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1 Introduction

In an as of yet still unfinished report [1] it is shown that a generalized version
of the imprecise Dirichlet model [2] or IDM can be used for learning/estimating
the transition probabilities of a Markov model (or MM). The estimations are
based on an observation of a sequence of states x0x1 · · · xn, or equivalently, of a
sequence of state n transitions xkxk+1 from the unknown MM.

We use a transition matrix Θ to describe a MM. We limit ourselves to the
case of regular or ergodic MM’s. For these there exists an l0 for which (Θl)i j > 0,
for all l > l0 and for all transitions i j. In addition, they have a unique largest (in
module) eigenvalue 1, for all other eigenvalues λ of Θ it holds that |λ| < 1.

In this report we are going to prove that the estimate of Θ using the model
described model using the IDM [1] is consistent. This means that we can make
the probability that the distance between the estimate and the real Θ exceeds
some arbitrary constant arbitrarily small when n can be made arbitrarily large.

1.1 Notation

We will use the same notation here as is introduced in the aforementioned
report [1]. The most important quantities are

• the (unknown) transition matrix Θ with elements (Θ)i j = θ j|i;
• the (unknown) l-step transition matrix Θl with elements (Θl)i j = θ(l)

j|i ;
• the matrix of observed transitions N with elements ni j an total sum n;
• equilibrium distribution ρ, which is the left eigenvector with eigenvalue

1 of Θ: ρTΘ = ρT;
• a parameter vector t(n)

·|i of the learning model (a row of a matrix T(n)) with
components

t(n)
j|i =

hit
(0)
j|i + ni j

hi + ni+
,

where hi is the so-called initial strength for state i and ni+ the sum of the
elements of the i-th row of N.

2 The estimate

The model consists of a product of sets of Dirichlet distributions (one set for
each state) with initial parameters hi and t(0)

·|i , which takes on all values of the
interior of the unit simplex.

The expectation of each row θ·|i of Θ after observing N becomes the set of
vectors t(n)

·|i . These sets constitute an estimate of Θ.

We could now define a distance between each of these sets and their corre-
sponding row of Θ. The total distance is just the sum of these separate distances.
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We shall not be so explicit, but instead prove that any one t(n)
·|i is a consistent es-

timate, independent of the t(0)
·|i chosen. It is clear that this will then also hold for

any reasonable choice of distance between θ·|i and its estimate, the expectation
under our model.

3 Putting bounds on the distance

In this section we will give an upper bound of the distance between θ·|i and its
estimate that is the same for any specific element of the unit simplex.

Because the total distance between Θ and its estimate is just the sum of the
distances betweenθ·|i and its estimate over all states i, it is sufficient to treat one
arbitrary state i. We can consequently drop the index i further on to alleviate
the notation.

We want to prove that

∀ε > 0,∀t : lim
n→∞P(d(

ht + n
h + n+

,θ) > ε) = 0, (1)

where we have set t = t(0) and d denotes a usual distance between two vectors.

Because norms are convex, we can write

d(
ht + n
h + n+

,θ) ≤ h
h + n+

d(t,θ) +
n+

h + n+
d(

n
n+
,θ).

Here we assume that n+ > 0, which later on we will show is acceptable.
Distances between elements of the unit simplex such as t and θ are bounded
(the unit simplex for a finite number of states is a bounded set) and are smaller
than the maximal distance between any two elements of the simplex, which
by an appropriate scaling can be chosen to be 1. By additionally making the
numerator h larger we find that

d(
ht + n
h + n+

,θ) ≤ h
h + n+

+ d(
n

n+
,θ).

It follows that if we prove that

∀ε > 0 : lim
n→∞P(

h
h + n+

+ d(
n

n+
,θ) > ε) = 0, (2)

then (1) is also proven.

4 Divide et impera

4.1 The splitting implication

It is useful to note that, when a1 and a2 are positive, the following splitting
implication holds (the proof is immediate by looking at the contrapositive):

∀ε1, ε2 > 0 :


lim
n→∞P(a1(n) > ε1) = 0

lim
n→∞P(a2(n) > ε2) = 0

⇒ ∀ε > 0 : lim
n→∞P(a1(n) + a2(n)) > ε) = 0.
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Because of this implication, (2) is proven when

∀ε > 0 : lim
n→∞P(

h
h + n+

> ε) = 0, (3)

and
∀ε > 0 : lim

n→∞P(d(
n

n+
,θ) > ε) = 0, (4)

are proven.

4.2 Further reductionism

When we look at (3), we see (under the assumption that n+ > 0) that

h
h + n+

<
h

n+
=

h
n+
− h

nρ
+

h
nρ
≤

∣∣∣∣∣
h

n+
− h

nρ

∣∣∣∣∣ +
h

nρ
.

This means that (3) is proven when

∀ε > 0 : lim
n→∞P(

∣∣∣∣∣
h

n+
− h

nρ

∣∣∣∣∣ > ε) = 0, (5)

∀ε > 0 : lim
n→∞P(

h
nρ

> ε) = 0 (6)

are proven.

When we look at (4), we see because of the triangle inequation that

d(
n

n+
,θ) ≤ d(

n
n+
,

n
nρ

) + d(
n

nρ
,θ)

= d(
n

n+
,

n+

nρ
n

n+
) +

1
nρ

d(n, nρθ)

≤
∣∣∣∣∣1 −

n+

nρ

∣∣∣∣∣ +
1

nρ
d(n,nρθ),

where the last inequality follows from the fact that the distance between the
origin and an element of the simplex is smaller than or equal to the maximal
distance between two elements of the simplex. This means that (4) is proven
when

∀ε > 0 : lim
n→∞P(

1
nρ

∣∣∣nρ − n+

∣∣∣ > ε) = 0, (7)

∀ε > 0 : lim
n→∞P(

1
nρ

d(n,nρθ) > ε) = 0 (8)

are proven.

5 Bounding the probability

5.1 Investigating (6)

It is clear that

∀ε > 0 : P(
h

nρ
> ε) =


0, n > h

ρ
1
ε ,

1, n ≤ h
ρ

1
ε ,

(9)

so (6) is trivially satisfied.

3



5.2 Investigating (7)

To get a bound on the probability in (7), we will follow a proof by Kemeny and
Snell [3, Theorem 4.2.1]. To start, we will use Tchebycheff’s theorem (where E
denotes expectation) [4, 15.7]

P(
1

nρ

∣∣∣nρ − n+

∣∣∣ > ε) <
1
ε

E(
1

nρ

∣∣∣nρ − n+

∣∣∣)

=
1

nρε
E(

√
[n+ − nρ]2)

≤ 1
nρε

√
E([n+ − nρ]2),

where the last inequality follows from the fact that a variance is always positive
(it also follows from Jensen’s inequality [5, 6.3.5]).

We suppose that the initial state is fixed, i.e., x0 = u. We see that (we will
again add the index denoting the state in the following derivation)

E([ni+ − nρi]2) = E([
n∑

k=1

[δxki − ρi]]2) =

n∑

k=1

n∑

l=1

[
E(δxkiδxli) − ρiE(δxki + δxli) + ρ2

i

]
,

where δ is the Kronecker-delta. Working out the expectations, we get

E([ni+ − nρi]2) =

n∑

k=1

n∑

l=1

[
θ(min {k,l})

i|u θ(|k−l|)
i|u − ρi[θ

(k)
i|u + θ(l)

i|u] + ρ2
i

]
,

Kemeny and Snell have proved [3, Corollary 4.1.5] that for regular MM
θ(k)

i|u = ρi + eτ(k), with |eτ(k)| ≤ τk−n̂, where 0 < τ < 1 and n̂ is the first integer
such that Θn̂ contains only positive components. This allows us to write

E([ni+ − nρi]2)

=

n∑

k=1

n∑

l=1

[
[ρi + ετ(min {k, l})][ρi + ετ(|k − l|)] − ρi[ρi + ετ(k) + ρi + ετ(l)] + ρ2

i

]

≤ 1
τn̂

n∑

k=1

n∑

l=1

[
τmax {k,l} + ρi[τ|k−l| + τmin {k,l}] + ρi[τk + τl]

]

= 2nρi
τ

τn̂
1 − τn

1 − τ +
1
τn̂


n−1∑

k=1

n∑

l=k+1

+

n∑

k=l=1

+

n∑

k=2

k−1∑

l=1


[
τmax {k,l} + ρi[τ|k−l| + τmin {k,l}]

]
.

Because τk 1−τl

1−τ ≤ 1
1−τ = c ∈ R for all k ≥ 0 and because n − 1 ≤ n we find

E([ni+ − nρi]2) ≤ 2nρi
c
τn̂ +

1
τn̂

nc +

n∑

k=2

[k − 1]τk + ρi[4nc +

n−1∑

k=1

[n − k]τk]

 .

By replacing the coefficients k − 1 and n − k by n we find

E([ni+ − nρi]2) ≤ nρi
c
τn̂ [

2
ρi

+ 7] = nρiO(1).
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Combining this result with Tchebycheff’s theorem, we find that

∀ε > 0 : P(
1

nρ

∣∣∣nρ − n+

∣∣∣ > ε) <
1√
nρ
O(1)
ε
, (10)

so that (7) is clearly true. This result can be used to show that n+ can be assumed
to be non-zero. Consider that

P(
1

nρ

∣∣∣nρ − n+

∣∣∣ > ε) =

P(
1

nρ

∣∣∣nρ − n+

∣∣∣ > ε | n+ = 0)P(n+ = 0) + P(
1

nρ

∣∣∣nρ − n+

∣∣∣ > ε | n+ > 0)P(n+ > 0).

Because the values of ε we’re interested in are small we can assume that
P( 1

nρ

∣∣∣nρ − n+

∣∣∣ > ε | n+ = 0) = P(1 > ε) = 1, which implies P(n+ = 0) < 1√
nρ
O(1)
ε .

5.3 Investigating (8)

To get a bound on the probability in (8) we will again use Tchebycheff’s theorem

P(
1

nρ
d(n, nρθ) > ε) <

1
ε

E(
1

nρ
d(n,nρθ))

=
1

nρε
E(d(n,nρθ)).

When we take d to be the Euclidean distance, we get

E(d(n, nρθ)) = E(
√∑

j

[
n2

j + [nρθ j]2 − 2n jnρθi

]
)

≤
√∑

j

[
E(n2

j ) + [nρθ j]2 − 2E(n j)[nρθ j]
]
,

where we’ve applied Jensen’s inequality again.

We can rewrite the above as follows,

E(d(n,nρθ))2 ≤
∑

j

[
V(n j) + E(n j)2 + [nρθ j]2 − 2E(n j)[nρθ j]

]
.

From Martin [6, Theorems 6.1.2, 6.1.3] we get expressions for the expectation
and variance of the number of observed transitions i j,

E(n j) = nρθ j + a j,

V(n j) = nρθ j[1 − ρθ j + 2a j] + b j,

where a j ∈ O(|1 − λn|) and b j ∈ O(|1 − λn| + n |λ|n), with λ an eigenvalue of Θ

with module smaller than 1. Using the above expressions, we get

E(d(n,nρθ))2 ≤ nρ
∑

j

θ j[1 − ρθ j + 2a j] +
∑

j

[a2
j + b j].
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From which follows

E(d(n, nρθ)) ≤ √nρO(
√
|1 − λn|) < √nρO(1).

Combining this result with Tchebycheff’s theorem, we find that

∀ε > 0 : P(
1

nρ
d(n,nρθ) > ε) <

1√
nρ
O(1)
ε
, (11)

so that (8) is clearly true.

5.4 Investigating (5)

Equation (10) implies

P(n+

∣∣∣∣∣
1

n+
− 1

nρ

∣∣∣∣∣ >
ε
h

) <
1√
nρ
O(1)
ε/h

,

which in turn implies

∀ε > 0 : P(
∣∣∣∣∣

h
n+
− h

nρ

∣∣∣∣∣ > ε) <
1√
nρ
O(1)
ε
, (12)

because we can assume n+ ≥ 1. It is immediately clear that (5) is true.

6 Combining the bounds

In the last section we have proved (1). We can say more however. Equations (9),
(10), (11) and (12) allow us to specify how fast the probability that the estimates
differs from the true transition probabilities diminishes. If we combine them,
we get

∀ε > h
nρ

: P(d(T(n),Θ) > ε) <
1√
nρ
O(1)
ε
. (13)
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