrated that alpha toxin can become internalized in cells and 

that endocytosis is required for cytotoxicity in multiple cell lines in vitro125. In endothelial cells, 

alpha toxin induces the production of two vasoactive lipids, platelet-activating factor (PAF) and 

prostacyclin, and the neutrophil chemoattractant, interleukin-8 (IL-8)19,20. The synthesis of PAF 

likely contributes to increased vascular permeability and neutrophil adhesion to endothelial 

cells20. Furthermore, alpha toxin also induces the upregulation of adhesion molecules, both in 

endothelial cells and neutrophils, thus altering the processes of neutrophil adherence and 

extravasation19,20. In neutrophils, alpha toxin also induces the generation of superoxide (O2
-), 

which can cause oxidative stress through the production of further reactive oxygen species 

(ROS) and may contribute to its cytotoxic and myotoxic effects124,144.  Additionally, alpha toxin 

induces the aggregation of platelets and the formation of aggregates between platelets and 

neutrophils, which cause vascular occlusion18. Indirectly, alpha toxin contributes to shock by 

stimulating the production of endogenous mediators such as TNF-α and platelet-activating 

factor (PAF)19,145,187. Furthermore, the lethal effect of alpha toxin is closely related to the release 

of TNF-α from mononuclear cells into the bloodstream145.  

The role of alpha toxin in the pathogenesis of disease 

Up till now, little is known about the role of alpha toxin in C. perfringens type A-associated 

enteric diseases such as bovine enterotoxaemia. Most of the research about alpha toxin is 

focused on gas gangrene, giving a detailed view on the role of alpha toxin in histotoxic 
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infections, while many questions regarding the role of alpha toxin in enteric disorders remain 

unanswered.  

Alpha toxin is the major virulence factor in gas gangrene, an acute and devastating infection, 

most frequently caused by C. perfringens that affects mammalian and avian species 

worldwide176. This histotoxic disease is characterized by fever, sudden onset of prominent pain, 

massive local oedema, severe myonecrosis, and the accumulation of gas at the site of infection. 

Histopathologically, the infected muscle tissue is characterized by the marked absence of 

inflammatory cells infiltrating the myonecrotic tissue, together with their accumulation at the 

borders of the necrotic area, and significant thrombosis54,187,198. The role of alpha toxin in gas 

gangrene was proven using different approaches. Firstly, when injected intramuscularly in 

mice, recombinant alpha toxin causes myonecrosis and reproduces many of the 

histopathological features of gas gangrene20. Furthermore, an alpha toxin mutant strain was 

attenuated in a mouse model for gas gangrene, whereas immunization with a recombinant alpha 

toxoid protected mice from experimental gas gangrene9,198,232. 

One of the hallmarks of gas gangrene is the absence of neutrophils in the infected tissue. This 

is largely due to the alpha toxin-induced upregulation of adhesion molecules and IL-8 

expression in endothelial cells and leukocytes as described above, which inhibit the influx of 

neutrophils to the infected tissue and promote thrombotic events, hereby enhancing the 

conditions for anaerobic growth9,10,190. Another remarkable characteristic of gas gangrene is the 

severe myonecrosis. Experimental injection of alpha toxin in guinea pigs has shown that alpha 

toxin is responsible for the extensive damage to muscle fibres during gas gangrene193. This high 

susceptibility to alpha toxin might be related to the low concentration of complex gangliosides 

on the muscle cell plasma membrane55,56. In addition, the susceptibility of muscle cells under 

ischemia could increase even further by the fact that ganglioside synthesis is down regulated in 

cells exposed to low oxygen tension in vitro56.  

Alpha toxin might play a role in enteric diseases in both humans and animals. However, for 

virtually all these diseases no conclusive evidence for the role of alpha toxin is provided198. In 

the ‘90s, alpha toxin has been associated with sudden infant death syndrome (SIDS), Crohn’s 

disease and rheumatoid arthritis in humans132,198. More recently, several cases of adult 

necrotizing enterocolitis have been associated with C. perfringens type A strains, suggesting a 

possible role of alpha toxin in disease133,179. In animals alpha toxin has frequently been 

associated with type A enteritis in piglets183,186,198, enterotoxaemia in calves96,130 and 
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haemorrhagic bowel syndrome in adult cattle41,149. Although alpha toxin is not essential for the 

induction of necrotic enteritis in chickens, a possible role in disease cannot be ignored91,157,158. 

Histopathologically all these intestinal disorders are characterized by damage to the tips of the 

villi or epithelial cell detachment, congestion of the capillaries, mucosal oedema and necrosis. 

In most cases, also haemorrhages and mucosal inflammation with concomitant influx of 

inflammatory cells is reported41,96,149,180,196. For some of these pathological findings, there is 

indirect evidence that alpha toxin is responsible. In small intestine explants of rabbits incubated 

with alpha toxin, this toxin causes detachment of the epithelial cells at the tip of the villi84. 

Epithelial sloughing was also observed when alpha toxin was inoculated in bovine intestinal 

loops129. Alpha toxin is able to upregulate the matrix metalloproteinase (MMP) expression of 

the host as seen in vitro. This increased host MMP activity may be related to derangement of 

normal epithelial growth and increased degradation of subepithelial matrix, possibly explaining 

the observed epithelial detachment53. Additionally it has been shown that intraperitoneal or 

systemic administration of TNF-α to mice or intraduodenal TNF-α injection in rats induces 

pathological intestinal cell shedding and that dysregulated TNF-α production is highly 

important in driving epithelial damage as shown in mice67,231. Alpha toxin induces the 

production of TNF-α by mononuclear cells, indicating a possible role of this pathway in 

epithelial sloughing. However, the effect of alpha toxin on TNF-α production by epithelial cells 

still needs to be investigated. Another characteristic of C. perfringens type A-associated 

intestinal disorders that can be a result of the alpha toxin activity is the influx of inflammatory 

cells. Neutrophilic inflammation of the small intestine has been observed after intragastric 

administration of alpha toxin to neonatal piglets and when alpha toxin was injected in small 

intestinal loops of rats, sheep and calves47,129,148. This trafficking of inflammatory cells to the 

infected tissues seems contradictory to the image in gas gangrene, where the leukocytes are 

trapped within the blood vessels. However, this difference may be related to the concentration 

of alpha toxin in the tissue. In gas gangrene, alpha toxin is produced in the tissue, leading to 

high toxin concentrations at the site of infection. This is in contrast to intestinal infections, 

where alpha toxin is produced by C. perfringens in the intestinal lumen and enters the mucosa 

through a currently unknown mechanism. Little is known about the permeability of the intestine 

to alpha toxin, but it is likely that lower concentrations will be present in the intestinal mucosa 

than in the infected muscle tissue during gas gangrene181. As described above, alpha toxin 

causes upregulation of adhesion molecules and IL-8 expression in endothelial cells and 

leukocytes. When present in abnormal high concentrations as observed in mouse models for 
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gas gangrene, these intercellular mediators alter the processes of leukocyte adherence and 

extravasation, resulting in impaired movement of inflammatory cells to the infected tissue187. 

However, physiological levels of upregulation lead to trafficking of neutrophils into the tissue 

space, as observed in intestinal C. perfringens type A infections. Furthermore, Otamiri et al. 

have shown that this neutrophil influx was caused by alpha toxin-induced activation of 

endogenous phospholipase A2 in the rat intestinal mucosa148. Activation of endogenous 

phospholipase A2 can result in the generation of highly pro-inflammatory lysophosphatidic acid 

which can damage the mucosa. The mucosal damage can be aggravated by granulocyte-derived 

oxidants, proteolytic enzymes and cytotoxic proteins originating from the infiltrated 

neutrophils, and may be associated with increased mucosal permeability. Indeed, an alpha 

toxin-triggered increase in intestinal permeability was shown in rats, rabbits, sheep and 

chickens47,84,148,158. Additionally, alpha toxin induces the production of PAF and TNF-α by 

endothelial and mononuclear cells respectively, which likely contributes to the increased 

vascular permeability and oedema during C. perfringens infections189,190. This increased 

vascular permeability may explain the haemorrhages observed after C. perfringens type A 

infections in some species. Indeed, haemorrhages of the lamina propria were reproduced after 

alpha toxin inoculation in ligated loops of the bovine small intestine129. Another effect of alpha 

toxin observed in experimental animals is the contraction of isolated ileum of rats163. The 

significance of this finding in natural disease however, is not clear. It should be noted that, 

although alpha toxin is described as a necrotizing toxin, no intestinal necrosis could be 

observed in any of the experimental models mentioned before. However, a mutant strain devoid 

of alpha toxin caused less necrosis than its isogenic wild type strain when injected in bovine 

intestinal loops222. Together, these findings suggest that alpha toxin is involved, but most likely 

a synergism with other factors is needed to cause intestinal necrosis. 

Perfringolysin O 

Molecular architecture and mode of action of perfringolysin O 

Perfringolysin O (also called theta toxin) is a cholesterol-dependent cytolysin (CDC) that has 

the ability to lyse red blood cells. It is produced by nearly all C. perfringens strains, except the 

enterotoxin-producing food poisoning strains34. The toxin binds to membrane cholesterol, and 

then forms oligomeric pores causing membrane damage226. Perfringolysin O is secreted by 

means of a signal peptide (27 amino acids), resulting in a mature peptide of 472 amino acids 
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long (53 kDa)202. Structurally, perfringolysin O is a rod-shaped molecule comprised of three 

discontinuous domains (domains 1-3) and a compact C-terminal β-sandwich (domain 4) (Figure 

4)162. The C-terminal domain is essential for cholesterol recognition and binding with the 

plasma membrane, resulting in a conformational change in domain 3173. This conformational 

change allows perfringolysin O to oligomerize and to form a prepore complex, after which the 

domain 3 loops can be inserted into the lipid bilayer, leading to a large, transmembrane pore 

and subsequent lysis of the cell30,221. It has been suggested that the ability of perfringolysin O 

to perforate the membrane of target cells is dictated by how much free cholesterol molecules 

are present122. 

The role of perfringolysin O in the pathogenesis of disease 

Perfringolysin O is not considered essential for disease, but seems to have an important 

accessory role in some disorders. As for alpha toxin, 

the involvement of perfringolysin O is best 

characterized for gas gangrene. Studies using a 

perfringolysin O-deficient strain have shown that 

perfringolysin O affects the host inflammatory 

response and is, at least partially, involved in tissue 

destruction in a mouse model for gas gangrene. 

However, these effects were less pronounced than 

those elicited by alpha toxin and a synergistic effect 

between both toxins has been shown9,10,190. The 

most likely mechanism underlying the concerted 

action of alpha toxin and perfringolysin O is that the 

phospholipid hydrolysis caused by alpha toxin 

increases the availability of cholesterol molecules in 

the membrane, thereby facilitating perfringolysin O 

binding and cytolysis on membranes that contain 

low cholesterol levels (Figure 5)122. In vitro 

perfringolysin O enhances the expression of pro-

adhesive molecules on leukocytes, as well as PAF 

and ICAM-1 (intracellular adhesion molecule 1) on 

endothelial cells17,19,230. This may lead to 

Figure 4 

Ribbon diagram of the structure of 
perfringolysin O, with each domain designated 
by a different colour202. 
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hyperadhesion of leukocytes to endothelial surfaces, explaining the leukocyte accumulation 

within the vasculature during gas gangrene190.  

The role of perfringolysin O in intestinal diseases caused by C. perfringens is still subject of 

debate. There are some indications that perfringolysin O can act in synergy with both alpha 

toxin, as seen in vitro, and epsilon toxin, as shown in a mouse model45,219.  

 

Figure 5 

A schematic model for the C. perfringens alpha toxin effect on perfringolysin O binding. 

(A) Perfringolysin O does not bind to membranes containing low cholesterol content, presumably because no 

free cholesterol molecules are present in the membrane. (B) C. perfringens alpha toxin hydrolyzes 

phosphatidylcholine releasing the phosphocholine headgroup and generating diacylglycerol (DAG). The 

appearance of free cholesterol molecules triggers domain 4-mediated perfringolysin O binding. The 

phosphocholine headgroup  is represented as a large blue circle. The glycerol moiety of DAG is shown as a small 

blue circle. Cholesterol is shown as an orange oval. (Adapted from Moe et al., 2010122)  

 

However, more research is needed to elucidate the role of perfringolysin O in in vivo 

situations45,222. Verherstraeten et al. recently demonstrated a synergistic cytotoxic effect 

between alpha toxin and perfringolysin O to bovine endothelial cells. However, a perfringolysin 

O-deficient strain was still able to cause necrosis in calf ligated intestinal loops and in this 
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model no synergy between alpha toxin and perfringolysin O could be observed222. In 

accordance with these observations, a perfringolysin O-deficient type C strain retained full 

virulence in a rabbit intestinal loop model, suggesting no synergistic effect of perfringolysin O 

and beta toxin for the induction of type C enteritis170. We should note that these findings do not 

exclude a possible accessory role of perfringolysin O in intestinal disease. Based on the 

knowledge obtained from gas gangrene, the effect of perfringolysin O is expected to be more 

subtle and further research should be focused on the host inflammatory response and more 

specific the neutrophil and macrophage influx into the lesions.  

In contrast to the contribution of perfringolysin O in intestinal lesions, the potential of 

perfringolysin O to enhance the lethal effects of epsilon toxin during enterotoxaemia was 

demonstrated in a mouse model for type D enterotoxaemia. However, in this study purified 

toxins were used and it is unknown whether the same amount of toxin, in the same ratio, will 

be present during natural disease. In order to confirm the potential contribution of perfringolysin 

O in type D enterotoxaemia, experiments using knockout mutants are needed45.  

In conclusion, although less pronounced than the effect seen in gas gangrene, perfringolysin O 

may also exert an accessory role in C. perfringens-associated enteritis and enterotoxaemia in 

some species.  

Proteolytic and carbohydrate-active enzymes 

Mucin-degrading enzymes (mucinases)  

Mucus is a complex fluid that is rich in mucin glycoproteins and a diverse range of antimicrobial 

molecules. It is the major barrier separating the epithelial cells and underlying host tissues from 

the commensal microbiota and is the first line of host defence against invading pathogens by 

forming a biophysical barrier to infection117,123. Mucin consists of a peptide backbone with 

O-linked glycosylated regions comprising 70-80% of the polymer. N-acetylglucosamine, 

N-acetylgalactosamine, fucose and galactose are the 4 primary mucin monosaccharides. Mucin 

oligosaccharide chains are often terminated with sialic acid or sulphate groups35. The large, 

complex structure of mucins makes them targets for many proteases, glycosidases and 

sulphatases. Enzymatic digestion of the mucus layer provides access to readily available 

sources of carbon and enables bacteria to reach the epithelial surface35. For C. perfringens, 

many glycosidases are described which have varying catalytic specificities that reflect the 

breakdown of a diversity in host glycans. These enzymes cleave sugars from mucin 
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oligosaccharides and may act in conjunction with each other to promote complete degradation 

of the glycoproteins. Among the glycosidases employed by C. perfringens to cope with the 

mucosal surface are sialidases (neuraminidases)15,137, α-L-fucosidases44, exo- and endo-β-N-

acetylglucosaminidases1,49 and exo- and endo-α-N-acetylgalactosaminidases8,50,57. For most of 

these enzymes, more research is needed to elucidate their function in the pathogenesis. 

However, it should be noted that most clostridial glycosidases are extracellular soluble 

enzymes, which may penetrate the mucin layer and reach the surface of the epithelial cells. 

Thus, these enzymes could damage intestinal mucus. This is in contrast to bifidobacterial 

glycosidases (from probiotic bacteria), which are membrane or cell-wall anchored and are not 

liberated from bacterial cells8. 

Sialidases (neuraminidases)  

Many of the studies concerning enzymes that are capable of degrading mucins were carried out 

specifically on sialidases. These enzymes cleave terminal sialic acids from sugar chains of 

glycoproteins, glycolipids, oligosaccharides, gangliosides and other sialoglycoconjugates. 

Sialic acids are especially abundant in the intestinal tract, where they are a major constituent of 

mucins. C. perfringens produces enzymes that release sialic acid from sialoglycoconjugates, 

transport it into the cell, and degrade it as a source of nutrients (Figure 6)227. Furthermore, the 

release of sialic acid is an initial step in the sequential degradation of mucins, since the terminal 

location of sialic acid residues in the mucin oligosaccharide chains may prevent the action of 

other glycosidases82. In C. perfringens three sialidase enzymes have been reported, the large 

exo-sialidases NanI and NanJ, and a smaller NanH enzyme. Genome sequencing showed that 

the majority of strains carry all three sialidase-encoding genes71. However, the NanI sialidase 

is absent in type A food poisoning strains, as is also the case for perfringolysin O100. The small 

NanH sialidase is synthesized in a 43 kDa (382 amino acids) polypeptide that lacks a signal 

peptide and is located in the cytoplasm. Its cellular location suggests that NanH is involved in 

the cleavage of short oligosaccharides that enter the cell and are subsequently broken down for 

nutritional purposes (Figure 6)23,161,227.  

In contrast to the small NanH sialidase, both large sialidases are secreted enzymes. Secretion 

of these enzymes results in a mature 77 kDa NanI sialidase and a 129 kDa NanJ sialidase101. 

The large sialidases may also play a role in nutrition, releasing sialic acid from higher order 

gangliosides and glycoproteins for subsequent transport into the cell. As a result of their 

extracellular location the large sialidases may also interact with the extracellular environment 
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of the host during infection23. They might facilitate the degradation of tissues to allow for more 

efficient cell-to-cell spread of the bacteria223.  

 

 

Figure 6 

Schematic diagram illustrating the proposed pathway of sialic acid metabolism in C. perfringens.  

The genes encoding each enzyme except the transporter, permease, and kinase (NanK) have been detected in 

C. perfringens. (Adapted from Walters et al., 1999227) 

 

In contrast with gut commensals, which appear to use sialidases primarily for nutrient 

acquisition, some pathogens, such as C. perfringens, also use sialidases to decrypt adhesins or 

toxin-binding sites82. Indeed, in studies on gas gangrene a synergy between alpha toxin and the 

NanI sialidase was observed23,55. In these experiments alpha toxin had greater pathological 

effects on cultured cells that had been pretreated with NanI. Intramuscular injection of both 

alpha toxin and NanI in mice confirmed this synergy in vivo55. This enhancement of alpha toxin 

activity by NanI is dependent on the presence of gangliosides on the surface of the cell. 

Cleavage of sialic acid from these gangliosides, which protrude from the cell surface, most 
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likely allows better interaction of alpha toxin with its substrates at the cellular surface23,55. 

However, the use of either a nanI mutant or nanJ mutant strain showed that large sialidases are 

not essential for virulence in a mouse model for gas gangrene23. This, however, does not exclude 

the possibility that sialidases are involved in the pathogenesis of gas gangrene, because subtle 

effects that might be mediated by the sialidases are masked in this model23,206. 

In addition to a possible role in gas gangrene, the large sialidases may also be of importance 

during intestinal infections. Recent research suggests that NanI sialidase may contribute to 

intestinal attachment and colonization. This conclusion was based on the observation that NanI 

sialidase promotes the adherence of a C. perfringens type A, type C and type D strain to 

enterocyte-like host cells in vitro100,101. Furthermore, pretreatment of sensitive cells with NanI 

sialidase enhanced the subsequent binding and cytotoxic effects of epsilon toxin, suggesting 

that the large sialidases of C. perfringens can act in synergy with this toxin during type D 

enterotoxaemia101. To further unravel the role of large C. perfringens sialidases in intestinal 

diseases, in vivo confirmation is needed. 

Collagenases  

Collagen is widely distributed throughout the body and is an integral component of the 

connective tissue and the basement membrane. Collagen disruption by bacterial collagenases 

may result in the loss of tissue integrity and subsequent tissue necrosis70. Bacterial collagenases 

possess broad substrate specificities and degrade both native and denatured collagens (gelatin), 

while vertebrate collagenases preferentially cleave the native form at a specific site228. 

C. perfringens can produce various gelatinolytic enzymes with molecular masses ranging from 

≈ 80 to ≈ 120 kDa114,154. Historically, research was focused on the 80 kDa collagenase, which 

was designated as kappa toxin85,114,233. Up till now, this enzyme is not fully characterized and 

the corresponding DNA sequence is still unknown. It is a heat-labile protein, which is destroyed 

completely at temperatures above 60°C85. This 80 kDa collagenase was lethal for mice after 

intravenous injection. Haemorrhagic activity was proven after intracutaneous administration in 

rabbits and subcutaneous injection in guinea pigs. Furthermore, this enzyme showed local 

dermonecrotic activity in rabbits following intracutaneous administration85. Subcutaneous 

injection in guinea pigs resulted in extensive destruction of connective tissue. However, no 

visible changes in the muscle layer were observed and only direct injection into the muscle 

tissue lead to muscle destruction85. These results led to the assumption that the 80 kDa 

collagenase may be important in the pathogenesis of gas gangrene and that the primary site of 
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attack in the muscle tissue may be the connective tissue supporting the muscle fibres85. Further 

research revealed that this collagenase is a chemoattractant for human polymorphonuclear 

leukocytes and is able to degrade the human complement component C1q233. However, a 

positive correlation was not always found between the virulence of C. perfringens and the 

ability to produce collagenase, and anti-collagenase was not effective in preventing 

experimental gas gangrene in guinea pigs, nor did it enhance the protective properties of anti-

alpha toxin43. 

From 1994 onwards, research has switched from the 80 to the 120 kDa collagenase and the term 

kappa toxin is used to describe the 120 kDa protein114,142,143. This enzyme is encoded by the 

colA gene and is synthesized in a 126 kDa (1104 amino acids) precursor form 

(preprocollagenase), with a stretch of 86 amino acids containing a putative signal sequence and 

pro region114. This pro region also contains a collagenase target sequence, suggesting that self-

processing is involved in maturation of the collagenase enzyme114,237. The signal peptide and 

pro region are removed to produce a mature 116 kDa extracellular collagenase which is closely 

related to the collagenase from C. histolyticum161. The mature collagenase protein is a zinc 

metalloprotease, which contains a consensus zinc-binding sequence (HEXXH) at the center of 

the active site114. In analogy with the collagenase from C. histolyticum, it is suggested that the 

80 kDa collagenase can be generated from the 120 kDa protein11,237. However, no experimental 

evidence exists to support this hypothesis.  

As described above collagenases could play a role in clostridial virulence in terms of spreading 

toxins and bacterial cells to host tissue, and in tissue necrosis. The use of a colA mutant 

C. perfringens strain revealed that its gene product is not essential for disease in a mouse model 

for gas gangrene11. However, studies using this model are limited given that the mouse gas 

gangrene model does not enable conclusions to be drawn about the early stages of the 

infection206.  

Hyaluronidases  

Hyaluronan (hyaluronic acid, HA) is a glycosaminoglycan composed of alternating units of 

glucuronic acid and N-acetylglucosamine, but unlike other glycosaminoglycans, it lacks a 

covalently linked peptide59,75,94. Hyaluronan can form highly viscous solutions and is a major 

constituent of the extracellular matrix, especially in soft connective tissue94. The viscous 

consistency usually provides resistance to penetration of infectious agents and their 

extracellular products. However, some bacteria have adapted ways to weaken the restraints of 
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connective tissue. Bacterial hyaluronidases act as endo-N-acetylhexosaminidases and are 

produced by a number of bacteria that initiate infections at mucosal surfaces75. Hyaluronidase-

mediated degradation of HA decreases the viscosity, which results in increased permeability of 

the connective tissues and potentially increased spread of microorganisms and toxins through 

the connective tissues61,75. Alternatively, hyaluronidase may degrade HA cell coatings, thereby 

allowing direct contact between the pathogens and the host cell surfaces. Furthermore, the end 

products of hyaluronidase degradation are disaccharides which can be used as nutrients by the 

pathogen75.  

In C. perfringens 5 hyaluronidase genes are described (nagH, nagI, nagJ, nagK and nagL)174. 

The enzymes encoded by these genes differ in length (1001 – 1628 amino acids), but all the 

N-terminal amino acid sequences are similar and have putative signal sequences, suggesting 

that they encode secreted enzymes174. Not much research has been done on the C. perfringens 

hyaluronidases. The best studied enzyme is mu toxin or NagH (encoded by the nagH gene), a 

≈ 182 kDa enzyme composed of an N-terminal region, harbouring the active site and a 

C-terminal putative calcium-binding dockerin fold21,24. By itself, mu toxin is a non-lethal toxin 

but it is thought to contribute to the pathogenesis of C. perfringens through the degradation of 

mucins and connective tissue48. Furthermore it facilitates the spread of alpha toxin, thereby 

potentiating its activity21. Because the C. perfringens hyaluronidases are not as well studied as 

the other C. perfringens toxins, no experimental evidence exists about the actual role of these 

enzymes in either gas gangrene or intestinal infections. 

The concerted action of C. perfringens carbohydrate-active enzymes 

C. perfringens produces a large number of carbohydrate-active enzymes, including the 

hyaluronidases and sialidases. These enzymes are involved in degradation of complex glycans, 

including the intestinal mucosal layer, which comprises a group of highly hydrated 

glycoproteins and glycosaminoglycans. The carbohydrate-active toxins are among the largest 

and most modular enzymes produced by C. perfringens. Next to the catalytic domain, these 

enzymes can also contain various non-catalytic conserved modules, which may play a role in 

their function. For example, carbohydrate-binding modules (CBM) are present in many of these 

enzymes and are shown to mediate their attachment to host glycan targets15,48. Other modules 

present in C. perfringens glycoside hydrolases are a cohesion-like X82 module, present in 

amongst others the NanJ sialidase26, and a dockerin-like sequence present in the NagH 

hyaluronidase (mu toxin)24,25. These X82 and dockerin modules, and by extension their 
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associated enzymes, can form noncovalent complexes through ultra-high-affinity 

interactions2,24. In this way, NanJ sialidase and NagH hyaluronidase can form dockerin/X82-

mediated enzyme complexes which act simultaneously and in concert to exert their pathogenic 

effects. The observation that multiple carbohydrate-active enzymes contain such non-

catalytical domains suggests a unique property of these clostridial toxins to associate into large, 

noncovalent, multitoxin complexes. The formation of such complexes might allow a highly 

efficient degradation of host glycans by combining complementary toxin activities2.  

 

 

Figure 7 

Hypothesis on key events in C. perfringens type A-induced intestinal necrosis. 

C. perfringens type A strains can cause gastro-intestinal diseases in different animal species. The onset of disease 

most likely results from a coordinated interplay between different events and factors. The key risk factors for the 

development of C. perfringens-associated enteric disease is an intestinal environment that favours growth of 

C. perfringens and/or induces initial epithelial damage. Amongst the predisposing factors, a high protein diet and 

stressful conditions are of major importance. (1) The disease starts with rapid proliferation of C. perfringens type 

A. The production of a variety of mucin degrading enzymes leads to breakdown of the protective mucus layer 
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and sialidases remove sialic acid residues from the cells, making the epithelial cells easier to reach and unmasking 

potential binding sites for other C. perfringens toxins and enzymes. Furthermore, the free sialic acid and mucin 

fragments provide a source of carbon and nitrogen, favouring further clostridial growth and toxin production. (2) 

C. perfringens produces alpha toxin, perfringolysin O, collagenase as well as multiple other toxins and enzymes. 

Alpha toxin and perfringolysin O stimulate endothelial cells for the production of IL-8, adhesion molecules (by 

alpha toxin), ICAM-1 and PAF (by perfringolysin O), leading to trafficking of neutrophils into the tissue space. 

Furthermore alpha toxin induces TNF-α production by monocytes and may have an effect on host matrix 

metalloproteinases (MMPs). (3) The earliest histopathological changes observed are epithelial cell detachment 

and congestion of the capillaries evolving to haemorrhages. Interestingly, the epithelial lining appears intact at 

this stage. Alpha toxin induces epithelial sloughing, probably through TNF-α and through host MMP activity on 

the basal membrane. Furthermore TNF-α and PAF likely contribute to the increased vascular permeability.  

C. perfringens collagenase has haemorrhagic activities and may be involved in the breakdown of the basal 

membrane and further destruction of the connective tissue. This mucosal damage is a result from various factors, 

including the alpha toxin-induced activation of endogenous phospholipase A2 (PLA2) and neutrophil-derived 

oxidants, proteolytic enzymes and cytotoxic proteins. (4) All these events eventually lead to fulminant intestinal 

necrosis and allow the absorption of inflammatory cytokines (such as TNF-α) and toxins from the intestinal lumen 

into the systemic circulation, leading to rapid death. 
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3 

C. perfringens-associated immune response 

 

Host immune response to C. perfringens infection 

Innate immune response to C. perfringens  

The mechanisms of innate immune response against C. perfringens and its toxins remain 

unclear. C. perfringens is a non-invading pathogen and innate immune cells as well as the 

mucus layer and epithelial cells form a first barrier to infection. In general, peptidoglycan, the 

main cell wall component of Gram-positive bacteria, activates the innate immune response via 

pattern recognition receptors on epithelial cells, especially the membrane-bound Toll-like 

receptor (TLR) 2 and cytoplasmic nucleotide-binding oligomerization domain (NOD) receptors 

1 and 2102,131,236. TLR activation triggers subsequent inflammatory responses through various 

signalling pathways and finally leads to release of pro-inflammatory cytokines38. In chickens, 

TLR2 is strongly involved in the host response to C. perfringens challenge in the intestine38,104 

and also NOD1 seems to be involved in the recognition of C. perfringens peptidoglycan, as 

shown in vitro68. No studies concerning the involvement of pattern recognition receptors in 

C. perfringens infections in other species are described. Both the C. perfringens bacterial cell 

itself and its secreted toxins can trigger innate immunity and lead to intense production of 

inflammatory cytokines68. Furthermore, membrane vesicles released from C. perfringens also 

stimulated production of inflammatory cytokines77. Together with the C. perfringens toxins and 

enzymes, the excessive and long-term production of pro-inflammatory cytokines may lead to 

gut damage. Once the epithelial barrier has been breached, C. perfringens toxins and enzymes 

come in contact with submucosal innate immune cells (macrophages, monocytes, dendritic 

cells) and trigger further release of pro-inflammatory cytokines. C. perfringens can resist 

macrophage-mediated killing through the action of alpha toxin and perfringolysin O141. It has 
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been demonstrated that macrophages are able to kill C. perfringens, but it has also been reported 

that C. perfringens cells survive in the presence of macrophages, are cytotoxic to macrophages 

and can escape from the phagosome of macrophages after phagocytosis141. This discrepancy in 

macrophage mediated killing of C. perfringens was suggested to be a result of the amount of 

alpha toxin and perfringolysin O, with high concentrations resulting in the survival of 

C. perfringens141. 

Adaptive immune responses to C. perfringens infection  

Little research has focused on the natural acquired immunity towards C. perfringens. In general, 

antibodies to C. perfringens toxins are present in the serum of adult, healthy, non-vaccinated 

individuals14,32,65,73,79,97,111,224. This implies that part of the toxins produced during subclinical 

infection or produced by the normal microbiota (for C. perfringens type A strains) may enter 

the general circulation and be processed by the immune system without any clinical 

symptoms96,224. The prevalence of serum antibodies as well as the levels of serum antibody tend 

to increase with the age of the individuals and the infection pressure in the environment79,97,224. 

A more profound study of the host response to C. perfringens infections in broilers strongly 

suggests that both cell-mediated and antibody-mediated immune responses via major 

histocompatibility complex (MHC) class I and II systems are actively involved239. More 

research is needed to further elucidate the molecular regulation of the host immune response in 

both chickens and other species. 

Maternal antibodies are transferred to the neonate via either the placenta (e.g. humans), the egg 

or for most species via the colostrum200,215. This passive maternal immunity protects the neonate 

during the first weeks of life. Passive immunity then gradually declines after which the animals 

must develop their own active immunity. In the ideal situation a fluent transition from passive 

maternal to active immunity occurs. Only limited reports describe the evolution of serum 

antibodies during the first period of life. Active development of serum antibodies to 

C. perfringens epsilon toxin can appear as early as 6 weeks after birth in young goats224. The 

development of serum antibodies to C. perfringens alpha toxin in calves seems to be influenced 

by the diet. Under certain circumstances a fluent transition of active immunity with the decline 

in maternal antibodies is achieved, whereas under other conditions a complete absence of active 

immunity until the age of 26 weeks is demonstrated215. This immunity gap may render the 

animals susceptible for C. perfringens type A related infections such as abomasitis and 

enterotoxaemia215.  
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Vaccination against C. perfringens infections 

Currently available clostridial vaccines 

Clostridial diseases are common and usually cause sudden death with little time for treatment, 

so vaccination is usually the only achievable medical intervention. All current clostridial 

vaccines contain inactivated toxoids. These toxoid-vaccines are made from culture supernatants 

which are inactivated, mostly using formalin. These toxoids are subjected to an ultrafiltration 

purification process, which removes the bacterial cells and concentrates the desired clostridial 

antigens. Most available clostridial vaccines are combination vaccines against several 

clostridial species, often including toxoids derived from multiple toxinotypes of C. perfringens. 

Amongst the C. perfringens toxinotypes, type C and type D toxoids are almost always included 

in clostridial vaccines, whereas the other C. perfringens toxinotype toxoids are not always all 

included. In addition, toxoids from several other clostridial species are usually present in the 

vaccines: Clostridium chauvoei, Clostridium novyi, Clostridium sordellii, Clostridium septicum 

and Clostridium tetani. A few vaccines also include other bacteria such as Mannheimia 

haemolytica or enterotoxigenic Escherichia coli96. To prevent botulism a vaccine containing 

toxoid of Clostridium botulinum type C and D is available. C. chauvoei vaccines also require 

the inclusion of some cellular material98. The resulting vaccines still contain a lot of undesired, 

uncharacterized proteins which may disturb the immune response against the toxins of 

interest96. Moreover, inactivation, especially formalin inactivation, can induce changes in the 

tertiary protein structures of relevant toxins, influencing the immunogenicity. Although the 

protection afforded by these vaccines against bovine type A enterotoxaemia is still a subject of 

debate, for most clostridial diseases the formaldehyde inactivation seems to have little effect on 

the efficacy of the vaccines69,86,98,181,197. Covexin® (Zoetis, Lovain-la-Neuve, Belgium), a 

commonly used commercial vaccine in Belgium, was developed over 50 years ago for 

immunization of sheep. It is claimed that the vaccine was extensively tested in large-scale field 

trials in sheep7. Unfortunately, no scientific reports on either the antibody development, nor on 

the efficacy of these vaccines were published. However, the use of this vaccine in practice has 

empirically proven its efficacy in protection of sheep against clostridial diseases. In contrast, 

despite being licensed, there are no published reports of vaccination studies in cattle, nor 

indications that this was tested by the manufacturer. Furthermore, empirical data from the field 

lead to the presumption that the vaccine is not adapted to protect cattle against C. perfringens 

intestinal diseases. The same observations were made with other C. perfringens vaccines 
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registered in Belgium. As a consequence, more research is needed to evaluate the efficacy of 

current commercial vaccines against C. perfringens-associated diseases in cattle. Most likely, 

the development of novel vaccines, using modern techniques will be necessary. Possible 

strategies can be, amongst others, the development of subunit vaccines in which immunogenic 

protein regions are used instead of culture filtrate, the use of alternative methods for vaccine 

delivery and/or the use of novel adjuvants that induce both systemic and mucosal immunity. 

Immune response to vaccination against C. perfringens-associated 
diseases 

In accordance with the scarce literature about the natural immunity to C. perfringens, the 

molecular mechanisms underlying the development of protective immunity after vaccination 

still remains unclear. The current knowledge about the immune response to vaccination against 

C. perfringens is mainly focused on the development of circulating antibodies. In this section 

the immune response to current clostridial vaccines (all containing formaldehyde inactivated 

toxoids) is described, after which a brief introduction to the immunity to recombinant toxoids 

is given. 

As is also the case for other clostridia, C. perfringens toxins are highly antigenic. However, the 

antibody titers and the rate of decline in antibody levels differ depending on the host species 

and the C. perfringens toxins. One example is the use of vaccines containing C. perfringens 

epsilon toxoid against enterotoxaemia caused by C. perfringens type D, a common disease of 

sheep and goats. There is evidence that sheep can be fully protected against this disease by 

vaccination and remain protected for a year when a booster dose is applied between 4 to 6 weeks 

after the initial vaccination14,121,207. In goats, vaccination with C. perfringens type D epsilon 

toxoid also provides protection against experimental enterotoxaemia207. However, the antibody 

levels are lower than in sheep and of short duration and therefore goats should be vaccinated 

every 3 to 4 months following an initial double immunization121,205. Also in cattle vaccination 

against C. perfringens type C or D results in an antibody response, however the duration of the 

elevated antibody levels is unknown200,201. For C. perfringens type A, different opinions exist 

concerning its implication in clostridial enteric infections and thus also the necessity of 

inclusion in vaccines is controversial31,62,96. Only one report was found describing the use of a 

commercial vaccine against C. perfringens type A in cattle, which suggests that antibodies are 

developed after vaccination, but booster injections every six months are necessary to maintain 

high antibody levels111. The majority of vaccination studies against C. perfringens type A are 
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focussed on gas gangrene. In most cases the immune response obtained with these vaccines was 

determined in terms of serum antitoxin levels, but there are also reports in which the vaccinated 

animals were challenged to measure protection16. Experimental studies in mice, guinea pigs, 

rabbits, pigeons, dogs and humans showed that C. perfringens type A toxoids were effective in 

producing a measurable and protective antibody response6,42. However, serious problems are 

reported concerning the reproducibility of such vaccination experiments. C. perfringens toxoids 

can vary in antigenicity and in protective capacity to quite a large degree. Preparations of 

C. perfringens type A toxoid can not only differ markedly in antigenicity from one batch to 

another, but the same batch might also induce different antibody responses in different groups 

of animals5,105. Furthermore, there seems to be no correlation between the serum antitoxin titres 

and the degree of protection in mice6. These observations raised doubt about the 

immunogenicity of alpha toxin, the main C. perfringens type A virulence factor, which might 

be easily destroyed by formaldehyde inactivation. It was therefore questioned whether any 

protective effects of C. perfringens type A toxoid might reside in residual undenatured alpha 

toxin76,105. Because of these problems with reproducibility, up till now, no commercial vaccines 

against gas gangrene are available. A major problem in the evaluation of the different vaccines 

against C. perfringens-associated cattle enterotoxaemia is the absence of an experimental 

model. Furthermore, diagnosis of adult cattle enterotoxaemia is not always straightforward and 

deaths caused by enterotoxaemia are frequently classified under sudden death syndrome, a term 

that describes unexpected deaths without observed premonitory signs of illness62. Possible 

causes of sudden death syndrome include clostridial infection, anaphylaxis, pneumonia, 

acidosis and endotoxaemia33. As a result of the lack of experimental model and the difficult 

diagnosis, the few published reports concerning the efficacy of clostridial vaccines in cattle 

focused on the reduction of the sudden death syndrome mortality rate in the field. To the best 

of our knowledge, no reports describe the efficacy of C. perfringens type A containing vaccines 

in protection of cattle against enterotoxaemia. Some evidence suggests that the use of 

C. perfringens type C and D vaccines may reduce performance but has no significant effect on 

losses due to sudden death when administered during the finishing period33,62. The possible 

negative effects of clostridial vaccines in cattle are frequently linked to injection site reactions. 

In the majority of the vaccinated animals, the use of multivalent clostridial vaccines results in 

intense local reactions at the site of injection64,192,218,234. The development of injection-site 

lesions seems to be associated with enhanced antibody titers201, but also with a decrease in feed 

consumption which may impact animal growth and productivity64,192,234. This negative impact 
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on feed consumption presumably results from the tissue injury and inflammatory response 

caused by injection of the vaccines192.  

To eliminate the undesired effects of multicomponent vaccines, recent research focused on the 

development of subunit vaccines which only contain the main virulent toxins rather than the 

numerous molecules present in the current clostridial vaccines90,128,172. Such subunit vaccines 

may eliminate the irrelevant components of the crude toxin vaccines, which should result in a 

stronger protective immunity with a minimal inflammatory response at the site of injection. 

Nowadays, the most frequently used approach for the development of subunit vaccines against 

C. perfringens-associated diseases in various animal species, is the use of recombinant toxoids. 

This research is focused on the expression of either non-toxic fragments of the toxin or the use 

of non-toxic forms of the whole toxin as immunogen, thereby avoiding the need to detoxify the 

vaccines by e.g. formaldehyde103,166,197,232,238. Recombinant vaccines against many types of 

C. perfringens toxins have been widely studied and were able to induce protective responses, 

particularly against alpha toxin28,136,172,188,232 and epsilon toxin22,150. However, the majority of 

these studies didn’t test the vaccines in the host species for which they are intended. 

Furthermore, evidence concerning the efficacy of these vaccines in protecting the host against 

disease (either natural or experimental) is largely absent. Taking into account the above 

mentioned discrepancy between the antibody titers and the actual protection against a 

C. perfringens type A challenge, future research should focus on the actual protection afforded 

by these vaccines in the host species. 
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Scientific aims 

Bovine enterotoxaemia, also known as (necro-)haemorrhagic enteritis, is an intestinal disease 

that mainly affects suckling and veal calves. C. perfringens type A, which produces alpha toxin, 

a phospholipase C, as major toxin, is considered to be the causative agent. However, the role of 

alpha toxin in intestinal diseases is controversial and heavily debated. Despite the economic 

importance of bovine enterotoxaemia, at the start of this PhD thesis, the pathogenesis was not 

yet clear and no efficient measures to control the disease were available. 

The general aim of this thesis was therefore to obtain more insight in the virulence 

properties of C. perfringens strains isolated from bovine enterotoxaemia cases, to evaluate 

the role of C. perfringens alpha toxin in disease, and to evaluate the use of C. perfringens 

toxins for future vaccine development. 

C. perfringens type A is associated with bovine enterotoxaemia, but can also be present in the 

intestinal tract of healthy animals. Furthermore, all investigated C. perfringens strains, 

independent of their origin, are capable of inducing necro-haemorrhagic intestinal lesions in a 

calf intestinal loop model. It is hitherto unclear whether C. perfringens strains isolated from 

enterotoxaemia cases have specific virulence properties as compared to other type A strains. 

Therefore, the first specific aim of this work was to analyse the production of virulence factors 

that are potentially involved in enterotoxaemia. These virulence factors can include the main 

toxins of C. perfringens type A strains (alpha toxin and perfringolysin O), as well as proteolytic 

and carbohydrate-active factors that degrade the protective mucus layer or extracellular matrix 

components. To approach this, a collection of strains isolated from enterotoxaemia cases was 

compared to bovine strains originating from healthy animals and to strains isolated from other 

animal species (Chapter 4).  

Because alpha toxin is the major virulence factor of C. perfringens type A strains, the second 

aim of this thesis was to evaluated the role of this toxin in the pathogenesis of bovine 

enterotoxaemia. This was done by examining the ability of an alpha toxin-mutant strain to 

induce necro-haemorrhagic lesions in a calf intestinal loop model (Chapter 6). 

Given the importance of alpha toxin and the potential importance of other toxins, the third aim 

of this thesis was to explore the use of C. perfringens toxins for future vaccine development. 

First, the use of a mixture of C. perfringens toxins as possible vaccine antigens was evaluated 

(Chapter 5). Therefore, calves were vaccinated with C. perfringens toxins, either as native 
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toxins or after formaldehyde vaccination. Subsequently, the use of C. perfringens alpha toxin 

as a possible vaccine candidate was evaluated (Chapter 6). In both studies, the antibody 

production was monitored and the ability of the antisera to neutralize the activity of 

C. perfringens toxins in vitro was evaluated. Furthermore, it was determined whether the 

antisera were able to neutralize C. perfringens-induced endothelial cytotoxicity and to protect 

against C. perfringens challenge in an intestinal loop model for bovine enterotoxaemia. 
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Abstract 

Background 

Bovine enterotoxaemia is a major cause of mortality in veal calves. Predominantly veal calves 

of beef cattle breeds are affected and losses due to enterotoxaemia may account for up to 20% 

of total mortality. Clostridium perfringens type A is considered to be the causative agent. 

Recently, alpha toxin and perfringolysin O have been proposed to play an essential role in the 

development of disease. However, other potential virulence factors also may play a role in the 

pathogenesis of bovine enterotoxaemia. The aim of this study was to evaluate whether strains 

originating from bovine enterotoxaemia cases were superior in in vitro production of virulence 

factors (alpha toxin, perfringolysin O, mucinase, collagenase) that are potentially involved in 

enterotoxaemia. To approach this, a collection of strains originating from enterotoxaemia cases 

was compared to bovine strains isolated from healthy animals and to strains isolated from other 

animal species. 

Results 

Strains originating from bovine enterotoxaemia cases produced variable levels of alpha toxin 

and perfringolysin O that were not significantly different from levels produced by strains 

isolated from healthy calves and other animal species. All tested strains exhibited similar 

mucinolytic activity independent of the isolation source. A high variability in collagenase 

activity between strains could be observed, and no higher collagenase levels were produced in 

vitro by strains isolated from enterotoxaemia cases.  

Conclusions 

Bovine enterotoxaemia strains do not produce higher levels of alpha toxin, perfringolysin O, 

mucinase and collagenase, as compared to strains derived from healthy calves and other animal 

species in vitro.  
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Background 

Bovine enterotoxaemia caused by Clostridium perfringens, is a sudden death syndrome with 

necro-hemorrhagic lesions in the small intestine, which mainly affects suckling calves and veal 

calves8,12. In veal calves, predominantly beef cattle breeds are affected. The syndrome accounts 

for approximately 20% of the mortalities in these calves, compared to 4%  in dairy and mixed 

breed veal calves8,13. C. perfringens is an anaerobic Gram-positive spore-forming bacterium, 

which is a commensal of the gastrointestinal tract of both humans and animals, and is also 

ubiquitous in soil and sewage8-10. Strains of C. perfringens are classified into five toxinotypes 

(A-E) based on the presence of four major toxin genes (alpha, beta, iota and epsilon)18.  Mainly 

strains of type A are recovered from enterotoxaemia cases but also from the intestine of healthy 

cattle and other warm-blooded animals as well as from the environment18. C. perfringens type 

A has the ability to produce numerous extracellular toxins and enzymes, of which alpha toxin 

is the most toxic15. Recently alpha toxin, a phospholipase C, and perfringolysin O, a pore 

forming cytolysin, have been proposed as essential factors for induction of enterotoxaemia24. 

In addition to these toxins, other potential virulence factors might have a role in the pathology 

of enterotoxaemia. Possible virulence traits can be proteolytic factors that degrade the 

protective mucus layer and extracellular matrix components or intra-species inhibitory 

antibacterial substances that confer a selective advantage to the producing strain, as suggested 

for necrotic enteritis strains in broilers20. 

It is hitherto unclear whether the C. perfringens type A strains isolated from enterotoxaemia 

cases are more virulent than other type A strains. In a calf intestinal loop model, it has been 

shown that C. perfringens strains isolated from healthy and enterotoxaemic cattle as well as 

from other host species are all capable of inducing necro-hemorrhagic intestinal lesions23. 

The purpose of this study was to analyze the expression of virulence factors that are potentially 

involved in enterotoxaemia. To approach this, the alpha toxin and perfringolysin O production, 

the mucinolytic and gelatinolytic activity as well as the intra-species inhibitory activity of a 

collection of strains originating from enterotoxaemia cases was compared to bovine strains 

isolated from healthy animals and to strains isolated from other animal species. 
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Methods 

Bacterial strains and culture conditions  

The 46 C. perfringens strains used in this study are listed in Table 1. One isolate per animal 

was used. Eight strains were isolated from enterotoxaemic calves, 23 were from healthy calves. 

Also five strains from ruminating cattle were included. In addition five strains isolated from 

chicken and five ovine strains were included. This study describes the in vitro characterization 

of C. perfringens strains and thus does not need approval of an ethical committee. 

Bacteria were isolated on Columbia agar (Oxoid, Basingstoke, UK) supplemented with 5% 

defibrinated sheep blood, 12 mg/l kanamycin sulphate and 30 000 IU/l polymixin B sulphate. 

The toxinotype of the C. perfringens strains was determined by a multiplex polymerase chain 

reaction (PCR), as described by Yoo et al.26, while the presence of the enterotoxin, NetB and 

the consensus and atypical beta2 toxin genes were detected with previously described single 

PCR reactions6,7,11. The strains were cultured anaerobically for 24h at 37°C in TGY broth (3% 

tryptone, 2% yeast extract, 0.1% glucose and 0.1% L-cysteine) for the toxin assays, in BHI 

broth (VWR, Leuven, Belgium) supplemented with 0.4% (w/v) glucose for growth-inhibition 

assays and measurements of gelatinolytic activity and in tryptone soy broth (TSB) (Oxoid) for 

quantification of the mucinolytic activity. Cell-free supernatants from the C. perfringens 

cultures were obtained by centrifugation followed by filtration of the supernatants through a 

0.2 µm filter and stored at -20°C. 
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Table 1 

Origins and toxinotypes of C. perfringens strains 

BB = Belgian Blue, HF = Holstein Friesian 

Strain Origin Toxin genes Reference 

Bovine enterotoxaemia 
BCP62 BB calf, haemorrhagic gut cpa+ 10 
BCP134 HF calf, haemorrhagic gut cpa+ 10 
BCP256 BB calf, haemorrhagic gut cpa+ cpb2con+ 10 
BCP472 BB calf, haemorrhagic gut cpa+ This study 
BCP510 BB calf, haemorrhagic gut cpa+ 10 
BCP544 BB calf, haemorrhagic gut cpa+ 10 
BCP588 BB calf, haemorrhagic gut cpa+ This study 
BCP730 BB calf, haemorrhagic gut cpa+ This study 
Healthy calves 
BCP20 HF calf, abomasal ulcer cpa+ 25 
BCP311 BB calf, rectal swab cpa+ This study 
BCP334 BB calf, rectal swab cpa+ 10 
BCP447 BB calf, healthy gut cpa+ 10 
BCP506 BB calf, rectal swab cpa+ 10 
BCP513 BB calf, rectal swab cpa+ This study 
BCP740 HF calf, healthy gut cpa+ This study 
BCP747 BB calf, healthy gut cpa+ This study 
BCP795 BB calf, rectal swab cpa+ This study 
BCP796 BB calf, rectal swab cpa+ This study 
BCP797 HF calf, rectal swab cpa+ This study 
BCP799 HF calf, rectal swab cpa+ This study 
BCP806 BB calf, rectal swab cpa+ This study 
BCP808 BB calf, rectal swab cpa+ This study 
BCP812 BB calf, rectal swab cpa+ This study 
BCP821 BB calf, rectal swab cpa+ This study 
BCP822 HF calf, rectal swab cpa+  This study 
BCP823 HF calf, rectal swab cpa+  This study 
BCP824 HF calf, rectal swab cpa+  This study 
BCP825 HF calf, rectal swab cpa+ This study 
BCP828 BB calf, rectal swab cpa+ This study 
BCP836 HF calf, rectal swab cpa+ This study 
BCP837 HF calf, rectal swab cpa+ This study 
Ruminating cattle 
BCP783 HF bull, rectal swab cpa+ This study 
BCP815 BB cow, rectal swab cpa+ This study 
BCP820 BB cow, rectal swab cpa+ This study 
L2660 HF cow, rectal swab cpa+ This study 
L2664 BB cow cpa+ This study 
Sheep 
SCP1 Rectal swab cpa+ This study 
SCP2 Rectal swab cpa+ This study 
SCP3 Rectal swab cpa+ This study 
SCP4 Rectal swab cpa+ This study 
SCP5 Rectal swab cpa+ This study 
Chicken 
CP17 Healthy cpa+ 24 
CP23 Healthy cpa+ netB+ 24 
CP24 Healthy cpa+ 24 
CP56 Necrotic enteritis cpa+ netB+ 24 
NE18 Necrotic enteritis cpa+ netB+ 26 
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Detection of toxin activity 

To determine the alpha toxin activity in the supernatants, the lecithinase activity was assayed 

in an egg yolk agar well diffusion assay14. Therefore 7 mm diameter holes were punched out in 

Columbia agar (Oxoid) supplemented with 2% (vol/vol) egg yolk with the back of a 20-200µl 

pipette tip and 20 µl of the tested supernatants was added to each hole. Pure alpha toxin (Sigma-

Aldrich, St-Louis, USA) was used as standard. Plates were incubated at 37°C for 24 hours and 

scanned with a GS-800 calibrated densitometer (Bio-Rad Laboratories, Hercules, CA). The 

diameters of the zones of opacity were measured using Quantity One software (Bio-Rad 

Laboratories).  

Perfringolysin O (PFO) activity in the supernatants was determined by measuring the 

haemolysis of horse erythrocytes using a doubling dilution assay as previously described1. The 

PFO titre is the reciprocal of the last dilution which showed complete hemolysis. The unit of 

activity was expressed on a logarithmic scale as a log2 value (titer), and consequently each 

difference in titre of one unit represents a twofold difference in perfringolysin O activity. 

Both assays were performed in triplicate, with supernatants of two independent biological 

replicates of C. perfringens cultures grown in TGY. 

Detection and measurement of proteolytic activity 

To determine the mucinolytic activity of the different C. perfringens strains, 7 mm diameter 

holes were punched out TSA plates supplemented with 0.5% (w/v) type II gastric mucin 

(Sigma-Aldrich) with the back of a 20-200µl pipette tip. Twenty µl of each overnight culture 

was added to each hole (3 wells per overnight culture). The plates were anaerobically incubated 

for 16 hours at 37°C and subsequently stained for 30 minutes with amido black staining solution 

(Sigma-Aldrich). Plates were destained with destaining solution (25% isopropanol and 10% 

acetic acid) and scanned with a GS-800 calibrated densitometer (Bio-Rad Laboratories). Lysis 

of mucin was observed as a halo of clearing around the wells. The diameters of the zones of 

mucin lysis were measured using Quantity One software (Bio-Rad Laboratories).  

Detection of gelatinolytic activity with an EnzChek Gelatinase/Collagenase Assay kit was 

carried out according to the recommendations of the manufacturer (Molecular Probes). Briefly, 

filter-sterilized supernatant of BHI overnight cultures was incubated with 12.5 µg/ml 

fluorescein-labelled gelatin substrate for 3 hours at 37°C (2 wells per overnight culture). 



68 PART THREE   Experimental Studies  
 
 

Gelatinolytic activity was measured as an increase in fluorescence (excitation 495 nm, emission 

515 nm) by a Fluoroskan Ascent Fluorometer and Luminometer (Thermo Fisher Scientific Inc., 

Waltham, USA). Both assays were performed with two independent biological replicates of 

C. perfringens cultures. 

In vitro growth-inhibition assay 

All 46 C. perfringens strains were used in a checkerboard test for intra-species growth-

inhibition as previously described20. Each strain was cultured anaerobically in BHI broth for 

24h at 37°C. The overnight cultures were diluted 1/1000 in 10 ml BHI agar and poured on the 

whole surface of BHI agar plates to obtain a bacterial lawn. With a sterile toothpick each 

C. perfringens isolate was transferred from the overnight culture to the agar plates seeded with 

the different C. perfringens strains. Absence of growth of the bacterial lawn around a colony 

results in an inhibition zone. After overnight incubation under anaerobic conditions, inhibition 

was evaluated. The test was performed in duplicate. 

Statistical analysis 

All tests were performed in duplicate and data were analysed using a Kruskal-Wallis test 

followed by a Dunn’s multiple comparison test. Statistical analyses were performed using 

GraphPad Prism 5 software. 
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Results 

Clostridium perfringens strains from enterotoxaemia cases are not 
superior alpha toxin and perfringolysin O producers 

To determine whether alpha toxin and perfringolysin O levels differ between bovine 

enterotoxaemia strains and strains from other sources, the culture supernatants of various type 

A strains were tested (Figure 1 A). Lecithin breakdown was used as a measure of alpha toxin 

activity. The supernatants of the different strains showed high variability in alpha toxin activity, 

independent of their origin. In eight strains, the alpha toxin activity was below the detection 

limit of 15.6 10-³ U/ml (three strains originating from enterotoxaemia cases and five strains 

from healthy calves). Perfringolysin O activity was determined by measuring the haemolysis 

of horse erythrocytes. Supernatants of strains originating from bovine enterotoxaemia cases 

showed a high variability in haemolytic activity. The mean erythrocyte hydrolysis by strains 

from bovine enterotoxaemia was not significantly different from other strains, independent of 

the origin (Figure 1 B). For both alpha toxin and perfringolysin O, no significant differences 

between enterotoxaemia strains and other C. perfringens strains could be observed.  

Mucinolytic and gelatinolytic activity is not higher in Clostridium 
perfringens strains from bovine enterotoxaemia cases 

The thickness of the mucin layer reflects an equilibrium between synthesis by the host and 

bacterial degradation by the intestinal microbiota. We tested the mucinolytic activity of 

C. perfringens strains from enterotoxaemia cases and from other sources to evaluate whether 

enterotoxaemia strains have higher potential to degrade the protective mucus layer. All strains 

exhibited similar mucinolytic activity (Figure 1 C). To elucidate whether C. perfringens 

proteases might have the potential to contribute to the pathology of enterotoxaemia, 

gelatinolytic activity was investigated as a measure for degrading extracellular matrix 

components within the gut. Gelatin was used as a specific proteolytic substrate to screen for 

clostridial protease activity that might contribute to intestinal host matrix degradation. A high 

variability of gelatinolytic activity was seen. The mean gelatin breakdown by strains from 

bovine enterotoxaemia was not different from other strains, independent of the origin (Figure 1 

D). No significant difference between the groups could be observed. 
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Figure 1 

Quantification of putative virulence factor activities of C. perfringens strains derived from cattle, sheep and 

chickens. 

The lines represent the mean with the standard error of the means. (A) The alpha toxin activity in the supernatant 

of anaerobically grown C. perfringens strains was determined by measuring the lecithinase activity in an egg yolk 

agar well diffusion assay. (B) The perfringolysin O activity in the supernatant of anaerobically grown 

C. perfringens strains was determined by measuring the haemolysis of horse erythrocytes. The PFO titre is the 

reciprocal of the last dilution which showed complete haemolysis. Each difference in titre of one unit represents 

a twofold difference in perfringolysin O activity. (C) The mucinolytic activity of C. perfringens strains was assayed 

by adding cultures of strains to wells in TSA-mucin plates and quantification of zones of mucin lysis (in mm). (D) 

The potential to degrade the extracellular matrix was examined by measuring the breakdown of fluorescent 

labelled gelatin by supernatant of anaerobically grown C. perfringens strains. RLU = relative light units. 
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Enterotoxaemia strains have no increased intra-species growth-
inhibitory activity 

The intra-species growth-inhibitory activity is shown in Figure 2. Of all tested strains, sixty-

one percent was able to inhibit growth of at least one other C. perfringens strain. There was a 

lot of variation between the inhibitory spectra of the tested strains. Some strains inhibited only 

a limited number of strains, while others had a broad inhibitory spectrum. Five out of eight 

enterotoxaemia strains, eight out of twenty-three strains from healthy calves, four out of five 

ruminating bovine strains and one out of five sheep strains were unable to inhibit growth of any 

other strain. No significant differences between the groups could be observed. 

 

 

Figure 2 

Intra-species growth-inhibition. 

Number of C. perfringens strains (n=46) inhibited by the individual  strains originating from bovine 

enterotoxaemia cases, healthy calves, ruminating cattle, sheep and chickens. The lines represent the mean with 

the standard error of the means.  
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Discussion 

Clostridium perfringens type A strains isolated from bovine enterotoxaemia cases showed no 

difference in in vitro expression of a selection of potential virulence factors compared to strains 

from healthy cattle as well as various other animal species. This is in accordance with the 

capacity of lesion induction in a calf intestinal loop model, in which all tested strains are capable 

of inducing necro-haemorrhagic intestinal lesions, independent of the origin of the isolate23.  

No increased activity of the alpha toxin and perfringolysin O was detected in bovine 

enterotoxaemia strains. In a recent study carried out with alpha toxin and perfringolysin O 

mutants we demonstrated an essential role of both toxins in bovine enterotoxaemia24. The alpha 

toxin is the most toxic enzyme produced by C. perfringens type A strains and hydrolyses two 

major constituents of the eukaryotic membrane (phosphatidylcholine and sphingomyelin) 

causing membrane disruption and cell lysis1,21. In sublytic concentrations, alpha toxin leads to 

activation of signal transduction pathways and uncontrolled production of intracellular 

mediators17,21,22. Perfringolysin O is a pore-forming cytolysin which has the ability to kill 

eukaryotic cells by punching holes in their membranes16. As shown in vitro, alpha toxin and 

perfringolysin O seem to have a synergistic action in bovine enterotoxaemia24. Considering this 

essential role of alpha toxin and perfringolysin O in bovine enterotoxaemia, C. perfringens type 

A strains with higher activity of these toxins might be more virulent. Despite the importance of 

alpha toxin and perfringolysin O in enterotoxaemia, strains originating form diseased animals 

showed no higher activities of these toxins in vitro.  

No increased collagen degrading and mucinolytic potential was detected in strains from 

enterotoxaemia cases. Collagen is widely distributed throughout the body and is an integral 

component of the connective tissue. Collagen disruption by bacterial collagenases may result 

in the loss of tissue integrity and subsequent tissue necrosis in the infected host and allow 

penetration of bacterial toxins to deeper tissues5. Therefore, the ability to produce collagenase 

may play an important role in the tissue destruction observed in bovine enterotoxaemia. This 

in vitro study showed no difference in collagen destroying potential between C. perfringens 

strains from bovine enterotoxaemia cases compared to strains from healthy cattle, sheep and 

chickens.  

In addition to the collagen degradation, the mucinolytic activity of the C. perfringens strains 

may also contribute to the pathology of bovine enterotoxaemia. The gastrointestinal tract 

represents a large surface of the host that interacts with the external world. A protective mucus 
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layer covers the epithelial surface, forming a barrier between the lumen and the intestinal 

epithelium. It is a potential binding site for both commensal and pathogenic organisms2,3. 

C. perfringens type A strains with stronger mucinolytic activity may have an advantage in 

colonizing and degrading the protective mucus layer, which may lead to a compromised barrier 

function. Enterotoxaemia strains, however were not different from the other strains with respect 

to their mucinolytic activity in vitro. 

Another possible virulence trait that was explored is the ability to cause intra-species growth-

inhibition. It is known that many C. perfringens strains are able to produce antibacterial proteins 

capable of lysing other C. perfringens strains, called bacteriocins19,25. The potential of a 

pathogenic strain to suppress the growth of other C. perfringens strains has been shown in 

necrotic enteritis in broiler chickens, leading to single clone dominance in a broiler flock 

suffering from necrotic enteritis4,20. In contrast to the situation in broiler chickens, our results 

showed no difference in intra-species growth-inhibition between the enterotoxaemia strains and 

other C. perfringens strains. This suggests that intra-species growth-inhibition probably does 

not play a role in the pathogenesis of bovine enterotoxaemia. 

None of the possible virulence traits examined in this study were distinctive for C. perfringens 

type A strains isolated from bovine enterotoxaemia cases in vitro. This is in accordance with a 

recent observation from our laboratory that, when the conditions are favourable, strains from 

different origin are capable to provoke necro-haemorrhagic lesions in an intestinal loop 

model23. It should be noted that the medium in which the bacteria are grown will have an 

influence on the production of the investigated virulence traits. In the current study only one 

C. perfringens isolate per bovine enterotoxaemia case was used and we cannot say whether or 

not this was the causative strain. However, most of these strains were tested in bovine ligated 

loops and all tested strains could cause lesions. In fact, it could well be that any intestinal strain, 

even a mixture of strains present at that moment, can cause disease when the conditions are 

right. Furthermore, it cannot be ruled out that other possible virulence factors may be involved 

in disease. This was the case for necrotic enteritis in broiler chickens, an enteric disease caused 

by C. perfringens type A strains. The essential virulence factor for causing disease remained 

unclear until the NetB toxin, a previously unknown toxin specific for necrotic enteritis, was 

found7. Although the presence of such an undiscovered toxin in the pathology of bovine 

enterotoxaemia cannot be excluded, it is unlikely because type A strains originating from 

bovine enterotoxaemia cases as well as from healthy cattle and other animal species are capable 

of inducing lesions in an intestinal loop model23.  
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Conclusions 

Strains from bovine enterotoxaemia cases did not have a higher alpha toxin, perfringolysin O, 

mucinolytic or gelatinolytic activity in comparison to strains isolated from healthy cattle and 

other animal species. Also production of intra-species inhibitory substances was not higher in 

bovine enterotoxaemia strains. This could indicate that yet another, hitherto unknown, 

C. perfringens virulence factor might be involved in the pathogenesis of calf enterotoxaemia. 

Taking these results together with our previous observations that strains from various origin 

can induce the typical lesions in an intestinal loop model23, it seems however more plausible 

that the primary trigger in bovine enterotoxaemia is not C. perfringens and that C. perfringens 

is merely responsible for propagating and exacerbating the intestinal damage to the point that 

it becomes haemorrhagic and necrotic. 
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Abstract 

Background 

Bovine necro-haemorrhagic enteritis is caused by Clostridium perfringens type A. Due to the 

rapid progress and fatal outcome of the disease, vaccination would be of high value. In this 

study, C. perfringens toxins, either as native toxins or after formaldehyde inactivation, were 

evaluated as possible vaccine antigens. We determined whether antisera raised in calves against 

these toxins were able to protect against C. perfringens challenge in an intestinal loop model 

for bovine enterotoxaemia.  

Results 

Alpha toxin and perfringolysin O were identified as the most immunogenic proteins in the 

vaccine preparations. All vaccines evoked a high antibody response against the causative 

toxins, alpha toxin and perfringolysin O, as detected by ELISA. All antibodies were able to 

inhibit the activity of alpha toxin and perfringolysin O in vitro. However, the antibodies raised 

against the native toxins were more inhibitory to the C. perfringens-induced cytotoxicity (as 

tested on bovine endothelial cells) and only these antibodies protected against C. perfringens 

challenge in the intestinal loop model. 

Conclusion 

Although immunization of calves with both native and formaldehyde inactivated toxins resulted 

in high antibody titres against alpha toxin and perfringolysin O, only antibodies raised against 

native toxins protect against C. perfringens challenge in an intestinal loop model for bovine 

necro-haemorrhagic enteritis.  
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Background 

The ubiquitous, spore forming, Gram-positive bacterium Clostridium perfringens is considered 

to be the most widespread pathogenic bacterium in the world15,18,21,23. It can cause a wide range 

of diseases including, amongst others, gas gangrene in man and necro-haemorrhagic enteritis 

in suckling and veal calves10,14,16,28. Most of these diseases follow a very rapid, often fatal 

course. Therefore, curative treatment is difficult and control must rely on preventive measures, 

including vaccination. Virulence properties of different C. perfringens strains are largely 

determined by their ability to secrete a variety of proteinaceous toxins and enzymes, which can 

cause different forms of tissue damage18,21,23,24. Alpha toxin and perfringolysin O have been 

identified as the principal toxins involved in the pathogenesis of both C. perfringens-induced 

gas gangrene and bovine necro-haemorrhagic enteritis3,33. These toxins exert different effects 

in both diseases. Bovine necro-haemorrhagic enteritis is characterized by congestion of the 

capillaries, haemorrhages and inflammation. This is in contrast to gas gangrene, where these 

toxins lead to tissue necrosis, thrombosis and lack of leukocyte infiltration at the site of 

infection3,26,33. It is well known that humoral antibodies against secreted proteinaceous 

virulence factors of C. perfringens can be protective, as shown in different animal models. As 

the enzymes and toxins of C. perfringens are highly destructive to tissues, vaccines against a 

variety of clostridial diseases have been developed using the denatured proteins5,11,35. Despite 

the usefulness of formaldehyde toxoids for other C. perfringens-associated diseases, there is 

controversy about the efficacy of such vaccines for gas gangrene, as opposed to crude toxin 

preparations1,4,13,28. In addition, multivalent clostridial vaccines based on formaldehyde 

inactivated exotoxins derived from culture supernatant are commercially available for domestic 

livestock, including bovines, but no studies on their efficacy for necro-haemorrhagic enteritis 

in calves are available. 

The objective of the present study was to evaluate whether antibodies against C. perfringens 

toxins could protect against the development of necrotic lesions in the intestine. Therefore, 

calves were immunized with native C. perfringens toxins. To evaluate whether we could 

eliminate the undesired toxin activity, but conserve the immune-protective potential, a 

previously described, modified formaldehyde treatment was also tested8. Also a commercial 

formaldehyde inactivated multivalent clostridial vaccine was used. As necro-haemorrhagic 

enteritis in veal calves is an unpredictable event and experimental reproduction of the disease 

is difficult, the neutralizing activity of the antibodies was evaluated in a previously developed 
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intestinal loop model31. To further unravel the mechanism of protection, the inhibitory effect of 

the evoked antibodies on C. perfringens-induced cytotoxicity on bovine endothelial cells was 

evaluated and the toxin-neutralizing capacity against alpha toxin and perfringolysin O was 

analysed. 

Methods 

All experimental protocols were approved by the ethical committee of the Faculty of Veterinary 

Medicine, Ghent University (EC2013/187 and EC2013/38). The animal experiments were 

conducted in accordance with the approved protocols. 

Vaccine preparation and immunization 

C. perfringens toxin preparation (P4039, Sigma-Aldrich, Bornem, Belgium) was either used as 

native toxin or treated with formaldehyde to generate a formaldehyde toxoid. Inactivation was 

obtained by adding a combination of 0.4% formaldehyde solution (Sigma-Aldrich) and 0.05M 

L-lysine (Sigma-Aldrich) and incubation at 37°C for two days. The addition of 0.05M L-lysine 

has previously been shown to preserve the antigenicity of alpha toxin during toxoid formation8. 

Inactivation of alpha toxin was confirmed by spotting 5µl drops on 2% egg yolk Columbia agar 

plates (Oxoid, Wesel, Germany), followed by incubation for 16h at 37°C20. Native and 

formaldehyde inactivated toxins were formulated with the adjuvant Quil A (Brenntag 

Biosector, Frederikssund, Denmark) at a final concentration of 350µg antigen and 750µg Quil 

A in 1.5ml phosphate buffered saline (PBS) per animal and filter-sterilized using a 0.2 µm filter. 

A standard formalin inactivated multivalent commercial vaccine was used according to the 

manufacturer’s instructions (Covexin 10®, Zoetis, Louvain-la-Neuve, Belgium). 

For immunization six 2-months old male Holstein Friesian calves were used. They were housed 

on straw and received water and hay at libitum, and concentrates adjusted to the body weight. 

For each antigen, two calves were immunized subcutaneously in the neck. The calves received 

a primer vaccination at the age of two months, with booster immunizations 14 and 28 days later. 

No strong adverse reactions were observed. Although no fever (> 39.5°C) was induced, all 

calves experienced a mild hyperthermia for two days following the vaccination. As described 

in the drug information leaflet of the commercial vaccine, localized swelling occurred at the 

site of injection. This effect was more pronounced in the calves vaccinated with the commercial 

formaldehyde inactivated clostridial vaccine (7-10 cm diameter) as compared to the calves 
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vaccinated with either native toxins or the L-lysine protected, formaldehyde inactivated toxins 

(0-6 cm diameter). Blood samples were taken before primer vaccination and two weeks after 

the final booster vaccination. 

SDS-PAGE and Western Blot 

The proteins present in the toxin preparation were visualized on a 12% SDS-PAGE followed 

by Coomassie Briliant Blue staining (Sigma-Aldrich). For the Western Blot analysis, 16 µl of 

cell-free supernatants of the C. perfringens strain JIR325 (10x concentrated using Vivaspin, 

Sartorium Stedim Biotech GmbH, Goettingen, Germany) or 6 µg of the C. perfringens toxin 

preparation were loaded on a 12% SDS-PAGE. The proteins from the gel were transferred to 

nitrocellulose membranes of 0.45 µm pore size. Non-specific binding to the blots was blocked 

with 5% skimmed milk powder in PBS, followed by overnight incubation at 4°C with a 1/500 

dilution of the immune sera collected two weeks after the final booster immunization. For this 

incubation step, the sera of the 2 animals that were vaccinated with a given vaccine preparation 

were pooled. Blots were washed with 0.1% tween 20 in PBS and incubated for 1h at room 

temperature with horseradish peroxidase-labelled rabbit-anti-bovine IgG (Sigma-Aldrich). 

Blots were developed with CN/DAB substrate kit (Thermo Fisher Scientific, Rockford, USA). 

The test was performed in triplicate. The specific immunoreactive protein bands were identified 

in the parallel-run Coomassie stained gel followed by MALDI analysis. 

Enzyme-linked immunosorbent assay 

The immune response following vaccination was also measured by ELISA using serum samples 

two weeks after the final booster immunization.  

Alpha toxin-specific antibody levels were determined by the end-point dilution method using a 

blocking ELISA (Clostridium perfringens alpha toxin serological ELISA kit, Bio-X 

Diagnostics, Jemelle, Belgium). For each ELISA, sera were used at a dilution 1:50 and assays 

were performed in duplicate. The specific antibody level of the immune serum was expressed 

as the percent inhibition (% inhib) by means of the following formula: % inhib = [(OD neg – 

OD sample)/OD neg]*100 

Perfringolysin O-specific antibody levels were measured using an indirect ELISA. Briefly, 

96-well microtitre plates (Nunc MaxiSorp, Thermo Fisher Scientific) were coated with 20 µg 

recombinant perfringolysin O 29. Non-specific binding was blocked with 1% (w/v) bovine 
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serum albumin (Sigma-Aldrich) in PBS. Two-fold dilutions of the sera ranging from a dilution 

of 1:50 to 1:51200 were added to the plates (100µl of each dilution/well; in duplicate) and 

incubated for 2 h at 37°C. Plates were washed with 0.1% (v/v) Tween 20 in PBS and incubated 

for 1 h 30 min at 37°C with horseradish peroxidase-labelled rabbit-anti-bovine IgG (Sigma-

Aldrich). Bound conjugate was detected using the substrate 3,3′,5,5′-Tetramethylbenzidine 

(TMB) (Sigma-Aldrich). The reaction was blocked with H2SO4 and the absorbance was 

measured at 450 nm using a microplate reader (Multiscan MS, Thermo Labsystems, Helsinki, 

Finland). The end-point titer is expressed as the reciprocal of the last dilution that gave a reading 

of 0.1U above background (precolostral neonatal bovine serum). 

Intestinal loop model 

To study the protection against C. perfringens-induced necrosis provided by the antisera from 

calves vaccinated with the vaccine preparations, four intestinal loop experiments were 

performed. Intestinal loop experiments were performed according to a previously described 

protocol using 4 healthy male Holstein Friesian calves31. Briefly, the calves were anesthetized 

and the small intestine was exteriorized. Per calf 80 intestinal loops of approximately 10 cm 

were ligated in the jejunum and a 5 cm space was left between the loops. Only half of the loops 

were injected, thus each time leaving one intervening loop to avoid leakage between sampled 

loops. For each vaccine preparation individual pre- and post-vaccination sera of 2 calves were 

used in two intestinal loop experiments. Intestinal loops were inoculated with 20 ml of a wild-

type strain (JIR325) in combination with 10 ml of 25% commercial milk replacer suspended in 

sterile NaCl solution, resulting in a total volume of 30 ml which was the same across all 

treatments and control loops. Prior to inoculation pre- or post-immune serum derived from 

calves immunized with the different vaccine preparations was added to the NaCl solution 

containing milk replacer, to obtain a final concentration of 6% serum (v/v). In each calf five 

intestinal loops per test serum were injected. Also an equal number of control loops without 

addition of serum were injected either with C. perfringens (positive control) or with sterile 

bacterial growth medium (negative control). After injection of the loops, the abdomen was 

closed and the calves were maintained under anaesthesia. At 5-h post-inoculation the animals 

were euthanized and samples were taken. Samples were fixed in 4% phosphate buffered 

formaldehyde. They were embedded in paraffin wax, sectioned and stained with haematoxylin-

eosin. The sections were evaluated in a blinded manner by a board certified pathologist for 

presence of tissue necrosis (0 = absence of necrosis, 1 = necrotic lesions present).  
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Neutralization of alpha toxin activity on egg yolk lipoproteins in vitro 

The alpha toxin activity was determined by its effect on egg yolk lipoproteins as previously 

described12. Therefore, fresh egg yolk was centrifuged (10,000 x g for 20 min at 4°C) and 

diluted 1:10 in PBS. The ability of the sera to neutralize the alpha toxin activity was assessed 

by pre-incubating a two-fold dilution series of the sera (two wells per dilution) with a constant 

amount of alpha toxin (10µg/ml recombinant alpha toxin in PBS solution) for 30 minutes at 

37°C prior to the addition of 10% egg yolk emulsion. Recombinant alpha toxin was expressed 

in E. coli using the pBAD TOPO® TA Expression Kit (Invitrogen, Paisley, UK) followed by 

purification onto a Ni-sepharose column (His Gravitrap, GE Healthcare, Buckinghamshire, 

UK). After incubation of the plates at 37°C for 1 hour, the A620 was determined. Alpha toxin 

activity was indicated by the development of turbidity which results in an increase in 

absorbance. The inhibitory capacity of the antiserum was determined by applying a Hill 

function to the concentration-response data (GraphPad Prism 5, GraphPad Software, San 

Diego, CA, USA) and expressed as the dilution that inhibited 50% of the alpha toxin activity. 

The test was performed in duplicate. 

Neutralization of perfringolysin O activity in vitro 

Perfringolysin O (PFO) activity was determined by measuring the haemolysis of horse 

erythrocytes using a doubling dilution assay as previously described2. The PFO titre is the 

reciprocal of the last dilution which showed complete haemolysis. Similar to the inhibition of 

the alpha toxin activities, the ability of sera to neutralize the PFO activity was assessed by pre-

incubating a two-fold dilution series of the sera (two wells per dilution) with a constant amount 

of perfringolysin O (2 µg/ml recombinant perfringolysin O). Recombinant perfringolysin O 

was produced as previously described32. The inhibitory capacity of the antiserum was expressed 

as the highest dilution that inhibited perfringolysin O induced haemolysis. The test was 

performed in duplicate. 

Endothelial cell cytotoxicity assay 

Primary bovine umbilical vein endothelial cells (BUVEC) were isolated from umbilical cord 

veins by an adaptation of the method of Jaffe et al. as performed previously9,33. The toxicity of 

C. perfringens supernatant towards cultured bovine endothelial cells has been reported 

previously33. The ability of the antisera to neutralize the C. perfringens cytotoxicity towards 
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BUVECs was determined using a Neutral Red Uptake assay (NRU)19. Therefore, a two-fold 

dilution series of the sera (100% - 0.4%) prepared in serum free cell culture medium was pre-

incubated for 30 minutes at 37°C with an equal amount of C. perfringens supernatant. Cells 

were treated with 100 µl of these supernatant-serum mixtures. The inhibitory capacity of the 

antiserum was expressed as the highest dilution that yielded 80% cell viability. As a positive 

control, cells were treated with C. perfringens supernatant which was pre-incubated for 30 

minutes with serum free cell culture medium. Untreated cells, incubated with serum free cell 

culture medium served as a negative control. The test was performed in duplicate. 

Statistical analysis 

The 20 loops tested for each condition provided enough statistical power to detect a 40% 

reduction in the development of necrotic lesions in the intestinal loop assay (95% confidence, 

80% power) (Winepiscope 2.0). 

The protective effect of the antisera in the intestinal loop assay as compared to the pre-immune 

sera and the untreated control loops were determined by a Fisher’s exact test (GraphPad Prism 

5 software). Differences between groups were considered significant at p < 0.05. 
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Results 

Western blot analysis 

The proteins in the C. perfringens toxin preparation were visualized by SDS-PAGE (Figure 

1A). In the vaccinated calves, the production of circulating antibodies against C. perfringens 

supernatant and the C. perfringens toxin preparation was analysed by western blot in three 

separate experiments (Figure 1). No immune reaction was detected in the sera before 

immunization (data not shown). Sera obtained from calves six weeks after initial vaccination 

with either native toxins or the L-lysine protected, formaldehyde inactivated toxins, revealed 

immunoreactivity towards two proteins. Immune sera from calves vaccinated with the 

commercial formaldehyde inactivated clostridial vaccine showed immunoreactivity towards 

more proteins. The two proteins that were immunoreactive with antisera raised against all 

vaccine preparations were further identified as alpha toxin and perfringolysin O by MALDI 

analysis. 

 

Figure 1 

Western blot analysis of the immune sera. 

(A) SDS-PAGE of the C. perfringens toxin preparation after Coomassie staining. (B-D) Representative Western 

blots showing the immunoreactivity towards crude C. perfringens supernatants (lane 1) and the C. perfringens 

toxin preparation (lane 2). The immune sera of calves vaccinated with native toxins (B) or formaldehyde 

inactivated, L-lysine protected C. perfringens toxins (C) detect only two proteins, whereas the immune sera of 

calves vaccinated with commercial formaldehyde inactivated multivalent clostridial vaccine (D) reacts with 

multiple proteins. The blots shown are representative pictures of one out of three experiments. 

ELISA  

In the vaccinated calves, the production of circulating antibodies directed against alpha toxin 

and perfringolysin O was also monitored by ELISA. No antibodies against alpha toxin or 

perfringolysin O were detected in the sera before immunization. In all calves a strong antibody 

response against both alpha toxin and perfringolysin O was detected 6 weeks after initial 
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immunization. Calves vaccinated with the native C. perfringens toxins showed the highest 

antibody titres, whereas vaccination with formaldehyde inactivated toxins (either L-lysine 

protected or commercial inactivation) resulted in a more variable immune response (Table 1).  

 

Table 1 

Antibody development towards alpha toxin and perfringolysin O. 

Calves were immunized with either a C. perfringens toxin preparation (native toxins), L-lysine protected, 

formaldehyde inactivated C. perfringens toxins (L-lysine/formaldehyde toxoid) or a commercial multivalent 

formaldehyde inactivated clostridial vaccine. The anti-alpha toxin and perfringolysin O response was measured 

by ELISA. The data represent antibody titres (mean ± standard error of the means), six weeks after initial 

immunization. 

Vaccine Anti-alpha toxin titre Anti-perfringolysin O titre 

Native toxins 64.44 ± 0.22 25600 ± 0 

L-lysine/formaldehyde toxoid 24.26 ± 2.96 16000 ± 9600 

Commercial formaldehyde vaccine 45.14 ± 20.42 4800 ± 1600 

 

Protective effect of antisera against C. perfringens-induced necrosis in 
an intestinal loop model 

The potential of the antisera, derived after vaccination of calves with the respective vaccines, 

to inhibit C. perfringens-induced necrosis, was evaluated in an intestinal loop assay.  

 

 

Figure 2 

C. perfringens-induced necrosis in experimentally infected intestinal loops in calves. 

(A) Representative histological section from an intestinal loop without necrotic lesions. This loop was injected 

with C. perfringens in combination with antiserum to native C. perfringens toxins. (B) Representative section from 

an intestinal loop from the same calf, showing haemorrhage and extensive necrosis of the villi. This loops was 

injected with C. perfringens in combination with naive immune serum.  
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All positive control loops inoculated with C. perfringens developed necrosis. Injection of loops 

with C. perfringens together with sera from naive calves (pre-immune sera) also resulted in a 

high percentage of necrotic loops. Injection of C. perfringens together with antisera raised 

against native toxins resulted in significantly fewer necrotic loops as compared to the positive 

control loops (p < 0.001) and the loops injected with the pre-immune sera (p < 0.01). Antisera 

raised against formaldehyde inactivated toxoid (either L-lysine protected or commercial) were 

unable to significantly neutralize the necrosis-inducing activity of C. perfringens (Figures 2, 3). 

 

 

Neutralization of alpha toxin and perfringolysin O activity in vitro 

The inhibitory capacity of the sera towards alpha toxin and perfringolysin O activities was 

further examined using recombinant toxins. All antisera decreased the activity of alpha toxin in 

vitro (Table 2). Up to a final dilution of 409.8 the antisera against the native toxins neutralized 

50% of the alpha toxin activity. To the contrary, in order to obtain the same inhibition of alpha 

toxin activity, antisera against L-lysine protected, formaldehyde inactivated toxoid or against 

the commercial formaldehyde inactivated clostridial vaccine could only be diluted up to final 

dilutions of 80.47 or 22.39, respectively. 

The haemolytic activity of perfringolysin O towards equine erythrocytes in vitro was decreased 

by all antisera (Table 2). Up to a final dilution of 18 either antiserum inhibited the perfringolysin 

O activity completely. This neutralizing ability of the sera was observed up to a final dilution 

of 48 for the anti-native toxins antisera, a final dilution of 72 for the anti-L-lysine protected, 

Figure 3 

Neutralization of the lesion-inducing potential of 

C. perfringens.  

The graph represents the percentage of ligated 

intestinal loops in which necrotic lesions were present 

after 5h of incubation with sterile culture medium 

(n=20), C. perfringens alone (untreated, n=20) or 

C. perfringens in combination with naive sera (pre-

immune serum, n=60), antiserum to C. perfringens 

toxins (native toxins, n=20), formaldehyde inactivated, 

L-lysine protected C. perfringens toxins (L-lysine/ 

formaldehyde, n=20) and commercial formaldehyde 

inactivated multivalent clostridial vaccine (commercial 

formaldehyde, n=20). 

** 0.001 ≤ p < 0.01 or *** p < 0.001 
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formaldehyde inactivated toxoid or a final dilution of 18 when the antiserum obtained after 

vaccination with the commercial vaccine was used. The pre-immune sera had no effect on the 

alpha toxin or perfringolysin O activity in vitro. 

Neutralization of C. perfringens cytotoxicity on bovine endothelial cells 

To determine whether the cytotoxic activity of C. perfringens could be inhibited by the antisera 

to the vaccines, C. perfringens supernatants were incubated with serial dilutions of the antisera. 

Exposure of the endothelial cells to untreated C. perfringens supernatant resulted in 100% cell 

death. More than 80% cell viability could be measured by pre-incubation of the C. perfringens 

supernatant with a 32-fold dilution of the native toxins antiserum. At this concentration, neither 

the antisera raised against L-lysine protected, formaldehyde inactivated toxins nor the antisera 

raised against the commercial formaldehyde inactivated clostridial vaccine had an effect on the 

cytotoxicity (Table 2). The pre-immune sera had no effect on the C. perfringens cytotoxicity. 

 

Table 2 

In vitro neutralization of biological activities of alpha toxin and perfringolysin O and the C. perfringens 

cytotoxicity on bovine endothelial cells. 

Calves were immunized with either a C. perfringens toxin preparation (native toxins), L-lysine protected, 

formaldehyde inactivated C. perfringens toxins (L-lysine/formaldehyde toxoid) or a commercial multivalent 

formaldehyde inactivated clostridial vaccine. Alpha toxin activity was determined by measuring its lecithinase 

activity on egg yolk lipoproteins. Perfringolysin O (PFO) activity was determined by measuring the hemolysis of 

horse erythrocytes. The cytotoxicity of C. perfringens supernatant to primary bovine endothelial cells was 

measured using a neutral red uptake (NRU) assay. 

 

 

aNeutralization of 10 µg/ml alpha toxin. The inhibitory capacity of the antiserum is expressed as the dilution 

that gives 50% inhibition of the alpha toxin activity. 
bNeutralization of 2 µg/ml perfringolysin O. The inhibitory capacity of the antiserum is expressed as the highest 

dilution that inhibited perfringolysin O-induced hemolysis. 
cThe inhibitory capacity of the antiserum is expressed as the highest dilution that yields 80% cell viability. 

 

 

 Inhibitory capacity (Mean ± SEM) 

Antiserum 
Alpha toxin 

activitya 

PFO 

activityb 

C. perfringens 

cytotoxicityc 

Native toxins 409.8 ± 5.75 48.0 ± 0.0 32.00 ± 0.0 

L-lysine/formaldehyde toxoid 80.47 ± 46.93 72.0 ± 24.0 9.00 ± 7.0 

Commercial formaldehyde vaccine 22.39 ± 2.17 18.0 ± 6.0 4.00 ± 0.0 
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Discussion 

Necro-haemorrhagic enteritis caused by C. perfringens in suckling and veal calves is 

characterized by sudden death. Due to the very rapid course of the disease, curative treatment 

is not possible and therefore, protection by vaccination would be of high value. The virulence 

of C. perfringens is due to the many extracellular toxins it produces. In this study we showed 

that toxin neutralizing antibodies protect against C. perfringens-induced necrotic lesions in an 

intestinal loop assay and are able to prevent endothelial damage. Western blot analysis revealed 

antibodies towards alpha toxin and perfringolysin O as the most abundant antibodies in the 

immune sera from calves vaccinated against C. perfringens toxins. 

We previously reported congestion and leakage of the capillaries as an early event in the 

pathogenesis of necro-haemorrhagic enteritis as shown in an intestinal loop assay31. 

Furthermore we showed that alpha toxin and perfringolysin O may exert their effect by directly 

targeting the endothelial cells33. This points towards endothelial damage as a key event in the 

pathogenesis of bovine necro-haemorrhagic enteritis. Indeed, in the present study antisera 

which protected against C. perfringens-induced cytotoxicity on bovine endothelial cells also 

offered protection against C. perfringens-associated necrosis in an intestinal loop assay. 

Moreover, the protective antisera were shown to inhibit the activity of alpha toxin and 

perfringolysin O, which further underscores the roles of these toxins in the pathogenesis of 

bovine necro-haemorrhagic enteritis. It can, however, not be ruled out that antibodies induced 

against other substances present in the vaccines also played a role in the protection observed in 

the intestinal loop model.  

Formaldehyde inactivation of C. perfringens toxins diminished their capacity to induce 

protective antibodies. Antisera raised against L-lysine protected, formaldehyde inactivated 

C. perfringens toxins were also not protective in the intestinal loop model. This result is in 

disagreement with previous studies showing high antigenicity, low toxicity, and protection in 

mice that were immunized with L-lysine protected, formaldehyde inactivated toxoid and 

subsequently challenged with lethal doses of C. perfringens8,25. In the present study we 

demonstrated that vaccinations with C. perfringens toxins, either in their native forms or as 

formaldehyde inactivated toxoids, all resulted in high antibody responses as detected by ELISA. 

However, only serum derived from animals immunized with the native toxins offered protection 

against necrosis in an intestinal loop assay. There is thus a discrepancy between the antibody 

titres against formaldehyde inactivated C. perfringens toxins measured by ELISA and the 
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protective capacity of these antibodies in the intestinal loop model. Nevertheless, the value of 

vaccines based on formaldehyde inactivated C. perfringens toxins has been demonstrated for 

diseases associated with toxins other than alpha toxin and perfringolysin O6,7,27,30. This suggests 

that the protective immunogenicity of other C. perfringens toxins, such as, amongst others, 

NetB and epsilon toxin, is not affected by formaldehyde inactivation. 

Although the use of C. perfringens native toxins represents an efficient strategy for vaccine 

development, active toxins cannot be regarded as safe. Therefore methods for the development 

of toxoids other than formaldehyde inactivation are needed. Possible strategies include the use 

of genetically modified toxoids based on site-directed mutants with reduced toxic activity or 

the use of immunologically active fragments of the essential toxins. Immunization with the 

carboxy-terminal domain of alpha toxin has previously been shown to provide protection in a 

mouse model against C. perfringens gas gangrene and may be a good candidate for 

development of a vaccine against bovine necro-haemorrhagic enteritis25,34. The identification 

of the structural elements responsible for membrane interaction of perfringolysin O provides 

opportunities for the development of non-toxic site-directed mutants as alternatives for native 

perfringolysin O22.  

In order to obtain the ultimate evidence that vaccination against C. perfringens toxins protects 

against bovine necro-haemorrhagic enteritis, field trials need to be performed. However, since 

necro-haemorrhagic enteritis is a low incidence disease, this would be a huge cost and more 

evidence concerning the immune-protective potential of the antisera is needed before 

considering this type of trial. Unfortunately, no in vivo model to validate the protective immune-

potential of the candidate vaccines against bovine necro-haemorrhagic enteritis is available. 

Niilo and colleagues were able to induce a mild diarrhoea in cattle inoculated intraduodenally 

or per os with C. perfringens type A cultures, but no necro-haemorrhagic enteritis was 

established17. Also we were unable to develop a reliable model of bovine necro-haemorrhagic 

enteritis after per os or intraduodenal administration of C. perfringens type A cultures 

(unpublished results). 

Conclusion 

This study showed that toxin-neutralizing antibodies protect against C. perfringens challenge 

in an intestinal loop model for bovine necro-haemorrhagic enteritis. Immunization of calves 

with either native or formaldehyde inactivated toxins resulted in a strong immune response 
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against alpha toxin and perfringolysin O, but only antibodies raised against native toxins were 

protective in the intestinal loop model. Therefore it seems that, at least for alpha toxin mediated 

diseases, antibody titres detected by ELISA are not a guarantee for protection, even if protection 

against the disease is antibody mediated.  
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Abstract 

Bovine necro-haemorrhagic enteritis is caused by Clostridium perfringens and leads to sudden 

death. Alpha toxin, together with perfringolysin O, has been identified as the principal toxin 

involved in the pathogenesis. We assessed the potential of alpha toxin as a vaccine antigen. 

Using an intestinal loop model in calves, we investigated the protection afforded by antisera 

raised against native alpha toxin or its non-toxic C-terminal fragment against C. perfringens-

induced intestinal necrosis. Immunization of calves with either of the vaccine preparations 

induced a strong antibody response. The resulting antisera were able to neutralize the alpha 

toxin activity and the C. perfringens-induced endothelial cytotoxicity in vitro. The antisera 

raised against the native toxin had a stronger neutralizing activity than those against the C-

terminal fragment. However, antibodies against alpha toxin alone were not sufficient to 

completely neutralize the C. perfringens-induced necrosis in the intestinal loop model. The 

development of a multivalent vaccine combining the C-terminal fragment of alpha toxin with 

other C. perfringens virulence factors might be necessary for complete protection against 

bovine necro-haemorrhagic enteritis. 
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Introduction  

Clostridium perfringens is a Gram-positive, spore-forming, anaerobic bacterium. It is a normal 

component of the intestinal microbiota of animals, including humans. It secretes several toxins 

and enzymes that cause different forms of tissue damage27,30,33. Consequently, it can cause a 

variety of diseases in various vertebrates30. The differences in virulence properties between 

C. perfringens isolates are largely due to differences in toxin production. Alpha toxin and 

perfringolysin O have been identified as the principal toxins involved in gas gangrene caused 

by C. perfringens as well as in bovine necro-haemorrhagic enteritis39. Gas gangrene is a 

frequently lethal histotoxic infection of humans and animals characterized by rapid tissue 

destruction and impaired immune response21,35. Bovine necro-haemorrhagic enteritis (bovine 

enterotoxaemia) is an enteric disease of veal calves and beef type suckling calves and is 

characterized by haemorrhagic to necrotizing enteritis. Calves often die without premonitory 

signs17,22,23,39.  

We recently showed that vaccination of calves with a mixture of native toxins from 

C. perfringens induces antibodies that protect against C. perfringens challenge in an intestinal 

loop model of bovine necro-haemorrhagic enteritis (Chapter 5). Although both alpha toxin and 

perfringolysin O are involved in the pathogenesis of gas gangrene, immunization against alpha 

toxin alone provides good protection against experimental gas gangrene32,34,35. Moreover, 

Evans showed that antiserum raised against alpha toxin was highly effective in protecting 

guinea pigs against experimental gas gangrene, whereas antiserum to perfringolysin O was not 

protective against C. perfringens type A infection, and it did not enhance the protective action 

of alpha toxin antiserum4. Studies on gas gangrene cannot be directly extrapolated to bovine 

necro-haemorrhagic enteritis, but these findings indicate that alpha toxin vaccines could provide 

protection against diseases in which alpha toxin is critically important.  

Here, we tested vaccine preparations based on alpha toxin, the major toxin produced by 

C. perfringens type A. Since native toxins are not safe, we used the enzymatically inactive 

C-terminal domain of alpha toxin (Cpa247-370). This component is non-toxic and has been shown 

to provide protection against C. perfringens type A gas gangrene in a mouse model, and it is 

known to elicit protective immunity against a broad range of clostridial phospholipase C 

toxins25,34,41. In addition, mice vaccinated with Cpa247-370 were protected against challenge with 

alpha toxin derived from a calf necro-haemorrhagic enteritis isolate7. 
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The aim of this study was to evaluate whether the non-toxic C-terminal fragment of alpha toxin 

could be a candidate for effective vaccination of calves against bovine necro-haemorrhagic 

enteritis. 

Materials and methods 

All experimental protocols were approved by the ethics committee of the Faculty of Veterinary 

Medicine, Ghent University (EC2011/024, EC2012/056, EC2013/38, EC2013/39 and 

EC2013/187). All animal experiments were carried out in accordance with the approved 

guidelines. 

Bacterial strains 

The C. perfringens strains were wild-type strain JIR325, the plc mutant JIR4107 (∆plc), and 

the C. perfringens JIR4107 derivatives carrying either the plc+ plasmid (complemented strain 

JIR4121) or the empty shuttle vector (complementation control JIR4120) (Table 1)1,20. 

 

Table 1 

C. perfringens strains used in the study. 

aplc: alpha toxin gene 

bJIR325: a rifampicin and nalidixic acid-resistant derivative of strain 13, a C. perfringens strain originally isolated 

from soil. 

 

The strains were cultured anaerobically at 37 °C in Brain Heart Infusion broth (BHI, Oxoid, 

Basingstoke, UK) containing 0.375% glucose. To culture JIR4120 (∆plc; (shuttle vector)) and 

JIR4121 (complemented strain), the medium was supplemented with chloramphenicol 

(30 µg/mL). The logarithmic phase cultures used in intestinal loop experiments did not contain 

Straina Strain 
number 

Phenotype Origin 
Toxin 
genes 

Alpha toxin  
(*10-3 U/ml) 
mean ± SEM 

Ref. 

Wild-type JIR325 Wild-type Strain 13b plc 31.392 ± 0.079 16 

∆plc JIR4107 Alpha toxin-
deficient 

JIR325 Δplc  < 0.8 17 

∆plc (shuttle 
vector) 

JIR4120 Alpha toxin-
deficient with 
shuttle vector 

JIR4107(pJIR418)  < 0.8 17 

complemented JIR4121 Alpha toxin- 
complemented 

JIR4107(pJIR443) plc 28.32 ± 0.38 17 
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antibiotics. To determine the alpha toxin concentration in the culture supernatant, cell-free 

supernatants were obtained by centrifugation followed by filtration of the supernatants through 

a 0.22-µm filter. The alpha toxin concentration in the bacterial supernatants was measured using 

the Bio-X α-toxin ELISA kit (Bio-X Diagnostics, Jemelle, Belgium) and twofold serial 

dilutions of the alpha toxin standard (220 × 10-3-0.8 × 10-3 U/mL of phospholipase C type I; 

Sigma-Aldrich, St Louis, MO, USA) as previously described42. 

The role of C. perfringens alpha toxin in the induction of necrotic 
lesions in an intestinal loop model 

To confirm the role of alpha toxin in the induction of necrotic lesions in an intestinal loop 

model, seven intestinal loop experiments were conducted using the wild-type C. perfringens 

strain JIR325 and the alpha toxin-deficient strain C. perfringens JIR4107. In two of the 

experiments, the C. perfringens JIR4107 derivatives carrying the empty shuttle vector 

(JIR4120) or the plc+ plasmid (JIR4121) were also included. The number of loops injected with 

each strain is shown in Table 2. In each calf, an equal number of control loops were injected 

with sterile bacterial growth medium supplemented with milk replacer. The experiments were 

performed according to a published protocol using seven healthy male Holstein Friesian veal 

calves aged 3-5 months38. Briefly, the calves were anesthetized and the small intestine was 

exteriorized. The loops were ligated and injected with logarithmic phase cultures combined 

with 25% commercial milk replacer (Vitaspray, Nuscience Drongen, Belgium) in sterile 0.9% 

NaCl solution, as described38. The animals were kept under anaesthesia for five hours after 

inoculation, after which they were euthanized and samples were taken. Intestinal loop tissue 

samples were submerged in 4% (w/v) phosphate buffered formaldehyde. After fixation for 24 h, 

the samples were processed routinely, embedded in paraffin wax, sectioned, and stained with 

haematoxylin and eosin. Sections were evaluated in a blinded manner by a board certified 

pathologist for the presence of tissue necrosis (0 = absence of necrosis, 1 = necrotic lesions 

present).  

Preparation of recombinant alpha toxin 

Alpha toxin was expressed in Escherichia coli using the pBAD TOPO® TA Expression Kit 

(Invitrogen, Paisley, UK). A fragment encoding the C. perfringens alpha toxin (plc gene; 

GenBank accession number BAB79742) was amplified from the DNA of C. perfringens JIR325 

by PCR using a DNA polymerase with proofreading activity (Accuzyme, Bioline, Randolph, 
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MA, USA). The forward primer (5’- G TGA GAG GAG GAT ATA AAA ATG AAA AGA 

AAG ATT TGT AAG GCG -3’) contained an in-frame stop codon and translation re-initiation 

sequence to remove the N-terminal leader and allow native protein expression. The reverse 

primer (5’- G TTT CTT TTT TAT ATT ATA AGT TGA ATT TCC TGA AAT CCA CTC -

3’) excluded the native plc gene stop codon and included the C-terminal V5 epitope and 

polyhistidine region for affinity purification. The resulting PCR product was incubated with 

Taq polymerase for 10 min at 72 °C (5 U; Promega, Madison, WI, USA) to add 3’ A-overhangs, 

cloned into the pBAD-TOPO expression vector, and transformed into One Shot TOP10® 

E. coli. The correct orientation of the alpha toxin insert was verified by Sanger sequencing.  

E. coli carrying the pBAD-alpha toxin vector was grown at 37 °C to an OD600 of 0.4‒0.5 in 

Terrific Broth supplemented with 100 µg/mL ampicillin. Expression of recombinant 

C. perfringens alpha toxin was induced for 4 h by adding L-arabinose to a final concentration 

of 0.002% (w/v). Bacteria were harvested by centrifugation and lysed enzymatically using 

BugBuster (Invitrogen). Alpha toxin was purified on a Ni-sepharose column (His Gravitrap, 

GE Healthcare Bio-Sciences AB, Uppsala, Sweden) according to the manufacturer’s 

instructions. Subsequently, the protein was dialyzed against PBS, purity was analysed using 

SDS-PAGE, and protein concentration was measured using BCA protein assay (Thermo Fisher 

Scientific, Waltham, MA, USA). 

 

Table 2 

The number of loops inoculated with each strain in the intestinal loop experiments to evaluate the role of 

C. perfringens alpha toxin in the induction of necrotic lesions. 

Seven intestinal loop experiments were conducted. The number of intestinal loops that were injected per 

animal are shown.  

Calf  
 

Replicate loops/straina 

JIR325 JIR4107 JIR4120 JIR4121 BHI 

1 3 3 / / 3 
2 3 3 / / 3 
3 3 3 / / 3 
4 5 5 / / 5 
5 5 5 / / 5 
6 5 5 5 5 5 
7 5 5 5 5 5 

 

aJIR325: wild-type C. perfringens; JIR4107: alpha toxin-deficient; JIR4120: alpha toxin-deficient strain carrying the 

empty shuttle vector; JIR4121: alpha toxin-complemented strain; BHI: sterile bacterial growth medium.  
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Vaccine preparation and immunization 

The recombinant carboxy-terminal domain of alpha toxin fused to glutathione-S-transferase 

(GST) was kindly provided by Prof. Titball, University of Exeter, UK. This Cpa247-370 was 

produced in E. coli and was therefore devoid of any other C. perfringens proteins 37. 

Recombinant native alpha toxin (rCpa) and Cpa247-370 were formulated with the adjuvant QuilA 

(Brenntag Biosector, Frederikssund, Denmark) in PBS. Each animal was injected with 1.5 mL 

of the filter-sterilized (0.2 µm) formulation containing 350 µg antigen and 750 µg QuilA. 

Control animals received 750 µg QuilA in 1.5 mL PBS. 

Six male Holstein Friesian calves aged two months were used. They were housed on straw and 

received water and hay at libitum, and concentrates adjusted to the body weight. 

For each antigen (rCpa, Cpa247-370 or QuilA control), two calves were immunized 

subcutaneously in the neck. The calves received a primer vaccination at the age of two months, 

and booster immunizations 14 and 28 days later.  

Enzyme-linked immunosorbent assay 

The immune response following vaccination was measured using serum samples obtained two 

weeks after the final booster immunization. Alpha toxin-specific antibody levels were 

determined by the end-point dilution method using a blocking ELISA (C. perfringens alpha 

toxin serological ELISA kit, Bio-X Diagnostics). Sera were used at a dilution 1:50 and assays 

were performed in duplicate. The specific antibody level was expressed as percent inhibition 

according to the following formula: % inhibition = [(OD negative – OD sample)/OD 

negative] × 100. 

Neutralization of the haemolytic activity of wild-type C. perfringens 
JIR325 alpha toxin on blood agar plates in vitro 

Incubation of cell-free supernatants of the wild-type strain JIR325 (concentrated tenfold using 

Vivaspin, Sartorius Stedim Biotech GmbH, Göttingen, Germany) on sheep blood agar at 37 °C 

overnight results in an inner, complete zone of haemolysis caused by perfringolysin O and a 

less complete outer zone caused by alpha toxin. The sera’s ability to neutralize alpha toxin 

activity was assessed by incubating the JIR325 supernatant with an equal volume of the pooled 

sera from the two animals that were vaccinated with either a given vaccine or the adjuvant 
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QuilA for 30 min at 37 °C. Ten-microliter drops of these mixtures were spotted on sheep blood 

agar and haemolysis was assessed after overnight incubation. The test was performed in 

triplicate using supernatants of C. perfringens JIR325 from three independent biological 

replicates. 

Neutralization of alpha toxin activity on egg yolk lipoproteins 

Alpha toxin activity was determined in duplicate in a 96-well microtitre plate by evaluating its 

effect on egg yolk lipoproteins as previously described 19. The neutralizing ability of sera was 

assessed by pre-incubating a twofold dilution series of the sera (two wells per dilution) with a 

constant amount of alpha toxin (10 µg/mL in PBS) for 30 min at 37 °C before adding 10% egg 

yolk emulsion. To prepare the yolk emulsion, fresh egg yolk was centrifuged (10 000 × g for 

20 min at 4 °C) and diluted 1:10 in PBS. After incubation of the 96-well plates at 37 °C for 1 

h, absorbance was measured at 650 nm. Alpha toxin activity was indicated by the development 

of turbidity, which increases absorbance. The inhibitory capacity of the antiserum was 

expressed as the serum dilution that inhibited 50% of the alpha toxin activity. This was 

determined by applying a Hill function to the concentration-response data (GraphPad Prism 5, 

GraphPad Software, San Diego, CA, USA). The test was performed in duplicate. 

Neutralization of C. perfringens cytotoxicity to bovine endothelial cells 

Primary bovine umbilical vein endothelial cells (BUVEC) were isolated from umbilical cord 

veins by an adapted procedure39 based on the method of Jaffe et al.10. The toxicity of 

C. perfringens supernatant to cultured bovine endothelial cells has been reported39. The ability 

of the antisera to neutralize the C. perfringens cytotoxicity to BUVECs was determined using 

a Neutral Red Uptake assay (NRU)29. Briefly, BUVEC cells were seeded in 96-well tissue 

culture plates at a density of 105 cells per well and cultured for 24 h to obtain cells in the 

exponential growth phase. The neutralizing ability of the sera was assessed by pre-incubating a 

twofold dilution series of the sera (100% to 0.4%) prepared in serum-free cell culture medium 

with an equal volume of undiluted C. perfringens supernatant. After 30 min at 37 °C, the cells 

were treated for 2 h with 100 µL of the supernatant-serum mixture, followed by a standard NRU 

assay. The inhibitory capacity of the antiserum was expressed as the last dilution associated 

with 100% cell viability. As a positive control, cells were treated with C. perfringens 
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supernatant pre-incubated with serum-free medium. Untreated cells incubated with serum-free 

medium served as a negative control. The test was performed in duplicate. 

Neutralization of necrotic lesion development in the intestinal loop 
model 

To study the protection against C. perfringens-induced necrosis provided by the antisera 

obtained from calves vaccinated with the respective vaccines, three intestinal loop experiments 

were performed using three male Holstein Friesian calves aged three months. In each of the 

three intestinal loop experiments, the sera for each vaccine were pooled. Intestinal loops were 

inoculated with a wild-type strain (JIR325) combined with 25% commercial milk replacer 

suspended in sterile NaCl solution. Before inoculation, serum from calves immunized with the 

different vaccine preparations was added to the NaCl solution containing milk replacer to a 

final concentration of 6% serum (v/v). In each calf, five intestinal loops were injected with anti-

Quil A, five with anti-native alpha toxin, and five with anti-C-terminal fragment of alpha toxin. 

Moreover, five control loops per calf were injected with C. perfringens without addition of 

serum (positive control) and five with sterile bacterial growth medium (negative control). This 

totalled 25 injected loops per calf. Samples were collected and scored as described for the 

intestinal loop experiments using the alpha toxin-deficient strain. 

Statistical analysis 

Differences in the development of necrotic loops between the wild-type and the mutant 

C. perfringens strains were analysed using multivariable logistic regression. The protective 

effect of the different antisera against development of intestinal necrosis in the loop model was 

determined by multivariable logistic regression. To account for clustering of loops within a calf, 

a fixed factor was included describing in which calves the experiments were performed. 

Significance was set at p < 0.05 and analyses were performed in SPSS v. 22.0 (IBM 

Corporation, New York, USA). Results were reported as means and standard errors of the 

means (SEM).  
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Results 

C. perfringens alpha toxin-deficient strain has a decreased ability to 
cause necrotic lesions in an intestinal loop model 

A wild-type strain and an alpha toxin-deficient strain (∆plc) were tested in an intestinal loop 

model. The wild-type strain caused necrotic lesions in 62.1% (18/29) of the injected loops, 

whereas the alpha toxin-deficient strain induced necrosis in significantly fewer loops (3.4%; 

1/29) (p < 0.001). To confirm the role of alpha toxin in lesion development by complementing 

the deficiency, the ∆plc derivatives carrying the empty shuttle vector (JIR4120) or the plc+ 

plasmid (JIR4121) were used. Necrotic lesions were observed in only one of the ten (10%) 

loops injected with the alpha toxin-deficient strain carrying the empty shuttle vector. This is 

significantly fewer than in the loops inoculated with the wild-type strain (62.1%; p = 0.008). 

The plc-complemented strain induced necrotic lesions in 50% (5/10) of the loops, which is 

comparable to the effect of the wild-type strain. No lesions were detected in the control loops 

treated with sterile bacterial culture medium (Figures 1 and 2). 

 

 

Figure 1 

C. perfringens-induced necrosis in experimentally infected intestinal loops in calves.  

(A) Representative histological section from an intestinal loop injected with sterile bacterial growth medium. 

There are no lesions in this negative control loop. (B) Representative histological section from an intestinal loop 

injected with the wild-type C. perfringens strain, showing haemorrhages and necrosis of the villi. HE, bars 200 µm. 
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Antibody responses against alpha toxin in calves 

After vaccination with native alpha toxin, the non-toxic C-terminal domain of alpha toxin or 

the adjuvant QuilA, serum antibodies produced against native alpha toxin were analysed by 

ELISA. In all calves vaccinated with the native toxin or with the C-terminal domain, a strong 

antibody response against alpha toxin was detected six weeks after the first immunization. The 

calves vaccinated with the native toxin had antibody titres of 69.7 ± 7.8. Calves vaccinated with 

the non-toxic C-terminal domain of alpha toxin had antibody titres of 91.1 ± 1.6. No anti-alpha 

toxin response was measured in the calves vaccinated with the adjuvant QuilA. 

 

 

 

 

Neutralization of alpha toxin activity in vitro 

Sheep blood agar was used to examine in vitro neutralization of alpha toxin activity of a wild-

type C. perfringens strain by sera from calves immunized with the native alpha toxin (rCpa) or 

the non-toxic C-terminal fragment of the alpha toxin (Cpa247-370). Plates treated with 

C. perfringens supernatant exhibited both the inner (perfringolysin O) and outer (alpha toxin) 

zones of haemolysis. Incubation of the supernatant with sera against either rCpa or Cpa247-370 

did not result in an outer zone of haemolysis, indicating neutralization of alpha toxin activity. 

Figure 2 

Percentage of necrotic loops after C. perfringens 

inoculation. 

Intestinal loops inoculated with sterile cell culture 

medium (n = 29), the wild-type strain (n = 29), the 

alpha toxin-deficient strain (Δplc) (n = 29), the 

alpha toxin-deficient strain carrying the empty 

shuttle vector (Δplc (shuttle vector)) (n = 10) and 

the alpha toxin-complemented strain (n = 10) were 

histologically examined for the presence of tissue 

necrosis. The graph represents the percentage of 

loops in which necrotic lesions were present after 

5 h of incubation with logarithmic stage cultures. 

** 0.001 ≤ P < 0.01 and *** P < 0.001 indicate a 

significant difference relative to the loops 

inoculated with the wild-type strain.  
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These sera had no effect on perfringolysin O activity. Incubation with sera from the control 

calves (QuilA) had no effect on C. perfringens toxin activities (Figure 3). 

To determine whether the antisera against the vaccines can neutralize the lecithinase activity of 

alpha toxin, serial dilutions of the antisera were incubated with alpha toxin and its activity was 

measured on egg yolk lipoproteins. The sera of calves immunized with either the native alpha 

toxin (rCpa) or the C-terminal fragment of alpha toxin (Cpa247-370) decreased the activity of 

alpha toxin, with an inhibitory capacity of respectively 1189.0 ± 390.4 for anti-rCpa or 

323.8 ± 133.3 for the sera raised against Cpa247-370. No effect on alpha toxin activity was 

observed after incubation with sera from calves immunized only with QuilA. 

 

  Antiserum 

 + contr. rCpa Cpa247-370 QuilA 

 

    

Alpha toxin activity + - - + 

Figure 3 

In vitro neutralization of the haemolytic activity of the alpha toxin of C. perfringens.  

Supernatants of C. perfringens (+ contr.) were either left untreated or were pre-incubated with serum from calves 

immunized with native alpha toxin (rCpa), the non-toxic C-terminal fragment of alpha toxin (Cpa247-370) or the 

adjuvant QuilA. They were then spotted on sheep blood agar and incubated overnight at 37 °C. Neutralization of 

alpha toxin activity results in absence of an outer zone of haemolysis. 

+ = no neutralization of toxin activity; - = complete neutralization of toxin activity. 

Representative pictures of one out of three independent experiments. 

Neutralization of the cytotoxicity of C. perfringens to bovine 
endothelial cells by anti-alpha toxin antisera 

To determine whether the antisera against the vaccines can inhibit the cytotoxicity of 

C. perfringens, serial dilutions of the antisera were incubated with C. perfringens supernatant. 

Exposure of the endothelial cells to untreated supernatant resulted in 100% cell death. Antisera 

raised against either the native alpha toxin (rCpa) or the C-terminal fragment of alpha toxin 

(Cpa247-370) protected the endothelial cells from C. perfringens cytotoxicity. Sera from the 

control calves did not neutralize the C. perfringens-induced cytotoxicity. Pre-incubating the 

C. perfringens supernatant with a 288-fold dilution (±96) of the native alpha toxin antiserum 
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resulted in 100% neutralization of cytotoxicity, whereas a 32-fold dilution (±0.0) of the 

antiserum against the C-terminal fragment (Cpa247-370) was needed to neutralize the 

cytotoxicity. 

Protective effect of anti-alpha toxin antisera against C. perfringens-
induced necrosis in an intestinal loop model 

Neutralization of the lesion-inducing potential of C. perfringens by sera raised against the 

respective vaccines was evaluated in the intestinal loop model. Thirteen of the fifteen (86.7%) 

positive control loops inoculated with C. perfringens developed necrosis. Injection of loops 

with C. perfringens combined with sera from control calves (immunized with the adjuvant 

QuilA) also resulted in a high percentage of necrotic loops (93.3% of the loops, 14/15). Injection 

of loops with C. perfringens combined with antisera raised against native alpha toxin (rCpa) 

resulted in significantly fewer necrotic loops as compared to the loops containing C. perfringens 

and the QuilA antisera (p = 0.028) and borderline significantly fewer necrotic loops as 

compared to the untreated loops (p = 0.054) (53.3% of the loops or 8/15). Antisera raised 

against the non-toxic C-terminal fragment of alpha toxin (Cpa247-370) did not significantly 

neutralize the lesion-inducing ability of C. perfringens (10/15 or 66.7% necrotic loops) (Figure 

4). 

 

 

  

Figure 4 

Neutralization of the lesion-inducing potential of 

C. perfringens. 

The graph represents the percentage of intestinal 

loops in which necrotic lesions were present after 

5 h of incubation with five treatments: sterile 

culture medium, C. perfringens alone (untreated) 

or C. perfringens in combination with 6% antiserum 

to either native alpha toxin (rCpa antiserum), 

antiserum to the non-toxic C-terminal fragment of 

alpha toxin (Cpa247-370 antiserum), or antiserum 

from calves immunized with adjuvant only (QuilA 

antiserum). The graph represents the data from 

three intestinal loop experiments (total of 15 loops 

per condition). 



CHAPTER 6   The C-terminal domain of alpha toxin as vaccine candidate  113 
 

 

Discussion 

Alpha toxin is involved in the induction of necrotic lesions in a calf intestinal loop model and 

is thus an important toxin in the pathogenesis of enterotoxaemia. We previously showed that 

alpha toxin production by C. perfringens is required for intestinal virulence by using a double-

mutant C. perfringens strain devoid of alpha toxin and perfringolysin O, which was 

complemented for perfringolysin O to generate an alpha toxin-deficient phenotype39. In the 

present study, we supported our earlier conclusions by using an alpha toxin-mutant strain. 

Mutant strains are frequently used to evaluate the virulence effect of C. perfringens genes. A 

mutant strain was used to show that NetB is crucial for the induction of avian necrotic enteritis12. 

This approach also identified beta toxin as an essential virulence factor of C. perfringens type 

C in infected rabbits31. Moreover, Awad et al. used mutant strains to demonstrate that both 

alpha toxin and perfringolysin O are involved in the pathogenesis of gas gangrene1,2. In our 

study, we confirmed that alpha toxin is required for intestinal virulence in a calf intestinal loop 

model. This conclusion was based on genetic evidence showing that an alpha toxin-deficient 

strain has a decreased ability to cause necrotic lesions in this model. The alpha toxin-

complemented strain regained the ability to cause the disease, unambiguously fulfilling 

Falkow’s molecular Koch’s postulates5. 

In the present study, alpha toxin appeared to be a promising vaccine component against bovine 

necro-haemorrhagic enteritis. Antisera raised against native alpha toxin reduced the lesion-

inducing potential of C. perfringens in the intestinal loop model. However, alpha toxin is a 

potent dermonecrotic toxin that is not safe for use in calves. Alpha toxin can be rendered safe 

by formaldehyde treatment, but a well-known problem of this treatment is that it might reduce 

protective immunogenicity9,16,21,36. Therefore, a recombinant C. perfringens alpha toxoid may 

be preferable to a formaldehyde toxoid. The immunogenicity of the C-terminal fragment of 

alpha toxin in calves was recently reported for the first time11. However, the ability of the 

antiserum derived after vaccination of calves with Cpa247-370 to neutralize the toxicity of C. 

perfringens to bovine cells or bovine intestine has not been evaluated11. Here, we report that 

the non-toxic C-terminal domain of alpha toxin (Cpa247-370) may be an effective alternative to 

the use of native alpha toxin. Indeed, calves immunized with the native alpha toxin or with the 

C-terminal domain of alpha toxin developed a strong immune response against alpha toxin. 

Nevertheless, compared to antisera against the native alpha toxin, sera from calves immunized 

with the C-terminal fragment of alpha toxin showed weaker inhibition of the alpha toxin activity 
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and weaker neutralization of the C. perfringens-induced endothelial cytotoxicity in vitro. 

Additionally, the lesion-inducing potential of C. perfringens in the intestinal loop model was 

significantly reduced only by co-administration of antisera from animals vaccinated with the 

native alpha toxin.  

The diminished protection afforded by antisera against the C-terminal domain may be attributed 

to the GST tag fused to the C-terminal domain of alpha toxin for protein purification purposes. 

Distortion of the conformation of the alpha toxin fragment by the GST tag has already been 

suggested in a previous study reporting that the untagged fragment was more protective against 

experimental gas gangrene than the C-terminal fragment fused to the GST tag41. In contrast to 

the C-terminal fragment of alpha toxin, the recombinant native alpha toxin used in this study 

was fused to a HIS tag for purification. This HIS tag is substantially smaller than the GST tag 

and is less likely to influence the conformation of the alpha toxin. This construct might generate 

more antibodies against the conformational epitopes that are important for protection. 

Alternatively, it may be that, in addition to antibodies directed to the C-terminal fragment of 

alpha toxin, also antibodies against the N-terminal fragment are needed to provide protection. 

However, a previous study showed that immunization with the N-terminal domain of alpha 

toxin was not protective against experimental gas gangrene41. It is believed that membrane 

binding induces a conformational change in the N-terminal domain from the closed to open 

configuration, which could reduce the affinity of antibodies raised against the N-terminal 

domain and complicates the development of protective antibodies against this N-terminal 

region3,28. Moreover, the combination of both toxin domains as vaccine antigen is not 

straightforward because combination of both non-toxic fragments restores the biological 

activity of alpha toxin24.  

Total protection was not obtained even after vaccination with native alpha toxin. It is possible 

that not all alpha toxin was neutralized by the antisera, leaving residual active alpha toxin to 

exert cytotoxicity. We also do not know whether in the field serum antibodies leaking into the 

intestinal lumen after intestinal damage will be sufficient to inhibit alpha toxin and the induction 

of necrotic lesions. This should be tested in a subsequent study by performing intestinal loop 

experiments in immunized animals without adding antiserum to the ligated intestinal loops. It 

is possible that total protection against development of intestinal lesions also requires other 

neutralizing antibodies, for example, against perfringolysin O and/or other C. perfringens 

proteins. Therefore, other C. perfringens proteins in addition to alpha toxin and perfringolysin 

O might have to be incorporated in a vaccine to obtain complete protection. This is also the case 



CHAPTER 6   The C-terminal domain of alpha toxin as vaccine candidate  115 
 

 

for avian necrotic enteritis, where NetB is essential to cause disease, but vaccination with NetB 

provides only partial protection against C. perfringens challenge6,13,14.  

Endothelial damage is probably a key event in the pathogenesis of bovine necro-haemorrhagic 

enteritis38,39. Initial epithelial damage could enable alpha toxin to penetrate the epithelial barrier 

and to act on endothelial cells. In addition to other infectious agents, such as coccidia, 

enteropathogenic bacteria, coronaviruses and rotaviruses, several C. perfringens factors can 

contribute to initial epithelial damage, such as collagenase (kappa toxin), hyaluronidase (mu 

toxin) and mucinase8,15,18,40. More research is needed to investigate the role of these factors in 

the pathogenesis of necro-haemorrhagic enteritis and the protective effect of neutralizing 

antibodies against these proteins.  

In this study, we used the calf intestinal loop model to evaluate the vaccine potential of 

C. perfringens alpha toxin. Ideally, vaccinated animals should be challenged with crude toxins 

or bacterial cultures to obtain conclusive evidence that vaccination against C. perfringens alpha 

toxin protects against bovine necro-haemorrhagic enteritis. However, no challenge model for 

testing vaccine candidates in calves is yet available11,26,38. The intestinal loop model remains 

currently the best available model. 

In conclusion, this study shows that the non-toxic C-terminal domain of alpha toxin is a 

promising antigen for vaccine development. Although antibodies against C. perfringens alpha 

toxin neutralize alpha toxin activity and C. perfringens-induced endothelial cytotoxicity in 

vitro, antibodies against alpha toxin alone are inadequate for complete neutralization of 

C. perfringens-induced necrosis in the intestinal loop model of bovine necro-haemorrhagic 

enteritis. The development of a multivalent vaccine combining the C-terminal fragment of alpha 

toxin with other, still unidentified, C. perfringens virulence factors might be necessary for 

complete protection against bovine necro-haemorrhagic enteritis. 
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A plea for a change of name for bovine enterotoxaemia 

The term “enterotoxaemia” is widely applied to various diseases caused by C. perfringens, 

however it is appropriate only for diseases in which the major signs are caused by systemic 

actions of the toxins36. Previously, a better descriptive name for “haemorrhagic 

enterotoxaemia” caused by C. perfringens type C has been proposed to be “necrotic enteritis”. 

This suggestion was based on the observation that the disease is not always haemorrhagic and, 

although the toxin may incidentally reach the circulation, it is produced in the intestine and 

exerts it major effects locally36,58,65. Also for bovine enterotoxaemia, the nomenclature may be 

confusing. Based on the neurologic signs, without the presence of major intestinal lesions, it 

should not be questioned whether bovine enterotoxaemia caused by C. perfringens type D is a 

true enterotoxaemia15. To the contrary, the situation is less clear for bovine enterotoxaemia 

caused by C. perfringens type A, exhibiting intestinal necrosis and haemorrhage, with systemic 

effects only sporadically being reported28,31. Furthermore, alpha toxin is rapidly metabolized 

when it enters the circulation, questioning its potential to cause systemic toxicity42. It is now 

known that the effects of TNF-α in the general circulation, rather than alpha toxin itself, are to 

blame for lethality44. In addition, destruction of the intestinal barrier by C. perfringens toxins 

may also allow other intestinal toxins (e.g. lipopolysaccharide of Gram-negative bacteria) to 

enter the circulation and to cause shock. Therefore, we prefer to describe this syndrome as 

bovine necro-haemorrhagic enteritis, thereby making a clear distinction between the 

pathologies caused by C. perfringens type A or D, and clearly describing the lesions caused by 

the pathogen.  

Immune development in the calf and its consequences for 

vaccination against bovine necro-haemorrhagic enteritis 

At birth, the calf is immunologically naïve and depends on colostrum intake as an immediate 

source of antibodies from the mother. The ingestion of colostrum is essential for providing the 

neonatal calf with immunologic protection during at least the first 2 to 4 weeks of life7,9. In 

addition to maternal antibodies, colostrum also contains, amongst others, cytokines and 

leukocytes (predominantly macrophages, lymphocytes and neutrophils). The number of 

circulating B lymphocytes is greatly reduced in neonatal calves (B cells account for less than 

5% of the colostral lymphocytes) and gradually increases to normal levels by 6 to 8 weeks of 

life24,41. Furthermore, neonatal calves are immunosuppressed by hormonal influences of 
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parturition: both absorbed immunosuppressive maternal hormones and production of high 

levels of cortisol by the calf. The low number of B cells, together with the cumulative effect of 

these hormones, results in a prolonged lack of endogenous antibody response7,41. This neonatal 

immuno-suppression is needed to prevent excessive inflammation following the sudden 

transition from a sterile environment in the womb to the external environment12. It allows the 

colonization of the intestinal tract by a diverse commensal population and the establishment of 

a symbiotic equilibrium, while maternal antibodies protect the neonate from pathogenic 

bacteria7,12. Although essential for the colonization with commensal organisms after parturition, 

the immunosuppression of the calf, together with the passively derived maternal antibodies, 

might impair immune responses to vaccination38. Upon immunization of young calves, 

antibodies of maternal origin bind to their specific epitopes at the antigen surface, competing 

with the calves’ B cells and thus limiting B cell activation, proliferation and differentiation52. 

Maternal antibodies gradually decline over time, with different half-life for antibodies directed 

to different pathogens. Bovine necro-haemorrhagic enteritis is of economic importance mainly 

near the end of the fattening period46. Therefore, vaccination later in life, when maternal 

antibodies have disappeared, may be considered68. In this work, calves were vaccinated at the 

age of two months, when no maternal antibodies could be measured (Chapter 5 and 6). 

Although this may be an appealing strategy for the prevention of necro-haemorrhagic enteritis 

and potentially C. perfringens type A-associated disorders in adult cattle (e.g. HBS), it is not 

an option to prevent clostridial abomasitis in neonatal calves. In order to avoid interference with 

maternal antibodies, the antibody dynamics in calves have to be determined, before effective 

vaccination schedules can be developed. Alternatively, recent research is focused on 

immunization routes and adjuvants that break through maternal immunity, when immunizing 

young animals37. 

In order to develop an efficient vaccine for bovine necro-haemorrhagic enteritis, a better 

knowledge of the natural development of protective immunity towards C. perfringens and its 

toxins is needed. It is hitherto unknown how active immunity towards C. perfringens toxins 

(which are classified amongst the most potent bacterial toxins) is established without 

developing disease. In calves, it has been hypothesized that the development of active immunity 

to C. perfringens toxins may be influenced by the diet68. In calves raised for beef production, a 

fluent transition from passive to active immunity is achieved. In contrast, calves raised for veal 

production do not develop active immunity until the age of at least 26 weeks68. The major 

difference between these production systems is the diet46,68. Under conventional circumstances 
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(as in beef production), new-born calves go through a pre-ruminant phase of 2 to 3 weeks of 

age where they rely almost entirely on a liquid diet for their nutrients11. After this phase, calves 

begin to consume enough dry feed and the rumen starts to develop. Furthermore, ingestion of 

dietary fibres results in an increase in colon viscosity and bulking of faecal matter and has an 

influence on microbiota composition53. On the other hand, calves raised for veal production are 

raised on low-iron all liquid diets to obtain the desired white meat (low iron uptake) and are 

offered only negligible amounts of dry feed, which counteracts the development of the 

rumen46,68. These dietary differences will inevitably lead to differences in the composition of 

both the ruminal (altered ruminal microbiota in veal calves) and the intestinal microbiota. It is 

tempting to speculate that the development of a healthy microbiota, either in the rumen or the 

large intestine, supports an environment which allows the controlled proliferation of 

C. perfringens and concomitant toxin production. Part of the produced toxins may be absorbed 

in the blood and processed by the immune system, leading to immune development28. This 

situation might be different in calves raised for veal production. One possible explanation for 

the lack of active immune development may be C. perfringens passing through the intestine 

without being present for a sufficient period to allow absorption of toxins. Another possibility 

may be that factors in the diet suppress the production of C. perfringens toxins in the large 

intestine and consequently the immune response to these antigens. Indeed, when grown in the 

presence of either milk or commercial milk replacer, the production of the main toxins of 

C. perfringens type A is reduced (unpublished results). In fact, this reduction in toxin 

production is more pronounced with higher concentrations of milk, without affecting the growth 

of C. perfringens. Further research is needed to elucidate the effect of nutrition on the intestinal 

microbiota composition and the presence of C. perfringens in particular. Also the effect of the 

diet on the C. perfringens toxin production in vivo remains to be elucidated. In addition to a 

possible dietary influence, also the genetic background may influence the sensitivity to bovine 

necro-haemorrhagic enteritis. Differences in disease susceptibility between cattle breeds are 

frequently reported and may be due to differences in the immune response. Despite the 

generally higher resistance of Holstein-Friesian cattle to Psoroptes ovis-induced psoroptic 

mange, experimental infection of either Holstein-Friesian or Belgian Blue cattle revealed 

largely similar immunologic responses49. Also the innate immune response of two cattle breeds 

with different prevalence of mastitis was very similar after intra-mammary infection with either 

Staphylococcus aureus or Escherichia coli, two common mastitis-inducing pathogens3,4. No 

reports were found where the immune response of different cattle breeds to C. perfringens 
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toxins was described. However, genetically different chicken lines showed a highly divergent 

immune responses to C. perfringens alpha toxin exposure61. This demonstrates that the genetic 

background can indeed have an influence on the immune response. A possible breed influence 

on the immune response to C. perfringens toxins and concomitantly therewith the increased 

susceptibility to necro-haemorrhagic enteritis should be further investigated. 

Towards a better understanding of current clostridial vaccines 

as protective measure against bovine necro-haemorrhagic 

enteritis 

Clostridial diseases are common and often rapidly fatal. Since eliciting (dietary) factors are not 

completely understood and often cannot be avoided in contemporary intensive rearing systems, 

vaccination is a necessary strategy to control these diseases. Most of the currently marketed 

vaccines combine (antigens from) several clostridial species, including C. perfringens. Despite 

the fact that these vaccines are licenced for immunization of cattle and the efficacy of these 

vaccines has been documented in sheep1, a limited efficacy of these vaccines against bovine 

necro-haemorrhagic enteritis has been reported (empirical observations from the field in 

Belgium). No published reports are available describing the efficacy of these vaccines in cattle. 

In chapter 5, it was shown that vaccination with a commercially available multivalent 

clostridial vaccine resulted in a strong antibody response against both C. perfringens alpha toxin 

and perfringolysin O, the main toxins produced by type A strains. However, antisera from 

calves immunized with this vaccine were not able to protect against intestinal necrosis when 

co-injected with C. perfringens in bovine intestinal loops, confirming the empirical 

observations from the field. Several explanations for this lack of protective antibody response 

in cattle can be suggested.  

First, immunological, physical, and/or chemical interactions between the combined 

components can alter the immune response against specific components54. Although there are 

clear practical benefits of vaccines containing multiple antigens (up to 10 antigens for current 

clostridial vaccines), there is a risk that the efficacy or safety of the combination is less than 

that seen with the single antigen vaccines. Indeed, calves vaccinated with the multivalent 

clostridial vaccine developed more pronounced injection site lesions than calves vaccinated 

with C. perfringens toxins alone (chapter 5). This tissue injury and inflammation at the site of 

injection is suspected to lead to a decreased feed consumption, which may impact animal 
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growth and productivity19,60,64,75. It should be noted that different adjuvants were used in the 

commercial vaccine formulation (aluminium salt) or in the experimental vaccines (Quil A). It 

is hitherto unclear whether the differences in development of injection site lesions may be 

attributed to the number of antigens that are combined in the vaccine or to the choice of the 

adjuvant that has been used. Nevertheless, all calves developed high antibody titres towards the 

main C. perfringens type A toxins. These results suggest that, although the multivalent 

clostridial vaccine may cause more adverse reactions (either by combination of multiple 

clostridial toxoids in one vaccine or by use of an aluminium adjuvant), it does not hamper the 

ability to develop antibodies towards C. perfringens. 

Another explanation for the lack of protection of the antisera derived from calves vaccinated 

with the multivalent clostridial vaccine is the method used to produce the toxoid. All current 

clostridial vaccines are made from culture supernatants which are inactivated, mostly using 

formaldehyde. The detoxification process of the bacterial toxins could have effects on 

antigenicity and immunogenicity34. Numerous chemical modifications occur in proteins during 

the treatment with formaldehyde, thereby altering the conformation of the protein34,35. 

Formaldehyde inactivation is unlikely to have an effect on the antibody titres. However, when 

antibodies against conformational epitopes are important for protection, it cannot be excluded 

that the antibodies evoked by the toxoid will be unable to neutralize the activity of the native 

toxin. Indeed, when compared to antisera from calves vaccinated with native C. perfringens 

toxins, antisera from calves immunized with either the multivalent formaldehyde inactivated 

clostridial vaccine or with formaldehyde inactivated C. perfringens toxins alone, were less able 

to neutralize the alpha toxin activity or C. perfringens-induced cytotoxicity in vitro (chapter 

5). This observation points towards the formaldehyde inactivation process of current clostridial 

vaccines as the most plausible explanation for their inability to protect against bovine necro-

haemorrhagic enteritis. 

The discrepancy in protection afforded by current clostridial vaccines against C. perfringens 

diseases in sheep and cattle might be the result of the toxins responsible for the disease. In 

sheep, C. perfringens type D is the main cause of enterotoxaemia66, whereas bovine necro-

haemorrhagic enteritis is caused by C. perfringens type A strains10,31,47. The involvement of 

different toxinotypes points to different key virulence factors in these diseases. It seems 

therefore that the antigens needed to afford protection in sheep are less sensitive to 

formaldehyde inactivation than those involved in bovine necro-haemorrhagic enteritis. 
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Taken together, these results indicate that there is need to develop new, effective vaccines 

against bovine necro-haemorrhagic enteritis and by extension, other C. perfringens type A-

associated intestinal diseases. 

The quest for a new, effective vaccine against bovine necro-

haemorrhagic enteritis 

To avoid the above-mentioned obstacles, new vaccines should be more targeted and should 

contain only the relevant antigens needed to provide protection, and in addition formaldehyde 

inactivation should be avoided. In order to develop such a vaccine, a thorough knowledge of 

the pathogenesis of bovine necro-haemorrhagic enteritis and the involvement of different 

C. perfringens virulence factors therein is essential. Hereafter, the main virulence factors to be 

included in the hypothetical ideal vaccine against bovine necro-haemorrhagic enteritis are 

discussed in detail. 

Alpha toxin is a key virulence factor in bovine necro-haemorrhagic 
enteritis 

At the time this PhD was started, only little was known about the pathogenesis of bovine necro-

haemorrhagic enteritis. C. perfringens type A was considered to be the causative agent, but the 

key virulence factors and toxins involved in the pathogenesis were unknown. Alpha toxin is the 

major toxin produced by type A strains, but its role in intestinal diseases is controversial and 

heavily debated. In analogy with the recent discovery of subtypes of type A strains that produce 

newly identified toxins which are (potentially) involved in other intestinal diseases, it was 

suspected that a yet undiscovered toxin was essential for the pathogenesis of bovine necro-

haemorrhagic enteritis. Indeed, for over 30 years it was believed that alpha toxin was the key 

virulence factor in necrotic enteritis caused by C. perfringens in broiler chickens, until it was 

shown that a novel toxin, NetB, was crucial for disease25,26. In an attempt to elucidate the role 

of C. perfringens type A strains in bovine necro-haemorrhagic enteritis, strains originating from 

healthy calves as well as from necro-haemorrhagic enteritis cases or isolated from other host 

species were screened for their lesion-inducing potential in a calf intestinal loop model for 

bovine necro-haemorrhagic enteritis67. Incubation of numerous strains from different origin and 

toxinotypes induced similar necro-haemorrhagic lesions, suggesting that common virulence 

factors rather than disease-specific toxins are essential. At the same time, analysis of the 



PART FOUR    General Discussion 129 
 

 

complete genome sequence of a bovine clostridial abomasitis isolate failed to reveal novel toxin 

genes43. Therefore the authors suggested the involvement of known toxins such as alpha toxin 

and perfringolysin O in clostridial abomasitis, a disease which is closely related to bovine 

necro-haemorrhagic enteritis57,69. Indeed, a possible role of alpha toxin in the pathogenesis of 

bovine necro-haemorrhagic enteritis was demonstrated in a calf intestinal loop model, by using 

different approaches. First, an alpha toxin-mutant strain was attenuated in its lesion-inducing 

potential in the intestinal loop model, whereas complementation of alpha toxin restored its 

ability to cause necro-haemorrhagic lesions (chapter 6). Next, when antisera derived from 

calves vaccinated with native alpha toxin were co-injected with C. perfringens in bovine 

intestinal loops, the lesion-inducing potential of C. perfringens was reduced (chapter 6). 

Furthermore, when pure alpha toxin was injected in bovine intestinal loops, it caused epithelial 

cell detachment, villus tip blunting, erosion, mild inflammation and haemorrhages of the lamina 

propria, all events that are seen in natural necro-haemorrhagic enteritis cases39. However, no 

necrosis was observed. These results strongly suggest that alpha toxin is essential in the 

pathogenesis of bovine necro-haemorrhagic enteritis and is a promising candidate vaccine 

component. Additional indirect evidence pointing towards alpha toxin as a key virulence factor 

in bovine necro-haemorrhagic enteritis is the observation that calves in veal production systems 

do not develop an active immunity towards alpha toxin, when maternal immunity declines. This 

absence of antibody production after decay of maternal antibodies might explain why calves in 

veal production systems are at higher risk to develop necro-haemorrhagic enteritis than calves 

raised for beef production, in which a fluent transition from passive maternal to active immunity 

is observed46,68. Furthermore, it is well known that the protective antigenicity of alpha toxin is 

easily destroyed by formaldehyde inactivation21,27,30,62,63, possibly explaining why the current 

clostridial vaccines are unable to protect against bovine necro-haemorrhagic enteritis. 

Nevertheless, even if alpha toxin is indispensable to cause necro-haemorrhagic lesions, the 

presence of alpha toxin alone seems insufficient to cause the fulminant necrosis seen in natural 

cases (chapter 6, 39). Furthermore, when comparing antisera from calves immunized with alpha 

toxin alone versus antisera from calves vaccinated against a mixture of native C. perfringens 

toxins, the latter had a stronger ability to protect against C. perfringens-induced necrosis when 

co-injected with C. perfringens in bovine intestinal loops (chapter 5 and 6). Therefore other 

common virulence factors are likely involved in the pathogenesis and might be needed as 

vaccine components to provide full protection against bovine necro-haemorrhagic enteritis. 
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Other C. perfringens proteins potentially needed in an ideal vaccine 
formulation 

C. perfringens type A strains have the ability to produce numerous extracellular toxins and 

enzymes, of which alpha toxin is the most toxic48. Alpha toxin is indispensable to cause disease, 

but it seems that the activity of alpha toxin alone cannot explain the full package of 

histopathologic events induced by C. perfringens in the intestine39,40,67. Furthermore we showed 

that secreted proteins other than alpha toxin should be included in the ideal vaccine to confer 

full protection (chapter 5 and 6). Up till now the nature of the additional antigens which are 

needed to provide this protection, is not clear. The most obvious candidate to include in future 

vaccines is perfringolysin O. Indeed, a synergistic effect between alpha toxin and 

perfringolysin O has been shown in a mouse model for gas gangrene2,59 and to bovine 

endothelial cells70. In addition, antibodies towards alpha toxin and perfringolysin O were 

identified as the most abundant antibodies in the immune sera of calves vaccinated with a 

mixture of C. perfringens toxins (chapter 5). It can, however, not be excluded that the better 

protection afforded by antisera derived from calves vaccinated with a mixture of C. perfringens 

toxins as compared to antisera from calves immunized with alpha toxin alone, is due to other 

immunogenic proteins. Indeed, when the antisera from calves immunized with C. perfringens 

toxins were less diluted, another, still unidentified, large immunogenic protein was detected via 

western blot (MW > 100 kDa, unpublished results). Up till now we can only speculate about 

the nature of this protein. Most logical would be a protein that confers a specific advantage to 

C. perfringens during intestinal colonization and/or infection such as, amongst others, the NanJ 

sialidase (129 kDa, might be involved in degradation of the protective mucus layer29), kappa 

toxin (≈ 120 kDa, a collagenase which might cause loss of tissue integrity and subsequent 

necrosis33) or mu toxin (≈ 182 kDa, NagH, a hyaluronidase, potentially involved in the 

degradation of mucins and connective tissue6,14). Identification of this protein and further 

vaccination experiments are needed to elucidate the role of both perfringolysin O and/or the yet 

unidentified protein as additional vaccine antigen(s), to confer full protection against bovine 

necro-haemorrhagic enteritis. 
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Following steps in vaccine development 

Optimizing the protective potential of alpha toxoid 

When the essential vaccine components are identified, a lot of further testing is necessary. As 

mentioned before, the protective antigenicity of alpha toxin is easily destroyed by formaldehyde 

inactivation21,27,30,62,63. The use of active toxins in a vaccine formulation will probably not be 

allowed, therefore, other approaches for the development of improved toxoids are needed. One 

strategy that was extensively studied to protect mice against experimental gas gangrene is the 

use of immunologically active fragments of the toxin. Immunization with either the N-terminal 

or C-terminal domains of alpha toxin induces high antibody titres against the native toxin74. 

However, only mice immunized with the C-terminal fragment were protected against 

intraperitoneal challenge with alpha toxin or against experimental gas gangrene74. In 

accordance with these results, we have shown that the C-terminal domain of alpha toxin was 

highly immunogenic to calves and induced high antibody titres against native alpha toxin 

(Chapter 6). However, when sera derived from calves immunized with this C-terminal 

fragment were co-injected with C. perfringens in bovine intestinal loops, they were less able to 

prevent the induction of necrotic lesions as compared to sera raised against native alpha toxin. 

This diminished protection might be attributed to distortion of the conformation or shielding of 

some parts of the toxin by the GST tag, which was fused to the C-terminal fragment for 

purification of the protein74. Another explanation might be that antibodies against both the 

N-terminal and C-terminal domain of alpha toxin are needed to confer full protection. Further 

research is needed to explore both options, either by repeating the vaccination experiment with 

an untagged C-terminal alpha toxin fragment or by evaluating the use of naturally occurring or 

genetically engineered variants of alpha toxin with reduced toxicity. One possibility is the use 

of alpha toxin variant 121A/91-R212H. This protein is a genetically engineered form of a 

naturally occurring alpha toxin variant devoid of activity, which protects mice against challenge 

with wild-type alpha toxin50. When considering the use of alpha toxin variants as vaccine 

component, special attention should go to ensure that all toxicity is eliminated and that reversion 

to full toxicity is unlikely. 
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Exploring the need of systemic and mucosal immunity 

Clostridia are non-invasive bacteria and all clostridial diseases are the result of the activity of 

their extremely potent toxins. Therefore, it seems only logical that vaccination is focused on 

the development of humoral immunity. What is less straightforward, is the choice of current 

vaccines to focus only on generating circulating IgG antibodies for protection against disease. 

This choice is probably dictated by the confusing nomenclature concerning the term 

“enterotoxaemia”. This term is widely applied to various disease caused by C. perfringens, 

however it is appropriate only for diseases in which the major signs are caused by systemic 

actions of the toxins36. As described above, bovine necro-haemorrhagic enteritis cannot be seen 

as a true enterotoxaemia. 

Since C. perfringens is an enteric pathogen and given the local activity of its toxins, we could 

speculate that mucosal IgA plays a more important role than serum IgG in the protection against 

bovine necro-haemorrhagic enteritis. In cattle, no reports are found describing the mucosal IgA 

expression in the intestine during C. perfringens infection. Also for other species, the literature 

concerning this topic is scant. In humans, a correlation between the serum levels of IgA to alpha 

toxin and the faecal C. perfringens counts has been documented, but the relevance of this 

observation to provide protection against disease is not yet clear23. In chickens, it has been 

shown that systemic antibodies are able to reach the mucosal surface under inflammatory or 

necrotic conditions27. Furthermore, experimental animal work on intestinal C. difficile 

infections has shown that protection can be mediated through simple exudation of serum 

antitoxin IgG across the inflamed intestinal epithelium16. These observations point towards a 

serum IgG response as major influencer of protective immunity, but more research in cattle is 

needed to support this hypothesis. The ideal situation probably combines both systemic IgG as 

well as mucosal IgA immunity. This has been achieved using Bacillus subtilis spores as vaccine 

delivery agent. This organism is able to colonise the gut without causing disease. Oral 

immunization of mice with B. subtilis spores displaying the C-terminal fragment of alpha toxin 

on the spore surface, resulted in increased serum IgG levels and secretory IgA detected in saliva, 

faeces or lung wash samples. Moreover, immunised mice were protected against severe 

challenge with alpha toxin20. In addition to the use of B. subtilis spores, also the use of other 

intestinal organisms can be explored, such as, amongst others, the use of Eimeria5 or 

Salmonella76. Next, it should be investigated whether immunity against alpha toxin alone is 

sufficient when both systemic IgG as well as mucosal IgA immunity is obtained. 
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The lack of a real in vivo model hinders vaccine development 

Despite multiple attempts by different research groups to reproduce bovine necro-haemorrhagic 

enteritis in vivo, the intestinal loop model remains the only system closest to an intact animal 

that is able to reproduce the lesions consistently40,42,67. This model allows to study host-

pathogen interactions in a way that mimicks normal intestinal physiologic, immunologic, and 

histopathologic responses22. Furthermore, multiple treatments and replicates can be tested in a 

single animal. Correct ligation of the intestinal loops is, however, a delicate procedure. When 

done correctly, the vascular and lymphatic functions are not disrupted. In addition to these clear 

advantages, the intestinal loop model has also some drawbacks, which include the anaesthesia 

that may affect the general metabolism of the animal, absence of intestinal peristalsis and 

difficulties to monitor systemic effects. Moreover, the injection of a large amount of 

C. perfringens, which is artificially kept in contact with the same intestinal tissue, makes it an 

aggressive model. This inevitably complicates the screening of potential vaccine components. 

Indeed, when antibodies are co-injected with live C. perfringens in the intestinal loops, 

C. perfringens is able to keep on producing toxins, while the antibodies injected in the loops 

are limited. Furthermore, with the experimental setup we used, it is impossible to elucidate 

whether serum antibodies leaking into the gut will be sufficient or whether mucosal immunity 

may be needed (chapter 5 and 6). To approach this, it should be possible to perform an 

intestinal loop experiment in vaccinated animals. The difficulty in this approach is the absence 

of a proper control (unvaccinated loops) within the same animal, and therefore the sample size 

of this experiment will be much larger, involving more experimental animals. Therefore, this 

final experiment should only be done with the final vaccine candidate for ethical, practical and 

financial reasons.  

Given the above described limitations of the intestinal loop experiments used during this PhD 

study, together with the absence of a good in vivo model, the next step in determining the 

efficacy of the vaccine candidates would be to go straight to a field trial. Field studies are often 

conducted for diseases for which the incidence is high. Because bovine necro-haemorrhagic 

enteritis is a disease with a low morbidity rate, a statistically significant effect of the vaccine 

can only be detected when the field study includes a very high number of calves. When calves 

are immunized with a product that is not licenced for use in Belgium, the animals will not be 

allowed to go to slaughter for consumption. This implicates a tremendous cost, unless an 

exemption can be granted by the Belgian Federal Public Service (FPS) Health, Food Chain 
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Safety and Environment. Such an exception may be realistic for a conventional, parenteral 

vaccine. More difficulties are expected to get permission of the FPS to evaluate the efficacy of 

oral immunization with recombinant bacteria, such as Bacillus spores. The use of a genetically 

modified organism that is able to multiply in the intestine and will be shed by the animal indeed 

generates safety issues. 

The quest for specific virulence factors which are characteristic 

for bovine necro-haemorrhagic enteritis isolates 

As mentioned before, a thorough knowledge of the pathogenesis of bovine necro-haemorrhagic 

enteritis is essential for the development of efficient control strategies, including vaccine 

development. C. perfringens type A is the causative agent of bovine necro-haemorrhagic 

enteritis, but is also a commensal of the gastrointestinal tract of healthy animals28,31,55. This 

observation raised the question whether C. perfringens type A strains isolated from necro-

haemorrhagic enteritis cases are more virulent than other type A strains. Higher activities of the 

main toxins produced by type A strains (alpha toxin and perfringolysin O) as well as proteolytic 

and carbohydrate-active factors that degrade the protective mucus layer or extracellular matrix 

components, may confer a selective advantage to the producing strain. However, compared to 

strains isolated from healthy cattle or from other animal species, strains originating from bovine 

necro-haemorrhagic enteritis cases did not have higher alpha toxin, perfringolysin O, 

mucinolytic or gelatinolytic activity as seen in vitro (chapter 4). Based on these results we 

cannot conclude that C. perfringens strains isolated from bovine necro-haemorrhagic enteritis 

cases have characteristics that make them superior to colonize the bovine intestinal tract or even 

to cause intestinal disease. However, we cannot exclude this possibility either. 

First, the production of virulence factors in vitro does not necessarily reflect the in vivo 

situation. There is increasing evidence that contact with host tissue alters the C. perfringens 

toxin production8,72. This sensing of enterocytes and subsequent toxin production is probably 

regulated by quorum sensing mechanisms8,71. All research concerning this topic was focused 

mainly on C. perfringens type C and to a lesser extent on type D strains. However, these strains 

are believed to behave differently than type A strains. For example, type C and D strains are 

shown to adhere to epithelial cells29. This is in contrast to the situation of type A strains, for 

which it is generally believed that they do not adhere to the intestinal epithelium32,45,55. So, it 
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seems only natural that the observations on type C and D strains cannot simply be extrapolated 

to type A strains and more research is needed in this field. 

In addition to this effect of the host on C. perfringens, the bacteria can also influence the host. 

Indeed, after inoculation of bovine intestinal loops with C. perfringens, collagen type IV 

degrading activity can be detected in the bovine tissue. This is in contrast with the control loops, 

which were not challenged with C. perfringens, where no collagen type IV degrading activity 

could be measured in the host tissue (unpublished observations). More research is needed to 

see whether necro-haemorrhagic enteritis isolates are more able to exert such effects. 

Another point that will need more attention is the fact that it is not because all tested strains of 

C. perfringens were able to cause necro-haemorrhagic lesions in the intestinal loop model that 

they will do so in vivo. For example, strains that cause food poisoning may differ from those 

that cause gas gangrene only by the presence of an enterotoxin gene in the former, yet food-

poisoning strains have never been found to cause gas gangrene51. Therefore, it seems not 

unlikely that necro-haemorrhagic enteritis isolates possess other characteristics that make them 

more adapted to colonize their host and/or to cause disease in the bovine intestinal tract in vivo. 

One argument pointing in this direction is the difference between alpha toxin produced by 

C. perfringens strains isolated from soft tissue infections (such as gas gangrene) or isolated 

from the intestine of calves suffering from bovine necro-haemorrhagic enteritis. Although no 

difference was observed in the enzymatic properties of the toxins, alpha toxin produced by the 

enteric isolates of C. perfringens showed increased resistance to proteolytic inactivation by 

chymotrypsin, an observation that is consistent with the site of toxin production in the gut17. In 

addition to this variation in sensitivity to proteolytic inactivation, also other factors may render 

the necro-haemorrhagic enteritis isolates more adapted to their host. These factors are not 

necessarily toxins, but might equally well be factors involved in more efficient nutrient 

utilization or host colonization. One property that may lead to enhanced intestinal colonization 

is the ability to bind to extracellular matrix (ECM) molecules. Affinity to collagen and other 

ECM molecules is a trait shared by many bacterial pathogens and has been shown to contribute 

to host colonization32,73. Indeed, in necrotic enteritis intestinal lesions in chickens, the villi that 

are undergoing necrosis are coated with a thick mat of organisms32. Furthermore, the ability of 

C. perfringens to adhere to collagen in vitro correlates with the ability to cause necrotic enteritis 

in chickens73. It should be noted that C. perfringens is never found attached to the epithelium 

and prior intestinal damage is needed to allow the bacterium to attach to the underlying ECM 

molecules. Also in bovine intestinal loops, C. perfringens is not seen attached to the epithelium 
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until severe necrosis is present and C. perfringens is found in close interaction with the necrotic 

cells. Furthermore, there seems to be a difference between the ability to adhere to the lamina 

propria of different strains (unpublished observations). Further research is needed to unravel 

the ability of isolates from other intestinal disease, such as bovine necro-haemorrhagic enteritis, 

to adhere to collagen and other ECM molecules. To reveal the full repertoire of characteristics 

that are unique to C. perfringens necro-haemorrhagic enteritis isolates, a collection of necro-

haemorrhagic enteritis strains should be sequenced and compared to other C. perfringens 

sequences. This might reveal additional, yet unknown antigens which might be of value for 

vaccine development. 

Pros and cons of vaccines for bovine nerco-haemorrhagic 

enteritis 

Bovine necro-haemorrhagic enteritis is a disease that only affects a single animal or a very 

limited number of animals in the same herd28,31. Although morbidity is low, mortality is close 

to 100%. Moreover, there is an increased risk for bovine necro-haemorrhagic enteritis at the 

end of the rearing period (for calves in veal production systems)46. Therefore, the disease has a 

high economic impact. However, the veal industry, is typically Belgian and compromises only 

a small target market for the manufacturer. Because of the limited number of cases, the major 

drawback of a vaccine for necro-haemorrhagic enteritis is the profitability of the vaccine. It 

may be difficult to pursue a farmer (outside the veal industry) to vaccinate against such a rare 

disease. Indeed, the vaccine should be provided at low cost to ensure that the vaccination cost 

is significantly lower than the losses that the farmer suffers through animal loss by bovine 

necro-haemorrhagic enteritis. It seems clear that commercializing a vaccine targeting only 

bovine necro-haemorrhagic enteritis is not evident. To circumvent this problem, one can follow 

the same strategy as current clostridial vaccines, combining antigens against multiple clostridial 

diseases in one shot. If this vaccine is made using the specific antigenic subunits needed to 

provide protection against the different diseases, the new vaccine might overcome the 

inflammatory problems of current vaccines and even provide better protection. 

Another appealing strategy is to look beyond the veal calf industry for marketing a vaccine 

directed against C. perfringens type A strains. It is possible that the alpha toxoid will be 

valuable for the prevention of other diseases in domesticated livestock. There is evidence that 

alpha toxin plays a key role in the pathogenesis of clostridial abomasitis in calves and 
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haemorrhagic bowel syndrome in cows, as well as some enteric diseases of sheep66 (yellow 

lamb disease), piglets56,58 (neonatal diarrhoea and type A enteritis), foals18, broilers (necrotic 

enteritis), …. Further research is needed to elucidate the exact role of alpha toxin in the 

pathogenesis of these diseases and the protection afforded by immunization with alpha toxoid. 

Nevertheless, we strongly believe that, even if other disease-specific toxins (e.g. beta2 toxin, 

NetF or NetB) might be necessary to cause disease, blocking of the alpha toxin activity will be 

needed to provide full protection. This hypothesis is supported by the recent finding in broiler 

chickens, where immunization with either alpha toxoid or NetB toxoid provides equal levels of 

protection against experimental necrotic enteritis13. 

Conclusion 

The results described in this thesis clearly demonstrate that alpha toxin is essential in the 

pathogenesis of bovine necro-haemorrhagic enteritis. Furthermore we showed that bovine 

antisera raised against current clostridial vaccines are unable to block alpha toxin activity in 

vitro or protect against C. perfringens challenge in an in vivo intestinal loop model for bovine 

necro-haemorrhagic enteritis. The conformational epitopes of alpha toxin are important to 

induce a protective immune response and these epitopes are easily destroyed by formaldehyde. 

Therefore, the inability of current clostridial vaccines to induce protective antibodies against 

bovine necro-haemorrhagic enteritis is most likely the consequence of the inactivation 

procedure using formaldehyde. In order to protect animals against C. perfringens type A-

associated enteric diseases, novel vaccines are needed. Alpha toxin will probably be a key 

component in these vaccines and the non-toxic C-terminal domain of alpha toxin may be a good 

candidate for further vaccine development. In addition, the ideal vaccine formulation could also 

contain other, yet unidentified, factors needed to provide full protection. These factors may be 

accessory toxins or enzymes involved in lesion induction, or factors that make the strains more 

adapted to the host environment. 
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Summary 

Bovine necro-haemorrhagic enteritis caused by Clostridium perfringens type A is a sudden 

death syndrome with necro-haemorrhagic lesions in the small intestine. It mainly affects 

suckling calves and veal calves in good to excellent body condition. In veal calves, 

predominantly beef cattle breeds are affected. The syndrome accounts for approximately 20% 

of the mortalities in these calves, compared to 4% in dairy and mixed breed veal calves. 

Although morbidity is low, mortality is close to 100%, making it an economical important 

disease.  

At the start of this PhD, only little was known about the pathogenesis of bovine necro-

haemorrhagic enteritis. C. perfringens type A was considered to be the causative agent, but the 

key virulence factors and toxins involved in the pathogenesis were unknown. It was suggested 

that lesions of necro-haemorrhagic enteritis could be induced by all C. perfringens isolates, 

pointing towards the involvement of a common C. perfringens virulence factor. The most likely 

candidates involved in the pathogenesis were thus alpha toxin and perfringolysin O, the two 

main toxins produced by C. perfringens type A strains, as well as the many proteolytic and 

carbohydrate degrading enzymes produced by this bacterium. In addition to causing disease, 

type A strains are also normal gut microbiota members. It is hitherto unclear why C. perfringens 

type A strains cause disease in some animals, while acting as commensals in other animals.  

The first aim of this thesis was therefore to obtain more insight in the virulence properties of 

C. perfringens strains isolated from bovine necro-haemorrhagic enteritis cases. In chapter 4 

the production of virulence factors that are potentially involved in bovine necro-haemorrhagic 

enteritis were analysed. To approach this, a collection of strains isolated from necro-

haemorrhagic enteritis cases was compared to bovine strains originating from healthy animals 

and to strains isolated from other animal species. These strains were screened for the in vitro 

production of alpha toxin, the most toxic factor produced by type A strains, and perfringolysin 

O, which was shown to act in synergy with alpha toxin to cause bovine endothelial cytotoxicity 

in vitro. In addition to these toxins, the activity of proteolytic factors that degrade the protective 

mucus layer or extracellular matrix components was measured in vitro. No differences in the 

production of these potential virulence factors was found between isolates form the normal 

microbiota and isolates derived from necro-haemorrhagic enteritis cases. This could indicate 

that yet another, hitherto unknown, C. perfringens virulence factor might be involved in the 

pathogenesis of bovine necro-haemorrhagic enteritis. In the light of recent findings by other 
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research groups, it seems most likely that this pathogenesis trait will comprise factors that make 

C. perfringens necro-haemorrhagic enteritis isolates superior in colonizing the bovine intestinal 

tract, such as, amongst others, factors involved in the host-pathogen cross talk or more 

proteolytic resistant toxins. However, when taking into account that C. perfringens strains from 

various origin can induce the typical lesions in an intestinal loop model, it seems more plausible 

that the primary trigger in bovine necro-haemorrhagic enteritis is not C. perfringens and that 

C. perfringens is merely responsible for propagating and exacerbating the intestinal damage to 

the point that is becomes haemorrhagic and necrotic.  

Because alpha toxin is the major virulence factor of C. perfringens type A strains, the role of 

this toxin in the pathogenesis of bovine enterotoxaemia was evaluated. Indeed, alpha toxin 

seems to be essential for the induction of necrotic lesions. This was demonstrated in chapter 6 

by inoculation of mutant strains in bovine intestinal loops. An alpha toxin-mutant strain was 

attenuated in its lesion-inducing potential, whereas complementation of alpha toxin restored its 

ability to cause necro-haemorrhagic lesions in the bovine intestine. These results show that 

alpha toxin is required for intestinal virulence in a bovine intestinal loop model. 

Bovine necro-haemorrhagic enteritis is rapidly fatal and no effective control measures are 

available. This makes vaccination a necessary strategy. Most of the currently marketed 

clostridial vaccines combine several clostridial species, including C. perfringens. These 

vaccines are made from culture supernatants which are inactivated, mostly using formaldehyde. 

Current clostridial vaccines were developed for immunization of sheep, but are also licenced 

for use in cattle. Despite the efficacy of these vaccines in sheep, a limited efficacy of these 

vaccines against bovine necro-haemorrhagic enteritis has been reported (empirical observations 

from the field in Belgium). Furthermore, no scientific literature is available describing the 

efficacy of these vaccines in cattle. In chapter 5 the protective potential of the antibodies raised 

against C. perfringens, developed after immunization of calves with a commercial multivalent 

clostridial vaccine, was evaluated. Additionally, the protective potential of antibodies derived 

from calves immunized with a mixture of C. perfringens toxins, either as native toxins or as 

formaldehyde inactivated toxins, was studied. The most immunogenic proteins in the vaccine 

preparations were identified as alpha toxin and perfringolysin O. All vaccines evoked a high 

antibody response against the major C. perfringens type A toxins, alpha toxin and 

perfringolysin O, as detected by ELISA. However, the antibodies raised against the native 

toxins had a higher capacity to inhibit alpha toxin and perfringolysin O activity in vitro and 

were more inhibitory to the C. perfringens-induced cytotoxicity to bovine endothelial cells. 
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Moreover only antibodies raised against native toxins protected against C. perfringens 

challenge in an intestinal loop model for bovine necro-haemorrhagic enteritis. These results 

strongly suggest that detoxification using formaldehyde has an influence on the capacity of 

C. perfringens toxins to induce protective antibodies. Moreover, it clearly indicates the need to 

develop new, effective vaccines against bovine necro-haemorrhagic enteritis. 

Given the importance of alpha toxin for the induction of intestinal lesions, the potential of alpha 

toxin as a vaccine antigen was assessed in chapter 6. Since native toxins are not safe, the 

protective potential of native alpha toxin as well as the enzymatically inactive C-terminal 

domain of alpha toxin was evaluated. Immunization of calves with either of the vaccine 

preparations induced a strong antibody response against native alpha toxin. The resulting 

antisera were able to neutralize the alpha toxin activity and the C. perfringens-induced 

endothelial cytotoxicity in vitro. However, antisera raised against the native toxin had a stronger 

neutralizing activity than those against the C-terminal fragment. Additionally, the lesion-

inducing potential of C. perfringens in the intestinal loop model was significantly reduced only 

by co-administration of antisera from animals vaccinated with the native alpha toxin and not 

with the C-terminal fragment. This diminished protective potential afforded by antisera against 

the C-terminal domain might be attributed to distortion of the conformation or shielding of 

some parts of the C-terminal fragment by the GST tag, which was used for purification of the 

protein. By contrast, the native toxin was fused to a HIS tag for purification, which is 

substantially smaller and less likely to influence the conformation of the alpha toxin. Another 

explanation might be that antibodies against both the N-terminal and C-terminal domain of 

alpha toxin are needed to evoke protective antibodies. It should be noted that, when co-injected 

with C. perfringens in bovine intestinal loops, antibodies raised against native alpha toxin 

reduced the lesion-inducing potential of the bacterium. However, they were not sufficient to 

completely neutralize the C. perfringens-induced necrosis. Therefore other common virulence 

factors might be needed as vaccine components to provide full protection against bovine 

enterotoxaemia. 

 

In conclusion, the results described in this thesis clearly demonstrate that alpha toxin is essential 

in the pathogenesis of bovine necro-haemorrhagic enteritis. Furthermore, we showed that 

vaccines based on formaldehyde inactivated toxins (e.g. current clostridial vaccines) are unable 

to protect against C. perfringens challenge in an intestinal loop model for bovine necro-
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haemorrhagic enteritis, and novel vaccines are thus needed. Alpha toxin might be a valuable 

component of a vaccine for bovine necro-haemorrhagic enteritis and the C-terminal domain of 

alpha toxin may be a good candidate for further vaccine development. In addition, the ideal 

vaccine formulation will also contain other, yet unidentified, factors needed to provide full 

protection. 
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Samenvatting 

Necro-hemorragische enteritis bij kalveren veroorzaakt door Clostridium perfringens type A 

wordt gekarakteriseerd door plotse sterfte zonder voorafgaande symptomen. Bij autopsie wordt 

een hemorragisch necrotiserende enteritis van de dunne darm aangetroffen. De ziekte treft 

voornamelijk zogende kalveren en kalveren bestemd voor kalfsvleesproductie in goede tot 

uitstekende voedingstoestand. Binnen de kalveren in kalfsvlees-productiesystemen worden 

overwegend vleesveerassen getroffen. Hoewel de morbiditeit laag is, sterven zo goed als alle 

getroffen dieren. Vanuit economisch standpunt wordt necro-hemorragische enteritis dus 

beschouwd als een belangrijke ziekte.  

Bij de aanvang van dit doctoraatsonderzoek was er slechts weinig  kennis beschikbaar over de 

pathogenese van necro-hemorragische enteritis bij kalveren. C. perfringens type A werd als 

oorzakelijk agens beschouwd, maar de belangrijkste virulentiefactoren en toxines die betrokken 

zijn in de pathogenese waren onbekend. Voorgaand onderzoek heeft aangetoond dat letsels van 

necro-hemorragische enteritis veroorzaakt kunnen worden door alle C. perfringens isolaten, 

wat de betrokkenheid van een algemene virulentiefactor suggereert. Onder deze factoren die 

mogelijks betrokken zijn in de pathogenese van necro-hemorragische enteritis zijn alfa toxine 

en perfringolysin O (de twee belangrijkste toxines geproduceerd door C. perfringens type A 

stammen), evenals de vele proteolytische en koolhydraat-afbrekende enzymen die door deze 

bacterie worden geproduceerd. Type A stammen zijn niet enkel pathogeen, maar behoren 

eveneens tot de normale darmflora. Het is tot op heden onduidelijk waarom C. perfringens type 

A stammen bij sommige dieren ziektes veroorzaken, terwijl ze zich in ander dieren gedragen 

als leden van de normale darmflora. 

Het eerste doel van dit proefschrift was dan ook om meer inzicht te krijgen in de 

virulentiefactoren die aanwezig zijn in C. perfringens isolaten uit runderen gestorven aan necro-

hemorragische enteritis. In hoofdstuk 4 werd de productie van virulentiefactoren die mogelijk 

betrokken zijn bij boviene necro-hemorragische enteritis geanalyseerd. Hiervoor werd een 

collectie necro-hemorrhagische enteritis-stammen vergeleken met runder-stammen afkomstig 

van gezonde dieren en met stammen geïsoleerd van andere diersoorten. Deze stammen werden 

gescreend voor de in vitro productie van alfa-toxine (de meest toxische factor die door type A 

stammen wordt geproduceerd) en perfringolysin O (waarvan een synergie met alfa toxine was 

aangetoond bij het veroorzaken van endotheliale cytotoxiciteit in vitro). Ook de activiteit van 
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proteolytische factoren die in staat zijn de beschermende mucuslaag in de darm of 

extracellulaire matrixcomponenten af te breken werd gemeten. Er kon geen verschil 

waargenomen worden in de productie van deze potentiële virulentiefactoren tussen normale 

microbiota isolaten en stammen afkomstig van necro-hemorragische enteritis gevallen. Dit kan 

betekenen dat een andere virulentiefactor van C. perfringens betrokken is in de pathogenese 

van boviene necro-hemorragische enteritis. Wanneer echter rekening wordt gehouden met het 

feit dat C. perfringens stammen van verschillende oorsprong in staat zijn de typische letsels op 

te wekken in een darmlusexperiment, lijkt het aannemelijk dat C. perfringens niet de primaire 

trigger is in het ontstaan van boviene necro-hemorragische enteritis, maar dat C. perfringens 

alleen verantwoordelijk is voor het verderzetten en het verergeren van de intestinale schade tot 

op het punt dat de darm hemorragisch en necrotisch wordt. 

Aangezien alfa toxine de belangrijkste virulentiefactor is van type A stammen, werd de rol van 

dit toxine in de pathogenese van boviene necro-hemorragische enteritis geëvalueerd. Alfa 

toxine blijkt essentieel te zijn voor de inductie van necrotische letsels in de runderdarm. Dit 

werd aangetoond in hoofdstuk 6 door gebruik van mutante stammen in een bovien 

darmlusmodel. Een alfa toxine-mutant was geattenueerd in zijn letsel-inducerend vermogen, 

terwijl complementering van alfa-toxine dit vermogen om necro-hemorragische letsels te 

veroorzaken herstelde. Deze resultaten tonen aan dat alfa toxine essentieel is voor intestinale 

virulentie in het darmlusmodel. 

Necro-hemorragische enteritis in kalveren veroorzaakt acute sterfte. Bovendien zijn er geen 

effectieve preventiestrategieën beschikbaar, wat van vaccinatie een noodzakelijke strategie 

maakt. De meeste clostridium vaccins die momenteel op de markt zijn bestaan uit een 

combinatie van verschillende Clostridium species, waaronder C. perfringens. Deze vaccins 

worden gemaakt van geïnactiveerd supernatans van een bacteriële cultuur. De detoxificatie van 

de bacteriële culturen gebeurt voornamelijk door formaldehyde. De huidige vaccins zijn 

ontwikkeld voor immunisatie van schapen, maar zijn ook geregistreerd voor gebruik bij 

rundvee. Ondanks het feit dat deze vaccins doeltreffend zijn voor de bescherming van schapen, 

wordt slechts een beperkte werkzaamheid van deze vaccins tegen boviene necro-hemorragische 

enteritis gemeld (empirische waarnemingen van het veld in België). Bovendien is er geen 

wetenschappelijke literatuur beschikbaar over de werkzaamheid van deze vaccins in rundvee. 

In hoofdstuk 5 werd het beschermende vermogen geëvalueerd van de antilichamen die 

opgewekt worden tegen C. perfringens, na immunisatie van kalveren met een commercieel 

clostridium multivalent vaccin. Daarnaast werd ook het beschermende potentieel onderzocht 
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van antilichamen afkomstig van kalveren geïmmuniseerd met een mengsel van C. perfringens 

toxinen, hetzij als natieve toxines of als formaldehyde geïnactiveerde toxines. De meest 

immunogene eiwitten in de vaccinpreparaten werden geïdentificeerd als alfa toxine en 

perfringolysine O. Alle vaccin formulaties induceerden een hoge antilichaamrespons tegen 

zowel alfa toxine als perfringolysine O, zoals gemeten via ELISA. Deze antilichaamtiters 

komen echter niet overeen met de neutraliserende eigenschappen van de antilichamen. 

Antilichamen opgewekt tegen de natieve C. perfringens toxines waren beter in staat om de alfa 

toxine- en perfingolysin O-activiteit te remmen in vitro en konden de endotheliale cytotoxiciteit  

veroorzaakt door C. perfringens beter inhiberen dan de antilichamen opgewekt na vaccinatie 

met het multivalent clostridium vaccin of na vaccinatie met de formaldehyde geïnactiveerde 

C. perfringens toxines. Bovendien konden alleen antilichamen opgewekt tegen de natieve 

toxines het ontstaan van necrotische letsels na injectie van boviene darmlussen met 

C. perfringens tegengaan. Deze resultaten suggereren dat het gebruik van formaldehyde voor 

detoxificatie de structuur van de C. perfringens toxines zo verandert dat het onmogelijk is om 

beschermende antilichamen op te wekken. Bovendien tonen deze resultaten duidelijk aan dat 

er nood is aan de ontwikkeling van nieuwe, effectieve vaccins tegen boviene necro-

hemorragische enteritis. 

Gezien het belang van alfa toxine in de inductie van intestinale letsels, werd in hoofdstuk 6 het 

potentieel van alfa-toxine als een vaccin antigeen nagegaan. Het gebruik van natieve toxines 

kan niet als veilig worden beschouwd. Daarom werd naast natief alfa toxine ook het gebruik 

van het enzymatisch inactieve C- terminale domein van alfa toxine als vaccin antigeen 

geëvalueerd. Immunisatie van kalveren met deze vaccinpreparaten induceerde een sterke 

antilichaamrespons tegen natief alfa toxine. De verkregen antisera waren in staat zowel de alfa 

toxine activiteit als de cytotoxiciteit van C. perfringens op runder-endotheel te neutraliseren in 

vitro. Antisera opgewekt tegen het natieve toxine hadden echter een sterkere neutraliserende 

activiteit dan antisera opgewekt tegen het C-terminale fragment. Daarnaast kon enkel de 

gelijktijdige injectie van antisera gericht tegen natief alfa toxine in het darmlusmodel het letsels-

inducerende vermogen van C. perfringens significant verlagen. De verminderde bescherming 

van antisera tegen het C-terminale domein kan worden toegeschreven aan verstoring van de 

conformatie of afscherming van sommige delen van het C-terminale fragment door de GST-

tag, die werd gebruikt voor zuivering van het eiwit. Daarentegen werd het natieve alfa toxine 

gefuseerd aan een His-tag voor zuivering. Deze His-tag is aanzienlijk kleiner en zal de 

conformatie van alfa toxine waarschijnlijk minder beïnvloeden. Een andere verklaring kan zijn 
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dat antilichamen tegen zowel het N-terminale als C-terminale domein van alfa toxine nodig zijn 

om beschermende antilichamen op te wekken. Er moet opgemerkt worden dat, ondanks het feit 

dat antilichamen tegen natief alfa toxine het letsel-inducerende vermogen van de bacterie 

verminderen, de toediening van deze antilichamen toch niet voldoende bleek om de necrose die 

wordt veroorzaakt door C. perfringens volledig te neutraliseren. Het zou dus kunnen dat andere 

virulentiefactoren, die geproduceerd worden door alle C. perfringens stammen, moeten worden 

toegevoegd aan een vaccin om volledige bescherming tegen boviene necro-hemorrhagische 

enteritis te bieden. 

 

De resultaten beschreven in deze doctoraatsthesis tonen duidelijk aan dat alfa toxine van 

essentieel belang is in de pathogenese van necro-hemorragische enteritis in kalveren. 

Bovendien werd aangetoond dat vaccins op basis van formaldehyde geïnactiveerde toxines 

(zoals de huidige clostridium vaccins) niet in staat zijn antilichamen op te wekken die 

bescherming bieden tegen de letsels veroorzaakt door C. perfringens, zoals gezien in de 

darmlus-experimenten. De ontwikkeling van nieuwe vaccins tegen boviene necro-

hemorrhagische enteritis is dus noodzakelijk. Alfa toxine zou een waardevolle component 

kunnen zijn van zo’n nieuw vaccin tegen boviene necro-hemorragische enteritis en het C-

terminale domein van alfa toxine vormt een goede optie voor verdere vaccinontwikkeling. 

Daarnaast zal de ideale vaccinformulering ook andere, nog ongeïdentificeerde factoren moeten 

bevatten om volledige bescherming te kunnen bieden tegen boviene necro-hemorrhagische 

enteritis. 
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Dankwoord 

Zes jaar geleden kreeg ik de kans om te starten op een project rond ‘de pathogenese en 

bestrijding van enterotoxemie bij kalveren’. Ik besef maar al te goed dat ik met mijn gat in de 

boter ben gevallen. Ik bleek naast een boeiend onderwerp, ook een bende toffe collega’s te 

hebben om alles (van frustraties tot publicaties) mee te delen. Het is helaas niet mogelijk om 

iedereen persoonlijk te noemen, dus bij deze aan iedereen: Bedankt, Dank u wel, Merci! 

Eerst en vooral zou ik mijn promotoren willen bedanken.  

Prof. Van Immerseel, Filip, waar moet ik beginnen? Je geeft me de vrijheid mijn eigen ding te 

doen en zorgt tegelijkertijd voor de nodige sturing. Na het aflopen van het landbouwproject gaf 

je me de kans nog eventjes verder te werken op C. perfringens, ook al wist je dat ik een paar 

maanden niet aanwezig ging zijn. Merci voor de discussies, het vertrouwen, alle kansen die ik 

gekregen heb (en nog steeds krijg) en nog zoveel meer. 

Prof. Ducatelle, bedankt om er altijd te zijn. Het maakt niet uit of ik aan uw deur sta omdat ik 

het bos door de bomen niet meer zie bij het schrijven van een artikel, een idiote hypothese heb 

bedacht of half in paniek kom vertellen dat ik de discussie van mijn doctoraat nooit ga afkrijgen, 

je maakt altijd tijd. En ik heb er de voorbije jaren behoorlijk veel gestaan. Bedankt voor de 

hulp, het motiveren, het delen van jouw enthousiasme, de wetenschappelijk discussies, … (voor 

de nieuwkomers: neem pen en papier mee voor je bij hem langs gaat, dat kan van pas komen). 

Ook bedankt dat ik jouw theorieën soms in vraag mag stellen, waardoor ik de kans krijg zelf te 

redeneren en zo nu en dan met mijn kop tegen de muur te lopen.  

Bart, jij kwam er wat later bij als promotor, maar jouw hulp wordt daarom niet minder 

geapprecieerd. Merci voor het ontwarren van de statistiek-knoop, voor de input bij het schrijven 

van de manuscripten, voor de leuke babbels en voor het supersnel nalezen van deze 

doctoraatsthesis terwijl je daar eigenlijk echt geen tijd voor had. 

Prof. Haesebrouck, bedankt om mij de kans te geven onderzoek uit te voeren in een labo met 

alle mogelijke middelen en voor het kritisch en zorgvuldig nalezen van mijn manuscripten. 

Naast mijn promotoren wil ik ook alle leden van de examencommissie bedanken voor het 

grondig nalezen van dit werk en voor de constructieve opmerkingen: prof. Pasmans, prof. 

Deprez, prof. Favoreel, prof. Daube, dr. Timbermont en dr. Boone. 

Uiteraard, geen wetenschappelijk onderzoek zonder financiering. Bedankt aan het IWT-

Vlaanderen voor de financiering van het landbouwproject en aan Evonik industries voor het 

project rond necrotische enteritis bij vleeskippen.  
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Er wordt wel eens gezegd dat je een doctoraat niet alleen maakt. Dit is zeker het geval voor 

mijn onderzoek. Ik had het voorrecht met verschillende collega’s op eenzelfde project te werken 

en de combinatie van dierenartsen, een bio-ingenieur, een bioloog en een biotechnoloog was 

echt wel een verrijking. Daarom zou ik graag de mensen bedanken die het meest nauw 

betrokken waren bij het enterotoxemie-onderzoek. Prof. Deprez, bedankt voor jouw inbreng 

tijdens de vergaderingen en het uiterst grondig nalezen van de manuscripten. Leen, ik sta er nog 

steeds van versteld met hoeveel geduld je ons wegwijs maakte in de wondere wereld van de 

bacteriën. En ook toen ik mijn draai in het labo gevonden had, was je steeds bereid om te helpen, 

met wat dan ook. Stefanie, ik zie ons die eerste weken nog als twee kleine eendjes achter moeder 

eend (Leen) door ’t labo lopen. Gelukkig konden we al snel ons eigen gang gaan, maar het bleef 

toch altijd leuk om een ‘partner in crime’ te hebben voor alle runder-experimenten. Bonnie, ik 

durf te zeggen dat zonder jou dit boekje er nooit was geweest. Merci voor alles, van het regelen 

van de proeven, het vaccineren van kalfjes tot het versnijden van de weefselstaaltjes. Ook al 

gebeurde het niet veel, ik vond het wel leuk om eens mee te gaan naar de kalverbedrijven. Al 

had je wel wat vroeger mogen zeggen dat je de staart omhoog moet houden als je wilt dat een 

kalf blijft stilstaan. Verder zou ik ook graag de anesthesisten bedanken die mede de darmlus-

experimenten mogelijk maakten.  

Uiteraard heb ik ook een hele boel andere collega’s die een woordje van dank verdienen. Ik had 

misschien niet zo veel hulp nodig bij de kalverproeven, maar dat heb ik dubbel en dik 

gecompenseerd tijdens de kippenproeven. Bedankt aan iedereen die geholpen heeft bij de 

verwerking van de stalen (een keertje zelfs tot redelijk laat ’s avonds) en waarvan ik de voorbije 

jaren de ‘controle kippen’ heb mogen gebruiken.  

Als ik terugdenk aan de voorbije 6 jaar, heb ik toch het meeste heimwee naar de laatste jaren 

op de patho. Onze bureau bestond uit een aantal vaste ‘bewoners’ aangevuld met een aantal 

vaste ‘bezoekers’. Het was een leuke mix van persoonlijkheden en onderzoeksonderwerpen, 

die zorgde voor een aangename, stimulerende sfeer. Ook al waren we overal een beetje 

buitenbeentjes (“die van de patho” volgens de collega’s van de bacteriologie en “de 

doctoraatstudenten” volgens de collega’s van de pathologie), het was toch altijd een toffe bende. 

Hoe vervelend die staalnames ook kunnen zijn, zo nu en dan eens met z’n allen in de snijzaal 

duiken schept toch een band...  

Ruth en Vanessa, jullie waren, samen met Stefanie, mijn eerste bureaugenoten. Mede dankzij 

jullie voelde ik me meteen thuis op de diergeneeskunde. Celine, ik herinner me nog goed het 
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gezicht dat je trok toen ik tijdens mijn thesis worstjes probeerde te maken van muizendarmen. 

Ik was dan ook erg verwonderd toen je besliste de planten in te ruilen voor een project op 

kippen. Ik had echt gedacht dat je tegen de grond ging gaan, maar je bleek die kippendarmen 

opmerkelijk goed te kunnen verdragen. Aangezien het maar niet lukt om je in een paar zinnen 

te bedanken voor alles wat we de afgelopen jaren samen hebben beleefd, zeg ik gewoon ‘merci 

voor alles’. Ik denk dat je zo ook wel weet hoeveel je voor mij (en Fiebe en Finn) betekent. 

Wolf, sorry dat ik het niet kan laten om je te plagen. Merci voor de babbels over serieuze en 

minder serieuze onderwerpen. Veel succes in de zoektocht naar een nieuwe job. Celine, en 

binnenkort ook Wolf, het doet raar om jullie na al die jaren (10 à 11 jaar) niet meer elke weekdag 

te zien. Karen, het spijt me oprecht dat ik je ’s nachts heb doen dromen van eiwitgels en Western 

blots. Ik besefte echt niet dat het voor jou misschien eerder een nachtmerrie was… Lonneke, 

ken je die quote van Jean-Jacques Rousseau “People who know little are usually great talkers, 

while men who know much say little”? Je was lange tijd een stille aanwezige op de bureau. 

Gelukkig heb ik je intussen wat beter leren kennen, en Rousseau had gelijk hoor… Karolien, 

merci voor de boeiende discussies en de soms onmogelijke vragen, voor de koffietjes, de 

Pepper-herinneringen, … Ik kan me niet inbeelden dat er iets is dat jij niet kan. Veel succes in 

jouw praktijk, maar vergeet niet: het was een pak plezieriger met jou erbij. Sofie G, bedankt 

voor de eiwitgels toen ik het labo niet in mocht, voor de babbels en de ambiance, … Ik zou je 

ook willen bedanken om me gezelschap te houden, die laatste minuten voor de interne 

verdediging. Ik hoop dat jouw nieuwe job een beetje meevalt en dat je de jeugd warm kan 

maken voor de natuurwetenschappen. Venessa, sorry dat ik je echt met alles kom lastig vallen. 

Ik kan je echter niet beloven dat dit in de toekomst gaat beteren. Merci om altijd een antwoord 

te zoeken op mijn vragen, voor alle goede raad, ideeën, leuke babbels, het werk dat je hebt 

overgenomen toen ik er eventjes niet was, … En sorry voor de last die ik je bezorgde met de 

NetB ELISA. Laten we het bekijken zoals Einstein ooit zei “I have not failed, I’ve just found 

10 000 ways that won’t work”. Sofie K, veel succes met het afwerken van jouw doctoraat. Ik 

ben er van overtuigd dat je snel een toffe job vindt. Dorien, je bent al eventjes geen collega 

meer, maar daarom zijn we je nog niet vergeten. Bedankt voor de hulp bij het vaccineren van 

de konijnen en nog veel succes bij het afwerken van je doctoraat. Gunther, jouw 

‘kippenfeestjes’ zijn legendarisch. Ik denk dat we al bijna alle mogelijk stalen voor jou hebben 

genomen, alhoewel ik vrees dat je nog wel een paar kippenonderdelen kan verzinnen om in de 

diepvries/op formol te steken. Laten we hopen dat je ’t in de toekomst een beetje binnen de 

perken houdt. Julie, merci voor alle labo-hulp, de babbels en ‘t aangenaam gezelschap. Veel 
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plezier met het mini-Julietje dat op komst is. Francesca, I really enjoyed working with you. 

Good luck with your chicken-research in Italy. 

Het laatste jaar kwamen er ook een aantal nieuwe collega’s bij. Nathalie G, je bent (voorlopig) 

de enige clostridium-collega. Veel succes met jouw onderzoek, hopelijk komt er wat leuke data 

uit die letselstalen. Fien, als er iemand voor een beetje ambiance zorgt op onze nieuwe bureau, 

ben jij het wel. Veel succes in jouw zoektocht naar de ultieme dysbiose-biomerker. Justine, veel 

succes in de toekomst, ik hoop dat je een job vindt waar je gelukkig van wordt. Annatachja, ik 

vind het nog steeds jammer dat je die kippen-levertjes en -hartjes niet effectief met een hamer 

te lijf bent gegaan... Veel succes en plezier met het zinc-verhaal. Pearl, het is altijd leuk als 

mensen nieuwe kennis binnen brengen. Ik hoop echt dat je een beurs krijgt voor jouw project 

rond enterococcen. En niet te veel stressen hé, het komt allemaal wel goed. Chana, als jij mijn 

labowerk niet had overgenomen, was dit doctoraat waarschijnlijk nog steeds niet geschreven. 

Een heel dikke merci hiervoor. 

Ook de ‘echte’ collega’s van de pathologie verdienen hier wel een bedankje. Leslie, merci voor 

de leuke tijd. Hopelijk kunnen we snel nog eens samen gaan zwemmen of naaien. Veronique, 

jouw doctoraat is in de sacoche, op naar het ECVP examen. Christian, Delphine, Sarah en 

Joachim bedankt voor alle coupes en kleuringen. Ik heb het nog steeds niet in de vingers om 

die weefselcoupes zonder al te veel rimpels op zo’n glaasje te krijgen. Misschien kom ik 

binnenkort nog wel eens op bijscholing. Astra, merci voor het regelen van vanalles en nog wat, 

voor het gezelschap en soms ook de verwarring. Een ding is zeker, het is nooit saai met jou in 

de buurt. Ook Leen VB, Han, Norbert, Joachim, Maaike, Annelies, Marjan, Michiel, Leen C, 

Johan en Beatrice, bedankt voor de aangename sfeer en de leuke gesprekken tijdens de 

middagpauze. 

Uiteraard kunnen ook de collega’s van de bacteriologie en de pluimvee niet ontbreken. Gunter 

en Jo, bedankt om me steeds te helpen met allerhande problemen en administratieve 

rompslomp. Koen, bedankt voor het oplossen van alle computerproblemen. Serge, Arlette, 

Nathalie, Sofie DB, Marleen, Connie, Sarah en Magda, dankzij jullie is het altijd aangenaam 

werken in ’t labo. Merci voor al die keren dat ik raad/protocols/producten/… kwam vragen. 

Maxime en Jackeline, veel succes met de giga-varkensproef. En Maxime, de volgende sportdag 

doen we een lange broek aan hé. Roel, veel succes met de verbouwingen en ’t afwerken van 

jouw doctoraat. Marc V, bedankt voor de tips om het NE in vivo model terug op punt te stellen. 

Tom, merci om tijd te maken voor mijn kippen-vragen. Ook al zijn ze niet altijd even haalbaar, 
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we weten nu tenminste dat het onmogelijk is om iets in het caecum van een kip te spuiten zonder 

ze open te leggen… Ook bedankt aan Sérgio, Jonas, Deon, Caroline, Eva, Ellen, Myrthe, Iris, 

Chloë, Bram, Annemiek, Shaoji, Guangzhi, Pascale, Elin, Alexander, Tijn, Lieze, Gwij, 

Wouter, Mark B, Pudsa, Alex, Keely, Laura, Filip B, An G, An M, Frank, Katleen, Nele, Lien, 

Anja R, Anneleen, Ilse, Anja VDB, Hanne, Miet, … voor de leuke momenten de voorbije jaren. 

Tot slot, mijn ‘thuisfront’. Zonder de steun van familie en vrienden zou het me niet gelukt zijn. 

Bedankt voor alle steun en gezelligheid de afgelopen jaren, voor de kleine en grote dingen. 

Mama, merci dat ik altijd bij je terecht kan, zowel met leuke resultaten als met bergen 

frustraties. Tine en Nele, bedankt voor de ontspannende momenten en het babysitten af en toe. 

Papa, merci voor alle steun, de hulp en het regelen van de receptie. Er wordt wel eens gezegd 

“the best way to predict the future, is to create it”. De bezoekjes aan meme en pepe op de 

boerderij hebben ervoor gezorgd dat ik al vrij jong wist wat ik wou doen in de toekomst. Al 

evolueerde het van boerin, naar dierenarts, naar onderzoeker, het is altijd in de rundveesector 

gebleven. Jammer genoeg kunnen meme en pepe het einde van dit werk niet meer meemaken. 

Op de cover van dit boekje zijn ze er toch een beetje bij... 

En last but not least, Koen, je bent zonder meer één van de belangrijkste personen in mijn leven. 

Een plaats die je moet delen met Fiebe en Finn... Wie had een kleine 10 jaar geleden gedacht 

dat we nu zo’n leuk gezinnetje zouden hebben? Je hebt me altijd gesteund, zowel tijdens mijn 

studies ‘moet jij niet studeren’ als tijdens mijn doctoraat. Het is dan ook moeilijk te zeggen 

waar ik de vraag ‘heb je een beetje kunnen schrijven aan jouw doctoraat, is het nu bijna af?’ het 

meest gehoord heb: thuis of op ’t werk. Merci voor alles wat je voor mij doet, om jouw vrije 

tijd op te offeren om voor de kindjes te zorgen, zodat ik aan mijn doctoraat kon werken, ... Ook 

al vrees ik dat er nog wel af en toe eens een vrije dag aan ’t werk zal moeten opgeofferd worden, 

ik beloof je meer tijd te maken om dingen samen te doen. 

 

Evy 

 


