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Background and objectives 

Spontaneously fermented acidic beers, such as lambic beers, are the product of a 

fermentation that can take up to three years and is initiated by a multitude of 

spontaneously inoculated microorganisms from the brewery environment at the 

time of brewing. These fermentations are poorly characterized from a 

microbiological point of view and management of the fermentation process relies on 

an organoleptic quality assessment by the brewer. Microbiological management in 

these breweries is minimal and aberrant fermentations are not uncommon. These 

so-called mixed fermentations are a challenging subject for biodiversity studies, 

since complex communities of yeasts and bacteria are present in a long-lasting 

process. 

Biodiversity studies of fermented foods and beverages mostly focus on lactic acid 

bacteria and/or yeasts, but comprehensive studies of all microorganisms present 

during these fermentation processes are rare. Such studies are increasingly 

performed using culture-independent techniques because traditional culture-

dependent approaches cannot cope with the identification of hundreds of isolates to 

fully characterize the microbiota present. Culture-dependent results are also 

regarded as less informative, since some microorganisms can be present in a viable 

but non-culturable (VBNC) state, and as biased, because isolation media favor the 

cultivation of specific microorganisms only. Nevertheless, the isolation of the 

microorganisms that dominate the fermentation can give a wealth of information 

about the genetic and metabolic characteristics that enable these microorganisms to 

adapt to the fermentation matrix and allows their exploitation as starter cultures in 

industrial fermentations. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) is a method routinely used for the identification of bacteria and 

yeasts in medical microbiology. This technique enables a fast identification based on 

the comparison of cell protein profiles, provided that an identification database is 

available. Several commercial systems exist but their databases focus on human 

pathogens, and therefore MALDI-TOF MS has not been widely adopted in food 



3 

 

microbiology. Yet, the method has an impressive throughput capacity, which has 

already been applied in a few biodiversity studies for the dereplication of large 

numbers of isolates (i.e., for the recognition and elimination of isolates that 

represent the same species from complex communities). 

The present study aimed to characterize the bacterial and yeast communities in the 

lambic beer fermentation process, by exploiting the potential of MALDI-TOF MS as a 

high-throughput dereplication tool. The main goal of the present study was to 

characterize the microbial communities at several time points during the lambic 

beer fermentation process and in several fermentation batches, using both culture-

dependent and culture-independent techniques. In this effort, MALDI-TOF MS was 

used as a high-throughput dereplication tool of the cultivable communities and 

state-of-the-art taxonomic methods were used to accurately identify their various 

members. This effort also implied the development of MALDI-TOF MS as a key 

technology for the high-throughput characterization of all cultivable microbiota. 

This included optimization of the sample preparation for the generation of high-

quality mass spectra of various groups of bacteria and yeasts. A second goal was to 

compare the microbiota of the lambic beer fermentation process in a traditional 

lambic brewery located in the Senne river valley with that of an industrial lambic 

brewery not located in the Senne river valley. Gueuze beers are the product of a 

spontaneous bottle refermentation of mixtures of young and old lambic beers, 

mature further after bottling. A final goal was to examine, the effect of aging on the 

microbiota and metabolites of bottled gueuze beers. 
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Thesis outline 

PART I comprises the background, objectives and outline of this thesis. 

PART II presents a comprehensive overview of the literature on beer and 

spontaneous fermented beverages (Chapter 1). In particular, the characteristics of 

the spontaneous fermentation process for the production of lambic beers is 

highlighted (Chapter 2). Furthermore, an introduction to MALDI-TOF mass 

spectrometry and its current applications for the identification and dereplication of 

bacteria and yeasts is discussed (Chapter 3). 

PART III presents the experimental work performed in the present study. In 

Chapter 4, the spontaneous fermentation processes of traditionally (Chapter 4.1) 

and industrially (Chapter 4.2) produced lambic beers are examined. In the frame of 

these biodiversity studies, two new acetic acid bacteria were isolated and described, 

namely Acetobacter lambici sp. nov. (Chapter 5.1) and Gluconobacter cerevisiae sp. 

nov. (Chapter 5.2). The last chapter of this part (Chapter 6) addresses microbiota 

and metabolite changes during the aging of bottled gueuze beers. 

In PART IV, the general conclusions of the results obtained are discussed and an 

outlook on future applications is given. 

The summary of the thesis is given in PART V. 

 



 

Part II 
Literature overview
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Chapter 1. Beer and spontaneous fermentations 

1.1 Malting and beer production 

Beer is among the oldest fermented beverages and is the product of a fermented 

sugar extract from grains. The grain extract used is mostly malted barley, although 

other grains whether or not malted are used as well (Briggs et al., 2004). Grains such 

as maize, wheat, sorghum, oat and rice were used in the past and are still used in 

some beer types (Taylor et al., 2013), but generally malted barley is regarded as the 

most suitable grain for beer production (Briggs et al., 2004). In the malting process 

the grains are steeped in water, by which the grains swell and the conditions for 

their germination are optimized. Due to the germination, the seedling produces and 

activates several enzymes to enable its growth (Briggs et al., 2004; Palmer, 2006). Of 

all the enzymes, the amylases are of the highest interest for the brewer. These 

enzymes convert the endosperm of the grain (mostly starch) to more simple 

carbohydrates, i.e., glucose, maltose, and maltotriose, that are used by the seedling to 

support its growth (Palmer, 2006). After five days of germination and growth, the 

grains are dried and the seedlings are removed, but the enzymes remain in the dried 

grains (Palmer, 2006). The temperature and duration of drying determines the color 

of the malt (from light to dark) and of the color and flavor of the resulting beer. The 

endogenous enzymes that are produced during malting are exploited by the brewers 

to degrade the starch in the malt during the mashing (lautering) step at the start of 

the brewing process. During mashing several rests at the optimal temperatures of 

the enzymes enable proteolysis by proteases, β-glycan breakdown by β-glucanases 

and starch conversion to maltose by the α- and β-amylases (Briggs et al., 2004). 

After the mashing process, the mash is filtered and the wort is boiled. After boiling, 

the wort is cooled and ready for fermentation. The density of wort and beer is 

generally expressed in degrees Plato (°P). 

Currently, several beer types are produced worldwide and they are mainly classified 

by the type of fermentation (lager versus ale beers) and the type of malt used for 

their production. Two well-known exceptions to the exclusive use of barley malt in 

the brewing process are wheat beers, which are brewed using wheat malt next to 
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barley malt, and the so-called Happo-shu or low-malt beers, which contain between 

zero and 66% barley malt, in addition to several adjuncts (rice, corn, sorghum, 

potatoes, starches, sugar syrups) (Kawasaki & Sakuma, 2009). 

Lager beers are the most commonly produced type of beers (Howard, 2014). A 

strain of a lager yeast such as Saccharomyces bayanus or Saccharomyces pastorianus 

is used for its production (Bokulich & Bamforth, 2013). These yeasts are also known 

as Saccharomyces carlsbergensis, but although still widely used in the literature, this 

name is trivial and has no scientific meaning (Bokulich & Bamforth, 2013). These 

yeasts are cryotolerant and fermentation is performed at low temperature (4 to 

10°C) for 10 to 14 days (Briggs et al., 2004). At the end of the fermentation process, 

the yeast cells clump together in a process called flocculation (Bokulich & Bamforth, 

2013) and sink to the bottom of the fermentor, mostly a cylindroconical fermentor, 

used for beer production (Russell, 2006).  

Ale beers are mostly produced using strains of Saccharomyces cerevisiae, the 

fermentation temperature is higher compared to the fermentation temperature of 

lager beers (about 20 to 25°C) and the fermentation requires about 5 to 7 days 

(Briggs et al., 2004). Most lager brewing companies also produce ales. Also smaller 

craft breweries produce this type of beer, as it requires less brewing equipment. 

Fermentation of ale beers can take place at room temperature and does not require 

a cooling capacity. Additionally, in contrast to lager beers, which are bitter and less 

diversified in taste, ale beers have a more diversified taste (Howard, 2014). 

Both ale and lager beers are pitched with a yeast starter culture after the wort is 

boiled, cooled and aerated. These starter cultures are generally axenic yeast 

cultures, but occasionally a mixture of multiple yeasts is used for primary 

fermentation or secondary bottle fermentation (Vanderhaegen et al., 2003). Primary 

fermentation refers to the main alcoholic fermentation during the brewing process, 

whereas secondary bottle fermentation refers to refermentation or reconditioning 

in bottles. Although these beers are pitched with a starter culture to produce stable 

products in every fermentation batch, spoilage by growth of wild yeasts or bacteria 

in the starter cultures, during fermentation or in finished beers, is detrimental for 

the quality of the beer (Suzuki, 2011). 
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Fermentations that are performed using a mixture of yeasts and bacteria are 

generally referred to as mixed fermentations. These wort fermentations can be 

initiated spontaneously or by a starter culture of yeast and bacteria (Bokulich & 

Bamforth, 2013). All mixed fermentation beverages are acidic and a little tart and 

therefore they are refreshing and well appreciated by the consumers (De 

Keersmaecker, 1996). Below an overview is presented of the main mixed 

fermentation beverages and their fermentation characteristics. 

1.2 Spontaneous mixed fermentation beers 

1.2.1 Lambic beers 

Acidic lambic beers, obtained by a spontaneous fermentation, are probably the 

oldest known beers (De Keersmaecker, 1996). These beers are the products of a 

mixed fermentation that can proceed up to three years and traditionally ferment in 

wooden casks (Verachtert & Iserentant, 1995). Most knowledge about these beers 

originates from studies performed in the 1970s through 1990s, in particular by the 

research group of Prof. em. Hubert Verachtert (Faculty of Bioscience Engineering, 

KU Leuven, Leuven, Belgium). These studies focus on the microbiota and 

metabolites in several phases of the fermentation process of lambic beers and on 

some specific characteristics of the microbiota involved. However, only culture-

dependent analyses were performed (Martens et al., 1991, 1992; Shanta Kumara & 

Verachtert, 1991; Spaepen et al., 1978, 1979; Van Oevelen et al., 1976, 1977; 

Verachtert, 1983; Verachtert & Dawoud, 1984; Verachtert & Iserentant, 1995; 

Verachtert et al., 1989). 

Lambic beer is traditionally brewed only during the cold winter months, from 

October until March, because the lambic wort has to be cooled to approximately 

20°C within the timeframe of one night. Lambic beer is traditionally produced using 

about 66% malted barley and 33% unmalted wheat. The use of at least 30% 

unmalted wheat is regulated by law (Belgisch Ministerie van Economische Zaken, 

1993). Traditionally, the lambic wort production starts with a turbid mash method 

which is a combination of the English infusion and decoction process (Figure 1.2.1). 

Hot water is added during the English infusion process to increase the temperature 
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of the mash. During decoction, the brewer boils a part of the mash separately to 

rupture the starch granules and subsequently reintroduces it into the mash tun to 

increase the total mash temperature, ensuring the rests at the enzymes’ optimal 

temperatures (Briggs et al., 2004). During turbid mashing, the brewer does not 

reintroduce the separately boiled wort (called slime) into the mash tun, so that not 

all of the wort passes through all temperature rests (Figure 1.2.1). The use of 

unmalted wheat and the turbid mashing step with separate slime cooking results in 

a wort that is rich in malto-oligosaccharides or dextrins. These dextrins are non-

fermentable by conventional Saccharomyces brewing yeasts (Shanta Kumara & 

Verachtert, 1991), but they can be fermented by Dekkera (the asexual form of this 

yeast is named Brettanomyces) yeasts that are also present during the maturation of 

red(brown) acidic ales of South-West-Flanders (Martens et al., 1997). The wort is 

boiled for 3 h, which is a long period compared to other beer types, and a high 

amount of aged hops is added to enhance the microbiological stability of the beer 

without resulting in a bitter hop flavor (Verachtert & Derdelinckx, 2005; Vriesekoop 

et al., 2012). After wort cooking, the wort is cooled in an open vessel, called the 

cooling tun or coolship, which is mostly located in the attic of the brewery (Figure 

1.2.1). After overnight cooling, the wort is inoculated by the microbiota of the 

environment. As lambic beers were originally only produced in the Senne river 

valley (southwest of Brussels) and in the southeast of Brussels, it was believed that 

the responsible microbiota were present in the air of this region (Verachtert & 

Iserentant, 1995). To which extent this claim is genuine is not really known. 
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Figure 1.2.1 Example of a brewing scheme in a traditional lambic beer brewery, making 
use of turbid mashing and two boiling kettles. The typical lambic beer fermentation 
process characteristics, next to the unusual mashing scheme, are indicated in red font. 

Malt – 850 kg

Wheat – 450 kg

Mash is held at 48 C for 10 min

Add 800-900 l water at 62 C 

(15 – 20 min)

Mash at 56 C

Add water at 100 C 

(6 min)

Mash at 65 C

300 l of mash to kettle 2 (5 

min) –temperature < 100 CAdd water at 100 C

(10 min)

Mash is held at 72 C for 20 min

1200 l of mash to kettle 2 (35 

min) –temperature <100 CAdd water at 100 C

(10 min)

Mash is held at 75 C for 20 min

1500 l of wort to kettle 1

Start heating for wort boil
Transfer contents of kettle 2 

( 100 C) back to mash tun 

and add water at 70 C

Wort run off Wort recirculation

Sparge water at 85 C

Kettle 1 (6800 l)

Boil to 75% volume

Kettle 2 (2750 l)

Boil to 75% volume

Add 24 kg aged hops

Transfer to cooling tun for 

overnight cooling

No starter culture

Spontaneous inoculation

Transfer cooled wort to wooden

casks for fermentation



Chapter 1|Beer and spontaneous fermentations 

12|Part II Literature overview 

 

The lambic beer fermentation process has been reported to consist of four phases 

(Figure 1.2.2) (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). The 

fermentation starts with an enterobacterial phase, which is initiated by bacteria of 

the Enterobacteriaceae family that are introduced in the wort during the overnight 

cooling in the cooling tun (Martens et al., 1991; Van Oevelen et al., 1977). This 

enterobacterial phase is dominated by several species and ends after about one 

month (Martens et al., 1991). The taxonomy of several of these species has been 

modified since their description in previous studies of the lambic beer fermentation 

process. Below, the up-to-date species names are reported but the corresponding 

names that were used in the original papers are shown between square brackets. 

The dominant Enterobacteriaceae include Klebsiella pneumoniae [Klebsiella 

aerogenes] (Brisse et al., 2006), Enterobacter cloacae, Enterobacter aerogenes, 

Escherichia coli, Citrobacter freundii, Shigella sonnei and Hafnia alvei (Martens et al., 

1991). The number of Enterobacteriaceae cells present in brewery air is however 

low, so it has been hypothesized that wort inoculation during cooling is not 

homogeneous and bacteria are probably adsorbed to particles present in the air 

(Martens et al., 1991). The disappearance of the Enterobacteriaceae after about one 

month of fermentation is explained by the depletion of glucose, the increase in 

ethanol concentration and the decreased pH of the wort (Martens et al., 1991). 

Oxidative yeasts, such as Hanseniaspora uvarum, are the main yeast species present 

during the enterobacterial phase of the lambic beer fermentation process (Van 

Oevelen et al., 1977). Hanseniaspora uvarum has a low fermentative capacity and is 

commonly found during the spontaneous fermentation of wines and ciders where its 

contribution to flavor complexity is increasingly appreciated (Bezerra-Bussoli et al., 

2013). 
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Figure 1.2.2 The lambic beer fermentation phases as described by Verachtert and 
Iserentant (1995). The figure was adapted from De Keersmaecker (1996). 

 

The second phase of the lambic beer fermentation process is referred to as the main 

or ethanol fermentation phase. Saccharomyces spp. dominate the fermentation 

process from month 1 until month 4 (Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995). Saccharomyces cerevisiae and S. bayanus/pastorianus are 

identified as the main actors during this stage (Van Oevelen et al., 1977; Verachtert 

& Iserentant, 1995). After the main fermentation phase, oxidative yeasts, i.e., 

Cryptococcus spp., Candida spp., Pichia spp. and Torulopsis spp. form a pellicle at the 

top of the liquid and serve as an oxygen barrier (Van Oevelen et al., 1977; Verachtert 

& Iserentant, 1995). 

After the depletion of the carbon sources that can be fermented by Saccharomyces 

spp. (simple sugars up to maltotriose), the fermentation enters a next phase referred 

to as the acidification phase. During this phase, mainly lactic acid bacteria (LAB) 

(Pediococcus damnosus [Pediococcus cerevisiae] and Lactobacillus brevis) produce 
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large amounts of lactic acid, which is a typical metabolite and flavor of lambic beers 

(Van Oevelen et al., 1976). 

After ten months, the bacterial counts decrease and a new phase in the lambic beer 

fermentation process is initiated by the increase of Dekkera spp. In this context, 

Dekkera bruxellensis is worth mentioning, as its name refers to the environment of 

Brussels where lambic beer production originates from. During this final phase, 

which is called the maturation phase, several specific metabolites and flavor 

compounds are produced by a synergistic action of LAB and Dekkera yeasts (Shanta 

Kumara & Verachtert, 1991; Van Oevelen et al., 1976, 1977; Verachtert & Iserentant, 

1995). Such components include the esters ethyl acetate and ethyl lactate, but also 

the long-chain fatty acids and their esters such as ethyl caprylate and ethyl caprate 

(Spaepen et al., 1978). Only minimal concentrations of ethyl caprate are present in 

most other beers and this can thus be considered as a typical aroma component of 

lambic beers (Spaepen et al., 1978). However, a beer produced by the mixed 

fermentation of a LAB-harboring pitching yeast with a secondary cask fermentation 

(see Chapter 1.3.1) contains comparable concentrations of these long-chain fatty 

acids and their esters (Spaepen et al., 1979). 

Dekkera spp. in combination with LAB degrade the residual dextrins that are not 

fermented by Saccharomyces spp. (Shanta Kumara & Verachtert, 1991). Lambic 

beers reach a high attenuation during the maturation phase, resulting in a residual 

density that may be below 1°P (Shanta Kumara & Verachtert, 1991; Verachtert & 

Iserentant, 1995). Super-attenuation or overattenuation was already described by 

Andrews and Gilliland (1952). In the latter paper, the authors pointed out that a 

primary attenuation limit, typical for an axenic S. cerevisiae culture, and a secondary 

attenuation limit, typical for an axenic D. bruxellensis culture, can still be overcome 

by the use of a mixed culture of yeasts and bacteria (Andrews & Gilliland, 1952). 

Hence, there is a synergistic effect of the yeast and bacterial cultures during the 

degradation of dextrins and starch (Andrews & Gilliland, 1952). A similar finding 

was made by Shanta Kumara and Verachtert (1991), who demonstrated that 

Dekkera is the main contributor to the super-attenuation of lambic beers, but its 

effect is more pronounced in a mixed culture with Pediococcus (Shanta Kumara & 

Verachtert, 1991). Dekkera produces α-glucosidase, an enzyme capable of dextrin 
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degradation (Shanta Kumara & Verachtert, 1991). This α-glucosidase shows 

intracellular as well as extracellular activities and acts by removing a single glucose 

molecule from the dextrin polymer (De Cort et al., 1994; Shanta Kumara et al., 1993). 

The enzyme is fast acting, as under optimal conditions malto-oligosaccharides 

shorter than maltotetraose are not found in the presence of the enzyme (Shanta 

Kumara et al., 1993). The low pH of lambic beers, however, may explain the slow 

process of overattenuation in situ in lambic beers (Shanta Kumara et al., 1993). 

Besides lambic beers, lambic brewers produce gueuze and fruit lambic beers, while 

gueuze blenders (‘geuzestekers’ in Dutch) buy lambic beers from lambic beer 

brewers to produce their own beers. Gueuze beers are produced by the 

refermentation of a mixture of young lambic beer that contains a lot of dextrins and 

old lambic beer that contains dextrin-hydrolyzing microorganisms (Verachtert & 

Iserentant, 1995). The pellicle yeasts survive in the initial stages of the 

refermentation process, although they do not multiply (Verachtert & Iserentant, 

1995). Their presence can be explained by the breaking of the pellicle during the 

emptying of the casks. 

1.2.2 American coolship ales 

Acidic beers are currently attracting interest worldwide, especially in the USA 

(Bokulich et al., 2012). In the American craft brewing industry, which is the 

collective name for small- to mid-scale breweries, the production of lambic beers is 

mimicked and the resulting beers are called American coolship ales (ACA) (Bokulich 

et al., 2012). Breweries adopt the open cooling vessels and fermentations are 

performed in wooden casks or stainless steel fermentation tanks (Bokulich et al., 

2012). Recently, the microbiota of an ACA fermentation process has been studied 

using primarily culture-independent techniques (Bokulich et al., 2012). Culture-

dependent techniques were limited to the use of two aerobically incubated bacterial 

isolation media, the collection of two bacterial isolates per colony morphotype and 

their identification using 16S rRNA gene sequence analysis (Bokulich et al., 2012). 

The latter technique is not sufficiently discriminatory for accurate species level 

identification (Cleenwerck et al., 2010; De Bruyne et al., 2007, 2008; Mollet et al., 

1997; Naser et al., 2007). The community diversity of multiple barrels of multiple 
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fermentation batches was studied through bar-coded 16S rRNA gene amplicon 

sequencing (BAS) and terminal restriction fragment length polymorphism (T-RFLP), 

a technique with a sensitivity similar to that of denaturing gradient gel 

electrophoresis (DGGE) but with a higher automation capacity (Bokulich & Mills, 

2012). Cell numbers were studied using quantitative polymerase chain reaction 

(PCR) assays (Bokulich et al., 2012).  

Bokulich et al. (2012) have reported fermentation phases in the production of ACA 

similar to those of lambic beer fermentation processes. Enterobacteriaceae and some 

oxidative yeasts dominate the first phase of fermentation, but S. cerevisiae is from 

the start of the fermentation the most dominant yeast (Bokulich et al., 2012). 

Members of the Enterobacteriaceae family are dominant up to 1 month, but some 

species can be isolated up to 12 weeks in the fermentation process (Bokulich et al., 

2012). ACA are seasonal products of these breweries and it is likely that S. cerevisiae 

is enriched in the brewery environment by its use in other types of beers produced 

in these breweries, probably explaining their early dominance during ACA 

fermentation (Bokulich et al., 2012). From week 4 onwards, LAB are the most 

dominant bacteria; Lb. brevis is the only bacterial species isolated during the whole 

fermentation process, but Pediococcus is the most dominant LAB from week 4 

onwards based on T-RFLP and BAS analyses (Bokulich et al., 2012). Dekkera is 

detected from week 11 onwards in minor numbers, but represents a dominant yeast 

after 1 year. Minor numbers of acetic acid bacteria (AAB) are found during the whole 

fermentation process (Bokulich et al., 2012). Interestingly, fermentation profiles are 

very similar between batches and between barrels, even when barrels have a 

different origin, are new or are reused (Bokulich et al., 2012). 

1.3 Other mixed fermentation beers 

1.3.1 Acidic ales of South-West and -East-Flanders 

West of the Scheldt, non-spontaneous mixed acid beer fermentation was originally 

applied for beer production based on “Gruyt” (basically herbs) in the absence of 

hops. Non-spontaneous mixed fermentation is used in two types of Belgian acidic 

ales, namely the red acidic ales of South-West-Flanders (Roeselare) and the 

redbrown acidic ales that are produced in South-West- and South-East-Flanders. 
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The red acidic ales of South-West-Flanders were traditionally produced using an in-

house starter culture that contains yeasts and LAB by the reuse of the starter in 

every fermentation batch (Martens et al., 1997). The number of bacteria is kept low 

by acid (mainly phosphoric acid) washing of the yeast suspension (Martens et al., 

1997). These ales have a vinous acidic character and their production starts with 

mashing of malted barley and cooked unmalted maize (Martens et al., 1997). The 

main ethanol fermentation phase proceeds for about seven days and is followed by a 

secondary lactic acid fermentation phase that proceeds for another four to five 

weeks (Martens et al., 1997). Finally a long maturation phase of 20 to 24 months 

occurs in large oak wooden casks and P. damnosus and Pediococcus parvulus, 

together with Dekkera spp. and AAB (due to natural micro-oxygenation of the wood) 

are an active part of the microbiota during this phase (Martens et al., 1997). 

Remarkably, this ‘tandem’ fermentation process (the main fermentation followed by 

cask maturation) is imported in Belgium around 1860 from Northern England, 

where it was used for the production of old English Porter beer (Claussen, 1904; 

Martens et al., 1997). Dekkera spp. were present in old English Porter beer until the 

production process was altered and stainless steel fermentation vessels were used 

instead of wooden casks, indicating a need of these yeast species to be in contact 

with the wood (Martens et al., 1997). The production of redbrown acidic ales is very 

similar, with the fermentation being initiated by repitching of LAB-harboring yeast 

starter cultures and the use of open fermentation vessels from which the yeast is 

harvested at the end of the fermentation, followed by maturation in oak vessels 

(Martens, 1996; Martens et al., 1997). Redbrown acidic ales differ from old brown 

ales in that the latter beers are not oak-aged, but they are also produced in South-

East-Flanders. 

1.3.2 Berliner Weisse 

Berliner Weisse is a trademarked beer, only allowed to be brewed in Berlin (Burberg 

& Zarnkow, 2009). The mash is made with a 2:1 to 3:1 ratio of wheat malt and barley 

malt, has a low initial density of around 7 to 9°P and the level of carbonation in the 

finished product is high (Burberg & Zarnkow, 2009; Verachtert & Derdelinckx, 

2005). Traditionally, the wort is not boiled, but rather cooled directly after lautering, 

with the hops being added during the mashing, although in modern Berliner Weisse 
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production a heating step is incorporated (Burberg & Zarnkow, 2009; Verachtert & 

Derdelinckx, 2005). The fermentation is traditionally carried out in an open 

fermentor by the reuse of a yeast culture that harbors LAB and generally has a 4:1 to 

6:1 yeast:LAB ratio (Burberg & Zarnkow, 2009). The secondary fermentation is 

carried out in bottles by the addition of Kräusen (a foam that is formed on top of the 

fermenting beer) to the green beer in the bottles, after which the bottles are stored 

for a duration of three weeks to three years (Burberg & Zarnkow, 2009). The 

resulting beer is 95% attenuated and has a pH of 3.0 (Burberg & Zarnkow, 2009). 

More recently, these beers are also produced by dividing the wort into two parts, 

after which one half is fermented with a homofermentative Lactobacillus and the 

other half with an ale yeast (Verachtert & Derdelinckx, 2005). 

1.3.3 Sorghum beers 

On the African continent, tropical cereals such as maize and sorghum are used for 

the production of beers, since barley (a cool-season, temperate cereal) cultivation is 

not viable (Taylor, 2003). Moreover, sorghum is the only viable food grain in regions 

with semi-arid and sub-tropical climatic conditions (Taylor, 2003). Sorghum beers 

are widely produced in sub-Saharan Africa and are well-known under their local 

names, such as burukutu (Nigeria), tchapalo (Ivory Coast), dolo (Burkina Faso), pito 

(Ghana), munkoyo (Zambia) and bili bili (Chad) (Abegaz, 2007; Faparusi et al., 1973; 

Lyumugabe et al., 2010, 2013; Marcellin et al., 2009; N'Guessan et al., 2011; 

Nanadoum & Pourquie, 2009; Sawadogo-Lingani et al., 2007; Schoustra et al., 2013; 

Taylor, 2003; van der Aa Kühle et al., 2001; Zulu et al., 1997). Sorghum beers are 

traditionally opaque, but some commercial clear versions exist as well (Hibbett & 

Taylor, 2013; Nanadoum & Pourquie, 2009). These beers are mostly produced by 

the women of agropastoral families (which perform agriculture by growing crops 

and keeping livestock) on a weekly basis and are often sold (Dancause et al., 2010). 

Production methods differ between countries and recipes are often household-

specific (Taylor, 2003). 

As an example, the production of bili bili starts with a malting of the sorghum grains; 

steeping, germination and drying of the grains takes about one week (Nanadoum & 

Pourquie, 2009). After the milling of the sorghum malt, the flour is steeped for at 
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least 2 h, after which the supernatant is removed from the residue (Nanadoum & 

Pourquie, 2009). The residue is cooked for an average of 2 h to ensure gelatinization 

of the starch (Nanadoum & Pourquie, 2009). The thick mash of the residue is mixed 

with the supernatant at a temperature of 65 to 70°C. Subsequently, this mixture is 

left to cool overnight in open air (Nanadoum & Pourquie, 2009). During overnight 

cooling, the wort acidifies by the activity of LAB, which are spontaneously inoculated 

from either the sorghum malt or from the surrounding air (Nanadoum & Pourquie, 

2009). Alternatively, in some sorghum beers, the LAB are introduced by 

backslopping (Taylor, 2003). In dolo and pito beer, Lactobacillus fermentum is 

reported as the predominant LAB (Sawadogo-Lingani et al., 2007), whereas in 

burukutu beer the predominant LAB are identified as Leuconostoc mesenteroides, 

Lactobacillus plantarum, Lb. brevis and Lactobacillus delbrueckii (Faparusi et al., 

1973). After boiling the acidified wort, either a dried yeast obtained from a previous 

fermentation or a part of the previous beer is added to start the fermentation, in 

which S. cerevisiae dominates (Nanadoum & Pourquie, 2009). This yeast species is 

dominant in all sorghum beer main fermentation phases, which take place overnight 

(Faparusi et al., 1973; N'Guessan et al., 2011; Nanadoum & Pourquie, 2009; van der 

Aa Kühle et al., 2001). The next morning, the beer is ready to be sold and has a shelf-

life of about 1 day (Nanadoum & Pourquie, 2009). In burukutu beer, also a high 

number of AAB is found, which are now all classified as Gluconobacter oxydans 

(Faparusi et al., 1973). 

1.3.4 Other cereal-based beverages 

Chica 

Chica is a traditional beverage produced in South America and was already 

produced by the Incas (Vallejo et al., 2013). The production starts by steeping and 

germination of maize grains to get a sort of maize malt (Vallejo et al., 2013). 

Alternatively, the maize is chewed to convert the starch into fermentable sugars by 

the action of the amylase in saliva (Gomes et al., 2009). Besides maize, also cassava 

and cane sugar can be used in the production of chica (Gomes et al., 2009). After 

cooking, the mixture is poured into clay pots, which are buried, and the liquid is left 

to ferment for one up to six days (Gomes et al., 2009; Vallejo et al., 2013). The end-
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product of the fermentation primarily contains S. cerevisiae yeasts (Vallejo et al., 

2013). It is unknown if bacteria are involved in the fermentation of chica. Since the 

clay fermentation pots are reused for every fermentation and no bacteria or yeasts 

are pitched to start the fermentation, the microbiota involved in the fermentation of 

chica probably penetrates into the clay surface; a new yeast species, Candida theae, 

was recently isolated from chica clay fermentation pots found in a tomb (Chang et 

al., 2012). 

Boza 

Boza is a fermented beverage that is produced in Turkey and other Balkan countries 

(Kabak & Dobson, 2011). Its production starts with the boiling of a mixed flour of 

millet, rice and wheat, and water (Kabak & Dobson, 2011). After filtering, the 

supernatant is inoculated with a part of a previous fermentation batch of boza, 

sourdough or yoghurt (Altay et al., 2013; Kabak & Dobson, 2011). The mixture 

ferments at 30°C for 24 h (Altay et al., 2013; Botes et al., 2007; Kabak & Dobson, 

2011). The microbiota present during the fermentation can vary significantly, 

depending on the inoculum and region of production. Generally, a variety of LAB is 

found during these fermentations, including Lactobacillus and Leuconostoc spp. 

(Altay et al., 2013; Botes et al., 2007; Kabak & Dobson, 2011). Several yeast species 

are found, but in contrast to other fermented cereal-based beverages, Saccharomyces 

spp. are not always found (Botes et al., 2007). Instead, Candida spp. and Pichia spp. 

can be the dominant yeasts in boza fermentation (Altay et al., 2013; Botes et al., 

2007; Kabak & Dobson, 2011). Opportunistic pathogenic yeasts have been isolated 

from Bulgarian boza, highlighting the need for starter cultures (Botes et al., 2007). 

The shelf-life of boza is about 15 days and it is acceptable for consumption until the 

pH drops below 3.5 (Altay et al., 2013). 

1.4 Other mixed fermentation beverages 

1.4.1 Natural cider 

Ciders are fermented beverages produced from apple juice. The apples are crushed 

in mills and the juice is extracted by batch mechanical presses (Morrissey et al., 

2004). For traditional fermentation, must is not inoculated with yeasts, but rather a 

spontaneous fermentation process occurs that is initiated by the indigenous yeasts 
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of the apples (primarily H. uvarum and D. bruxellensis) and the press house 

(primarily S. cerevisiae and D. bruxellensis) (Morrissey et al., 2004). Irish cider 

fermentation requires about 25 days in wooden casks and the fermentation process 

is divided into a fruit yeast fermentation phase (H. uvarum; up to 5 days), followed 

by a fermentation phase with S. cerevisiae from day 5 to 12 (Morrissey et al., 2004), 

and finally, a maturation phase that is dominated by D. bruxellensis from day 12 and 

is detectable up to 9 months (Morrissey et al., 2004). In parallel, a malolactic 

fermentation takes place (see below). Dependent on the apples used for must 

production, the main and malolactic fermentations together can proceed up to 105 

days in the case of French cider (Salih et al., 1988). In other cider fermentations, the 

main fermentation phase can be initially dominated by S. bayanus, after which S. 

cerevisiae becomes dominant at the final stage of the main fermentation phase 

(Suárez Valles et al., 2007). Dekkera anomala has been reported in bottled French 

cider (Coton et al., 2006), but Dekkera spp. are not always present in French cider 

fermentations (Laplace et al., 2001; Salih et al., 1988). 

The maturation of the ciders can be performed in stainless steel vats, since the use of 

wooden presses and fermentation casks sometimes results in uncontrolled 

fermentations and variations in quality (Morrissey et al., 2004). However, when 

using a new stainless steel pneumatic press and stainless steel fermentors, the 

fermentation is sometimes incomplete and with inconsistent flavor profiles, 

highlighting the importance of the indigenous yeasts from the manufacturer’s 

traditional press house (Morrissey et al., 2004). The pressing method of the apples 

influences the fermentation. Traditional pressing using a wooden press lasts for 

three days and allows Saccharomyces yeasts, present in low numbers on the apples, 

to enrich in the initial must (Suárez Valles et al., 2007). In contrast, pneumatically 

pressed apple juice (8 h) is initially rich in Hanseniaspora spp., after which 

Saccharomyces spp. become dominant (Suárez Valles et al., 2007). It should be 

mentioned, however, that the latter study only focused on the pace of pressing and 

did not take into account the material composition of the presses, nor the fact that 

the traditionally pressed apple juice was fermented in a wooden cask in contrast to 

the pneumatically pressed must that was fermented in a stainless steel fermentor 

(Suárez Valles et al., 2007). Indeed, wooden fermentation casks can introduce a 
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microbiota that has penetrated the wood during a previous fermentation (Swaffield 

& Scott, 1995). For instance, apple musts obtained by traditional and pneumatic 

pressing and fermented in wooden and stainless steel fermentors have been 

compared (del Campo et al., 2003). Traditional presses showed the most profound 

influence on the rate of fermentation and malolactic fermentation, irrespective of 

the type of fermentor used (del Campo et al., 2003). When the must was produced 

with a pneumatic press, the pace of the fermentation in the wooden cask was still 

higher compared to the fermentation in the stainless steel fermentor (del Campo et 

al., 2003). 

During the malolactic fermentation the tart L-malic acid, which occurs naturally in 

the apple must, is converted into the softer-tasting L-lactic acid (Fugelsang & 

Edwards, 2007). Acetobacter aceti, Lb. plantarum and to a lesser extent Oenococcus 

oeni are present during the malolactic fermentation of Irish ciders (Swaffield & Scott, 

1995). In contrast, in French cider, O. oeni is the only LAB found throughout the 

fermentation (Salih et al., 1988). Oenococcus oeni is currently also used as starter 

culture for the production of Brazilian ciders (Dierings et al., 2013). 

1.4.2 Natural wine fermentation 

Similar to natural cider fermentation, natural wine fermentation is not initiated by 

the addition of a yeast starter culture to the must. Instead, the fermentation is 

started by the indigenous yeasts present on the grapes or introduced by the 

equipment used in the vinery (Bezerra-Bussoli et al., 2013; Diaz et al., 2013; 

González-Arenzana et al., 2012a; Ocón et al., 2010b). Typically, fermentation 

proceeds about 9 days and should not last longer than 20 days (Diaz et al., 2013; 

Ocón et al., 2010b). As is the case with cider, non-Saccharomyces yeasts (mostly less 

ethanol-tolerant) dominate the first phase of the fermentation process and S. 

cerevisiae or S. bayanus become dominant towards the end of the fermentation 

process (Bezerra-Bussoli et al., 2013; Diaz et al., 2013; Ocón et al., 2010b; Wang & 

Liu, 2013). The non-Saccharomyces yeasts mostly belong to the genus 

Hanseniaspora, with H. uvarum as one of the most commonly present yeast species 

on the surface of grapes (Ocón et al., 2010a; Wang & Liu, 2013). Since this latter 

species has a high ethanol tolerance, it can also be detected at the end of the 
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alcoholic fermentation phase (Ocón et al., 2010b; Wang & Liu, 2013). The grape 

temperature at the time of pressing plays a key role in the success of the 

spontaneous fermentation of natural wines, since a higher temperature favors a 

rapid proliferation of S. cerevisiae (Diaz et al., 2013). 

As for natural cider fermentations, less attention has been drawn to the bacterial 

microbiota present during the fermentation of natural wines. Producers of 

spontaneously fermented wines increasingly realize the importance of a well-

performed malolactic fermentation on the wine quality and therefore natural 

malolactic fermentations are studied to obtain starter cultures (González-Arenzana 

et al., 2012a, 2012b). Oenococcus oeni is the major bacterial species present during 

all phases and the only species at the final phase of natural malolactic fermentation 

in Spanish Tempranillo wines (González-Arenzana et al., 2012a, 2012b). This species 

is already detected during the alcoholic fermentation phase, although also other LAB 

are initially present, including primarily Lb. plantarum, Lactobacillus mali and Leuc. 

mesenteroides (González-Arenzana et al., 2012a, 2012b, 2013a, 2013b). Several O. 

oeni strains can be present during the malolactic fermentation, but in most cases 

only one strain is dominant (González-Arenzana et al., 2013a, 2013b). The wine 

temperature at the end of the alcoholic fermentation determines the length of the 

subsequent malolactic fermentation, which ranges from 11 to 239 days (González-

Arenzana et al., 2012a, 2012b, 2013a, 2013b). 
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Chapter 2. Characteristics of lambic beer brewing 

and the microbiota involved 

2.1 Use of old hops and wooden casks during lambic beer 

brewing 

Lambic beer brewing has some unique characteristics compared to other beers. 

These include the use of malted barley and unmalted wheat, the unusual mashing 

scheme, the prolonged wort boiling, the overnight cooling of the wort in the cooling 

tun and its spontaneous inoculation, and the use of old hops. Furthermore, these 

beers are traditionally left to ferment and mature in wooden casks that were used 

for wine or cognac production previously. 

Hops are widely used in virtually all beers; it enhances the microbiological stability 

and gives an appreciated bitterness to the beer palate (Briggs et al., 2004). Hops can 

also generate fruity flavors through the presence of hop oils (Bamforth, 2000). Hop 

resins, subdivided into α-acids (e.g., humulones) and β-acids (e.g., lupulones) are the 

main hop compounds with antimicrobial activities (Sakamoto & Konings, 2003). 

These compounds also enhance the foam stability of beer (Bamforth, 2000). During 

boiling, the α-acids isomerize to iso-α-acids which are more bitter and more easily 

dissolved in beer than the corresponding non-isomerized forms (Sakamoto & 

Konings, 2003). In contrast, β-acids are poorly soluble in beer and have no 

important role in the bittering properties of hops under normal brewing conditions 

(Sakamoto & Konings, 2003). 

In lambic beer brewing, the bitter hop flavor could interfere with the acidic tart 

flavor. For that reason, traditional lambic beer brewers use only aged hops. These 

hops lost most of their bittering capacities due to the oxidation of the humulones to 

humulinic acids but keep their antibacterial properties (Mikyška & Krofta, 2012). 

However, also fresh hops can be used for lambic beer brewing (Verachtert & 

Derdelinckx, 2005). 

Next to the use of old hops, the use of old wine barrels is typical for the production of 

traditional lambic beers. Wine is stored in casks to mature, during which time 
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polyphenols and tannins extracted from the wood give the wine an appreciated 

flavor and high quality (De Rosso et al., 2008; Garde-Cerdán & Ancín-Azpilicueta, 

2006; Guzzon et al., 2011). The flavor of the wood is mainly determined by lactones, 

volatile phenols and phenolic aldehydes (Sterckx et al., 2012). In addition, wines 

undergo a natural clarification and a micro-oxygenation, which improves the aging 

process (Garde-Cerdán & Ancín-Azpilicueta, 2006). Once a certain amount of 

compounds have been extracted from the wood, these barrels are of no further use 

for the winemakers and are even considered a hazard, since they are considered to 

be a major factor in the conservation of Dekkera infections in wineries (Licker et al., 

1998). For the production of lambic beer (and cider), these wood compounds are of 

no interest (del Campo et al., 2003), and the used barrels can be purchased at a 

reduced price compared to new barrels. Additionally, some of the wine flavor 

compounds, which penetrated the wood, can diffuse into the beer. 

The beer fermentation process is less controlled when wooden casks are used 

instead of stainless steel fermentors, since wooden casks are very difficult to clean 

(Barata et al., 2013; Guzzon et al., 2011; Puig et al., 2011; Suárez et al., 2007). 

Therefore, wooden casks are only used for the production of mixed fermentation 

beers, where the brewer acknowledges and exploits the microbiota harbored in the 

cask wood. Indeed, microorganisms are capable of penetrating wooden surfaces up 

to 1.2 cm within a period of 2 weeks (Swaffield & Scott, 1995; Swaffield et al., 1997). 

Likewise, cells of D. bruxellensis have been detected at depths up to 8 mm into the 

wood, which corresponds with the maximum level of wine penetration (Barata et al., 

2013; Wedral et al., 2010). Because of the depth of microorganism penetration, cask 

cleaning does not remove all microorganisms present (Barata et al., 2013) and 

biofilms can be formed within the wood that protects the microorganisms from 

cleaning procedures and other stresses (Guzzon et al., 2011). Additionally, a natural 

micro-oxygenation occurs in wooden casks and it is estimated that, depending on its 

porosity, 10 to 45 mg O2/L per year can diffuse through the wood (De Rosso et al., 

2008). This allows the survival and growth of aerobic microorganisms for a 

prolonged time (Hidalgo et al., 2010; Torija et al., 2009). 

Because of the increasing demand for spontaneously fermented beers and to 

decrease the area needed for the storage of the casks, the applicability of stainless 
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steel fermentors in the production of lambic beers has been considered (Verachtert 

& Derdelinckx, 2005). Stainless steel fermentors would not only decrease the 

production area needed but would also facilitate a better microbiological control 

over the process, since stainless steel fermentors can be cleaned thoroughly, which 

would avoid aberrant fermentations (del Campo et al., 2003; Licker et al., 1998; 

Oelofse et al., 2008; Verachtert & Derdelinckx, 2005). Verachtert and Derdelinckx 

(2005) reported that lambic beer fermentations in stainless steel tanks are very 

similar to those in wooden casks, although the amount of acetic acid and its ester 

ethyl acetate are higher in the stainless steel fermentors. 

2.2 Enterobacteriaceae, Saccharomyces bayanus/pastorianus 

and Saccharomyces cerevisiae, microbiota dominating the 

early steps of the lambic beer fermentation 

The Enterobacteriaceae family belongs to the class of Gammaproteobacteria. Many 

species enclosed in the genera of this family are well known plant and human 

pathogens. There are however several unresolved taxonomical problems, mainly 

due to the lack of straightforward differential biochemical tests and the limited 

taxonomic resolution of the 16S rRNA gene sequence (Dauga, 2002). These 

outstanding problems are increasingly solved through the use of multi-locus 

sequence analysis of housekeeping genes and polyphasic taxonomy studies (Brady 

et al., 2013). Members of the Enterobacteriaceae family are fast-growing, are mostly 

linked to poor hygienic practices in food microbiology and may cause food poisoning 

(Baylis et al., 2011). Yet, members of the Enterobacteriaceae family have been found 

in the initial phases of a multitude of spontaneously fermented food products and 

beverages, such as lambic beers, American coolship ales, cocoa beans, and cheese 

(Bokulich et al., 2012; Chaves-López et al., 2006; Papalexandratou et al., 2011; Van 

Oevelen et al., 1977; Verachtert & Iserentant, 1995). 

Saccharomyces bayanus/pastorianus and S. cerevisiae are the two main species found 

during the main alcoholic fermentation phase of lambic beer (Van Oevelen et al., 

1977; Verachtert & Iserentant, 1995). Saccharomyces bayanus/pastorianus yeasts 

are cryotolerant and cannot be separated on the basis of 26S rRNA gene sequence 

analysis (Josepa et al., 2000). Technically, S. bayanus and S. pastorianus cannot be 
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regarded as distinct species in the ecological and evolutionary sense, since they are 

hybrids and are thus the product of the brewing environment and do not occur in 

nature (Libkind et al., 2011). Saccharomyces pastorianus is the product of 

domestication and hybridization of S. cerevisiae (which is thermotolerant) and 

Saccharomyces eubayanus (which is cryotolerant). The latter was isolated from 

Nothofagus trees in Patagonia (Libkind et al., 2011). In addition, it has been 

demonstrated that S. bayanus is a complex hybrid of S. eubayanus, S. pastorianus and 

S. uvarum (which is also cryotolerant) (Libkind et al., 2011). Hybrids are commonly 

used in fermentation processes and combine the properties of their ancestor species 

(Peris et al., 2012). Similarly, the yeast strains used in the production of several 

Belgian trappist beers are hybrids of the species S. cerevisiae and Saccharomyces 

kudriavzevii (González et al., 2008). Since these strains evolved separately after the 

hybridization events, these hybrids can differ significantly from each other and from 

their ancestral species in their biochemical and physiological properties (González et 

al., 2008). 

2.3 Lactic acid bacteria, the microbiota responsible for the 

acidification of lambic beer 

[Pediococcus cerevisiae] and Lactobacillus spp. are reported in lambic beer and other 

mixed fermentation beers (Bokulich et al., 2012; Martens et al., 1997; Van Oevelen et 

al., 1977). The name [P. cerevisiae] was used in the past for at least two species that 

are known today, i.e., P. damnosus and Pediococcus pentosaceus (Garvie, 1974). 

Pediococcus damnosus is present in American coolship ale fermentations and lambic 

beer isolates previously identified as [P. cerevisiae] also belong to this species 

(Bokulich et al., 2012; Martens et al., 1997; Van Oevelen et al., 1977). It is therefore 

the dominant LAB species in lambic beer fermentation. Pediococcus damnosus is a 

homofermentative LAB species, which implies that it only produces lactic acid 

during fermentation (Verachtert & Iserentant, 1995). This is in contrast to 

Lactobacillus spp., isolated from several mixed fermentation beers, which can be 

heterofermentative and not only produce lactic acid but also other acids, CO2 and 

ethanol (Martens et al., 1997). 
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LAB are isolated from a wide range of fermented foods and their acidification effect 

mostly has a beneficial effect on the fermentation and shelf-life of the fermented 

end-products by preventing the prevalence of pathogens and food spoilage bacteria 

(Ross et al., 2002). During ale and lager beer fermentations, however, these bacteria 

are considered detrimental, because they can cause off-flavors by the production of 

metabolites such as lactic acid (Suzuki, 2011). Besides off-flavors, LAB cause 

turbidity and alter the viscosity of beer, rendering it unsellable because of decreased 

consumer appreciation (Menz et al., 2010). Several beer spoilage LAB are resistant 

to the antimicrobial compounds of hops, making them a real hazard in beer 

production (Suzuki, 2011). Nevertheless, these bacteria are indispensable during the 

mixed fermentation of beers, such as lambic beers and redbrown acidic beers, as 

they provide the tart flavor, which is a key characteristic of such beers (Van Oevelen 

et al., 1976; Verachtert & Iserentant, 1995). 

2.4 Dekkera, the main yeast responsible for the maturation of 

lambic beer 

Of all microorganisms present in the lambic beer fermentation, Dekkera yeasts, 

which appear during the maturation phase of the brewing process, are probably the 

most intriguing ones. Dekkera cells succeed in growing when other microorganisms 

are declining under the harsh conditions of the low nutrient and acidic wort 

environment (Blomqvist et al., 2010; Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995) and are found in low numbers already during the first three 

months of the lambic beer fermentation process (Van Nedervelde & Debourg, 1995). 

Dekkera spp. are responsible for the super-attenuation of the beer, together with P. 

damnosus (Shanta Kumara & Verachtert, 1991) and may originate from the old wine 

barrels (Licker et al., 1998). Additionally, they are indispensable for the typical 

lambic beer flavor and produce several metabolites that are characteristic for lambic 

beers in high amounts (Shanta Kumara & Verachtert, 1991; Spaepen & Verachtert, 

1982; Spaepen et al., 1978, 1979; Van Oevelen et al., 1976; Verachtert & Iserentant, 

1995). 
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2.4.1 Taxonomy and occurrence of Dekkera 

Dekkera is the sexual (teleomorphic) form of the asexual (anamorphic) genus 

Brettanomyces. Although both names are widely used in the literature, lambic beer 

brewers know the genus best by its asexual name Brettanomyces. In the early 1900s, 

most European breweries adopted the use of single-strain starter cultures for 

brewing as described by Hansen (Claussen, 1904). It was noted, however, that 

especially English breweries did not adopt the use of single yeast strains for the 

production of their beers (Claussen, 1904). These beers were comparable to modern 

stout beers (Martens et al., 1997). The use of a single Saccharomyces culture for the 

primary fermentation did not enable the development of the so-called English aroma 

of beer (Claussen, 1904). This aroma was typically developed during a spontaneous 

secondary fermentation during beer maturation in a wooden cask in traditionally 

produced beer (Claussen, 1904). Claussen hypothesized and proved that the 

presence of another yeast in the production of English stock beers was responsible 

for this secondary fermentation (Claussen, 1904). The yeast was subsequently 

isolated and named “Brettanomyces”, highlighting its origin (Great Britain) and 

referring to the so-called English aroma the beer obtains in its presence (Oelofse et 

al., 2008). Claussen however did not propose a formal taxonomic name and it was 

only during a study of lambic beer in 1921 that Kufferath and Van Laer (Licker et al., 

1998) identified yeasts with the same characteristics as those described by Claussen 

(1904). They named these yeasts Brettanomyces bruxellensis and [Brettanomyces 

lambicus], and provided a formal description of the genus Brettanomyces (Licker et 

al., 1998). The genus Dekkera was proposed and described by Van der Walt (1964), 

when ascospore formation in B. bruxellensis and [Brettanomyces intermedius] was 

found. Both genera contain a lot of synonymous species (Smith et al., 1990). The 

asexual genus name Brettanomyces has been used in early reports of the lambic beer 

microbiota (Shanta Kumara & Verachtert, 1991; Shanta Kumara et al., 1993; 

Spaepen & Verachtert, 1982; Van Oevelen et al., 1977; Verachtert & Iserentant, 

1995). 

This dual nomenclatural system in mycology has been the subject of many debates, 

but recently, the “One Fungus = One Name” consortium made progress in the 

unification of the nomenclature of yeasts (Taylor, 2011). Changes in the 
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International Code of Nomenclature for algae, fungi, and plants to enforce this 

unification were made under influence of this consortium (McNeill et al., 2012; 

Taylor, 2011) and according to Art. 57 of the International Code of Nomenclature for 

algae, fungi, and plants (Melbourne Code), the sexual name Dekkera should be used 

until it is rejected by the General Committee (McNeill et al., 2012; Norvell, 2011). 

Therefore, the name Dekkera will be used throughout the present study, whenever 

appropriate. The same rule will be applied to other yeast names, but the asexual 

name by which a particular yeast might be best known will be given with its first 

appearance in the text. 

Next to its reported occurrence in old Porter beers (Martens et al., 1997), Berliner 

Weisse (Verachtert & Derdelinckx, 2005) and lambic beers (Van Oevelen et al., 1977; 

Verachtert & Iserentant, 1995), Dekkera yeasts are also known as spoilage 

microorganisms in the wine and soft drinks industries (Oelofse et al., 2008; Smith & 

Grinsven, 1984) and in beer (Suzuki et al., 2008). Additionally, these yeasts occur in 

sourdough (Meroth et al., 2003), cheese and fermented milk, fruit flies and bees 

(Oelofse et al., 2008). 

2.4.2 Economical relevance of Dekkera 

Dekkera spp. are well known wine spoilage yeasts, especially of high quality wines 

that are fermented and aged ‘on lees’ in wooden barrels, where they mature on the 

deposits of Saccharomyces yeasts of the main alcoholic fermentation phase (Renouf 

et al., 2008). Dekkera yeasts cause phenolic and mousy off-flavors and odors, which 

are described as resembling horse sweat, clove, burnt plastic or barnyard-like, 

making the wine unsuitable for the market (Conterno et al., 2006; Grbin & Henschke, 

2000; Licker et al., 1998). These off-flavors are primarily caused by the conversion 

of p-coumaric acid and ferulic acid to 4-ethylphenol and 4-ethylguaiacol, 

respectively (Licker et al., 1998; Puig et al., 2011). Dekkera bruxellensis and D. 

anomala are the most potent producers of these off-flavors (Conterno et al., 2013). 

An initial load of six cells per mL of D. bruxellensis can lead to 1 mg/L 4-ethylphenol 

in a 4.5-month cask maturation (Barata et al., 2013). It is therefore of utmost 

importance that this yeast is detected as soon as possible in wine fermentations 

before these off-flavors are produced in too high amounts (Puig et al., 2011). Several 
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publications have dealt with the detection or isolation of these yeasts, including the 

use of selective and specific media (Couto et al., 2005; Rodrigues et al., 2001). PCR- 

or antibody-based detection techniques show high specificity and selectivity (Puig et 

al., 2011; Renouf et al., 2007) and are preferred over the agar-based culture media, 

because Dekkera spp. may survive under harsh conditions in a VBNC state 

(Agnolucci et al., 2010; Millet & Lonvaud-Funel, 2000). The problem of spoilage 

mostly exists in red wines, as these are preferentially aged in wooden barrels (Puig 

et al., 2011). A test of 86 commercial wines in Spain revealed that in 16 out of the 86 

bottled wines Dekkera spp. could be detected either through culture or via 

quantitative PCR (Puig et al., 2011). 

Some studies demonstrate the cooperage as main source of winery contamination 

with Dekkera spp. (Licker et al., 1998). New wooden barrels or materials have 

generally not been reported to be contaminated with Dekkera cells (Renouf, 2006; 

Renouf et al., 2007). For that reason, it has been stated that the presence of Dekkera 

spp. in the cooperage is merely a consequence of an initial Dekkera contamination 

from another source (Renouf et al., 2007). Some studies however report 

contaminations with Dekkera yeasts in new barrels, but this could be explained by 

the use of must infected with Dekkera cells or poor barrel management (Oelofse et 

al., 2008; Renouf et al., 2007). Dekkera spp. are present on grapes, more 

preferentially at the time of harvesting than on green and immature grapes (Renouf 

& Lonvaud-Funel, 2007) and therefore grapes are thought to be the main agent of 

Dekkera contaminations in wineries (Renouf et al., 2007). The detection of Dekkera 

contamination in concrete and steel wine fermentors that have not been in contact 

with the cooperage supports this hypothesis (Rodrigues et al., 2001). The cooperage, 

although not responsible for the initial contamination with Dekkera yeasts, is 

probably sustaining the infection, due to the difficult sanitation of wooden barrels 

and tools and the porosity of the wood, in which the yeasts might find a safe haven 

during cleaning (Suárez et al., 2007). Additionally, Dekkera spp. assimilate 

cellobiose, which is the basic building block of cellulose and hence of wooden barrels 

(Licker et al., 1998; Suárez et al., 2007). Due to their economical importance, the 

13.4 Mb genome of the wine spoilage species D. bruxellensis was recently sequenced 

and annotated (Woolfit et al., 2007) and revealed that it comprises 5600 genes 
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(Piskur et al., 2012), including recently duplicated genes encoding for alcohol 

dehydrogenases that are responsible for the production of alcohol from sugars and 

for the synthesis of higher alcohols and precursors for aromatic esters (Piskur et al., 

2012). Additionally, five genes for nitrate assimilation were annotated (Piskur et al., 

2012; Woolfit et al., 2007). 

2.4.3 Biochemical and physiological properties of Dekkera 

Dekkera yeasts exhibit the so-called “Custers effect”, also called negative “Pasteur 

effect”, which refers to the absence of fermentation or to a minimal fermentation 

under anaerobic conditions (Licker et al., 1998). In the anaerobic metabolism of 

Dekkera, less glycerol is produced for the oxidation of NAD(P)H compared to 

Saccharomyces yeasts (Blomqvist et al., 2010; de Barros Pita et al., 2011). Dekkera 

yeasts grow slowly and are generally not competitive in industrial fermentations 

when Saccharomyces species are pitched as starter cultures (Abbott et al., 2005; 

Blomqvist et al., 2010). However, some fermentation conditions enable Dekkera 

species to outcompete the initially pitched Saccharomyces production strain (Bassi 

et al., 2013; Passoth et al., 2007). A consortium of D. bruxellensis and Lactobacillus 

vini is able to replace a Saccharomyces production strain in a bio-ethanol production 

process, without production decline (Passoth et al., 2007). Dekkera bruxellensis is 

better adapted to grow under conditions of continuous fermentation with substrate 

limitation and yeast recirculation (Passoth et al., 2007). Dekkera strains use 

substrates more efficiently and tolerate inhibitors compared to Saccharomyces 

strains in such industrial fermentations (Bassi et al., 2013). Additionally, Dekkera 

strains can use nitrate as an alternative electron acceptor, thus reoxidizing NAD(P)H 

by the reduction of nitrate to ammonium (de Barros Pita et al., 2011). A full nitrate 

assimilation gene cluster has been found in the genome of D. bruxellensis (de Barros 

Pita et al., 2011; Woolfit et al., 2007). 

Dekkera strains are resistant to a large variety of physiological stresses. They 

survive cycloheximide concentrations up to 100 ppm (Licker et al., 1998; Morneau et 

al., 2011) and resist high concentrations of SO2, which is generally applied in 

winemaking by the addition of potassium metabisulphite (K2S2O5) to inhibit growth 

of yeasts (Barata et al., 2008). The level of SO2 at a given K2S2O5 concentration is 
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dependent on several parameters, e.g., pH, ethanol concentration and temperature 

of the must or wine (Oelofse et al., 2008). The resistance towards SO2 causes a real 

threat to the wine industry, since Dekkera contaminations cannot be stopped by 

adding normal amounts of K2S2O5 (Barata et al., 2008). Levels of 0.5-0.8 mg/L SO2 

have been reported for the inhibition of Dekkera strains (Licker et al., 1998; Oelofse 

et al., 2008); the use of 1 mg/L SO2 has been suggested for successful inhibition of 

Dekkera strains (Barata et al., 2008). In addition, it is not feasible to reach sufficient 

SO2 levels everywhere in the barrels, especially near the bung hole (Licker et al., 

1998). Next to their resistance to exogenous chemical compounds such as 

cycloheximide and SO2, these yeasts also resist higher acetic acid and ethanol levels 

and changes in pH compared to Saccharomyces (Blomqvist et al., 2010; Puig et al., 

2011; Renouf et al., 2007). It is indeed known that Dekkera strains produce and 

assimilate ethanol and acetic acid. Therefore, these molecules are both products and 

substrates for these yeasts (Renouf et al., 2007). Further, its growth and activities 

are related to the carbohydrate and oxygen concentrations in the environment 

(Tiukova et al., 2013). 

The production of 4-ethylphenol (which is responsible for the so-called horse sweat 

smell) and 4-ethylguaiacol (the spicy, clove-like odor) from p-coumaric acid and 

ferulic acid, respectively, is catalyzed by the action of two enzymes (Suárez et al., 

2007). The first enzyme, hydroxycinnamate decarboxylase, converts 

hydroxycinnamic acids to their corresponding hydrostyrenes or vinylphenols, which 

in turn are converted to ethylphenols by vinylphenol reductase (Suárez et al., 2007). 

The ability to produce vinylphenols from hydroxycinnamic acids is widely 

distributed among yeasts and bacteria, but only a few yeasts, including D. 

bruxellensis, D. anomala, some strains of Pichia guilliermondii and some Candida 

species, can produce ethylphenols from vinylphenols (Dias et al., 2003; Guzzon et al., 

2011; Suárez et al., 2007). Ethylphenol is more harmful to the wine flavor compared 

to vinylphenols because of its lower sensory thresholds (Guzzon et al., 2011; Puig et 

al., 2011). However, its presence in certain beers, so-called “brett” beers, is desirable 

(Bokulich & Bamforth, 2013). 
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Chapter 3. The identification of bacteria and 

yeasts using MALDI-TOF MS 

3.1 Mass spectrometry 

3.1.1 History 

The principle of mass spectrometry or the separation of ionized particles based on 

their mass-to-charge (m/z) ratio was already described in 1897 by Thompson 

(Liyanage & Lay, 2006). Based on this principle, the first mass spectrometer was 

built by Aston in 1919 (Liyanage & Lay, 2006). Until the mid-1980s, mass 

spectrometry was mainly used in organic chemistry, since the applied ionization 

methods were highly energetic and only small molecules could be ionized without 

fragmentation (Liyanage & Lay, 2006). Macromolecular biomolecules instantly 

fragmented after ionization and could not be analyzed using mass spectrometry. The 

coupling of mass spectrometry to gas chromatography (GC) for the analysis of fatty 

acid methyl esters (FAME) was the first application of mass spectrometry for 

bacterial identification (Krásný et al., 2013). The advantage of mass spectrometry in 

this set-up is only minor, since the analysis of GC data is more straightforward 

compared to the analysis of mass spectra (Krásný et al., 2013). In addition, the fatty 

acid composition of bacterial cells is dependent on the culture conditions and has 

limited resolution in bacterial analysis (Fox, 2006; Krásný et al., 2013). 

3.1.2 Soft ionization techniques 

The analysis of intact proteins and other macromolecular biomolecules became 

feasible through the invention of the soft ionization techniques, electrospray 

ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), whose 

development marked a major advance in the proteomics era (Aebersold & Mann, 

2003). ESI is the most used ionization technique for the identification of proteins in 

complex protein mixtures. It enables in-line protein mass determination when 

directly coupled to a high-performance liquid chromatography (HPLC) device, which 

separates the proteins based on their hydrophobicity, charge or other 
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characteristics. Although widely used in proteomics, ESI is not suited for whole-cell 

analysis of bacteria, since the capillaries of the system would clog and, additionally, 

the deconvolution of the mass spectra is difficult (Fenselau & Demirev, 2001; Krásný 

et al., 2013). This latter issue would interfere with the analysis of peak pattern 

fingerprints. MALDI however proved to be widely applicable in microbiology. 

3.2 Matrix-assisted laser desorption/ionization time-of-flight 

mass spectrometry (MALDI-TOF MS) 

3.2.1 General overview 

MALDI is a soft ionization technique (Hillenkamp & Karas, 2007) and enables the 

ionization of large biomolecules such as proteins and carbohydrates through the use 

of an organic matrix substance that absorbs light energy at a specific wavelength; 

this energy is subsequently used for the desorption and ionization of an analyte 

(Figure 3.2.1) (Liyanage & Lay, 2006). All MALDI matrices contain at least one 

aromatic ring, the specific electron distribution of which allows the matrix to absorb 

light energy (Liyanage & Lay, 2006). The light energy elevates the electron energy to 

an excited state (Liyanage & Lay, 2006). The processes by which this leads to the 

ionization of the analyte is still a topic of discussion in the field of physics 

(Knochenmuss, 2010). Depending on the electrical potential present on the target 

plate, negative or positive ions are formed by proton loss or gain, respectively. These 

ions are accelerated into a field-free analyzer, after which they are recorded by the 

detector. MALDI is mostly combined with a time-of-flight (TOF) tube as mass 

analyzer, since both operate in a pulsed manner (Liyanage & Lay, 2006). In the TOF 

tube, the time needed to reach the detector is inversely proportional to the m/z ratio 

of the ions. The m/z ratio can be calculated by the use of a calibration curve. The TOF 

time measurement is initiated by a pulse of the laser light. 

Although MALDI-TOF MS was first described in 1985, it was not successfully applied 

for proteins before 1987. Tanaka et al. (1988) reported the ionization of the protein 

carboxypeptidase-A (34 kDa) by means of soft laser desorption and Karas and 

Hillenkamp (1988) subsequently reported MALDI-TOF MS of even larger proteins, 

up to 67 kDa. From then onwards, MALDI-TOF MS gained much attention in the field 

of proteomics and later also in bacteriology and bacterial taxonomy. The technique 
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is appreciated for its simplicity, mass accuracy, high resolution and sensitivity 

(Aebersold & Mann, 2003). The interpretation of the mass spectra produced is 

straightforward, since the ions are mostly single charged, in contrast to ESI spectra, 

which are mostly difficult to deconvolute because of the multiple charged ions 

(Fenselau & Demirev, 2001; Krásný et al., 2013). 

 

Figure 3.2.1 Schematic representation of the MALDI process. Figure from the National 
High Magnetic Field Laboratory of The Florida State University (with the permission 
from Mr. Michael W. Davidson). 
(http://www.magnet.fsu.edu/education/tutorials/tools/images/ionization-maldi.jpg) 
 

3.2.2 MALDI-TOF MS for bacterial identification 

The usefulness of MALDI-TOF MS for bacterial identification was first verified by 

Cain et al. (1994), who analyzed bacterial cell extracts (cited in Holland et al., 1996). 

The use of MALDI-TOF MS for the identification of bacteria based on intact cells was 

simultaneously described by Holland et al. (1996) and several other researchers 

(Claydon et al., 1996; Krishnamurthy et al., 1996) and is now commonly used in the 

field of medical microbiology (Croxatto et al., 2012). The speed and ease of sample 

handling and the superior identification capacity compared to traditional 

biochemical tests has been acknowledged as one of the major factors for the fast 

adoption of this technique in microbial identification (Croxatto et al., 2012). 

Additionally, this technique is cost-effective in a clinical laboratory setting (Bille et 

al., 2012; Cherkaoui et al., 2010; Neville et al., 2011; Tan et al., 2012). Mass spectra 

based on whole cells and whole-cell extracts typically contain peaks of ribosomal or 

http://www.magnet.fsu.edu/education/tutorials/tools/images/ionization-maldi.jpg
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nucleic acid-binding proteins (Barbuddhe et al., 2008; Croxatto et al., 2012; 

Dieckmann et al., 2008; Ryzhov & Fenselau, 2001; Suarez et al., 2013). 

The development of MALDI-TOF MS applications for bacterial identification has 

been driven by the research of its applicability in the identification of biological 

warfare agents and pathogenic bacteria (Jarman et al., 1999, 2000; Keys et al., 2004; 

Liu et al., 2007; Seng et al., 2009; Wahl et al., 2002). Obtaining a good reproducibility 

and the development of universal sample preparation protocols have been major 

hurdles to implement this methodology for routine identification of microorganisms 

(Keys et al., 2004; Liu et al., 2007; Vargha et al., 2006). The early reports and 

applications of MALDI-TOF MS for the identification of bacteria described a 

multitude of sample preparations (Hettick et al., 2004; Jackson et al., 2005; Liu et al., 

2007; Ruelle et al., 2004; Smole et al., 2002; Vargha et al., 2006; Williams et al., 

2003). Many of these sample preparation methods were considered ideal for the 

group of microorganisms tested, which was however mostly rather limited. The use 

of intact cells and cell extracts was thoroughly compared, including the preparation 

of cell extracts on-plate (McElvania TeKippe et al., 2013) or in a separate lysis step 

(Freiwald & Sauer, 2009). In addition, a range of different organic and inorganic 

solvents have been used, which were combined with a variety of sample deposition 

methods, matrices and organic solvents (Andres-Barrao et al., 2013; Dieckmann et 

al., 2005; Jackson et al., 2005; Kuda et al., 2014; Kuehl et al., 2011; Liu et al., 2007; 

Madonna et al., 2000; Ruelle et al., 2004; Williams et al., 2003). 

Cell extracts have been prepared by means of mechanical disruption, enzyme 

treatment and/or organic solvent-aided cell lysis (Drevinek et al., 2012; Giebel et al., 

2008; Liu et al., 2007; Ruelle et al., 2004; Salplachta et al., 2013; Smole et al., 2002; 

Vargha et al., 2006; Williams et al., 2003). The comparison of these cell extraction 

techniques is very difficult, since most studies focus only on a limited number of 

strains of only a few species and genera (Drevinek et al., 2012; Jackson et al., 2005; 

Liu et al., 2007; Ruelle et al., 2004; Williams et al., 2003), which resulted in a huge 

and obscure list of so-called “optimal” and “universal” sample preparation protocols. 

In these studies, Gram-positive and slime-forming bacteria are commonly regarded 

as the most challenging bacteria to yield a high-quality mass spectrum (Krásný et al., 

2013; Liu et al., 2007; Smole et al., 2002; Vargha et al., 2006). In addition to the 
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different solvents used for sample preparation and measurements, the number of 

cells used for sample preparation has a major impact on the quality of the mass 

spectra derived. In general, approximately 106 cells are required for MALDI-TOF MS 

analysis but cell numbers as low as 102 (Stackebrandt et al., 2005), 5*103 (Fenselau, 

2013) and even up to 107 (Furukawa et al., 2013) have been reported (Croxatto et 

al., 2012; Drancourt, 2010). Too few or too much bacterial cells can both yield poor 

mass spectra (Petersen et al., 2009; Williams et al., 2003). 

Currently, two sample preparation procedures are widely used, mainly because 

these are the default protocols in most commercial systems used (Freiwald & Sauer, 

2009). The first consists of an extraction of the proteins from a small amount of cells 

using formic acid and acetonitrile, preceded by an ethanol inactivation step (FA/ACN 

extraction) (Freiwald & Sauer, 2009). The second is even more straightforward and 

reduces handling time; a bacterial colony is simply smeared on the plate, after which 

it can additionally be lysed on the plate using formic acid (McElvania TeKippe et al., 

2013). Although the smear method is sometimes referenced as an intact cell method, 

it was reported that the cells are lysed by the matrix solvent (Fenselau & Demirev, 

2001; Pennanec et al., 2010). The latter sample preparation technique is mostly used 

as the default sample preparation for MALDI-TOF MS-based microorganism 

identification in medical microbiology because of its reduced sample preparation 

time. However, when this technique does not yield reliable identification scores, the 

residual colonies on the plate can be subjected to a more elaborate extraction 

procedure (Bessède et al., 2011; Bizzini et al., 2010; van Veen et al., 2010). 

Parameters other than the variation in sample preparation method may affect the 

reproducibility, including bacterial growth conditions and the MALDI-TOF MS 

instrument used. The effect of growth conditions has been studied to some degree 

but comprehensive studies are scarce. Some studies report a clear impact for species 

level identification purposes (Karger et al., 2013; Wunschel et al., 2005a), while 

others minimize this effect (De Bruyne et al., 2011; Mellmann et al., 2008; Pennanec 

et al., 2010; Sedo et al., 2013; Valentine et al., 2005; Wieme et al., 2014). In addition, 

not only different types of mass spectrometers but also the different parameter 

settings and operational procedures can produce quality differences between mass 

spectra (Drevinek et al., 2012; Saenz et al., 1999; Schumaker et al., 2012; Toh-Boyo 
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et al., 2012). The quality assessment of the mass spectra obtained differs widely. 

Some studies focus on specific characteristics of the mass spectra, such as signal-to-

noise ratio, signal intensity and peak resolution (Goldstein et al., 2013; Schumaker et 

al., 2012; Toh-Boyo et al., 2012), while others focus on the applicability of the mass 

spectra for species identification (McElvania TeKippe et al., 2013; Sedo et al., 2013). 

However, the comparison of distantly related species often compromises the value 

of the conclusions derived from such studies (Hsieh et al., 2008; Liu et al., 2007).  

The inter-laboratory reproducibility can be analyzed more easily by the use of 

commercial systems that facilitate the use of the same instrument and parameter 

settings (Barbuddhe et al., 2008; Garner et al., 2013; Karger et al., 2013; Keys et al., 

2004; Mellmann et al., 2009), which was previously not always possible (Wunschel 

et al., 2005b). 

Recently, MALDI-TOF MS has been introduced in the field of food microbiology for 

the detection and identification of food pathogens. These studies have analyzed not 

only pure cultures but also food products with minimal preprocessing. MALDI-TOF 

MS has proved suitable for the identification of, e.g., salmonellae (Dieckmann et al., 

2008), E. coli and Yersinia enterocolitica from bovine samples (Parisi et al., 2008) 

and fish spoilage bacteria (Böhme et al., 2011a; Böhme et al., 2011b). An overview of 

the potential of MALDI-TOF MS for the identification of food pathogens was recently 

presented by Böhme et al. (2012a). In addition, MALDI-TOF MS can be used for the 

detection and quantification of microbial spoilage in milk and pork (Nicolaou et al., 

2012) and for the identification of beer spoilage bacteria (Kern et al., 2013). 

MALDI-TOF MS has also been applied to identify beneficial bacteria in food 

microbiology, such as AAB used in the production of vinegar (Andres-Barrao et al., 

2013). The technique has also been applied for the identification of LAB and 

probiotic bacteria in food microbiology (Angelakis et al., 2011; De Bruyne et al., 

2011; Doan et al., 2012; Dušková et al., 2012; Kuda et al., 2014; Sedo et al., 2013; 

Snauwaert et al., 2013; Zeller-Péronnet et al., 2013). The Sepsityper™ kit (Bruker 

Daltonics) was originally developed for direct analysis of bacteria in positive blood 

cultures and urine (Drancourt, 2010; Loonen et al., 2012; Schubert et al., 2011; 

Stevenson et al., 2010). This kit has been used for the direct identification of bacteria 

in artificially contaminated milk and it turned out that a minimum of 106 colony 
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forming units (CFU) per mL is necessary before good quality mass spectra are 

generated (Barreiro et al., 2012). Mass spectra suitable for species identification 

after a short incubation step (4 h at 37°C) when the initial bacterial load is 

approximately 104 CFU/mL have also been obtained. Further, an enrichment step 

has been used to detect bacterial contaminants present in processed soybean 

products (Furukawa et al., 2013). It is therefore possible to identify the most 

predominant species present in a food product when cells are directly analyzed after 

an FA/ACN extraction (Furukawa et al., 2013).  

3.2.3 MALDI-TOF MS for yeast and mold identification 

The application of MALDI-TOF MS for the identification of yeasts was already 

described by Amiri-Eliasi and Fenselau (2001). In this early study, the peaks 

identified from the mass spectra originate from ubiquitin and ribosomal and 

mitochondrial proteins. Although published in 2001, yeast analysis by means of 

MALDI-TOF MS was not widely applied due to the difficulties with the generation of 

high-quality mass spectra (Qian et al., 2008; Sherburn & Jenkins, 2003; Valentine et 

al., 2002). Marklein et al. (2009) have reported the identification of human medical 

yeast isolates by means of a commercial MALDI-TOF MS identification system 

(Bruker Biotyper) and presented a modification of the standard FA/ACN extraction 

through the use of a higher amount of cell mass (they used five colonies rather than 

one). This approach has been optimized by the use of a single colony with reduced 

amounts of organic solvents to obtain good quality spectra (Goyer et al., 2012). Since 

the study of Marklein et al. (2009), several additional studies have been published, 

but mainly in the field of human medical microbiology (Alshawa et al., 2012; De 

Carolis et al., 2012; Dhiman et al., 2011; Kemptner et al., 2009; Seyfarth et al., 2012; 

van Veen et al., 2010). 

In food microbiology, a commercial MALDI-TOF MS system has been used for the 

identification of S. cerevisiae isolates from chica fermentation (Vallejo et al., 2013). 

Only one study reports the use of MALDI-TOF MS for the identification of food 

spoilage yeasts (Usbeck et al., 2013). The analysis of molds can be hampered by the 

production of melanin, which can inhibit the ionization process (Bader, 2013). 
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3.2.4 MALDI-TOF MS-based dereplication  

Most studies in medical and food microbiology use MALDI-TOF MS for the 

identification of pathogens, as described above. Few biodiversity studies, however, 

have used this technique without the initial construction of a reference database. 

MALDI-TOF MS is nevertheless also suitable as a dereplication tool, in which isolates 

from complex communities are tested to recognize and eliminate the ones 

representing the same species. The use of MALDI-TOF MS as a dereplication tool 

coupled with subsequent identification of representative strains through 

comparative sequence analysis of 16S rRNA or housekeeping genes allows the 

creation of niche- or product-specific databases, while such biodiversity studies are 

performed (Doan et al., 2012; Ghyselinck et al., 2011). 

Two approaches for validating MALDI-TOF MS as a dereplication tool have been 

used. In a first approach, clusters of isolates are delineated at an empirically 

determined cut-off value based on the similarity of their MALDI-TOF MS profiles, 

followed by gene sequence analysis of multiple isolates per cluster. Dieckmann et al. 

(2005) have performed a dereplication study of bacterial isolates from marine 

sponges and grouped isolates together if their spectra shared at least five of the 

most intense peaks. The validation consists of partial 16S rRNA gene sequence 

analysis of 65% of the isolates, which demonstrates that both techniques resolve the 

strains into identical groups (Dieckmann et al., 2005). Similar approaches have been 

used by Nguyen et al. (2013) and Munoz et al. (2011). In contrast, a second approach 

was applied by Ghyselinck et al. (2011) and Doan et al. (2012), who compared the 

dereplication potential of MALDI-TOF MS with that of repetitive element sequence 

primed PCR (rep-PCR), a well-established dereplication technique (De Vuyst et al., 

2008; Gevers et al., 2001). Ghyselinck et al. (2011) have analyzed part of the isolates 

in triplicate to determine the reproducibility of the technique and an appropriate 

cut-off value for cluster delineation was calculated based on this reproducibility 

assessment. A similar approach has been used by Stets et al. (2013) and Stafsnes et 

al. (2013). 
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3.2.5 MALDI-TOF MS for infraspecific identification and typing 

applications 

Hinse et al. (2011) have reported the successful application of MALDI-TOF MS for 

the identification of members of the Streptococcus bovis/equinus complex to the 

subspecies level. MALDI-TOF MS results are comparable with the results obtained 

by sequence analysis of sodA (the manganese-dependent superoxide dismutase), 

which is the most reliable method for the identification of members of this complex 

(Hinse et al., 2011). Typing commonly refers to the differentiation of strains of the 

same species but is also used for the differentiation of groups of strains with specific 

characteristics, e.g., antibiotic resistance or the capacity to cause infections. Typing 

applications of MALDI-TOF MS are primarily reported in the field of medical 

microbiology. The differentiation of Staphylococcus aureus strains based on their 

capacity to produce β-lactamase and α-hemolysin has been reported (Kornienko et 

al., 2013). Antifungal drug susceptibility tests have been performed using MALDI-

TOF MS (Vella et al., 2013). Williamson et al. (2008) have applied MALDI-TOF MS for 

the differentiation of Streptococcus pneumoniae strains capable of causing 

conjunctivitis from non-infectious strains and MALDI-TOF MS has been reported 

useful for the differentiation of morphotypes or metabolic states of the bacterial 

cells (Kuehl et al., 2011; Sousa et al., 2013). In food microbiology, Barbuddhe et al. 

(2008) have reported the differentiation of clonal lineages of Listeria 

monocytogenes, Moothoo-Padayachie et al. (2013) have used MALDI-TOF MS for the 

typing of industrial S. cerevisiae yeasts and Ruiz-Moyano et al. (2012) have applied 

MALDI-TOF MS for the discrimination of Bifidobacterium animalis subspecies. 

3.2.6 Commercial MALDI-TOF MS systems for microorganism 

identification 

MALDI-TOF MS-based identification of bacteria and yeasts decreases the 

identification time and cost (Dhiman et al., 2011; Tan et al., 2012). Currently, three 

commercial systems are available (Bruker Biotyper, Vitek® MS RUO and Andromas 

MS), each with a proprietary database of mainly medically relevant microorganisms, 

including spectra of 4500, 3000 and 700 unique species, respectively (Krásný et al., 

2013). The Bruker Biotyper (Bremen, Germany) is the current market leader and 

has the largest number of species included in the database. Identification scores are 
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calculated by comparing spectra of novel isolates with main spectra present in the 

database (Sauer et al., 2008). Each main spectrum combines multiple spectra of a 

single strain (Figure 3.2.2). The scoring algorithm takes three parameters into 

account: the ratio of the number of matching peaks to the total number of peaks of 

the novel mass spectrum, the ratio of the number of matching peaks to the total 

number of peaks of the main spectrum and an intensity correlation between the 

matching peaks (Welker, 2011). These factors are multiplied and normalized to a 

value of 1000, after which the value obtained is log transformed (Welker, 2011). The 

Bruker Biotyper algorithm therefore does not focus on species-specific peaks, but 

tries to find the best pattern match in the database (Carbonnelle et al., 2011; 

Freiwald & Sauer, 2009). The Anagnostec SARAMIS™ (Zossen, Germany) system was 

acquired by Shimadzu company (Manchester, UK) in 2008, after which bioMérieux 

(Marcy l'Etoile, France) entered in a partnership with Shimadzu in 2010. The 

SARAMIS™ system can now be purchased in combination with a Shimadzu Axima 

mass spectrometer as SARAMIS™@AXIMA (which has recently been referred to as 

Vitek® MS RUO and is primarily marketed for research use) (Dubois et al., 2012) or 

as an in vitro diagnostic tool as Vitek® MS, for which a novel database has been 

developed (Figure 3.2.2). The Vitek® MS database includes a smaller number of 

species and strains per species compared to the Bruker Biotyper database and 

incorporates more spectra of strains grown under different conditions. Therefore, 

the spectra in the former database are considered to be more representative for the 

growth conditions of clinical isolates, as the database includes spectra of strains 

grown on different media and for different incubation times (Dubois et al., 2012; 

Reich, 2013). The third system is Andromas MS (Paris, France), founded in 2010 as a 

spin-off of the Paris Necker hospital – AP-HP (Assistance Publique – Hôpitaux de 

Paris) and is based on the open-source BGP software (Carbonnelle et al., 2007). The 

database of the latter is built in a way similar to that of the Vitek® MS system (Figure 

3.2.2). 

In contrast to the Bruker Biotyper scoring system, the Superspectra of the 

SARAMIS™ algorithm use a limited number of species-specific peaks for 

identification purposes and thus have an inherent quality control system to exclude 

the use of misclassified reference strains from the database (Bader et al., 2011; 



Chapter 3|The identification of bacteria and yeasts using MALDI-TOF MS 

44|Part II Literature overview 

 

Carbonnelle et al., 2011; Emonet et al., 2010; van Belkum et al., 2012). In this system, 

consensus spectra result from the selection of conserved mass peaks taken from 

multiple mass spectra of multiple strains (Welker, 2011). Subsequently, a 

comparison of such consensus spectra with a large number of individual spectra 

allows to select only those peaks that are species-specific for inclusion in the 

Superspectrum of a particular species (Welker, 2011). Identification is then based 

upon a comparison of a novel spectrum with a database of Superspectra, by 

calculating the sum of peak weights for matching peaks in the novel spectrum 

(Welker, 2011). The Vitek® MS system uses an even more advanced scoring system 

and the database contains additional clinical isolates (Dubois et al., 2012). Mass 

peaks are distributed into bins and per species each bin receives a weight, 

depending on its frequency of occurrence within that species and its specificity for 

that species (i.e., its absence in other species) (Welker, 2011). Mass peaks of a novel 

spectrum are distributed into the same bins and the identification is based on the 

sum of the bins present (Welker, 2011). The Andromas MS system comprises a 

database of species-specific peak patterns, taking into account a possible MS peak 

variation of ± 10 m/z (Farfour et al., 2012). A species identification is considered 

valid if the percentage of common peaks between the reference and unknown mass 

spectra is ≥ 68% and the difference between the best two matches is at least 10% 

(Farfour et al., 2012). The formula used can be described as: 100 x (number of peaks 

common between the peaks of the isolate tested and the peaks of the species-

specific spectral fingerprint/total number of peaks specific to the species-specific 

spectral fingerprint) (Alshawa et al., 2012). In addition, the Andromas MS system 

provides comments for the reason of identification failure (e.g., poor spectrum 

quality) (Emonet et al., 2010). Since the Bruker Biotyper system is the most widely 

used system at the moment, its scoring system has been adopted as a standard in the 

field. Some studies do not consider the quality of the mass spectra and report only 

the Biotyper identification scores [e.g., Mellmann et al. (2008)]. Yet, a low score can 

also be caused by a poor quality of the mass spectra generated (Seng et al., 2009). 

Numerous studies have reported that the species level identification performance of 

the different commercial systems is similar (Bader et al., 2011; Cherkaoui et al., 

2010; Justesen et al., 2011; Lohmann et al., 2013; Marko et al., 2012; Martiny et al., 
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2012). The main differences between the systems are inherent to the database 

content differences (Fang et al., 2012). 

Small scale initiatives for creating public databases of MALDI-TOF MS spectra (e.g., 

SpectraBank) along with free data analysis tools have been reported [e.g., Böhme et 

al. (2012b)]. Böhme et al. (2012b) have focused primarily on food pathogens related 

to fishery products and have used the non-commercial online data analysis tool 

Speclust (Alm et al., 2006; Böhme et al., 2011a, 2011b, 2012a; Fernández-No et al., 

2010). The latter tool has also been used for the dereplication of bacterial isolates 

from wheat roots (Stets et al., 2013). Such a public database of peak lists offers the 

advantage that data can be shared more easily, compared with private databases 

that are constructed using commercial software systems (Emami et al., 2012; 

Ferreira et al., 2011; Gaia et al., 2011; Normand et al., 2013; Pennanec et al., 2010; 

Veloo et al., 2011; Yang et al., 2014). However, before a public database of peak lists 

can be created, additional research on universal sample preparations, data 

acquisition and peak-picking algorithms is needed and standardization of all these 

parameters is mandatory (Toh-Boyo et al., 2012). Another promising initiative is the 

freeware tool BIOSPEAN, which was recently launched by Raus and Šebela (2013). 

This tool is now in the beta testing phase but does not include an identification 

database. BIOSPEAN combines key features of commercial software, such as a peak-

picking algorithm, a mySQL database for spectral data storage and a scoring system 

that resembles the Bruker Biotyper scoring (Raus & Šebela, 2013). Moreover, the 

software is web-based and can be run at low operational costs and can be used with 

every MS platform (Raus & Šebela, 2013). 

 



 

 

 

Figure 3.2.2 Schematic overview of the different approaches in database construction and identification algorithms of commercial MALDI-TOF MS 
bacterial identification systems. The figure is based on Alshawa et al. (2012), Dubois et al. (2012) and Welker (2011). 
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Figure 3.2.3 (Continued) 
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Chapter 4. Microbial diversity of spontaneously 

fermented lambic beer 

Preamble 

The microbiology of lambic beer fermentation was described in 

several studies performed between 1977 and 1995. However, these 

studies were limited in the number of samples and the number of 

isolates examined. Moreover, the samples originated from different 

casks and different fermentation batches. Also, the taxonomy of the 

microbial groups described changed considerably since these early 

reports. Hence, using MALDI-TOF MS as a dereplication tool and 

sequence analysis of rRNA and housekeeping genes, a more in-depth 

study of the cultivable microbiota could be performed. Additionally, 

the bacterial and yeast communities were monitored using culture-

independent PCR-DGGE.  

In Chapter 4, the microbiology of spontaneous lambic beer 

fermentation processes is described. This chapter consists of two 

parts. In Chapter 4.1, the microbial diversity of the lambic beer 

fermentation process is described using samples of two batches of the 

most traditional, still active, lambic beer brewery in Belgium, 

Cantillon. The lambic beer fermentation process was monitored over a 

period of two years. In Chapter 4.2, the microbial diversity during an 

industrial lambic beer fermentation process is investigated. Since the 

industrial fermentation process is more closely monitored, only one 

batch was sampled over a period of one year. A second batch was 

monitored during a period of three months. Similarities and 

differences between the two breweries are presented in Table 4.0.1. 

 

 



Chapter 4|Lambic beer fermentation processes 

66|Part III Experimental work 

 

 

 

 

 

 

 

 

 

 

Table 4.0.1 The similarities and differences between the traditional and industrial 
breweries studied. 

 

 

Traditional brewery studied Industrial brewery studied

Similarities

Differences Turbid mashing Infusion mashing

3 h wort boiling 1.5 h wort boiling

Old whole hop bells Hop pellets

No additives Addition of protein coaggulation product 

and lactic acid => pH 4

Wort directly to cooling tun Wort is centrifuged and pre-chilled

Brewing between October and April Brewing all year round

Old wine or cognac barrels Custom-made new barrels

Use of unmalted wheat

Overnight cooling of the wort in an open cooling tun

Long fermentation (> 12 months)

Use of wooden casks for fermentation
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4.1 The microbial diversity of traditional spontaneously 

fermented lambic beer 

Redrafted from: Freek Spitaels, Anneleen D. Wieme, Maarten Janssens, Maarten Aerts, 
Heide-Marie Daniel, Anita Van Landschoot, Luc De Vuyst and Peter Vandamme, The 
microbial diversity of traditional spontaneously fermented lambic beer, Plos One 9, 
e95384. 

Author contributions: conceived and designed the experiments: FS, MJ, AVL, LDV and 
PV; performed the experiments: FS; analyzed the data: FS and HMD; contributed 
reagents/materials/analysis tools: ADW, MA, and HMD; wrote the manuscript: FS; 
critically reviewed the manuscript: ADW, MA, HMD, AVL, LDV and PV. 

The Genbank/EMBL accession numbers for the sequences generated in this study are 
KJ186115-KJ186128. 

 Abstract 

Lambic sour beers are the products of a spontaneous fermentation that 

lasts for one to three years before bottling. The present study determined 

the microbiota involved in the fermentation of lambic beers by sampling 

two fermentation batches during two years in the most traditional lambic 

brewery of Belgium, using culture-dependent and culture-independent 

methods. From 14 samples per fermentation, over 2000 bacterial and 

yeast isolates were obtained and identified. Although minor variations in 

the microbiota between casks and batches and a considerable species 

diversity were found, a characteristic microbial succession was 

identified. This succession started with a dominance of 

Enterobacteriaceae in the first month, which were replaced at 2 months 

by Pediococcus damnosus and Saccharomyces spp., the latter being 

replaced by Dekkera bruxellensis at 6 months fermentation duration.  
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Lambic sour beers are among the oldest types of beers still brewed and are the 

products of a spontaneous fermentation process that lasts for one to three years (De 

Keersmaecker, 1996). The fermentation process is not initiated through the 

inoculation of yeasts or bacteria as starter cultures. Rather, microbial growth starts 

during the overnight cooling of the cooked wort in a shallow open vessel, called the 

cooling tun or coolship. Lambic beers are traditionally brewed in or near the Senne 

river valley, an area near Brussels, Belgium. Brewing for the production of lambic 

traditionally takes place only during the colder months of the year (October to 

March), since cold nights are needed to lower the wort temperature to about 20°C in 

one night. The morning following the wort cooking, the cooled wort is assumed to be 

inoculated with a specific air microbiota of the Senne river valley and is transferred 

into wooden casks which are stored at cellar or ambient temperatures, i.e., typically 

between 15 and 25°C. Subsequently, the wort ferments and the lambic beer matures 

in these same casks. The end product is a noncarbonated sour beer that mainly 

serves as a base for gueuze or fruit lambic beers. The sour character of the beer 

originates from the metabolic activities of various yeasts, lactic acid bacteria (LAB), 

and acetic acid bacteria (AAB) (Van Oevelen et al., 1977; Verachtert & Iserentant, 

1995). 

Previous studies of the lambic beer fermentation process identified four phases: the 

Enterobacteriaceae phase, the main fermentation phase, the acidification phase, and 

the maturation phase, each characterized by the isolation of specific microorganisms 

(Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). The Enterobacteriaceae 

phase starts after 3 to 7 days of fermentation, proceeds until 30 to 40 days, and is 

characterized by Enterobacter spp., Klebsiella pneumoniae, Escherichia coli and 

Hafnia alvei as the most frequently isolated bacteria (Martens et al., 1991), along 

with the cycloheximide-resistant yeasts Hanseniaspora uvarum [asexual form 

Kloeckera apiculata (Meyer et al., 1978)] and Naumovia (Saccharomyces) dairensis 

(Kurtzman, 2003) as well as Saccharomyces uvarum [synonym S. globosus (Nguyen & 

Gaillardin, 2005)] (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). The 

main fermentation starts after 3 to 4 weeks of fermentation and is characterized by 

the isolation of S. cerevisiae, S. bayanus/pastorianus and S. uvarum (Van Oevelen et 

al., 1977; Verachtert & Iserentant, 1995). After 3 to 4 months of fermentation, the 
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acidification phase occurs and is characterized by the increasing isolation of 

Pediococcus spp. and occasionally Lactobacillus spp., while Brettanomyces spp. 

become prevalent after 4 to 8 months of fermentation (Van Oevelen et al., 1977; 

Verachtert & Iserentant, 1995). The final maturation phase, during which the wort is 

gradually attenuated, starts after 10 months of fermentation and is characterized by 

a decrease of LAB (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). AAB are 

isolated throughout the fermentation period (Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995). 

Sour beers are currently attracting interest outside Belgium, especially in the USA. In 

the American craft-brewing sector, American coolship ales mimic the lambic beer 

production method (Bokulich et al., 2012), and such beers are a seasonal product 

from craft breweries, which contrasts to traditional Belgian lambic breweries that 

exclusively produce lambic beers. It is thus likely that Saccharomyces spp., used for 

the brewing of other types of beers in the American craft-brewing sector, are 

enriched in these brewery environments (Bokulich et al., 2012). A similar microbial 

succession as described above was recently revealed using culture-independent and 

culture-dependent techniques for the American coolship ales, whereby 16S rRNA 

gene sequence analysis was used to identify some morphologically distinct isolates 

(Bokulich et al., 2012). Although the latter approach is widely applied as part of 

bacterial identification studies, it lacks resolution between many of the species 

belonging to the AAB, LAB, and Enterobacteriaceae family, and accurate species level 

identifications can only be obtained after subsequent sequence analysis of more 

variable protein-encoding genes (Cleenwerck et al., 2010; De Bruyne et al., 2008; De 

Bruyne et al., 2007; Naser et al., 2007). Except for this American brewery study, 

previous microbial studies on lambic beers used phenotypic identification 

techniques only, which are nowadays known to have an inadequate taxonomical 

resolution for the species-level identification of yeasts, LAB, and AAB (Cleenwerck & 

De Vos, 2008; Cleenwerck et al., 2008; Kurtzman & Robnett, 1998; Latouche et al., 

1997; Van Oevelen et al., 1977; Vandamme et al., 1996; Verachtert & Iserentant, 

1995). In addition, the discovery of novel species and of many synonymies in these 

groups of microorganisms confounds the interpretation of literature data. For 

instance, “Pediococcus cerevisiae” was reported as a key organism in lambic beer 
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fermentation, but this species name has no standing in bacterial nomenclature and 

has been used for at least two of the currently known Pediococcus species, i.e., P. 

damnosus and P. pentosaceus (Garvie, 1974; Judicial Commission of the International 

Committee on Systematic Bacteriology, 1976). Such “P. cerevisiae” isolates likely 

represent P. damnosus, as suggested by Van Oevelen et al. (1977). Also, Kufferath 

and Van Laer (1921) first isolated and described the yeast recognized to confer the 

characteristic taste to lambic beer as Brettanomyces bruxellensis and B. lambicus. 

After the observation of the sexually reproducing form, the name Dekkera 

bruxellensis was introduced (Van der Walt, 1964). B. bruxellensis and B. lambicus 

were later recognized as synonyms of the same species (Smith et al., 1990). 

The present study aimed at the characterization of the microbial communities in two 

batches of a traditional lambic beer during the first two years of the fermentation 

process by means of culture-dependent and culture-independent techniques. 

Materials and methods 

Brewery 

Samples were obtained from the Cantillon brewery (http://www.cantillon.be). This brewery is the 

most traditional, still active, lambic brewery in Brussels and uses the same infrastructure and most of 

the equipment since 1900, when the brewery was founded. 

Sampling 

Mash was prepared and boiled according to the brewer’s recipe. After 3 h of boiling, the hot wort was 

pumped, without the removal of the hot trub, into the cooling tun, which was cleaned using hot water 

and a 500 mL sample was taken aseptically. The pH of the boiled wort was 5.6. Subsequent 500 mL 

samples were taken after overnight cooling in the cooling tun (the wort temperature was about 20°C) 

and 15 min; 1, 2 and 3 weeks; and 1, 2, 3, 6, 9, 12, 18 and 24 months after the transfer of the cooled 

wort into the multiple wooden casks; all these samples were taken from four casks of each of two 

batches of brews. The brews started on February 25, 2010 (batch 1), and March 23, 2010 (batch 2). 

Batch 1 was fermented at cellar temperature (ranging from 12°C in winter to 20°C in summer), batch 

2 in a different room at ambient temperature (10-30°C). The wooden casks had a volume of 

approximately 400 L and had two apertures: a bung hole at the top of the cask, which was 

inaccessible for sampling due to the piling of the casks, and a sampling hole at the front of the cask. 

The latter was positioned about 10 cm above the cask bottom, plugged by a cork and was used for 

sampling. After removal of the cork plug, approximately 100 mL of fermenting wort were discarded 

before collection of the sample. Homogenization of the samples in the casks was not possible and may  
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have introduced a sampling bias towards microbiota that settled onto the bottom of the cask and 

those at the wort/air interphase. All casks were used at least one time for the production of lambic 

beer and were made of oak or acacia wood. The casks were cleaned by filling them with hot water 

and a chain was inserted through the bung hole, after which the cask was mounted on a gyroscope-

like device. The cask was turned in all directions for about 15-20 min. After the water was drained 

and the chain was removed, a steam hose was inserted in the bung hole and the cask was steamed for 

about 20 min. Samples were transported on ice to the laboratory and were processed the same day. 

One cask per batch was chosen for culture-dependent sampling throughout the whole fermentation 

period and the microbiota of all eight casks was studied using denaturing gradient gel electrophoresis 

(DGGE) of the V3 region of the bacterial 16S rRNA genes and the D1/D2 region of the yeast 26S rRNA 

genes. 

DGGE analysis 

Crude beer samples were centrifuged at 8000 × g for 10 min (4°C) on the day of sampling and cell 

pellets were stored at -20°C until further processing. DNA was prepared from the pellets as described 

by Camu et al. (2007). The DNA concentration, purity, and integrity were determined using 1% 

(wt/vol) agarose gels stained with ethidium bromide and by optical density (OD) measurements at 

234, 260, and 280 nm. The quality of the DNA was assessed as good, when absorbance ratios were 

OD260/OD280 > 1.8 and OD234/OD260 > 0.5. Total DNA solutions were diluted to an OD260 of 1. 

Amplification of about 200 bp of the V3 region of the 16S rRNA genes with the F357 and R518 

primers (with a GC clamp attached to the F357 primer), followed by DGGE analysis, and processing of 

the resulting fingerprints was performed, as described previously (Duytschaever et al., 2011), except 

that DGGE gels were run for 960 min instead of 990 min. For the amplification of about 200 bp of the 

D1/D2 region of the 26S rRNA genes, NL1 and LS2 primers (NL1 with GC clamp) were used, as 

previously reported by Cocolin et al. (2000). Similarities in fingerprint patterns were analyzed by 

means of Dice coefficient analysis, using the BioNumerics 5.1 software package (Applied Maths, Sint-

Martens-Latem, Belgium). Gels were also examined using a moving window analysis, in which the 

percentage change (expressed as 100% - Dice similarity) between two consecutive sample profiles 

was plotted as a function of time (Marzorati et al., 2008). 

All DNA bands were assigned to band classes using the BioNumerics 5.1 software. Dense DNA bands 

and/or bands that were present in multiple fingerprints were excised from the polyacrylamide gels 

by inserting a pipette tip into the band and subsequent overnight elution of the DNA from the gel slice 

in 40 μL 1 x TE buffer (10 mM Tris-HCl, 5 mM EDTA, pH 8) at 4oC. The position of each extracted DNA 

band was confirmed by repeat DGGE experiments using the excised DNA as template. The extracted 

DNA was subsequently re-amplified and sequenced using the same protocol and primers (but 

without GC-clamp). EzBioCloud and BLAST (Altschul et al., 1997; Kim et al., 2012) analyses were 

performed to determine the most similar sequences in the public sequence databases. 
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Culture media, enumeration and isolation 

The samples were serially diluted in 0.9% (wt/vol) saline and 50 µL of each dilution was plated in 

triplicate on multiple agar isolation media. The set of isolation media used was selected based on 

preliminary testing of samples of lambic beers of different ages by comparing DGGE profiles of the 

original samples with those of all cells that were harvested from the agar isolation media tested (data 

not shown). A total of twenty-three combinations of different growth media and incubation 

conditions [20°C vs. 28°C and aerobic vs. anaerobic atmosphere] were tested and this resulted in a set 

of 7 isolation conditions (see below), which together yielded a community profile that reflected best 

the diversity obtained in the DGGE profiles of the original beer samples and excluded isolation 

conditions that yielded redundant results. 

All bacterial agar isolation media were supplemented with 5 ppm amphotericin B (Sigma-Aldrich, 

Bornem, Belgium) and 200 ppm cycloheximide (Sigma-Aldrich) to inhibit fungal growth and were 

incubated aerobically at 28°C, unless stated otherwise. Samples were incubated after plating on de 

Man-Rogosa-Sharpe (MRS) agar (Oxoid, Erembodegem, Belgium) (De Man et al., 1960) at 28°C 

aerobically and at 20°C anaerobically for the isolation of LAB. Violet red bile glucose (VRBG) agar 

(Mossel et al., 1962, 1978) was used for the isolation of Enterobacteriaceae and acetic acid medium 

(AAM) agar (Lisdiyanti et al., 2003) was used for the isolation of AAB.  

Yeast isolation media were first supplemented with 30 ppm ampicillin (Sigma-Aldrich), which proved 

inefficient to inhibit bacterial growth. All samples starting from 3 weeks in batch 1 were subcultured 

in the presence of 100 ppm chloramphenicol (Sigma-Aldrich). All yeast isolation media were 

incubated aerobically at 28°C. DYPAI (2% glucose, 0.5% yeast extract, 1% peptone and 1.5% agar; 

wt/vol) was used as a general yeast agar isolation medium or was supplemented with an additional 

50 ppm cycloheximide (DYPAIX) to favor slow-growing Dekkera/Brettanomyces spp. (Abbott et al., 

2005; Licker et al., 1998; Suárez et al., 2007). Furthermore, universal beer agar (Oxoid) was 

supplemented with 25% (vol/vol) commercial gueuze (Belle-Vue - AB Inbev, Anderlecht, Belgium) as 

recommended by the manufacturer and was used as an additional general yeast agar isolation 

medium (UBAGI). 

Colonies on plates comprising 25 to 250 colony forming units (CFU) were counted after 3 to 10 days 

of incubation and for each of the seven isolation conditions about 20-25 colonies, or all colonies if the 

counts were lower, were randomly picked up. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) dereplication and identification 

Isolates were subcultured twice using the respective isolation conditions, and MALDI-TOF MS was 

performed using the third generation of pure cultures by means of a 4800 Plus MALDI TOF/TOFTM 

Analyzer (AB SCIEX, Framingham, MA, USA), as described previously (Wieme et al., 2012). In short, 

Data Explorer 4.0-software (AB SCIEX) was used to convert the mass spectra into .txt-files to import 
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them into a BioNumerics 5.1 (Applied Maths) database. Spectral profiles were compared using 

Pearson product moment correlation coefficient and a dendrogram was built using the unweighted 

pair group method with arithmetic mean (UPGMA) cluster algorithm. Homogeneous clusters 

consisting of isolates with visually identical and/or virtually identical mass spectra were delineated. 

From each cluster, isolates were chosen randomly for further identification through sequence 

analysis of 16S rRNA genes and other molecular markers. Sequence analysis of dnaJ and rpoB genes 

was performed to identify members of the Enterobacteriaceae (Mollet et al., 1997; Nhung et al., 

2007), of the pheS gene to identify LAB (De Bruyne et al., 2007, 2008; Naser et al., 2005, 2007) and of 

dnaK, groEL and rpoB genes to identify AAB (Cleenwerck et al., 2010). Yeast isolates were identified 

through sequence analysis of the D1/D2 region of the 26S rRNA gene (Kurtzman & Robnett, 1998) 

and, whenever needed, also by determination of ACT1 and/or ITS sequences (Daniel & Meyer, 2003). 

All PCR assays were performed as described by Snauwaert et al. (2013). Bacterial DNA was obtained 

via the protocol as described by Niemann et al. (1997), whereas yeast DNA was obtained using the 

protocol of Harju et al. (2004). 

Analysis of the microbiota of the brewery environment  

To analyze the microbiota of the brewery environment, samples were taken from the cooling tun, the 

roof above the cooling tun, the walls and ceiling of the cellar, and the outside of the casks by swabbing 

about 100 cm² using a moist swab that was transferred into 5 mL of saline and transported to the 

laboratory. The inside of a cask was sampled by rinsing it with 5 L of saline. In the laboratory, 5-10 

mL portions of each sample were subsequently filtered over a 0.45-µm filter that was transferred into 

30 mL of MRS, VRBG, AAM, DYPAI and DYPAIX broth, each, and incubated as described above. 

Enrichment cultures that showed growth after 3-10 days of incubation were plated on their 

respective agar media and different morphotypes were selected for further analysis. Isolates were 

identified as described above. Additionally, the swabs and water sample were directly streaked or 

plated on the agar isolation media. Air samples were taken using a MAS-100 air sampler (Merck, 

Darmstadt, Germany) with a flow rate of 0.1 m³/min placed about 1 m above the floor, for one or ten 

minutes using yeast and bacterial agar isolation media, respectively. 

Results 

DGGE analysis 

Bacterial and yeast DNA was successfully extracted from most samples and PCR 

amplicons were generated subsequently. As expected, none of the cooling tun 

samples collected directly after boiling the wort yielded DNA (the wort temperature 

at the time of sampling was about 90°C). The samples of the overnight-cooled wort 

yielded DNA, but this was of low quality (data not shown) and no amplicons could be 

obtained. The first amplicons were obtained from the cask samples immediately 
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after the transfer of the wort into the casks. For both batches, bacterial and yeast 

community fingerprints were generated for each of the four casks. Analysis of these 

community fingerprints revealed highly similar to identical community fingerprints 

for each sampling moment (Supplementary Figure S 4.1.1). DGGE banding patterns 

of both bacterial and yeast communities of the casks that were used in the culture-

dependent analysis of batch 1 and 2 (see below) are shown in Figure 4.1.1. 

Visual inspection of the bacterial community profiles revealed differences primarily 

during the first 12 months of the fermentation process, both in terms of presence 

and intensity of DNA bands. With the exception of two amplicons in the high % G+C 

region of the fingerprints (Figure 4.1.1, band classes marked 3 and 4), the bacterial 

community profiles generated after 18 months were virtually identical in both 

batches. This bacterial community profile was reached in batch 1 after 18 months of 

fermentation, compared to 6 months in batch 2. The latter may be due to the 

incubation of batch 2 casks at ambient temperature, which was higher during the 

summer months compared to batch 1 casks that were incubated at more constant 

but lower temperatures in the cellar. In batch 1, a very dense band disappeared after 

1 month of fermentation (Figure 4.1.1, band class 1), while another band appeared 

in the subsequent sample taken after 2 months of fermentation time (Figure 4.1.1, 

band class 2). 

Visual inspection of the yeast community profiles revealed more simple fingerprints 

comprising one to six DNA bands throughout the fermentation process. Again, the 

communities in both batches reached a fairly stable and highly similar composition 

after 6 months in batch 2 compared to 18 months in batch 1, with two amplicons in 

the central % G+C region of the fingerprints that were consistently present (Figure 

4.1.1, band classes 5 and 6). 
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Figure 4.1.1 DGGE banding patterns of bacterial and yeast communities of the plated 
samples. DGGE banding patterns of the bacterial and yeast communities of batch 1, cask 
1 (A and C, respectively) and batch 2, cask 2 (B and D, respectively) n, night; w, week(s); 
m, month(s). Band classes 1-6 are indicated on the figure. Samples after one night in 
cask 1 of batch 1 did not yield any amplicons with the V3 primer, the other casks yielded 
banding patterns highly similar to the pattern of the one-week sample (data not shown). 
Yeast community profiles were obtained from 2 weeks onwards for all casks. 
Nevertheless, some samples also yielded amplicons after wort transfer to the casks and 
after one week; these profiles were comparable to the profiles obtained after 2 weeks 
for all casks (data not shown). 

The moving window analysis of the Dice similarity values between DGGE profiles 

(Figure 4.1.2A and Figure 4.1.2C) demonstrated that the bacterial community 

profiles of the four casks of both batches showed a similar evolution in diversity. 
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Consecutive samples displayed few changes. After 2 months, the appearance and 

disappearance of two dense bands (Figure 4.1.1, band classes 1 and 2) resulted in a 

higher percentage change. The major transition in bacterial community profile 

appeared to occur after 18 months in batch 1, whereas the bacterial community 

profile changed after 6 months in batch 2 (Figure 4.1.2A and Figure 4.1.2C). 

The moving window analysis of the yeast community profiles (Figure 4.1.2B and 

Figure 4.1.2D) revealed a higher variability. These higher percentages of change are 

most likely explained by the higher impact of changes in band presence or intensity 

in these profiles that comprised fewer bands. 

A total of 64 bands (28 from yeast community fingerprints and 36 from bacterial 

community fingerprints) were excised (Supplementary Figure S 4.1.2) and 

sequenced to tentatively assign these band classes to microbial taxa (Supplementary 

Table S 4.1.1E). Because of the short length of the sequences (about 200 bp), 

EzBioCloud and BLAST analyses resulted in genus or family level identifications only. 

An overview of these identification data is shown in Supplementary Table S 4.1.1 

and demonstrates that members of the Enterobacteriaceae family could be detected 

throughout the fermentation process in both batches. Both band class 1 and 2 

(Figure 4.1.1) were assigned to members of the Enterobacteriaceae family. Band 

class 2* (Figure 4.1.1) that migrated at nearly the same position as band class 2 was 

assigned to Pediococcus/Lactobacillus (which could not be distinguished by using 

this short rRNA gene fragment). Also, additional band classes in a higher % G+C 

region of the profile were assigned to LAB, which were rarely found before month 3 

in batch 1 samples, but which were nearly consistently present in batch 2 samples 

(Supplementary Table S 4.1.1A and Table S 4.1.1B). Band classes 3 and 4 (Figure 

4.1.1) were assigned to AAB, which were detected from month six onwards in batch 

2 samples and primarily during year 2 in batch 1 (Supplementary Table S 4.1.1A and 

Table S 4.1.1B). Several DNA bands of the bacterial community fingerprints were 

assigned to yeast taxa (Supplementary Table S 4.1.1A and Table S 4.1.1B), 

confirming that the V3 primers were not specific for bacteria (Scheirlinck et al., 

2008; Van der Meulen et al., 2007). 

The yeast band classes 5 and 6 were assigned to the genus Saccharomyces 

(Supplementary Table S 4.1.1C and Table S 4.1.1D) and were present throughout the 
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fermentation. Bands originating from other yeast taxa (Candida, 

Dekkera/Brettanomyces, Hanseniaspora, Kregervanrija, Naumovia and 

Wickerhamomyces) were found frequently, albeit on an irregular basis. 

 

Figure 4.1.2 Moving windows analysis of the DGGE bacterial and yeast community 
profiles. Moving window analysis of the Dice-based similarity values between DGGE 
analyses of 4 casks from batches 1 and 2. (A) and (C) represent the bacterial diversity in 
batches 1 and 2, respectively, (B) and (D) visualize the yeast diversity of both batches 1 
and 2. The last data point of the bacterial community profile analysis of batch 2, cask 4 
was omitted due to the poor quality of the banding patterns. ● Cask 1; ▽ Cask 2; ■ Cask 
3; ◇ Cask 4. 

Enumeration and identification of bacteria and yeasts 

Table 4.1.1 presents an overview of the enumeration analyses and Supplementary 

Table S 4.1.2 presents the identifications of the MALDI-TOF MS clusters. A total of 
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1304 bacterial and 892 yeast isolates were obtained from the 2 batches. The freshly 

boiled wort did not allow microbial growth. However, both batches were 

spontaneously inoculated overnight in the cooling tun, as shown by the colony 

counts on MRS and VRBG agars, but no colonies were found on AAM agar. All cooling 

tun isolates (48 from batch 1 [Figure 4.1.3] and 77 from batch 2 [data not shown]) 

were identified as members of the Enterobacteriaceae family. These bacteria were 

also isolated from MRS agar, which was thus not fully specific for the isolation of 

LAB. Both MRS and VRBG supported the growth of Enterobacteriaceae, but the 

relative species distribution differed (Figure 4.1.3). Batch 1 isolates were identified 

as Escherichia/Shigella [Escherichia coli and Shigella species are extremely closely 

related (Brenner, 1984) and cannot be distinguished by sequence analysis of 

conserved genes (Lan & Reeves, 2002; Pupo et al., 2000)], Enterobacter hormaechei 

or Enterobacter kobei, whereas only the latter two were identified in batch 2 

samples (31 and 46 of the 77 isolates, respectively). 

Enterobacteriaceae counts reached up to 107–108 CFU/mL after one to two weeks of 

fermentation. A total of 415 isolates from batch 1 samples taken during the first 

month were identified. E. hormaechei was no longer isolated after the transfer of the 

wort into the cask (performed 15 min after the sampling of the cooling tun), 

whereas Klebsiella oxytoca was then first isolated (Figure 4.1.3). In the following 

weeks, the number of isolates identified as Escherichia/Shigella and E. kobei 

decreased, while the numbers of Hafnia paralvei and Klebsiella oxytoca isolates 

increased until the end of the first month, after which Enterobacteriaceae were no 

longer isolated. In batch 2, from which a total of 398 isolates were identified, a 

similar evolution was found: the major occurrence of H. paralvei from week 1 

onwards was confirmed and members of the Enterobacteriaceae were again no 

longer isolated after one month of fermentation (data not shown). However, batch 2 

Enterobacteriaceae were more diverse and included also Citrobacter gillenii and 

Raoultella terrigena (data not shown). 
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Table 4.1.1 Results of plate counts on different agar isolation media. VRBG agar was 
used for the growth of Enterobacteriaceae, MRS agar was used for the growth of LAB, 
AAM agar was used for the growth of AAB, DYPAI and UBAGI agars were used as global 
yeast growth media and DYPAIX agar was used to favor the growth of Dekkera species. 
The values represent log CFU/mL. ULD: under limit of detection (< 20 CFU/mL); ULQ: 
under limit of quantification (the estimated CFU/mL is provided between brackets); ND: 
no data. 

 

 

From months 2 until 24, Pediococcus damnosus was consistently the only 

microorganism isolated from MRS agar (batch 1 [Figure 4.1.3]; batch 2, n = 124 [data 

not shown]). The bacterial counts on MRS agar remained stable at about 104 

CFU/mL until the end of the fermentation. Colony counts on AAM agar were 

generally low (below 104 CFU/mL; Table 4.1.1). AAM counts of the samples up to 3 

months of fermentation were influenced by the presence of yeasts, which was due to 

the apparent loss of activity of amphotericin B under acidic conditions (te 

Dorsthorst et al., 2005). Amphotericin B was also reported to be unstable in other 

media with a composition similar to AAM (Cheung et al., 1975). A combination of 

Batch 1 VRBG 28°C MRS 28°C MRS 20°C AN AAM 28°C DYPAI 28°C UBAGI 28°C DYPAIX 28°C

Freshly boiled wort ULD ULD ULD ULD ULD ULD ULD

1 night cooling tun 6.03 ULD 5.9 ULD ND ND ND

1 night cask 6.51 5.25 6.42 ULD ND ND ND

1 week 6.72 6.98 8.05 ULD ND ND ND

2 weeks 7.73 7.68 7.77 ULD ND ND ND

3 weeks 6.92 7.2 7.41 3.72 6.36 6.31 2.9

1 month 4.63 4.92 4.83 ULQ (466) 6.33 6.47 4.02

2 months ULQ (40) ULQ (80) ULQ (180) 3.39 5.73 5.58 3.29

3 months ULD 3.23 ULQ (33) 3.28 5.78 5.62 ULQ (273)

6 months ULD ULQ (300) ULQ (447) ULD 4.56 4.6 4.03

9 months ULD 3.51 4.38 3.01 3.2 3.24 2.87

12 months ULD ULD 2.79 ULQ (26) 4.3 4.35 3.16

18 months ULD 2.83 2.93 ULD 2.8 ULQ (347) ULQ (293)

24 months ULD 3.08 4.19 2.96 3.74 3.83 2.94

Batch 2

Freshly boiled wort ULD ULD ULD ULD ULD ULD ULD

1 night cooling tun 5.12 6.71 6.92 ULD ULQ (50) ULQ (253) ULQ (40)

1 night cask 6.13 6.79 6.11 ULD 3.29 3.42 3

1 week 7.91 8.41 8.29 ULD 4.36 4.33 ULQ (140)

2 weeks 7.54 7.67 7.5 ULD 6.21 6.18 2.72

3 weeks 6.92 6.78 7 ULQ (40) 5.51 5.49 ULQ (120)

1 month 4.88 4.91 4.86 ULQ (270) 5.18 5.17 ULQ (67)

2 months ULD 4.46 4.58 3.54 5.37 5.31 ULQ (13)

3 months ULD 6.42 6.35 4.73 4.5 4.46 ULQ (353)

6 months ULD 4.58 5.02 ULD 4.26 4.3 4.34

9 months ULD 5.45 5.48 ULQ (40) 4.09 3.02 3.07

12 months ULD 5.8 5.77 ULD 3.15 2.72 3.51

18 months ULD 3.81 4.38 ULD ULQ (173) ULQ (300) ULQ (240)

24 months ULD 4.07 4.26 ULQ (66) 3.08 3.18 3.18
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amphotericin B and cycloheximide was subsequently found to be more effective in 

inhibiting yeast growth under all isolation conditions used. 

AAB were isolated from batch 1 samples at 9 and 24 months (n = 35) and from batch 

2 samples at 3, 9 and 24 months (n = 17). All but one of the isolates were identified 

as a novel Acetobacter species, for which the name Acetobacter lambici has been 

proposed (Spitaels et al., 2014b). One batch 2 isolate represented a novel 

Gluconobacter species, for which the name Gluconobacter cerevisiae has been 

proposed (Spitaels et al., 2014a). This erratic isolation of AAB was not in accordance 

with the consistent presence of AAB-derived DNA bands in the DGGE profiles from 6 

months of fermentation onwards in batch 2 (Figure 4.1.1). 

An overview of the identified yeast species of batch 1 is graphically represented in 

Figure 4.1.4 and Supplementary Figure S 4.1.3. Isolation and accurate enumeration 

of yeasts during the first two weeks of fermentation of batch 1 was not possible, due 

to an insufficient suppression of bacterial growth. In batch 2 samples (data not 

shown), yeasts could not be detected in the wort after one night in the cooling tun, 

but increased in numbers directly after the wort was transferred into the casks (not 

more than 15 min after the cooling tun was sampled). Maximal counts (106 CFU/mL) 

were reached after 2 weeks to 1 month of fermentation. Debaryomyces hansenii 

(17/18 isolates examined) and S. cerevisiae (1/18) were the sole species isolated 

directly after the transfer of the wort into the cask in batch 2. S. cerevisiae (22/44), S. 

pastorianus (21/44) and Naumovia castellii (1/44) were isolated after 1 week of 

fermentation. The relative number of S. pastorianus isolates increased further during 

the first three months of fermentation (a total of 198 isolates examined), until it was 

the only yeast species isolated on DYPAI and UBAGI agars after 2 months (32 

isolates examined). After 3 months, S. pastorianus was still the predominant yeast 

(30/31); one isolate was identified as N. castellii. 



 

 

 

 

Figure 4.1.3 Identification of random isolates from MRS and VRBG agars of batch 1. The identification of isolates belonging to the 
Enterobacteriaceae are reported to the species level, when reliable identification by housekeeping gene sequences could be obtained. The 
number of isolates is given between brackets.  
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Figure 4.1.4 Identification of random isolates from DYPAI and UBAGI agars of batch 1. The number of isolates is given between brackets. 
*One yeast cluster from MALDI-TOF MS profiles could not be identified unambiguously (Supplementary Table S 4.1.2). 
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The same trend occurred during the first three months of fermentation of batch 1 

(Figure 4.1.4). S. cerevisiae and S. pastorianus were the most prevalent species and 

the latter one was the only yeast species present after three months. Yeast counts on 

DYPAIX agar were initially lower compared to DYPAI and UBAGI agars, but were 

comparable from 6 months onwards. The few DYPAIX isolates that were obtained 

from samples after 2 months (batch 2) or 3 months (batches 1 and 2) failed to grow 

on the same growth agar medium upon subculture, indicating that there were no 

cycloheximide-resistant yeast species present in these samples (Supplementary 

Figure S 4.1.3). DYPAIX isolates obtained from samples of the first 2 months of batch 

1 included N. castellii, Kazachstania servazzii and Db. hansenii (Supplementary 

Figure S 4.1.3), whereby the former was the only species isolated in the first month 

of batch 2 (n = 58, data not shown).  

Saccharomyces spp. were not isolated in large numbers after 6 months of 

fermentation, while D. bruxellensis was isolated at this point for the first time. D. 

bruxellensis was the major yeast species isolated from DYPAI and UBAGI agar media 

from 6 months until the end of the fermentation of batch 2 (n = 102, data not shown) 

and the only yeast species isolated from DYPAIX agar in the same period (n = 82). 

The cultivated yeast diversity in batch 2 was low compared to batch 1 (see below) 

and the three yeast media yielded the same species diversity from 6 months 

onwards. 

The yeast species distribution in batch 1 samples after 6 months of fermentation 

(Figure 4.1.4) was more complex than that of samples of the same age in batch 2. 

The most frequently cultivated species were D. bruxellensis, Db. hansenii, 

Priceomyces carsonii and Wickerhamomyces anomalus along with other species in 

lower numbers (Figure 4.1.4 and Supplementary Figure S 4.1.3). In contrast to batch 

2 where the three yeast agar isolation media yielded the same species diversity from 

6 months onwards, the species diversity recovered from different yeast agar 

isolation media in batch 1 was not comparable. For example, D. bruxellensis was not 

detected on the non-selective yeast agar media in batch 1 after 9 months, but was 

detected at this sampling point on DYPAIX agar (Figure 4.1.4 and Supplementary 

Figure S 4.1.3). The use of DYPAIX agar allowed isolating some unusual species from 

batch 1, such as Candida patagonica and Yarrowia lipolytica (Supplementary Figure 
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S 4.1.3), of which the latter has never been associated with a beer fermentation 

process. The total yeast and bacterial counts were similar in both batches after 24 

months at about 103–104 CFU/mL (Table 4.1.1). 

Air and brewery environment 

None of the directly plated samples yielded growth. A total of 139 isolates from the 

brewery environment were picked up from the bacterial and yeast agar isolation 

media after enrichment and were identified through MALDI-TOF MS and sequence 

analysis of 16S rRNA genes or other molecular markers as described above (Table 

4.1.2). Several species or taxa that were previously isolated during the fermentation 

process as described above were also found in environmental samples. E. 

hormaechei and Escherichia/Shigella were isolated from the cellar air. Raoultella 

terrigena, Pichia membranifaciens, Debaryomyces marama and Db. hansenii were 

isolated from the inside of a cask. The latter species was also isolated from the 

ceiling, the attic and cellar air, along with S. pastorianus, Meyerozyma guilliermondii, 

Candida friedrichii and Wickerhamomyces anomalus. The latter species was also 

found on the outside of a cask. A considerable number of additional microorganisms 

that were not detected during the fermentation process were also isolated from 

environmental samples. These included species previously related to beverage 

fermentation or spoilage, such as Brettanomyces custersianus (Martens et al., 1997), 

Pediococcus pentosaceus (Hutzler et al., 2013), Lactobacillus malefermentans 

(Farrow et al., 1988) and Acetobacter cerevisiae (Cleenwerck et al., 2002). 



 

 

 

Table 4.1.2 Overview of microorganisms isolated from the brewery environment and their isolation sources. The bacteria and yeasts present in 
the fermentation were identified based on their MALDI-TOF MS spectra. *One yeast cluster from MALDI-TOF MS profiles could not be identified 
unambiguously (Supplementary Table S 4.1.2). 

Identification 

Accession 
number 

Accession 
number 

highest hit 

Similarity Present in 
fermentation 

Air attic 
before 
cooling 

Cooling 
tun 

Roof Air attic 
after 

cooling 

Air 
cellar 

Cellar 
ceiling 

Cellar 
wall 

Cask 
outside 

Cask 
inside 

Bacteriaa 
  

 
          

Acetobacter cerevisiaeb 
 

KF537492 100% 

         
+ 

Aerococcus urinaeequi 
 

D87677 100% 

 
+ 

        Bacillus licheniformis 
 

AE017333 100% 

   
+ 

      Enterobacter hormaechei 
   

+ 
    

+ 
    Enterococcus faeciumc KJ186124 AJ843428 97% 

 
+ + 

       Escherichia/Shigella 
   

+ 
    

+ 
    Hafnia alvei 

 
M59155 100% 

         
+ 

Lactobacillus curvatus 
 

AJ621550 100% 

     
+ 

    Lactobacillus malefermentans 
 

BACN01000105 100% 

        
+ 

 Lactobacillus nenjiangensisc KJ186125 HF679044 99% 

 
+ 

        Leuconostoc mesenteroides 
 

CP000414 100% 

 
+ 

   
+ 

 
+ + 

 Leuconostoc pseudomesenteroides 
 

AEOQ01000906 100% 

 
+ 

        Pediococcus pentosaceusc 
 

AM899822 100% 

 
+ 

        Pseudomonas azotoformans 
 

D84009 100% 

 
+ 

        Pseudomonas libanensis 
 

AF057645 100% 

 
+ 

        Pseudomonas psychrotolerans 
 

AJ575816 100% 

 
+ 

        Rahnella aquatilis 
 

CP003244 100% 

         
+ 

Raoultella terrigena 
   

+ 
        

+ 

Staphylococcus hominis 
 

X6601 100% 

 
+ 

  
+ + 

      



 

 

 

Table 4.1.2 (Continued) 

 

Identification 

Accession 
number 

highest hit 

Similarity Present in 
fermentation 

Air attic 
before 
cooling 

Cooling 
tun 

Roof Air attic 
after 

cooling 

Air 
cellar 

Cellar 
ceiling 

Cellar 
wall 

Cask 
outside 

Cask 
inside 

Yeastsd 
            Brettanomyces custersianus DQ406717 100% 

         
+ 

Candida friedrichii 
  

+ + 
        Candida pomicola AF245400 100% 

         
+ 

Cryptococcus heveanensis AF075467 100% 

         
+ 

Cryptococcus magnus AF181851 100% 

 
+ 

  
+ 

    
+ 

Debaryomyces hansenii 
  

+ + 
   

+ + 
  

+ 

Debaryomyces marama 
  

+ 
        

+ 

Meyerozyma guilliermondii 
  

+ + 
        Pichia membranifaciens 

  
+ 

        
+ 

Priceomyces sp.* 
  

+ 
    

+ 
    Saccharomyces pastorianus 

  
+ 

    
+ 

    Trichosporon gracile JN939453 100% 

 
+ 

   
+ 

    Trichosporon cutaneum AF075483 100% 

        
+ 

 Wickerhamomyces anomalus 
  

+ + 
   

+ 
  

+ 
 

             
  

a Identification is based on 16S rRNA gene sequence. 
b Identification is based in rpoB sequence. 
c Identification is based in pheS sequence. 
d Identification is based on D1/D2 26S rRNA gene sequence 
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Discussion 

Serious limitations of the few available microbiological studies of the lambic beer 

fermentation process are the rather low numbers of isolates identified using 

biochemical methods only (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). 

Recent polyphasic taxonomic studies revealed that phenotypic identification 

approaches alone have an inadequate taxonomical resolution for the accurate 

species level identification of these microorganisms (Cleenwerck & De Vos, 2008; De 

Bruyne et al., 2008; Kurtzman & Robnett, 1998; Latouche et al., 1997; Nhung et al., 

2007; Vandamme et al., 1996). Therefore, the present study revisited the 

microbiology of the lambic beer fermentation process of the most traditional lambic 

brewery (Cantillon) in Belgium and identified and monitored the microbiota using 

MALDI-TOF MS as a high-throughput dereplication technique. This allowed to 

compare numerous fingerprints and to reduce these isolates to a non-redundant set 

of different species that were further identified using an array of DNA sequence-

based methods (Dieckmann et al., 2005; Vandamme et al., 1996). This approach 

allowed a more in depth analysis of the culturable microbiota of this ecosystem and 

resulted in the isolation and description of two novel AAB species, i.e., Acetobacter 

lambici and Gluconobacter cerevisiae (Spitaels et al., 2014a, 2014b). The former 

species was even the most frequently isolated AAB species during the lambic 

fermentation process of Cantillon. The present study also used DGGE profiles of 

variable prokaryotic and eukaryotic rRNA gene regions to identify and monitor the 

microbial communities in two batches of lambic beer during a two-year 

fermentation period at Cantillon. 

In both lambic batches, members of the Enterobacteriaceae were isolated during the 

first month, which corresponded to previous studies on Belgian lambic and 

American coolship ales (Bokulich et al., 2012; Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995). The bacteria identified included E. hormaechei, E. kobei, Es. coli, H. 

paralvei, K. oxytoca, Citrobacter gillenii and R. terrigena, from which some of these 

were already detected in the cooling tun sample, suggesting their origin from the 

cooling tun environment. Remarkably, DNA from members of the 

Enterobacteriaceae family was detected in the DGGE experiments throughout the 

two-year fermentation period. This suggests that DNA from these cells persisted for 
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a long time or, alternatively, that these bacteria remained present in a VBNC form, 

even under conditions to which Enterobacteriaceae are susceptible, i.e., pH < 4.0 and 

ethanol concentrations over 2.0% (Priest & Stewart, 2006). This has also been seen 

during cocoa bean fermentation (Papalexandratou et al., 2011a, 2011b). Yeast 

isolations during the first three months yielded Saccharomyces spp., but no 

Hanseniaspora spp., as expected from previous studies (Van Oevelen et al., 1977; 

Verachtert & Iserentant, 1995). However, Hanseniaspora spp. were detected by 

DGGE profiles over several months in both batches. Species of this genus are 

frequently found in spontaneously fermenting fruit and their preparations, and a 

positive contribution to wine flavor development is increasingly recognized (e.g., 

Medina et al., 2013). 

After the initial Enterobacteriaceae phase, the effects of ethanol production by the 

main fermentation were reflected in the dominance of P. damnosus at two months, 

along with some AAB (primarily Acetobacter lambici) that were occasionally 

isolated. AAB may survive in the cask due to the diffusion of oxygen through the 

wood (Joyeux et al., 1984; Ribéreau-Gayon et al., 2006) or the short vacuum-

releasing opening of the bung hole during sampling. Similarly, AAB seem to survive 

the anaerobic phase of cocoa bean fermentations (Papalexandratou et al., 2011a, 

2011b). The irregular isolation of AAB may suggest that they are also present in a 

VBNC form that could be reversed when oxygen becomes available, as for example in 

wine production (Millet & Lonvaud-Funel, 2000). In both batches, P. damnosus 

remained present throughout the fermentation process and these bacteria were 

accompanied by D. bruxellensis after the decrease of Saccharomyces spp. 

Remarkably, no other LAB were isolated, while Lactobacillus spp. and other LAB 

species have also been isolated from American coolship ales recently (Bokulich et al., 

2012). 

The culture-independent detection of microorganisms by DGGE was useful to 

observe the similar succession of microorganisms in each of the four casks of both 

lambic batches, and to visualize the relative stability of community profiles over 

time and their homogenization in the two batches at the advanced stage of the 

fermentation, but it confirmed some of the established pitfalls of this methodology. 

For instance, some cultivated yeast genera were not detected by DGGE 
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(Debaryomyces, Kazachstania, Meyerozyma, Pichia, Priceomyces, Yarrowia), while 

other genera were detected by DGGE but not cultivated (Hanseniaspora, 

Kregervanrija). Also, some organisms were detected by DGGE before appearing in 

culture or after having disappeared from cultures, such as Enterobacteriaceae which 

were detected throughout the sampling period. Similar observations using T-RFLP 

and barcoded amplicon sequencing were made in spontaneous fermentations of 

American coolship ales (Bokulich et al., 2012). Cultivation experiments too can be 

strongly biased, for instance, by the presence of VBNC cells, the selection of the 

culture media in the experiment design and by culture media that favor specific 

organisms. Therefore, a combination of multiple complementary techniques 

including both culture-based and culture-independent methods and a cautious 

interpretation of the results remains the best approach for microbial diversity 

analyses (Lagier et al., 2012). 

The microbial community analyses of the present study did not provide evidence for 

an extended acidification phase (Verachtert & Iserentant, 1995), as after six months 

P. damnosus and D. bruxellensis were both present and Saccharomyces spp. were no 

longer isolated. In addition, neither lambic batch showed a clear decrease of LAB. 

Pending a detailed analysis of the microbial metabolites and other biochemical 

characteristics, the data of the present study suggest that the acidification took place 

rapidly at the transition from the main fermentation phase to the long maturation 

phase, as was also found for American coolship ale fermentations (Bokulich et al., 

2012). 

The two nearly simultaneously fermented wort batches were inoculated by 

microorganisms present in the brewery air, equipment or casks. As discussed above, 

members of the Enterobacteriaceae family were present in the wort before its 

transfer into the casks. These rather adventitious bacteria, S. pastorianus and some 

other yeast species, may have at least partially originated from the brewery air, but 

the present study failed to isolate the key microorganisms P. damnosus, S. cerevisiae 

and D. bruxellensis from environmental samples. These microorganisms were either 

missed by the sampling protocol or were concealed in niches that were not sampled. 

Examples of such niches are biofilms in the corners (where the head connects to the 

staves) and the pores of the wooden casks. Microorganisms may have penetrated 
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and effectively be immobilized and protected from washing steps in the wood of the 

cask, as demonstrated previously (Swaffield & Scott, 1995; Swaffield et al., 1997). All 

casks had been used for lambic production before, preceded by their use in different 

fermentations, mostly red wine, so they could have retained specific microbiota in 

spite of cleaning procedures after previous fermentations (Swaffield & Scott, 1995; 

Swaffield et al., 1997). 

This study generally confirmed and extended the microbial diversity and succession 

known from previous accounts of lambic beers. The more than 2000 microbial 

isolates from two fermentation batches of the present study showed diverse 

members of the Enterobacteriaceae family during the first month, and S. cerevisiae 

and S. pastorianus from the first week until two and three months, respectively. No 

LAB were recovered during this first phase, which was previously denoted as the 

‘mixed acid fermentation’. The main fermentation was characterized by 

Saccharomyces spp. and the completion of the shift from Enterobacteriaceae to P. 

damnosus, the latter being isolated from 2 months onwards. The increase of LAB in 

months 2 and 3 and the concomitant decrease of Saccharomyces spp. was followed 

by the highly acid- and ethanol-resistant D. bruxellensis, which dominated from 6 

months onwards together with P. damnosus. Hanseniaspora spp. that were 

previously reported in the first fermentation weeks were not isolated, but their 

presence was evidenced by DGGE analyses. The role of these and other taxa, such as 

N. castellii and Kazachstania spp., both also seen in lambic beer fermentations 

before, is not known. 

Despite apparent differences in the microbial diversity, both batches examined 

reached similar community profiles at the end of the fermentation. The time needed 

to reach these final community fingerprints differed between the two batches and it 

is likely that the lower ambient temperature in the localization of batch 1 explains 

both the longer period needed to reach the characteristic community fingerprints as 

well as the larger diversity observed in later phases of the fermentation process. 
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Supplementary information 

 

 

Figure S 4.1.1 Overview of intra-batch DGGE banding pattern differences. Overview of 
the differences in banding profiles for the DGGE analysis of 4 different casks (C1, C2, C3 
and C4) within the same fermentation of batches 1 (B1) and 2 (B2). (A) DGGE banding 
patterns of the bacterial communities after 3 weeks (3w), 6 months and 18 months of 
fermentation; (B) DGGE banding patterns of the yeast after 2 months (2m) 6 months 
(6m), 12 months (12m), 18 months (18m) and 24 months (24m) of fermentation. 
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Figure S 4.1.2 Overview of the excised DGGE bands for identification. DGGE banding 
patterns of the bacterial and yeast communities of batch 1, cask 1 (A and C, respectively) 
and batch 2, cask 2 (B and D, respectively) n, night; w, week(s); m, month(s). Band 
classes 1-6 are indicated on the figure. The excised bands are indicated in red and 
identifications based on the derived DNA sequences of these bands can be found in 
Supplementary Table S 4.1.1E. 
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Table S 4.1.1A Occurrence of microbial taxa as identified through sequence analysis of 
V3 and LSU DGGE bands. Identifications from the V3 DGGE analyses from batch 1. 
+: taxon is present. 

 

  

Sampling moment Sample

1 night Batch 1 cask 2 +

1 night Batch 1 cask 3 +

1 night Batch 1 cask 4 +

1 week Batch 1 cask 1 +

1 week Batch 1 cask 2 + +

1 week Batch 1 cask 3 +

1 week Batch 1 cask 4 +

2 weeks Batch 1 cask 1 +

2 weeks Batch 1 cask 2 +

2 weeks Batch 1 cask 3 +

2 weeks Batch 1 cask 4 +

3 weeks Batch 1 cask 1 +

3 weeks Batch 1 cask 2 +

3 weeks Batch 1 cask 3 +

3 weeks Batch 1 cask 4 +

1 month Batch 1 cask 1 +

1 month Batch 1 cask 2 +

1 month Batch 1 cask 3 +

1 month Batch 1 cask 4 +

2 months Batch 1 cask 1 + + +

2 months Batch 1 cask 2 +

2 months Batch 1 cask 3 + +

2 months Batch 1 cask 4 +

3 months Batch 1 cask 1 + + +

3 months Batch 1 cask 2 + + +

3 months Batch 1 cask 4 + + +

6 months Batch 1 cask 1 + + +

6 months Batch 1 cask 2 + + +

6 months Batch 1 cask 3 + + +

6 months Batch 1 cask 4 + + +

9 months Batch 1 cask 1 + + +

9 months Batch 1 cask 2 + + +

9 months Batch 1 cask 3 + + +

9 months Batch 1 cask 4 + + +

12 months Batch 1 cask 1 + + +

12 months Batch 1 cask 2 + + +

12 months Batch 1 cask 3 + + +

18 months Batch 1 cask 1 + +

18 months Batch 1 cask 2 + +

18 months Batch 1 cask 3 + + +

18 months Batch 1 cask 4 + +

24 months Batch 1 cask 1 +

24 months Batch 1 cask 2 +

24 months Batch 1 cask 3 + +

24 months Batch 1 cask 4 + + +

Hanseniaspora Pediococcus /Lactobacillus Enterobacteriaceae Acetic acid bacteria
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Table S 4.1.1B Occurrence of microbial taxa as identified through sequence analysis of 
V3 and LSU DGGE bands. Identifications from the V3 DGGE analyses from batch 2. +: 
taxon is present. 

 

  

Sampling moment Sample

1 night Batch 2 cask 2 +

1 night Batch 2 cask 3 + +

1 night Batch 2 cask 4 + +

1 week Batch 2 cask 1 + + + +

1 week Batch 2 cask 2 + + + + +

1 week Batch 2 cask 3 + + + + +

1 week Batch 2 cask 4 + + + + +

2 weeks Batch 2 cask 1 + + + +

2 weeks Batch 2 cask 2 + + + + +

3 weeks Batch 2 cask 1 + + +

3 weeks Batch 2 cask 2 + + + + +

3 weeks Batch 2 cask 3 + + + +

3 weeks Batch 2 cask 4 + + +

1 months Batch 2 cask 1 + + + +

1 months Batch 2 cask 2 + + + + +

1 months Batch 2 cask 3 + + + + +

1 months Batch 2 cask 4 + + + +

2 months Batch 2 cask 1 + + +

2 months Batch 2 cask 2 + + + +

2 months Batch 2 cask 3 + + +

2 months Batch 2 cask 4 + + +

3 months Batch 2 cask 1 + + + + +

3 months Batch 2 cask 2 + + + + +

3 months Batch 2 cask 3 + + + +

3 months Batch 2 cask 4 + + + +

6 months Batch 2 cask 1 + + + +

6 months Batch 2 cask 2 + + + +

6 months Batch 2 cask 3 + + +

6 months Batch 2 cask 4 + + +

9 months Batch 2 cask 1 + + + +

9 months Batch 2 cask 2 + + + +

9 months Batch 2 cask 3 + + +

9 months Batch 2 cask 4 + + +

12 months Batch 2 cask 1 + + +

12 months Batch 2 cask 2 + + +

12 months Batch 2 cask 3 + + +

12 months Batch 2 cask 4 + + +

18 months Batch 2 cask 1 + + + +

18 months Batch 2 cask 2 + + + +

18 months Batch 2 cask 3 + + +

18 months Batch 2 cask 4 + + +

24 months Batch 2 cask 1 + + +

24 months Batch 2 cask 2 + + +

24 months Batch 2 cask 3 + +

24 months Batch 2 cask 4 + + +

Hanseniaspora Saccharomyces Enterobacteriaceae Acetic acid bacteriaPediococcus/Lactobacillus
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Table S 4.1.1C Occurrence of microbial taxa as identified through sequence analysis of 
V3 and LSU DGGE bands. Identifications from the LSU DGGE analyses from batch 1. +: 
taxon is present. 

 

  

Sampling moment Sample

1 week Batch 1 cask 2 +

1 week Batch 1 cask 4 + + +

2 weeks Batch 1 cask 1 +

2 weeks Batch 1 cask 2 + +

2 weeks Batch 1 cask 3 +

2 weeks Batch 1 cask 4 +

3 weeks Batch 1 cask 1 +

3 weeks Batch 1 cask 2 +

3 weeks Batch 1 cask 3 +

3 weeks Batch 1 cask 4 +

1 month Batch 1 cask 1 +

1 month Batch 1 cask 2 +

1 month Batch 1 cask 3 +

1 month Batch 1 cask 4 +

2 months Batch 1 cask 1 +

2 months Batch 1 cask 2 +

2 months Batch 1 cask 3 +

2 months Batch 1 cask 4 +

3 months Batch 1 cask 1 +

3 months Batch 1 cask 2 + + +

3 months Batch 1 cask 3 + + +

3 months Batch 1 cask 4 + +

6 months Batch 1 cask 1 +

6 months Batch 1 cask 2 + + +

6 months Batch 1 cask 3 + + +

6 months Batch 1 cask 4 +

9 months Batch 1 cask 1 +

9 months Batch 1 cask 3 +

9 months Batch 1 cask 4 +

12 months Batch 1 cask 1 + + + +

12 months Batch 1 cask 2 + + + +

12 months Batch 1 cask 3 + + + + +

12 months Batch 1 cask 4 + + + + +

18 months Batch 1 cask 1 + + +

18 months Batch 1 cask 2 +

18 months Batch 1 cask 3 + +

18 months Batch 1 cask 4 + + +

24 months Batch 1 cask 1 + + + +

24 months Batch 1 cask 2 +

24 months Batch 1 cask 3 +

24 months Batch 1 cask 4 + +

WickerhamomycesCandida Dekkera/Brettanomyces Kregervanrija Naumovia Saccharomyces
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Table S 4.1.1D Occurrence of microbial taxa as identified through sequence analysis of 
V3 and LSU DGGE bands. Identifications from the LSU DGGE analyses from batch 2. +: 
taxon is present. 

 

 

  

Sampling moment Sample

1 night Batch 2 cask 4 +

1 week Batch 2 cask 1 +

1 week Batch 2 cask 4 +

2 weeks Batch 2 cask 1 +

2 weeks Batch 2 cask 2 + +

2 weeks Batch 2 cask 3 + +

2 weeks Batch 2 cask 4 +

3 weeks Batch 2 cask 1 +

3 weeks Batch 2 cask 2 +

3 weeks Batch 2 cask 3 +

3 weeks Batch 2 cask 4 +

1 month Batch 2 cask 1 +

1 month Batch 2 cask 2 +

1 month Batch 2 cask 3 + +

1 month Batch 2 cask 4 + +

2 months Batch 2 cask 1 +

2 months Batch 2 cask 2 +

2 months Batch 2 cask 3 +

2 months Batch 2 cask 4 + + +

3 months Batch 2 cask 1 +

3 months Batch 2 cask 2 + + +

3 months Batch 2 cask 3 +

3 months Batch 2 cask 4 + + + +

6 months Batch 2 cask 1 + +

6 months Batch 2 cask 2 + +

6 months Batch 2 cask 3 +

6 months Batch 2 cask 4 + + + +

9 months Batch 2 cask 1 + +

9 months Batch 2 cask 2 + +

9 months Batch 2 cask 3 + + +

9 months Batch 2 cask 4 + + + + +

12 months Batch 2 cask 1 + +

12 months Batch 2 cask 2 + + + +

12 months Batch 2 cask 3 + + + +

12 months Batch 2 cask 4 + + + + +

18 months Batch 2 cask 1 +

18 months Batch 2 cask 2 + +

18 months Batch 2 cask 3 + + + +

18 months Batch 2 cask 4 + + + +

24 months Batch 2 cask 1 +

24 months Batch 2 cask 2 + + +

24 months Batch 2 cask 3 + + + +

24 months Batch 2 cask 4 + +

Candida Kregervanrija Naumovia Saccharomyces WickerhamomycesDekkera/Brettanomyces
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Table S 4.1.1E Identifications of the excised DNA bands (Supplementary Figure S 4.1.2). 

 

Band number Accession number highest hit* Similarity Identification

1 AB004754 100% Enterobacteriaceae

2 AB681728 100% Enterobacteriaceae

3 AY696662 100% Enterobacteriaceae

4 AY696662 100% Enterobacteriaceae

5 AB681728 100% Enterobacteriaceae

6 AB681728 100% Enterobacteriaceae

7 AJ853891 100% Enterobacteriaceae

8 HE978272 100% Enterobacteriaceae

9 AJ853891 100% Enterobacteriaceae

10 AB681728 100% Enterobacteriaceae

11 AY046257 100% Hanseniaspora

12 AB681216 100% Pediococcus/Lactobacillus

13 AB681216 100% Pediococcus/Lactobacillus

14 AJ853891 100% Enterobacteriaceae

15 HE978272 100% Enterobacteriaceae

16 AJ318414 100% Pediococcus/Lactobacillus

17 AJ271383 100% Pediococcus/Lactobacillus

18 AJ271383 100% Pediococcus/Lactobacillus

19 AB681216 100% Pediococcus/Lactobacillus

20 AB681216 100% Pediococcus/Lactobacillus

21 AB681216 100% Pediococcus/Lactobacillus

22 AJ853891 100% Enterobacteriaceae

23 AJ853891 100% Enterobacteriaceae

24 U78183 100% Enterobacteriaceae

25 AF025367 100% Enterobacteriaceae

26 AJ853891 100% Enterobacteriaceae

27 HE978272 100% Enterobacteriaceae

28 AJ318414 100% Pediococcus/Lactobacillus

29 HE978272 100% Enterobacteriaceae

30 AY497740 100% Saccharomyces

31 AJ318414 100% Pediococcus/Lactobacillus

32 AJ318414 100% Pediococcus/Lactobacillus

33 AB681216 100% Pediococcus/Lactobacillus

34 AJ318414 100% Pediococcus/Lactobacillus

35 AB680026 100% Acetic acid bacteria

36 AB680026 100% Acetic acid bacteria

37 AJ279065 100% Saccharomyces

38 AJ279065 100% Saccharomyces

39 AJ279065 100% Saccharomyces

40 BR000309 100% Saccharomyces

41 AJ279065 100% Saccharomyces

42 AJ279065 100% Saccharomyces

43 AJ279065 100% Saccharomyces

44 BR000309 100% Saccharomyces

45 EU057562 100% Wickerhamomyces

46 DQ406717 100% Dekkera/Brettanomyces

47 AY007880 100% Naumovia

48 AJ279065 100% Saccharomyces

49 AY969049 100% Dekkera/Brettanomyces

50 EU057562 100% Wickerhamomyces

51 DQ406717 100% Dekkera/Brettanomyces

52 AY007880 100% Naumovia

53 AJ279065 100% Saccharomyces

54 AJ279065 100% Saccharomyces

55 BR000309 100% Saccharomyces

56 AJ279065 100% Saccharomyces

57 U70247 100% Kregervanrija

58 AY969049 100% Dekkera/Brettanomyces

59 AB365475 100% Candida

60 AJ279065 100% Saccharomyces

61 EU057562 100% Wickerhamomyces

62 AY007880 100% Naumovia

63 AJ279065 100% Saccharomyces

64 AY969049 100% Dekkera/Brettanomyces

*Highest hit with first type strain in BLAST results



 

 

Table S 4.1.2 Overview of MALDI-TOF MS clusters and the identifications of the representative isolates. The number of isolates in each MALDI-
TOF MS cluster is given in parentheses. The accession number of the cluster representative sequence is given when sequence similarity with a 
known sequence was below 100%. B: bacterial MALDI-TOF MS cluster, Y: yeast MALDI-TOF MS cluster. 

  

B-1 (1)a LMG 27882 Gluconobacter cerevisiae

B-2 (43) R-47374; R-49023 KJ186115 rpoB Enterobacter hormaechei AJ543724 99%

B-3 (159) R-47368; R-47377; R-49018 KJ186116 rpoB Enterobacter kobei JX494753 99%

B-4 (21) R-49013 rpoB Raoultella terrigena KF057939 100%

B-5 (32) R-49012 KJ186117 rpoB Citrobacter gillenii KF057931 99%

B-6 (194) R-49008 KJ186118 rpoB Klebsiella oxytoca AJ871804 97%

B-7 (102) R-49019; KJ186120 dnaJ Escherichia/Shighella AB272648 98%

R-49020 KJ186119 rpoB Escherichia/Shighella EU010107 99%

B-8 (387) R-47375; R-47380-R-47386; R-49024-R-49031; 16S rRNA gene Hafnia paralvei FM179943 100%

R-49033-R-49039; R-49555

B-9 (51)b LMG 27440 Acetobacter lambici

B-10 (314) R-49097; R-49102 pheS Pediococcus damnosus AM899820 100%

Y-1 (16) R-49565; R-49568; R-49827 D1/D2 26S rRNA gene Priceomyces carsonii U45743 100%

Y-2 (14) R-49569; R-49824; R-49826 D1/D2 26S rRNA gene Wickerhamomyces anomalus U74592 100%

Y-3 (255) R-49830; R-49831 D1/D2 26S rRNA gene Dekkera bruxellensis JQ689028 100%

Y-4 (111) R-49654; R-49655; R-49662; R-49821; R-52120; R-52121 D1/D2 26S rRNA gene Saccharomyces cerevisiae JQ689017 100%

Y-5 (89) R-49564; R-49820 D1/D2 26S rRNA gene Naumovia castellii HE576754 100%

Y-6 (299) R-49562; R-49653; R-49661 KJ186121 ACT1 Saccharomyces pastorianus ALJS01000103 99%

ABPO01000006 99%

Y-7 (29) R-49837; R-49838 ITS Kazachstania servazzii AY046153 100%

Y-8 (7) R-49647; R-49648 D1/D2 26S rRNA gene Candida friedrichii HQ283384 100%

Y-9 (62) R-49652; R-49844; KJ186123 ACT1 Debaryomyces hansenii CR382136 99%

R-49570; R-49825 KJ186122 ACT1 Debaryomyces hansenii CR382136 98%

Y-10 (7) R-49650 ACT1 Meyerozyma guilliermondii AJ389063 100%

Y-11 (3) R-49567 KJ186127 D1/D2 26S rRNA gene Priceomyces  sp. AB568341 99%

KJ186126 ITS Priceomyces carsonii AJ586521 99%

Y-12 (5) R- 49657 D1/D2 26S rRNA gene Dekkera anomala EF550258 100%

Y-13 (7) R- 49649 D1/D2 26S rRNA gene Pichia membranifaciens EU057561 100%

Y-14 (1) R-49839 KJ186128 D1/D2 26S rRNA gene Candida nemodendra EU011629 98%

Y-15 (1) R-49840 D1/D2 26S rRNA gene Candida patagonica DQ841165 100%

Y-16 (1)c D1/D2 26S rRNA gene Yarrowia lipolytica JQ689067 100%

Y-17 (2) R-49843 D1/D2 26S rRNA gene Debaryomyces marama JN940502 100%

*Accession numbers are given for the unique isolate sequences within the same MALDI-TOF MS cluster.

MALDI-TOF MS 

cluster 

identifier

Accession number highest hit

aIsolates of this cluster were characterized in a polyphasic taxonomic study as the new species Gluconobacter cerevisiae  (Spitaels et al., 2014a).
bIsolates of this cluster were characterized in a polyphasic taxonomic study as the new species Acetobacter lambici  (Spitaels et al., 2014b).
cCluster Y-16 consisted of one isolate from the Cantillon brewery and three isolates from a second brewery. One of the latter isolates was chosen as representative for sequence-based identification.

Strain number of representative isolate Accession number*Sequence type Identification Similarity



 

 

 

 

 

Figure S 4.1.3 Identification of random isolates from DYPAIX agar of batch 1. Empty bars represent isolates that could not be recovered after 
isolation. The number of isolates is given between brackets. 
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 Abstract 

The microbiota involved in lambic beer fermentations in an industrial 

brewery in West-Flanders, Belgium, was determined through a detailed 

study using culture-dependent and culture-independent techniques. 

More than 1300 bacterial and yeast isolates from 13 samples collected 

during a one-year fermentation process were dereplicated and identified 

using matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry followed by sequence analysis of 16S rRNA and various 

protein-coding genes. The bacterial and yeast communities of the same 

samples were further analyzed using denaturing gradient gel 

electrophoresis of PCR-amplified V3 regions of the 16S rRNA genes and 

of PCR-amplified D1/D2 regions of the 26S rRNA genes, respectively. In 

contrast to traditional lambic beer fermentations, no Enterobacteriaceae 

phase was found and a larger variety of acetic acid bacteria were found. 

Similar to traditional lambic beer fermentations, Saccharomyces 

cerevisiae, Saccharomyces pastorianus, Dekkera bruxellensis and 

Pediococcus damnosus were the responsible microorganisms for the main 

fermentation and maturation phases and were therefore considered as 

the core microbiota of lambic beer fermentations. They originated most 

probably from the wood of the casks.  
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Lambic sour beers are among the oldest types of beers still brewed. They are the 

weakly carbonated products of a spontaneous fermentation process that lasts for 

one to three years before bottling (De Keersmaecker, 1996). The sour character of 

the beer originates from the metabolic activities of lactic acid bacteria (LAB), acetic 

acid bacteria (AAB) and various yeasts (Spitaels et al., 2014c; Van Oevelen et al., 

1977; Verachtert & Iserentant, 1995). These beers can be drunk as such or are used 

to produce gueuze or fruit lambic beers. Except for an American coolship ales study 

based on 16S rRNA gene sequence analysis (Bokulich et al., 2012), previous 

microbial studies on lambic beers used phenotypic identification techniques only 

(Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). A recent in-depth analysis, 

based on both culture-dependent and culture-independent analysis of lambic brew 

samples, of the most traditional lambic brewery of Belgium revealed a characteristic 

microbial succession of Enterobacteriaceae in the first month (representing the first 

phase of lambic beer fermentation), Pediococcus damnosus and Saccharomyces spp. 

after two months, reflecting the main fermentation phase, and Dekkera bruxellensis 

after six months, characteristic for the maturation phase (Spitaels et al., 2014c). 

Although lambic beers were originally only brewed in the Senne river valley and 

southeast of Brussels, they are now also brewed elsewhere in Belgium. In West-

Flanders, the most western province of Belgium and thus outside the small region of 

the Senne river valley, two independent breweries produce lambic beers. In the past, 

both breweries obtained the necessary lambic wort from breweries located in the 

Senne river valley: one bought wort to graft the casks to be able to produce an own 

lambic beer and the other blended lambic beers to produce gueuze beers. Because of 

the growing interest in beers of spontaneous fermentation, both breweries started 

to brew a lambic-type of beer, conform to the lambic beer production process, 

besides their regular ales and lager beer brands and stopped buying lambic wort or 

beer from traditional lambic breweries. 

The production activities of American craft breweries, including American coolship 

ales and other types of beers, resemble the activities of the industrial lambic beer 

breweries (Bokulich et al., 2012). Industrial lambic breweries do not only produce 

lambic beers and products derived thereof, but also the more typical ales and lager 

beer brands. Industrial lambic breweries mostly filter, pasteurize and carbonate 
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their spontaneously fermented beers, which are sometimes also sweetened (Van 

Oevelen et al., 1976). Moreover, they can brew lambic-type beers all year round, 

because they have the capacity to prechill the wort before its transfer into the 

cooling tun and hence do not need the cold winter months to properly cool their 

wort in one night as traditional lambic breweries do. Also, industrial brewers 

generally do not use old, small wine or cognac casks for fermentation (2-6 hL); 

instead, their wooden casks are usually larger and custom-made on-site (about 170-

200 hL). 

The present study aimed to determine the microbial succession in a lambic beer 

fermentation process during one year in an industrial lambic beer brewery outside 

the Senne river valley and to unravel the relation with the succession of 

microorganisms of a lambic beer fermentation in a traditional lambic beer brewery. 

Materials and methods 

Brewery 

The selected brewery was an industrial lambic brewery located in West-Flanders, approximately 70 

kilometers to the west of Brussels. This brewery started to produce own lambic beers in 1981. Before 

1981, this brewery produced gueuze based on the blending of lambic beers purchased from 

traditional lambic breweries. 

Brewing process and sampling to study the succession of the microbiota 

Mash was prepared and boiled in the brewery according to the brewer’s recipe. This recipe included 

acidification of the wort to pH 4 by the addition of lactic acid at the end of the 1.5-h wort boiling 

before wort chilling. After the acidification, the wort was prechilled to 40°C and centrifuged to 

remove the hot break. The prechilled wort was then transferred into a cleaned cooling tun and a 500-

mL sample was taken aseptically. A second 500-mL sample was taken from the wort in the cooling 

tun after overnight cooling at the start of the wort transfer into the 170 hL cask. The transfer process 

required about 8 h. Near the end of the wort transfer into the cask, the cooling tun was sampled a 

third time. From the wooden cask, samples were taken after the transfer of the cooled wort and after 

1, 2 and 3 weeks and 1, 2, 3, 6, 9 and 12 months. Two batches were followed. Batch A started on 

January 4, 2011 and was sampled at all time points mentioned above. The wort temperature of batch 

A after overnight cooling was about 22°C. Batch B started on July 27, 2010 and was sampled at the 

same time points for three months only. The wort temperature of batch B after overnight cooling was 

about 29°C. Two weeks after transfer of the batch A wort into the cask there was no apparent 

production of foam, indicating no initiation of the fermentation, hence the brewer decided to mix 

batch A (which is further referred to as the acceptor batch A) with a 3-months old fermenting lambic 
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wort from another batch (further referred to as the donor batch A) to initiate the fermentation. 

Mixing occurred through the bottom apertures of the casks and was performed in a ratio of 5 hL to 

165 hL (± 3%, vol/vol). Both the donor and acceptor batches A were sampled at the time of mixing, 

further referred to as the mixing point. The acceptor batch A was sampled prior to and 15 min after 

mixing, enabling debris to settle. 

All casks were located in a single, separate building of the brewery at ambient temperature and 

contained three apertures: a manhole at the top, closed with a loose panel, a valve at the bottom to fill 

and empty the cask, and a sampling tap located at about 1/3 of the total height of the cask. Before 

every sampling, the sampling tap was cleaned with 70% (vol/vol) ethanol and approximately 100 mL 

of fermenting wort were discarded. Samples (500 mL) were collected in a sterile bottle and 

transported on ice to the laboratory to be processed on the same day. 

Denaturing gradient gel electrophoresis (DGGE) analysis 

Crude brew samples were centrifuged at 8000 × g for 10 min (4°C) at the day of sampling and cell 

pellets were stored at -20°C until further processing. DNA was prepared from the pellets as described 

by Camu et al. (2007). The DNA concentration, purity, and integrity were determined using 1% 

(wt/vol) agarose gels stained with ethidium bromide and by optical density (OD) measurements at 

234, 260, and 280 nm. The quality of the DNA was assessed as good, when absorbance ratios were 

OD260/OD280 > 1.8 and OD234/OD260 > 0.5. Total DNA solutions were diluted to an OD260 of 1. 

Amplification of about 200 bp of the V3 region of the 16S rRNA genes with the F357 (with a GC 

clamp) and R518 primers, followed by denaturing gradient gel electrophoresis (DGGE) analysis, and 

processing of the resulting fingerprints was performed, as described previously (Duytschaever et al., 

2011), except that DGGE gels were run for 960 min instead of 990 min. For the amplification of about 

200 bp of the D1/D2 region of the 26S rRNA genes, NL1 (with GC clamp) and LS2 primers were used, 

as previously reported by Cocolin et al. (2000). 

All DNA bands were assigned to band classes using the BioNumerics 5.1 software (Applied Maths, 

Sint-Martens-Latem, Belgium). Dense DNA bands and/or bands that were present in multiple 

fingerprints were excised from the polyacrylamide gels by inserting a pipette tip into the bands and 

subsequent overnight elution of the DNA from the gel slices in 40 μL 1 x TE buffer (10 mM Tris-HCl, 5 

mM EDTA, pH 8) at 4oC. The position of each extracted DNA band was confirmed by repeat DGGE 

experiments using the excised DNA as template. The extracted DNA was subsequently re-amplified 

and sequenced using the same protocol and primers (but without GC clamp). EzBioCloud and BLAST 

(Altschul et al., 1997; Kim et al., 2012) analyses were performed to determine the most similar 

sequences in the public sequence databases. 

Culture media, enumeration and isolation 

The samples were serially diluted in 0.9% (wt/vol) saline and 50 µL of each dilution was plated in 

triplicate on multiple agar isolation media. The bacterial agar isolation media were incubated under 

different conditions [selected as described before; (Spitaels et al., 2014c)], namely on de Man-Rogosa-
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Sharpe (MRS) agar (Oxoid, Erembodegem, Belgium) (De Man et al., 1960) incubated at 28°C 

aerobically and at 20°C anaerobically for the isolation of LAB; violet red bile glucose (VRBG) agar 

(Mossel et al., 1962, 1978) incubated at 28°C aerobically for the isolation of Enterobacteriaceae; and 

acetic acid medium (AAM) agar (Lisdiyanti et al., 2003) incubated at 28°C aerobically for the isolation 

of AAB. All bacterial agar isolation media were supplemented with 5 ppm amphotericin B (Sigma-

Aldrich, Bornem, Belgium) and 200 ppm cycloheximide (Sigma-Aldrich) to inhibit fungal growth. 

All yeast agar isolation media were supplemented with 100 ppm chloramphenicol (Sigma-Aldrich) to 

inhibit bacterial growth and were incubated aerobically at 28°C. DYPAI agar (2.0% glucose, 0.5% 

yeast extract, 1.0% peptone and 1.5% agar; wt/vol) was used as a general yeast agar isolation 

medium. To favor the slow-growing Dekkera/Brettanomyces, DYPAI was supplemented with an 

additional 50 ppm cycloheximide (DYPAIX) (Abbott et al., 2005; Licker et al., 1998; Suárez et al., 

2007). Furthermore, universal beer agar (Oxoid) was supplemented with 25% (vol/vol) commercial 

gueuze (Belle-Vue; AB Inbev, Anderlecht, Belgium) as recommended by the manufacturer and was 

used as an additional general yeast agar isolation medium (UBAGI). 

Colonies on plates comprising 25 to 250 colony forming units (CFU) were counted after 3 to 10 days 

of incubation and for each of the seven isolation conditions about 20-25 colonies, or all colonies if the 

counts were lower, were randomly picked up. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) dereplication and identification 

Isolates were subcultured twice using the respective isolation conditions and MALDI-TOF MS was 

performed using the third generation of pure cultures by means of a 4800 Plus MALDI TOF/TOFTM 

Analyzer (AB SCIEX, Framingham, MA, USA), as described previously (Wieme et al., 2012). In short, 

Data Explorer 4.0 software (AB SCIEX) was used to convert the mass spectra into .txt-files to import 

them into a BioNumerics 5.1 (Applied Maths) database. The spectral profiles were compared using 

the Pearson product-moment correlation coefficient (PPMCC) and a dendrogram was built using the 

unweighted pair group method with arithmetic mean (UPGMA) cluster algorithm. Homogeneous 

clusters consisting of isolates with visually identical or virtually identical mass spectra were 

delineated. From most clusters, isolates were randomly selected for further identification through 

sequence analysis of 16S rRNA genes and other molecular markers. Sequence analysis of the pheS 

gene was performed to identify LAB (De Bruyne et al., 2007, 2008; Naser et al., 2005, 2007) and of 

dnaK, groEL and rpoB genes to identify AAB (Cleenwerck et al., 2010). Yeast isolates were identified 

through sequence analysis of the D1/D2 region of the 26S rRNA gene (Kurtzman & Robnett, 1998) 

and, whenever needed, also by determination of ACT1 gene sequences (Daniel & Meyer, 2003). Some 

isolates of the present study grouped in clusters of lambic isolates that were examined in a previous 

study using the same polyphasic approach and were therefore considered identified (Spitaels et al., 

2014c). 
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All PCR assays were performed as described by Snauwaert et al. (2013). Bacterial DNA was obtained 

via the protocol described by Niemann et al. (1997), whereas yeast DNA was obtained using the 

protocol of Harju et al. (2004). 

Analysis of the microbiota in the brewery environment  

To analyze the microbiota of the brewery environment, two samples were taken from the cooling tun, 

the ceiling above the cooling tun, the walls and ceiling of the cellar and the inside and outside of the 

casks, each by swabbing a surface of about 100 cm², using a moist swab. A first swab was streaked on 

each of the agar isolation media; a second sample was transferred into 5 mL of saline and filtered 

over a 0.45-µm filter that was transferred into 30 mL of MRS, VRBG, AAM, DYPAI and DYPAIX broth 

each, and incubated as described above. Enrichment cultures that showed growth after 3-10 days of 

incubation were subcultured on their respective agar media and morphologically distinct colonies 

were selected for further analysis. Isolates were identified as described above. Air samples were 

taken using a MAS-100 air sampler (Merck, Darmstadt, Germany) with a flow rate of 0.1 m³/min 

placed about 1 m above the floor, for 1 or 10 min using yeast and bacterial agar isolation media, 

respectively. 

Results 

In neither batches A and B the cooling tun samples nor the first wort sample 

obtained from the cask yielded DNA for DGGE analysis. Bacterial and yeast DNA was 

successfully extracted from all subsequent samples and DGGE amplicons were 

generated from samples taken from one week onwards (Figure 4.2.1). Table 4.2.1 

presents an overview of the enumeration analyses. For both batches, the freshly 

boiled wort sample did not yield growth and there was no apparent inoculation of 

the cooling tun samples taken after overnight cooling. Moreover, the early samples 

of both batches nor those of the remainder of the fermentation process yielded 

growth of Enterobacteriaceae nor were these bacteria detected in the DGGE 

community profiles. 

Microbiota succession in batch A 

First week fermentation samples. The bacterial community profiles of the batch A 

sample taken after one week showed only one dense band in the low % G+C region 

(Figure 4.2.1A, band class 1). Several DNA bands were excised from the DGGE gels 

and sequenced to tentatively assign these band classes to microbial taxa 

(Supplementary Figure S 4.2.1 and Supplementary Table S 4.2.1). Sequence analysis 

demonstrated that this band originated from a yeast, Hanseniaspora sp., which 
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confirmed that the V3 primers also amplify some eukaryotic DNA (Scheirlinck et al., 

2008; Spitaels et al., 2014c; Van der Meulen et al., 2007). Two additional faint DNA 

bands in the bacterial DGGE community profile did not yield amplicons after 

excision and subsequent amplification (Figure 4.2.1A, bands marked with an 

asterisk). The corresponding yeast community profiles contained two dense DNA 

bands that were assigned to Hanseniaspora (Figure 4.2.1B, band class 6) and 

Candida/Pichia (Figure 4.2.1B, band class 7). A full overview of the microbiota 

identified, using DGGE band sequencing, can be found in Supplementary Table S 

4.2.2; similarly, an overview of the identification results of isolates (including 

numbers of isolates investigated) per MALDI-TOF MS cluster is presented in 

Supplementary Table S 4.2.3. Cultivation experiments of the one-week old sample 

yielded primarily yeasts while bacterial counts were low to zero (Table 4.2.1); yeast 

counts on DYPAI, UBAGI and DYPAIX agars were comparable (about 106 CFU/mL), 

indicating growth of cycloheximide-resistant yeasts. Yeast isolates were mainly 

identified as Hanseniaspora uvarum (Figure 4.2.2), which confirmed the results 

obtained by DGGE analysis. These isolates were cycloheximide-resistant, since H. 

uvarum was the only species isolated from DYPAIX agar (Supplementary Figure S 

4.2.2). Pichia fermentans was isolated as minor part of the yeast communities 

(Figure 4.2.2). 
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Figure 4.2.1 DGGE banding patterns of the bacterial and yeast communities of batch A 
(A and B, respectively) and batch B (C and D, respectively): w, week(s); m, month(s). 
Band classes 1-18 are indicated with numbers and some are grouped in a band class 
box. Samples only yielded DNA and PCR amplicons after one week of fermentation. 
*These bands did not yield PCR amplicons after band excision and subsequent DNA 
amplification. The 35-70 % denaturing gradient is represented from left to right on the 
gels. 
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Table 4.2.1 Results of plate counts on different agar isolation media. MRS agar was used 
for the growth of LAB, VRBG agar was used for the growth of Enterobacteriaceae, AAM 
agar was used for the growth of AAB, DYPAI and UBAGI agars were used as general 
yeast growth media and DYPAIX agar was used to favor the growth of Dekkera species. 
The values represent log CFU/mL. ULD: under limit of detection (< 20 CFU/mL); ULQ: 
under limit of quantification (the estimated CFU/mL is provided between brackets). 

 

 

Mixing point. The bacterial and yeast community profiles of the acceptor batch A 

prior to the mixing point were comparable to the profiles of the 1-week old sample, 

except for the disappearance of the faint bands in the bacterial community profiles 

(Figure 4.2.1A). Also the yeast counts were similar (Table 4.2.1) and H. uvarum 

remained the most isolated species, in addition to Pi. fermentans and Dekkera 

bruxellensis (Figure 4.2.2). A single isolate identified as Candida parapsilosis was 

likely a contaminant, since this species was not isolated from subsequent samples. 

Only AAB were isolated from aerobically incubated MRS and AAM agars before the 

mixing point. MRS agar isolates were identified as Gluconobacter cerinus (Figure 

4.2.3). AAM agar isolates represented a novel Acetobacter species (Figure 4.2.3), for 

which the name Acetobacter lambici was recently proposed (Spitaels et al., 2014b). 

The bacterial and yeast community profiles of the donor batch A comprised a single 

dense band each (Figure 4.2.1A, band class 2 and Figure 4.2.1B, band class 8, 

respectively), which both originated from Saccharomyces strains (Supplementary 

Table S 4.2.2). Immediately after the mixing point, the acceptor batch A sample 

Batch A

Freshly boiled wort ULD ULD ULD ULD ULD ULD ULD

1 night cooling tun ULD ULD ULD ULD ULD ULD ULD

1 night cask ULQ (20) ULD ULD ULD ULD ULD ULD

1 week ULQ (20) ULD ULD ULD 6.85 6.88 6.83

2 weeks (before mixing point) 3.13 ULD ULD 3.03 6.51 6.42 6.63

Donor batch 3.61 3.8 ULD ULQ (440) 5.57 5.62 3.9

2 weeks (after mixing point) 4.95 ULQ (40) ULD 5.12 6.72 6.87 6.46

3 weeks 5.37 ULQ (50) ULD 5.35 6.62 6.66 6.48

1 month 5.31 ULQ (200) ULD 5.92 6.06 5.97 5.5

2 months 4.35 3.38 ULD 5.05 5.98 5.95 3.25

3 months 6.98 6.78 ULD 3.98 6.37 6.44 ULQ (300)

6 months 6.59 6.53 ULD ULQ (20) 4.76 4.75 4.94

9 months ULQ (480) 2.83 ULD ULD 3.84 3.83 3.73

12 months 4.38 4.33 ULD ULD 3.9 3.3 2.88

Batch B

Freshly boiled wort ULD ULD ULD ULD ULD ULD ULD

1 night cooling tun ULD ULD ULD ULD ULD ULD ULD

1 night cask ULQ (70) ULD ULD ULD 3 3 ULQ (100)

1 week ULD ULD ULD ULQ (20) 5.92 5.92 ULQ (20)

2 weeks ULQ (390) ULD ULD ULQ (410) 6.24 6.33 ULD

3 weeks 5.37 ULQ (200) ULD 5.28 6.05 6.13 ULD

1 month 5.56 5.49 ULD 5.46 5.95 5.93 ULQ (100)

2 months 7.56 6.63 ULD 4.81 5.04 4.51 5.02

3 months 7.4 7.44 ULD ULQ (20) 4.62 4.62 4.64

MRS 28°C

DYPAIX 28°CUBAGI 28°CDYPAI 28°CAAM 28°CVRBG 28°CMRS 20°C ANMRS 28°C

DYPAIX 28°CUBAGI 28°CDYPAI 28°CAAM 28°CVRBG 28°CMRS 20°C AN
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yielded several DNA bands that originated from AAB (Figure 4.2.1A, bands grouped 

in band class box 4) and one faint, reproducibly fuzzy band that originated from 

Pediococcus/Lactobacillus (Figure 4.2.1A, band class 3). In the yeast community 

profiles, band class 7 (assigned to Candida/Pichia) disappeared and two new bands 

(band classes 8 and 9) appeared, which both originated from Saccharomyces strains 

(Figure 4.2.1B). Bacterial counts of the donor batch A were generally equal to or 

lower than those of the acceptor batch A, except for counts on anaerobically 

incubated MRS agar (Table 4.2.1). Acetobacter fabarum was isolated from the donor 

cask A sample from aerobically incubated MRS agar, but represented only a minor 

fraction of the MRS agar isolates (Figure 4.2.3). The majority of the latter isolates 

were identified as Pediococcus damnosus (Figure 4.2.3), which was also the only 

species isolated from anaerobically incubated MRS agar. AAM agar isolates belonged 

to Acetobacter orientalis and A. fabarum (Figure 4.2.3). Yeast counts were 

comparable in both the acceptor batch A and donor batch A, except for DYPAIX agar 

counts, as the donor batch A contained more cycloheximide-sensitive yeasts (as 

revealed by the difference in colony counts on DYPAI and UBAGI versus DYPAIX 

agars; Table 4.2.1). DYPAI and UBAGI agar isolates of the donor batch A sample 

yielded the cycloheximide-sensitive Saccharomyces cerevisiae and Saccharomyces 

pastorianus (Figure 4.2.2), while DYPAIX agar isolates were identified as D. 

bruxellensis, Hanseniaspora meyeri and H. uvarum (Supplementary Figure S 4.2.2). 

Immediately after the mixing point, bacterial counts on aerobically incubated MRS 

and AAM agars increased, which is likely explained by the presence of microbiota 

settled in either the donor or acceptor batch A that were at least partially 

resuspended, due to shearing forces during the mixing. Hanseniaspora uvarum and 

Pi. fermentans remained the only yeast species isolated from the acceptor batch A 

immediately after the mixing point (Figure 4.2.2). A novel Gluconobacter species 

(Figure 4.2.3), for which the name Gluconobacter cerevisiae was recently proposed 

(Spitaels et al., 2014a), was the only isolated species from AAM agar. This species 

was not isolated from previous samples nor from the donor batch A. Aerobically 

incubated MRS agar yielded G. cerinus isolates only; anaerobically incubated MRS 

agar yielded P. damnosus isolates only (Figure 4.2.3). 



 

 

 

 

Figure 4.2.2 Identification of random isolates from DYPAI and UBAGI agars of batch A cask samples. The number of isolates is given between 
brackets.  
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Figure 4.2.3 Identification of random isolates from MRS and AAM agars of batch A cask samples. The identification of anaerobically incubated 
MRS agar isolates is not shown, as all isolates were identified as Pediococcus damnosus. The number of isolates is given between brackets. 
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Three-weeks fermentation samples. Although foam was produced and the 

fermentation thus started one week after the mixing point, the enumeration results 

showed no profound changes (Table 4.2.1). Not unexpectedly because of its 

presence in the donor cask A, S. cerevisiae in addition to H. uvarum and Pi. 

fermentans was isolated from the yeast agar isolation media (Figure 4.2.2). AAB 

seemed more diverse one week after the mixing point, with A. lambici, G. cerevisiae, 

G. cerinus and A. fabarum being isolated from AAM agar, and the latter two species 

also from MRS agar (Figure 4.2.3). The few colonies from anaerobically incubated 

MRS (n = 4) were identified as P. damnosus. 

One month fermentation samples. One month after brewing, the composition of the 

cultivable microbiota of the samples and the corresponding DGGE fingerprints 

(Figure 4.2.1 and Figure 4.2.2) changed remarkably, with Pi. fermentans, S. 

cerevisiae, S. pastorianus and H. uvarum being isolated from DYPAI and UBAGI agars. 

H. uvarum remained the only yeast species isolated from DYPAIX agar, but it was no 

longer the major isolated yeast species (Supplementary Figure S 4.2.2). Aerobically 

incubated MRS and AAM agars yielded largely the same diversity as found one week 

after the mixing point (Figure 4.2.3). Again, only P. damnosus was isolated from 

anaerobically incubated MRS agar.  

Second- and third-month fermentation samples. During the second and third month 

of fermentation, the number of colonies on anaerobically incubated MRS agar 

gradually increased to reach 106 CFU/mL (Table 4.2.1). In contrast, colony counts on 

aerobically incubated MRS agar showed a decrease during the second month, 

followed by an increase during the third month (Table 4.2.1). At the 2-months 

sampling point, primarily P. damnosus was isolated from both aerobically and 

anaerobically incubated MRS agar; a small fraction of the isolates from aerobically 

incubated MRS agar was identified as G. cerinus (Figure 4.2.3). Counts on AAM agar 

decreased after 2 months and were below the limit of quantification at 6 months 

(Table 4.2.1). Acetobacter lambici, G. cerevisiae and A. fabarum were isolated from 

the 2-months old sample, whereas only the latter two species were isolated at 3 

months of fermentation (Figure 4.2.3). The decrease and subsequent increase in 

colony counts on aerobically incubated MRS agar are likely to be explained by the 

decrease of AAB and the subsequent increase of LAB, as shown by the colony counts 
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on anaerobically incubated MRS agar (Table 4.2.1). Changes in the microbial 

communities led to the appearance of new bands in the bacterial community profiles 

of batch A after 3 months of fermentation (Figure 4.2.1A, bands grouped in band 

class box 5). These new bands all originated from Pediococcus/Lactobacillus 

(Supplementary Table S 4.2.2). Yeast counts on DYPAIX agar were stable until month 

1, after which the counts decreased (Table 4.2.1). In the yeast community profiles, 

band class 6 (Hanseniaspora, Figure 4.2.1B) and two Saccharomyces DNA bands 

(Figure 4.2.1B, band classes 8 and 9) were present during the main fermentation 

phase, although band classes 6 and 9 disappeared at 3 months. In the 2-months old 

sample, multiple new DNA bands appeared, which again all originated from 

Saccharomyces strains (Figure 4.2.1B, bands grouped in band class box 10). At 2 

months, Pi. fermentans and S. pastorianus were isolated from DYPAI and UBAGI 

agars (Figure 4.2.2), whereas H. uvarum remained the only species isolated from 

DYPAIX agar (Supplementary Figure S 4.2.2). The former two species were the main 

yeast species isolated at 3 months, in addition to a small number of S. cerevisiae 

isolates (Figure 4.2.2). Both D. bruxellensis and H. uvarum were isolated from 

DYPAIX agar (Supplementary Figure S 4.2.2). Band class 11 (Figure 4.2.1B) 

originated from Dekkera strains and was first detected in the yeast DGGE community 

profiles at 3 months. 

Six-months, nine-months, and one-year fermentation samples. After the 3-months 

sampling point, the relative intensity of the bands grouped in band class box 5 

varied (Figure 4.2.1A), but each of these DNA bands was assigned to 

Pediococcus/Lactobacillus and thus this taxon was the single dominant bacterium 

during the remainder of the fermentation. Bacterial counts on MRS agar remained 

high (106 CFU/mL) after 6 months of fermentation, but then started to decrease 

(Table 4.2.1). Pediococcus damnosus was the only isolated species from both 

aerobically and anaerobically incubated MRS agars in samples taken at months 6, 9 

and 12 (Figure 4.2.3). Only a single colony, identified as A. fabarum, was found on 

AAM agar at 6 months of fermentation (Figure 4.2.3). Yeast counts started to 

decrease from 3 months onwards. In the 6-months old and subsequent samples, D. 

bruxellensis was the only yeast species isolated from DYPAI and UBAGI agars (Figure 

4.2.2). This yeast species was also isolated from DYPAIX agar and Dekkera anomala 



Industrial lambic beer fermentation process|Chapter 4.2 

Experimental work Part III|119 

 

was only found once in the 9-months old sample (Supplementary Figure S 4.2.2). 

Most bands of the yeast community profiles, except for band class 8 (Figure 4.2.1) 

disappeared at 6 months and concomitantly two faint bands (Figure 4.2.1B, bands 

grouped in band class box 12) appeared in the low % G+C region. The latter bands 

originated from Hanseniaspora strains. The yeast DGGE community profiles of the 

samples at 9 and 12 months were similar: band class 8 disappeared, band class 11 

reappeared and two new bands, originating from Kregervanrija (band class 13) and 

Dekkera (band class 14) strains were present. After one year, not only D. bruxellensis 

but also Wickerhamomyces anomalus and Yarrowia lipolytica were isolated from 

DYPAIX agar (Supplementary Figure S 4.2.2). 

Microbiota succession in batch B 

The early bacterial and yeast DGGE community profiles of batch B contained only 

one dense band each (Figure 4.2.1C, band class 15; Figure 4.2.1D, band class 19), 

which again were both assigned to Saccharomyces strains. Only DYPAI and UBAGI 

agars yielded substantial growth immediately after the transfer of the wort into the 

cask (10³ CFU/mL; Table 4.2.1); yeast isolates from these samples were identified as 

Pichia kudriavzevii (n = 8 isolates) and Debaryomyces hansenii (n = 1). Isolates from 

MRS agar were all identified as A. orientalis (n = 7). 

After one week, yeast counts increased to 105 CFU/mL. The yeasts present were 

primarily cycloheximide-sensitive, as shown by the low counts on DYPAIX agar 

(Table 4.2.1). Isolates from DYPAI and UBAGI agars were identified as S. cerevisiae (n 

= 38) and Pi. kudriavzevii (n = 2), whereas only one isolate, identified as D. 

bruxellensis, was obtained from DYPAIX agar. Bacterial counts were again low and 

only one bacterial isolate was obtained from MRS agar, which was identified as A. 

orientalis, the AAB species that was readily present after the transfer of the wort into 

the cask. 

Band class 16 (originating from Pediococcus/Lactobacillus) appeared in the 2-weeks 

old sample and increased in intensity in later samples until it virtually disappeared 

after one month (Figure 4.2.1C). In the 3-weeks and 1-month old samples, one band 

originating from AAB could be detected in the high % G+C region (Figure 4.2.1C, 

band class 17). The bacterial DGGE community profiles changed during the second 
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month of the fermentation. The profiles of the 2-months old sample contained 

multiple bands (Figure 4.2.1C, bands grouped in band class box 18), which all 

originated from Pediococcus/Lactobacillus. Yeast DGGE community profiles were all 

nearly identical and bands originated from Saccharomyces (Figure 4.2.1D, band class 

19) and Dekkera (Figure 4.2.1D, band class 20) strains. The bacterial community 

profiles after 3 months of fermentation were highly similar to the bacterial 

community profiles obtained from the sample of the 6-months fermented batch A. 

Colony counts on all yeast agar isolation media were comparable after three months 

and were all about 104 CFU/mL. Saccharomyces cerevisiae (n = 46) and Pi. 

kudriavzevii (n = 17) were the major yeast species isolated during the first month. 

Dekkera bruxellensis (n = 5) was increasingly recovered from one month of 

fermentation onwards and was the only isolated yeast species (n = 36) in the 

samples taken after 2 and 3 months of fermentation. From 2 weeks onwards, A. 

fabarum was the sole AAB species that could be isolated from both AAM agar (n = 

23) and aerobically incubated MRS agar (n = 48). This species was isolated up to 3 

months of fermentation and counts on AAM agar reached a maximum of 105 

CFU/mL after 3 weeks, but decreased below the level of quantification at 3 months 

(Table 4.2.1). From 3 weeks onwards, P. damnosus was isolated from MRS agar and 

it was the most isolated bacterial species during the remainder of the fermentation 

(n = 57). Similarly to batch A, the increase of LAB resulted in higher colony counts on 

anaerobically incubated MRS agar (Table 4.2.1). 

Microbiota of the brewery environment 

No yeasts or bacteria could be recovered from samples of the brewery ceilings, walls 

and cooling tun surface; in addition, the microorganisms that were isolated from air 

samples were not found in the lambic beer fermentation process, such as Klebsiella 

oxytoca, Bacillus spp. and Staphylococcus spp. (Table 4.2.2). In contrast, swab 

samples taken from both inside and outside of the casks yielded several species 

found in the fermenting lambic beer. Pediococcus damnosus, D. bruxellensis and D. 

anomala (Table 4.2.2), microorganisms isolated frequently from 6 months of 

fermentation onwards, were isolated from the inside of a cleaned cask and were 

thus readily present when the wort entered the cask. Saccharomyces cerevisiae and 

S. pastorianus were not isolated from air samples nor from the casks. 



Industrial lambic beer fermentation process|Chapter 4.2 

Experimental work Part III|121 

 

Discussion 

Whereas for traditional lambic beer fermentations inoculation starts during the 

overnight cooling of the wort in the cooling tun and acidification of the wort by the 

action of acid-producing microorganisms, the industrial lambic beer fermentations 

of the present study were steered or started spontaneously as soon as the acidified 

chilled wort received microorganisms from the surroundings when it was 

transferred into the cask. Due to acidification of the wort with lactic acid to pH 4 

after boiling, Enterobacteriaceae were not present because of their sensitivity to low 

pH values (Priest & Stewart, 2006). This contrasted with traditional lambic and 

American coolship ale fermentations, where this group of bacteria is dominantly 

present from the cooled wort sample in the cooling tun until the end of the first 

month of fermentation (Bokulich et al., 2012; Spitaels et al., 2014c; Van Oevelen et 

al., 1977; Verachtert & Iserentant, 1995). However, sometimes a lambic beer 

fermentation is too sluggish, which was the case for batch A of the present study, 

although high counts of H. uvarum, a yeast isolated during the Enterobacteriaceae 

phase of traditional lambic beers (Van Oevelen et al., 1977; Verachtert & Iserentant, 

1995), were present. Such a sluggish fermentation is steered by adding fermenting 

wort from another batch of more or less the same age, which was the case for batch 

A of the present study, to stimulate the onset of the fermentation. In contrast to 

batch A, the fermentation process of batch B started spontaneously within the first 

week of the start of the brewing process. The identification of H. uvarum from 

industrial lambic beer samples of batch A confirms the findings of previous studies 

of lambic beer (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995), wherein its 

asexual name Kloeckera apiculata was used. Hanseniaspora uvarum was not found in 

batch B nor in a recent study of the lambic beer fermentation in a traditional 

brewery (Spitaels et al., 2014c). Consequently, whether this yeast species is 

necessary for lambic beer fermentation is not clear up to now. This species has 

however a low fermentative capacity and is commonly found during the 

spontaneous fermentation of wines and cider, where its contribution to flavor 

complexity is increasingly appreciated (Bezerra-Bussoli et al., 2013; de Arruda 

Moura Pietrowski et al., 2012; Valles et al., 2007). 



 

 

 

Table 4.2.2 Overview of the microorganisms isolated from the brewery environment and their isolation sources. 

 

Accession 

number

Accession number 

closest hit
Similarity (%)

Present in 

fermentation

Air attic 

after 

Air attic 

before 

Air 

cellar

Cask 

exterior

Cask 

interior

Bacteriaa

Aerococcus urinaeequi D87677 100 +

Bacillus aerophilus AJ831844 100 +

Bacillus aryabhattai EF114313 100 +

Bacillus licheniformis AE017333 100 +

Bacillus simplex AB363738 100 +

Bacillus subtilis AMXN01000021 100 +

Klebsiella oxytoca* AB004754 100 +

Kocuria kristinae X80749 100 +

Lactococcus lactis AE005176 100 +

Leuconostoc citreum KJ541152 AF111948 99 +

Lysinibacillus macroides AJ628749 100 +

Pediococcus damnosus + +

Pediococcus pentosaceus b AM749815 100 +

Propionibacterium cyclohexanicum KJ541151 D82046 99 +

Propionibacterium thoenii KJ541153 AJ704572 98 +

Pseudomonas  azotoformans D84009 100 +

Rumeliibacillus pycnus AB271739 100 +

Staphylococcus aureus D83355 100 +

Staphylococcus caprae AB009935 100 + +

Staphylococcus epidermidis L37605 100 +

Staphylococcus haemolyticus L37600 100 +

Staphylococcus hominis X6601 100 + +

Staphylococcus petrasii AY953148 100 +

Staphylococcus saprophyticus AP008934 100 +

Staphylococcus succinus AF004220 100 +

Staphylococcus warneri L37603 100 +

Streptococcus parauberis NR_043001 100 +

Yeastsc

Blastobotrys arbuscula DQ442689 100 +

Cryptococcus carnescens AB035054 100 +

Debaryomyces hansenii* JQ689041 100 +

Dekkera anomala + +

Dekkera bruxellensis + +

Trichosporon domesticum JN939449 100 +

cIdentification was based on the D1/D2 26S rRNA gene sequence.

bIdentification was based on the pheS  gene sequence.

aIdentification was based on the 16S rRNA gene sequence.

*Identification was confirmed by MALDI-TOF MS, clustering together with isolates obtained during a previous study (Spitaels et al., 2014).
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Saccharomyces cerevisiae, S. pastorianus, D. bruxellensis, and P. damnosus were 

dominating the lambic beer fermentation processes studied, although much more 

AAB species could be isolated from the industrial lambic brew samples of the 

present study compared with spontaneous lambic brew samples (Spitaels et al., 

2014c). In both cases, most AAB belonged to new species (Spitaels et al., 2014a, 

2014b). This indicates a possible role for AAB too, as these new species may have 

been missed during former studies. Further, the counts of the yeasts were higher 

than those of the bacteria in the main fermentation phase and vice versa in the 

maturation phase. As the DGGE technique is known to detect community members 

that represent more than 1% of the total communities (Muyzer et al., 1993), the low 

bacterial counts could explain the absence of bacterial bands in the bacterial DGGE 

profiles of the batch A samples prior to the mixing point. Alternatively, the isolation 

of AAB species from MRS agar indicates the non-selectiveness of this agar medium 

for LAB, as reported increasingly (Papalexandratou et al., 2011; Spitaels et al., 

2014c). However, aerobically incubated MRS agar allowed the growth of both LAB 

and AAB, whereas anaerobically incubated MRS agar favored the growth of LAB.  

Since the Enterobacteriaceae phase was absent, the first phase of these industrial 

lambic fermentation processes studied was the main fermentation phase, 

characterized by the presence of Saccharomyces spp., which were isolated from 

batch A until the third month. The ratio of S. pastorianus to S. cerevisiae increased for 

a reason that is not known but may be related to fermentation temperature 

adaptation (Cousseau et al., 2013; Vidgren et al., 2010), and this phenomenon was 

also seen during the traditional lambic beer fermentation studied (Spitaels et al., 

2014c). The slow onset and pace of the main fermentation phase of batch A caused a 

late onset of the growth of D. bruxellensis and hence the maturation phase in batch A. 

In batch B, S. cerevisiae was the most isolated yeast species during the main 

fermentation phase, until D. bruxellensis became predominant after one month. 

According to the endorsement ‘traditional specialty guaranteed’ of the European 

Commission, lambic beer is defined as a spontaneously fermented beer in which D. 

bruxellensis plays a crucial role during the maturation phase (European Commission, 

1997a, b).  
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The different start of the two lambic beer batches is difficult to explain. All casks in 

the industrial brewery were similar in height, were exclusively used for lambic beer 

fermentation, and were stored at ambient temperature at the same location. Thus, 

the environmental factors in the industrial lambic brewery were more uniform than 

those of a traditional lambic brewery where casks are smaller, had a previous use in 

wine or cognac production, and are often located in different rooms (Spitaels et al., 

2014c). However, the temperature of the chilled wort may vary between batches 

and ambient temperatures may differ considerably as well. Noteworthy to mention 

that batch A started in January (winter) and batch B started in July (summer). The 

present study hypothesizes that both temperature factors are likely influencing the 

successful initiation and the pace of the main fermentation phase. Further, the onset 

of the maturation phase differed. Since the industrially brewed lambic wort was 

acidified at the end of the wort boiling, the pH drop caused by the production of 

lactic acid by LAB was less pronounced compared to a non-acidified wort. In 

agreement with this, the start of the maturation phase occurred after one month of 

fermentation in batch B, since only D. bruxellensis was present in the samples after 2 

and 3 months. Simultaneously, P. damnosus was the only bacterium isolated. This 

effect was not apparent in batch A where the maturation phase occurred from 6 

months onwards, but was most probably masked by the delayed start of the 

fermentation altogether. Similarly, recent microbiological studies of spontaneous 

beer fermentation processes did not reveal an extended acidification phase 

(Bokulich et al., 2012; Spitaels et al., 2014c). In contrast, the acidification and 

maturation phases seemed to proceed simultaneously and hence it is more 

appropriate to consider this part of the lambic beer fermentation as a long 

maturation phase. In the traditional and industrial breweries, P. damnosus was the 

only isolated bacterium during this long maturation phase. This stresses the impact 

of the microbiota on the lambic beer characteristics. 

Opportunistic contaminants were occasionally isolated, such as C. parapsilosis, D. 

anomala, W. anomalus, and Y. lipolytica. Candida parapsilosis was previously 

reported as a wild yeast from lager beers, but failed to grow in wort or beer, and was 

therefore regarded as a contaminant (Van der Aa Kühle & Jespersen, 1998). The 

yeast species W. anomalus and Y. lipolytica were also found at the end of a lambic 
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beer fermentation process in a traditional lambic brewery (Spitaels et al., 2014c). 

Yarrowia lipolytica is primarily found in dairy and meat products, but also in soil and 

wastewaters (Knutsen et al., 2007). The typical presence of this yeast at a late stage 

of the lambic beer fermentation process may suggest a specific role and deserves 

further attention. 

The observation of D. bruxellensis and not that of Saccharomyces spp., as suggested 

by the DGGE results, as the most isolated yeast species from 6 months onwards, 

confirmed the known pitfalls of a culture-independent technique such as DGGE 

(Spitaels et al., 2014c). Saccharomyces reached high counts (about 106 CFU/mL) 

compared to the counts of Dekkera (about 104 CFU/mL) and the latter may be 

absent in the DGGE community profiles due to the abundant presence of DNA from 

dead cells or from VBNC Saccharomyces cells. 

Lambic beers are assumed to be spontaneously inoculated by the air microbiota of 

the Senne river valley during the overnight cooling in the cooling tun (Martens et al., 

1991; Verachtert & Iserentant, 1995). However, whereas air samples harbored 

microorganisms not relevant for lambic beer fermentation, none of the cooling tun 

samples of the industrial brewery studied yielded DNA or microbial growth. This 

indicates that the cooling tun samples were sterile or very low numbers of 

microorganisms were present and thus the microbiota must have been inoculated 

once the wort entered the cask. Consequently, they should originate from the cask 

wood or from residues of the previous fermentation batches. Indeed, casks are 

cleaned superficially using only a pressure washer to remove yeast and bacterial 

clumps from the ceiling, sides and bottom of the casks. Unlike in traditional 

breweries, no efforts are made to kill the residual microbiota, using for instance 

steam or other sanitizing agents. Again contrasting with traditional lambic 

breweries, the industrial brewery uses anti-fungal paint on all walls and ceilings in 

the brewery. Saccharomyces cerevisiae and S. pastorianus are responsible for the 

main fermentation phase although not isolated at the end of the fermentation 

process. Yet, these yeasts and bacteria may penetrate into the wood of the casks and 

effectively form a biofilm there (Swaffield & Scott, 1995; Swaffield et al., 1997). 

Therefore, the present study hypothesizes that Saccharomyces yeasts may remain 

present in the cask wood and thus survive the maturation phase to re-emerge when 
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fresh wort enters the cask. Likewise, AAB may survive in the cask wood. As P. 

damnosus, D. bruxellensis and D. anomala were isolated from the inside of the casks, 

these species could enter the wort directly after the transfer from the cooling tun 

into the casks. 

Conclusion 

The present study demonstrates that industrial and traditional lambic beer 

fermentations involve the same main actors, including S. cerevisiae, S. pastorianus, P. 

damnosus and D. bruxellensis, which confirms and extends previous observations 

(Spitaels et al., 2014c; Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). 

These species could therefore be regarded as the core microbiota of lambic beer 

fermentation. Although these main actors were the same in both breweries, the 

present data showed a different fermentation profile in the industrial brewery 

compared to the traditional brewery studied. This was mainly due to the absence of 

the Enterobacteriaceae phase, as the industrially produced wort was acidified at the 

end of the wort boiling. Further, P. damnosus was found as the only LAB present, 

indicating an adaptation of this species to grow under the harsh conditions of the 

lambic beer fermentation process. 
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Figure S 4.2.1 DGGE banding patterns of the bacterial and yeast communities of batch A 
(A and B, respectively) and batch B (C and D, respectively): w, week(s); m, month(s). 
Band classes 1-18 are indicated with numbers. Samples only yielded DNA and PCR 
amplicons after one week of fermentation. *These bands did not yield PCR amplicons 
after band excision and subsequent DNA amplification. The 35-70 % denaturing 
gradient is represented from left to right on the gels. The excised bands are indicated in 
red and identifications based on the derived DNA sequences of these bands can be found 
in Supplementary Table S 4.2.1. 
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Table S 4.2.1 Identifications of the excised V3 and LSU DGGE DNA bands used for 
sequence analysis. 

 

Band 

number

Accession number highest 

hit* Similarity Identification

1 AY046257 100% Hanseniaspora

2 AY497740 100% Saccharomyces

3 AB681216 100% Pediococcus/Lactobacillus

4 NR_041445 100% Acetic acid bacteria

5 NR_041445 100% Acetic acid bacteria

6 NR_041445 100% Acetic acid bacteria

7 NR_041445 100% Acetic acid bacteria

8 NR_041445 100% Acetic acid bacteria

9 AB681216 100% Pediococcus/Lactobacillus

10 AB681216 100% Pediococcus/Lactobacillus

11 AB681216 100% Pediococcus/Lactobacillus

12 AB681216 100% Pediococcus/Lactobacillus

13 AB681216 100% Pediococcus/Lactobacillus

14 FR683099 100% Pediococcus/Lactobacillus

15 AY046257 100% Hanseniaspora

16 AB365475 100% Candida/Pichia

17 AB365475 100% Candida/Pichia

18 AJ279065 100% Saccharomyces

19 BR000309 100% Saccharomyces

20 BR000309 100% Saccharomyces

21 BR000309 100% Saccharomyces

22 AJ279065 100% Saccharomyces

23 BR000309 100% Saccharomyces

24 DQ406717 100% Dekkera

25 BR000309 100% Saccharomyces

26 U84230 100% Hanseniaspora

27 U84230 100% Hanseniaspora

28 DQ406717 100% Dekkera

29 U70247 100% Kregervanrija

30 AY969049 100% Dekkera

31 AY497740 100% Saccharomyces

32 AB626053 100% Pediococcus/Lactobacillus

33 NR_041445 100% Acetic acid bacteria

34 AY497740 100% Saccharomyces

35 AB681216 100% Pediococcus/Lactobacillus

36 AB681216 100% Pediococcus/Lactobacillus

37 AB681216 100% Pediococcus/Lactobacillus

38 AB681216 100% Pediococcus/Lactobacillus

39 AB681216 100% Pediococcus/Lactobacillus

40 AJ279065 100% Saccharomyces

41 AY969049 100% Dekkera

42 AJ279065 100% Saccharomyces

*Highest hit with first type strain in BLAST results



 

 

 

 

Table S 4.2.2 Occurrence of microbial taxa in batch A and batch B cask samples as identified through sequence analysis of V3 and LSU DGGE 
bands. +: taxon is present. 

 
 
 
  

Dekkera / Pediococcus /

Brettanomyces Lactobacillus

Batch A / 1 week + +

Batch A / 2 weeks (prior to mixing) + +

Batch A / Donor batch +

Batch A / 2 weeks (after mixing) + + + +

Batch A / 3 weeks + + + +

Batch A / 1 month + + + +

Batch A / 2 months + + + + +

Batch A / 3 months + + +

Batch A / 6 months +  + +

Batch A / 9 months +  + + +

Batch A / 12 months + + +

Batch B / 1 week +

Batch B / 2 weeks + +

Batch B / 3 weeks + + +

Batch B / 1 month + + +

Batch B / 2 months + + +

Batch B / 3 months + + +

Acetic acid bacteriaSaccharomyces Candida/Pichia Hanseniaspora Kregervanrija



 

 

 

 
Table S 4.2.3 Overview of MALDI-TOF MS clusters and the identification of the representative isolates. The number of isolates in each MALDI-TOF 
MS cluster is given in parentheses. The accession number of the cluster representative sequence is given when sequence similarity with a known 
sequence was below 100%. B: bacterial MALDI-TOF MS cluster, Y: yeast MALDI-TOF MS cluster. 

 

MALDI-TOF 

MS cluster 

Strain number of 

representative isolate

Accession 

number*

Identification 

technique/gene

Identification Accession 

number 

closest hit

Similarity (%)

B-1 (101) R-49088 KJ541146 rpoB Gluconobacter cerinus FN391790 98

B-2 (45)a Gluconobacter cerevisiae

B-3 (13) R-49663; R-49740 groEL Acetobacter orientalis KC176391 100

B-4 (96) R-49664; R-49666; R-49667; KJ541148 dnaK Acetobacter fabarum HG329536 99

R-49741; R-49743 KJ541149

B-5 (29)b Acetobacter lambici

B-6 (267) R-49092; R-49096; R-49101 pheS Pediococcus damnosus AM899820 100

Y-1 (27) R-49641; R-49845 KJ541147 D1/D2 26S rRNA gene Pichia kudriavzevii EF550222 99

Y-2 (1)c MALDI-TOF MS Wickerhamomyces anomalus U74592 100

Y-3 (218) R-49640; R-49643; R-49828; D1/D2 26S rRNA gene Dekkera bruxellensis JQ689028 100

R-49829

Y-4 (121) R-49642; R-49644; R-49814; D1/D2 26S rRNA gene Saccharomyces cerevisiae JQ689017 100

R-49815

Y-5 (76) c MALDI-TOF MS Saccharomyces pastorianus

Y-6 (65) R-49639; R-49813; R-49817; D1/D2 26S rRNA gene Pichia fermentans GQ458040 100

R-49818

Y-7 (304) R-49645; R-49646; R-49811; KJ541150 ACT1 Hanseniaspora uvarum AM039456 99

 R-49812; R-49816; R-49819

Y-8 (6) R-49561 ACT1 Hanseniaspora meyeri AM039466 100

growth at 30°C Hanseniaspora meyeri

Y-9 (1) c MALDI-TOF MS Debaryomyces hansenii

Y-10 (1) c MALDI-TOF MS Dekkera anomala

Y-11 (1) R-49836 D1/D2 26S rRNA gene Candida parapsilosis U45754 100

Y-12 (3) R-49846 D1/D2 26S rRNA gene Yarrowia lipolytica JQ689067 100

*Accession numbers are given for the unique isolate sequences within the same MALDI-TOF MS cluster.

cThe isolates of this cluster were identified by means of MALDI-TOF MS. These isolates clustered together with isolates that were obtained and identified 

previously (Spitaels et al., 2014c).

bIsolates of this cluster were characterized in a polyphasic taxonomic study as the new species Acetobacter lambici  (Spitaels et al., 2014b).

aIsolates of this cluster were characterized in a polyphasic taxonomic study as the new species Gluconobacter cerevisiae  (Spitaels et al., 2014a).



 

 

 

Figure S 4.2.2 Identification of random isolates from DYPAIX agar of batch A cask samples. The number of isolates is given between brackets. 
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Chapter 5. Description of two novel acetic acid 

bacteria 

Preamble 

Both the traditionally and industrially produced lambic beers 

appeared to contain new acetic acid bacteria. All but one isolate 

from the traditional brewery were identified as the new species 

Acetobacter lambici sp. nov., described in Chapter 5.1. This species 

was also isolated from industrial lambic beer samples and all 

isolates showed the same RAPD profiles, indicating their clonality. 

Gluconobacter cerevisiae sp. nov. is described in Chapter 5.2 and 

was the second novel acetic acid bacteria isolated during these 

diversity studies. Gluconobacter cerevisiae was primarily isolated 

from the industrial lambic beer samples, but one additional isolate 

was obtained from a traditional lambic beer sample. Furthermore, 

this species was isolated from a spoiled brewer’s yeast in a third 

brewery that did not produce lambic beers. 
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5.1 Acetobacter lambici sp. nov., isolated from fermenting lambic 

beer 
Redrafted from: Freek Spitaels, Leilei Li, Anneleen Wieme, Tom Balzarini, Ilse 
Cleenwerck, Anita Van Landschoot, Luc De Vuyst and Peter Vandamme, Acetobacter 
lambici sp. nov. isolated from fermenting lambic beer, International Journal of Systematic 
and Evolutionary Microbiology 64, 1083-1089. 

Author contributions: conceived and designed the experiments: FS, LL, ADW, IC and 
PV; performed the experiments: FS, LL and ADW; determination of the production of 
keto-D-gluconic acids: TB and FS; analyzed the data: FS, LL and ADW; wrote the 
manuscript: FS; critically reviewed the manuscript: IC, AVL, LDV and PV.  

The Genbank/EMBL accession numbers for the 16S rRNA, dnaK, groEL and rpoB gene 
sequences generated in this study are HF969863, HG329567-HG329569 for the 16S 
rRNA gene sequences; HG329531-HG329542 for dnaK gene sequences; HG329543-
HG329554 for groEL gene sequences and HG329555-HG329566 for rpoB gene 
sequences. 

 Abstract 

An acetic acid bacterium, strain LMG 27439T, was isolated from 

fermenting lambic beer. The cells were Gram-stain-negative, motile rods, 

catalase-positive and oxidase-negative. Analysis of the 16S rRNA gene 

sequence revealed the strain was closely related to Acetobacter 

okinawensis (99.7% 16S rRNA gene sequence similarity towards the type 

strain of this species), A. ghanensis (99.6%), A. syzygii (99.6%), A. 

fabarum (99.4%) and A. lovaniensis (99.2%). DNA-DNA hybridization 

with the type strains of these species revealed moderate DNA-DNA 

hybridization values (31–45%). Strain LMG 27439T was unable to grow 

on glycerol or methanol as the sole carbon source, on yeast extract with 

10% ethanol or on glucose-yeast extract medium at 37°C. It did not 

produce acid from L-arabinose, D-galactose and D-mannose, nor did it 

produce 2-keto-D-gluconic, 5-keto-D-gluconic or 2,5-diketo-D-gluconic 

acid from D-glucose. It did not grow on ammonium as the sole nitrogen 

source and ethanol as the sole carbon source. These genotypic and 

phenotypic data distinguished strain LMG 27439T from established 

species of the genus Acetobacter, and therefore we propose this strain 

represents a novel species of the genus Acetobacter. The name 

Acetobacter lambici sp. nov. is proposed, with LMG 27439T (= DSM 

27328T) as the type strain.  



Chapter 5.1|Acetobacter lambici sp. nov. 

138|Part III Experimental work 

 

The genus Acetobacter belongs to the family Acetobacteraceae within the class 

Alphaproteobacteria and currently comprises 23 species with validly published 

names. The ability of species of the genus Acetobacter and all other acetic acid 

bacteria (AAB), except for members of the genus Asaia, to oxidize ethanol to acetic 

acid or to carbon dioxide and water under neutral or slightly acidic conditions 

enables their growth in fermented foods and beverages (Cleenwerck et al., 2002). 

This growth capacity can be detrimental, for instance when it leads to spoilage of 

lager or ale beers, wines or ciders, as well as beneficial, for instance in the 

production of vinegar, fermented cocoa, kombucha, red sour ales or lambic beers 

(Bartowsky & Henschke, 2008; Bokulich et al., 2012; Martens et al., 1991, 1997; 

Papalexandratou et al., 2011; Raspor & Goranovic, 2008; Vaughan et al., 2005). 

Strain LMG 27439T was isolated during a study of the fermentation process of acidic 

lambic beers. The latter beers are the product of a spontaneous fermentation, which 

progresses for at least two years in wooden casks. Strain LMG 27439T was isolated 

on acetic acid medium (AAM), an AAB enrichment medium which consists of 1.0% 

(wt/vol) glucose, 0.5% (vol/vol) ethanol, 1.5% (wt/vol) peptone, 0.8% (wt/vol) 

yeast extract and 0.3% (vol/vol) acetic acid (Lisdiyanti et al., 2003). The medium 

had a pH of 3.5 and contained 5 ppm amphotericin B and 200 ppm cycloheximide to 

prevent fungal growth. Isolates grown on AAM were subjected to matrix-assisted 

laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as 

described previously (Wieme et al., 2012). MALDI-TOF MS was shown to be useful 

for the identification of AAB involved in the production of vinegar (Andres-Barrao et 

al., 2013) and was used as a dereplication tool in the present study. A total of 187 

AAB lambic beer isolates obtained from two different lambic beer breweries (an 

industrial and a traditional type) had identical mass spectra that differed from those 

of established AAB species, which suggested a unique taxonomic position. Random 

amplified polymorphic DNA (RAPD) analysis of a selection of 13 isolates 

representing the two lambic beer breweries was performed as described by 

Williams et al. (1990) and revealed that all isolates were clonal derivatives of a 

single strain (data not shown). Subsequently, two isolates of the industrial type of 

lambic beer brewery (LMG 27439T and R-50194) and two from the traditional type 
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of lambic beer brewery (LMG 27440 and R-50193) were chosen as representatives 

for further analyses. 

The 16S rRNA gene sequence of strain LMG 27439T was determined as described 

previously (Snauwaert et al., 2013). EzBioCloud analysis (Kim et al., 2012) of the 

obtained sequence revealed that it was an AAB strain, closely related to Acetobacter 

okinawensis (99.7%), Acetobacter ghanensis (99.6%), Acetobacter syzygii (99.6%), 

Acetobacter fabarum (99.4%) and Acetobacter lovaniensis (99.2%); values in 

parentheses are pairwise similarity values towards the type strains of these species. 

All sequences were aligned using the SILVA Incremental Aligner (SINA v1.2.11) 

(http://www.arb-silva.de/aligner/) (Pruesse et al., 2012), with the corresponding 

SILVA SSURef 111 database (Pruesse et al., 2007) and a dendrogram was constructed 

using the MEGA 5.2 software package (Tamura et al., 2011). The tree topologies were 

statistically analyzed using 1000 bootstrapping replications. The maximum-

likelihood and maximum-parsimony method trees (data not shown) showed the 

same topology as the neighbour-joining tree (Figure 5.1.1). 

http://www.arb-silva.de/aligner/
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Figure 5.1.1 Neighbour-joining tree based on the nearly full-length 16S rRNA gene 
sequences (1401 bp) showing the phylogenetic relationship of isolates LMG 27439T, 
LMG 27440, R-50193 and R-50194 and of the type strains of all species of the genus 
Acetobacter. Gluconacetobacter liquefaciens NBRC 12388T was used as an outgroup. The 
evolutionary distances were computed using the maximum composite likelihood 
method (Tamura et al., 2004) and are in the units of the number of base substitutions 
per site. GenBank accession numbers are given in parentheses. Bootstrap percentages 
(>50%) are shown next to the branch points. Bar, 1% sequence divergence. 

 

Due to the limited taxonomic resolution of the 16S rRNA gene in this group of 

bacteria, the phylogenetic position of the taxon represented by strains LMG 27439T 

and LMG 27440 and of type and other taxonomic reference strains of its nearest 

phylogenetic neighbours (A. okinawensis, A. ghanensis, A. syzygii, A. fabarum and A. 

lovaniensis) were analyzed using sequence analysis of the housekeeping genes dnaK 

(encoding chaperone protein DnaK), groEL (encoding for 60 kDa chaperonin) and 
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rpoB (encoding DNA-directed RNA polymerase subunit beta) (Cleenwerck et al., 

2010). Sequences of at least 627 nt, 715 nt and 582 nt were generated for dnaK, 

groEL and rpoB, respectively. All gene sequences were aligned at the amino acid 

level using the MEGA 5.2 software (Tamura et al., 2011). The trees were built using 

the maximum-likelihood model. A discrete gamma distribution was used to model 

evolutionary rate differences among sites and the rate variation model allowed for 

some sites to be evolutionarily invariable. Tree topologies were analyzed 

statistically using 1000 bootstrapping replications. Numerical analysis of the 

individual (Supplementary Figure S 5.1.1, Figure S 5.1.2 and Figure S 5.1.3) and 

concatenated (Figure 5.1.2) gene sequences revealed that the novel taxon 

represented by strains LMG 27439T and LMG 27440 could be clearly differentiated 

from its nearest neighbours. 

 

Figure 5.1.2 Maximum-likelihood tree based on concatenated dnaK, groEL and rpoB 
gene sequences (a total of 1911 bp) showing the phylogenetic relationship of isolates 
LMG 27439T and LMG 27440 and their closest phylogenetic neighbours. 
Gluconacetobacter liquefaciens LMG 1381T was used as an outgroup. The substitution 
model used was the Tamura-Nei model (Tamura & Nei, 1993). GenBank accession 
numbers for dnaK, groEL and rpoB gene sequences are given in this order in 
parentheses. Bootstrap percentages (>50%) are shown next to the branch points. Bar, 
10% sequence divergence. 

 

DNA-DNA hybridizations were performed between strain LMG 27439T and the type 

strains of its nearest phylogenetic neighbours as described previously (Cleenwerck 
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type strains of its nearest neighbours was intermediate: 42% towards A. okinawensis 

LMG 26457T, 35% towards A. ghanensis LMG 23848T, 31% towards A. syzygii LMG 

21419T, 41% towards A. fabarum LMG 24244T, and 45% towards A. lovaniensis LMG 

1617T. The DNA G+C content of strain LMG 27439T was determined as described 

previously (Cleenwerck et al., 2008) and was 56.2 mol%. 

The phenotypic characteristics of strain LMG 27439T and of three additional isolates 

(LMG 27440, R-50193 and R-50194) were determined as described previously 

(Cleenwerck et al., 2002). Type strains of closely related AAB were included as 

positive or negative controls. For microscopy and colony morphology, strains were 

grown aerobically at 28°C for 48 h on AAM agar. The biochemical characteristics 

tested included Gram-stain reaction, analysis of catalase and oxidase activity, growth 

on glucose (30%), glycerol (0.3%), or methanol (0.3%) as the sole carbon sources, 

growth on ammonium as the sole nitrogen source and ethanol as the sole carbon 

source, and growth at 37°C on GY agar medium (5% glucose, 1% yeast extract and 

1.5% agar). In addition, acid production from 1% L-arabinose, D-galactose, D-

mannose and D-glucose was determined as described previously (Asai et al., 1964). 

We observed that Acetobacter farinalis LMG 26772T did not exhibit catalase activity 

in contrast with previously reported data (Tanasupawat et al., 2011). Analysis of 

additional A. farinalis strains, i.e., LMG 27045 and LMG 27046, confirmed that strains 

of this species lack catalase activity. We also observed that A. farinalis LMG 26772T 

exhibited strong growth at 37°C instead of weak growth as reported previously 

(Tanasupawat et al., 2011). 

For testing the production of 2-keto-D-gluconic acid and 5-keto-D-gluconic acid, cells 

were grown as described by Gosselé et al. (1980). The presence of 2-keto-D-gluconic 

acid and 5-keto-D-gluconic acid was determined using high-performance anion-

exchange chromatography (HPAEC) with conductivity under ion suppression (CIS), 

using an ICS 3000 chromatograph (Dionex) equipped with an AS-19 column 

(Dionex). The mobile phase, at a flow rate of 1.0 mL min-1, consisted of ultrapure 

water (0.015 μS cm-1; eluent A) and 100 mM KOH (eluent B), with the following 

gradient: 0.0 min: 96% eluent A and 4% eluent B; 20.0 min: 96% eluent A and 4% 

eluent B; 50.0 min: 60% eluent A and 40% eluent B; and 60.0 min: 0% eluent A and 

100% eluent B. To remove proteins from the samples, 500 μL of acetonitrile was 
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added. After centrifugation (16060 × g for 15 min), the supernatants were filtered 

(0.2 μm filters; Minisart high-flow, Sartorius AG), and injected (10 μL) into the 

column. All four isolates (LMG 27439T, LMG 27440, R-50193 and R-50194) 

produced D-gluconic acid but not 2-keto-D-gluconic acid or 5-keto-D-gluconic acid. 

Acetobacter nitrogenifigens LMG 23498T produced 5-keto-D-gluconic acid but not 2-

keto-D-gluconic acid or 2,5-diketo-D-gluconic acid (production of keto-D-gluconic 

acids from D-glucose was previously not reported for this strain). 

Isolates LMG 27439T, LMG 27440, R-50193 and R-50194 could be differentiated 

from A. okinawensis, A. ghanensis, A. syzygii, A. fabarum and A. lovaniensis by means 

of multiple biochemical characteristics (Table 5.1.1). 

Whole-cell fatty acid methyl esters (FAME) were extracted and analyzed as 

described by Cleenwerck et al. (2007) using the TSBA50 identification library 5.0 

(MIDI). Type strains of established species of the genus Acetobacter and the isolates 

LMG 27439T, LMG 27440, R-50193 and R-50194 were grown on AAM agar for 24-72 

h at 28°C under aerobic conditions. The most predominant fatty acid, which 

accounted for approximately 60% of the total fatty acid content was the straight-

chain, unsaturated C18:1ω7c. Other fatty acids that were present in lower 

percentages were C16:0 (11%), C16:0 2-OH (8%), C18:0 (7%) and C14:0 (4%). Species of 

the genus Acetobacter could not be differentiated based on these data. A full 

overview of the obtained FAME data is shown in Table 5.1.2. 

Finally, numerical comparison by means of the Pearson product moment correlation 

coefficient of the MALDI-TOF MS mass spectra (data not shown) of the isolates LMG 

27439T, LMG 27440, R-50193 and R-50194 and those of reference strains of their 

nearest phylogenetic neighbours allowed a very straightforward separation of all 

taxa. The differences between the spectra could also be examined visually (Figure 

5.1.3). The four novel isolates could be differentiated from all established species of 

the genus Acetobacter by the consistent presence of six biomarker peaks 

characterized by m/z values of 3196.3 ± 4.6, 5226.9 ± 6.2, 6392.1 ± 7.1, 6576.7 ± 7.3, 

8414.7 ± 8.7 and 10070.5 ± 10.1 (Figure 5.1.3); some of the peaks were present in 

the mass spectra of other species of the genus Acetobacter, but never all six 

simultaneously. 
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In conclusion, the present study provides polyphasic information that demonstrates 

that the taxon represented by LMG 27439T, LMG 27440, R-50193 and R-50194 could 

be differentiated from its nearest phylogenetic neighbours, A. okinawensis, A. 

ghanensis, A. syzygii, A. fabarum and A. lovaniensis, by multiple genotypic and 

phenotypic characteristics and methodologies. We therefore propose to name this 

taxon Acetobacter lambici sp. nov., with LMG 27439T (= DSM 27328T) as the type 

strain. 

Description of Acetobacter lambici sp. nov. 

Acetobacter lambici (lam’bi.ci, N.L. gen. n. lambici of lambic beer, an acidic 

spontaneously fermented beer) 

Cells are Gram-stain-negative, motile rods and are approximately 0.7 µm wide and 

1.5-4.0 µm long. Cells occur separately or in pairs. Catalase-positive but oxidase-

negative. After incubation for 48 h on AAM agar at 28°C, colonies are round, rough, 

brownish-beige and slightly raised, with a diameter of approximately 1 mm. Ethanol 

is oxidized to acetic acid. D-Gluconic acid is produced from D-glucose but not 2-keto-

D-gluconic acid or 5-keto-D-gluconic acid. Unable to grow on glycerol or methanol as 

the sole carbon source, on 30% glucose or on GY medium at 37°C. Unable to produce 

acid from L-arabinose, D-galactose and D-mannose. No growth with ammonium as 

the sole nitrogen source and on glycerol or on yeast extract with 10% ethanol. 

The type strain is strain LMG 27439T (= DSM 27328T), which was isolated from 

fermenting lambic beer. The G+C content of strain LMG 27439T is 56.2 mol%.  
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Table 5.1.1 Differential characteristics for Acetobacter lambici sp. nov. and established species of the genus Acetobacter. 
Taxa: 1, Acetobacter lambici sp. nov. (n=4); 2, A. okinawensis (n=7); 3, A. ghanensis (n=3); 4, A. syzygii LMG 21419T; 5, A. fabarum (n=4); 6, A. 
lovaniensis LMG 1617T; 7, A. aceti (n=4); 8, A. peroxydans (n=2); 9, A. cerevisiae (n=4); 10, A. cibinongensis LMG 21418T; 11, A. estunensis (n=3); 12, 
A. orleanensis (n=4); 13, A. persici (n=2); 14, A. malorum LMG 1746T; 15, A. orientalis LMG 21417T; 16, A. farinalis (n=3); 17, A. tropicalis (n=2); 18, 
A. indonesiensis (n=2); 19, A. oeni B13T; 20, A. papayae (n=2); 21, A. pomorum LMG 18848T; 22, A. pasteurianus (n=7); 23, A. senegalensis (n=3); 24, 
A. nitrogenifigens RG1T. n is the number of strains; the type strain is included for all taxa. +, Positive; -, negative; w, weakly positive; v, strain-
dependent (the result of the type strain is given in parentheses). Data for taxon 1 were obtained in the present study; data for taxa 2, 13 and 20 
and the data for acid production of different carbon sources were taken from Iino et al. (2012); data for taxon 16 were taken from Tanasupawat et 
al. (2011); and data for taxa 3-12, 14-15, 17-19 and 21-24 were taken from Cleenwerck et al. (2008). 

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Formation 
from D-
glucose: 

                        

5-keto-D-
gluconic acid 

- - - - - - + - - - - - + - - - - - + - - - - +° 

2-keto-D-
gluconic acid 

- - - - - - + - + + + + + + + + + + - - - v (-) + -° 

Growth in 
ammonium 
with ethanol 

- - - - v (+) + + + - w + - - - - w - - - - - - + + 

Growth in 10 
% ethanol 

- v (+) v (-) - v (-) - - -  - - - + + - - - - + + - + + + 

Growth on 
YE+30 % D-
glucose 

- - + - - - - - - + - - - + - - - - - - - v (-) + + 

Growth at 
37°C on GY 
agar  

- + + + +° + wa +a  +b +a +a +  +b +° +a +a  +  +a  -b 

                         
Growth on 
carbon 
sources: 

                        

Glycerol - +° w + + + + - + + v + +° + + + + + + w° + v + + 
Methanol - +° - - + + - - - - - -  + w - - - -  - - - - 
                         
Acid 
production 
from 

                        

L-arabinose - - + v (-°) - v (+) + - -   v (-) + -  +    +  +   
D-galactose - - - - - v (+) + - +   v (-) + +  +    +     
D-mannose 
 

- - + v (+°) - v (+) + - +   v (+) + -  +    +     

Catalase + + + + + + + - + + + + + + + -° + + + + + + + + 
G+C content of 
DNA (mol%) 

56.2 59.2-
59.4 

56,9-
57,3 

54.3-
55.4 

56.8-
58.0 

57.1-
58.9 

56.9-
58.3 

59.7-
60.7 

56.0-
57.6 

53.8-
54.5 

59.2-
60.2 

55.7-
58.1 

58.7-
58.9 

57.2 52.0-
52.8 

56.3-
56.5 

55.6-
56.2 

54.0-
54.2 

58.1 60.5-
60.7 

52.1 53.2-
54.3 

55.6-
56.0 

64.1 

°Data obtained in present study. 
a Data obtained from Lisdiyanti et al. (2000). 
b Data obtained from the original species description.  



 

 

 

 

 

 

Table 5.1.2 Cellular fatty acid contents (%) of Acetobacter lambici sp. nov. and type strains of all established species of the genus Acetobacter. 
Taxa: 1-4, A. lambici sp. nov. (LMG 27439T, LMG 27440, R-50193 and R-50194, respectively); 5, A. okinawensis LMG 26457T; 6, A. ghanensis LMG 
23848T; 7, A. syzygii LMG 21419T; 8, A. fabarum LMG 24244T; 9, A. lovaniensis LMG 1617T; 10, A. aceti LMG 1504T; 11, A. peroxydans LMG 1635T; 
12, A. cerevisiae LMG 1625T; 13, A. cibinongensis LMG 21418T; 14, A. estunensis LMG 1626T; 15, A. orleanensis LMG 1583T; 16, A. persici LMG 
26458T; 17, A. malorum LMG 1746T; 18, A. orientalis LMG 21417T; 19, A. farinalis LMG 26772T; 20, A. tropicalis LMG 19825T; 21, A. indonesiensis 
LMG 19824T; 22, A. oeni LMG 21952T; 23, A. papayae LMG 26456T; 24, A. pomorum LMG 18848T; 25, A. pasteurianus LMG 1262T; 26, A. senegalensis 
LMG 23690T; 27, A. nitrogenifigens LMG 23498T. -, Not detectable or trace amount (<1%). All data were generated in the present study. 

 
  

Fatty  acid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

C14:0 4.05 4.6 4.25 4.05 4.62 4.46 6.06 5.96 5.98 5.55 2.03 0.94 1 3.63 1.18 1.07 - 2.22 - 1.46 1.91 1.2 5.48 6.32 3.89 2.81 -

C14:02-OH 1.18 1.6 1.24 1.08 2.57 3.75 2.53 2.1 1.11 21.3 9.21 3.91 2.26 5.43 5.05 4.39 5.16 6.54 3.19 9.24 6 8.74 9.41 15.38 16.47 14.13 16.22

C16:0 10.45 11.49 11 11.25 9.51 9.31 10.67 8.47 9.04 10 9.73 11.06 10.98 11.63 11.22 11.38 10.66 10.3 13 10.04 10.96 9.82 11.4 8.21 8.22 8.01 10.33

C16:02-OH 8.83 8.4 8.01 8.36 10.32 9.64 7.93 9.97 9.11 17.45 10.17 5.38 4.52 3.97 7.36 6.6 6.42 6.32 8.23 8.32 10.22 10.58 13.32 12.49 12.97 13.2 23.13

C16:03-OH 1.92 2.06 1.68 1.57 2.94 2.58 2.39 3.1 2.16 4.44 2.23 2.22 3.82 2.61 2.58 2.3 2.63 4.71 2.37 4.48 4.57 4.37 3.74 7.6 6.85 7.35 5.46

C18:0 8.29 7.09 7.13 7.55 4.39 3.47 3.25 2.6 1.95 - 2.21 5.88 5.09 4.15 3.95 3.89 4.72 3.1 6.07 2.53 4.08 4.4 3.45 - 1.43 1.86 -

C18:1ω7

ϲ

59.33 57.74 60.49 59.83 59.28 61.43 60.92 61.47 65.43 35.12 60.03 62.98 62.08 61.7 64.57 64.8 61.49 61.93 58.12 52.77 53.83 48.08 46.27 41.44 42.75 33.82 33.38

C18:03-OH 1.2 1.24 1.05 1.26 1.5 1.47 1.24 1.02 - 1.57 - 3.58 4.05 3.29 1.82 1.87 3.13 1.64 3.02 3.69 4 8.04 1.55 4.75 2.97 6.11 2.28

C19:0cycloω8

ϲ

2.14 3.6 1.93 2.68 2.22 1.95 2.23 3.06 1.75 - 2.63 1.03 1.87 1.93 0.59 - - 1.58 3.09 - 1.02 - 2.63 - - - 1.76
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Figure 5.1.3 Visualization of MALDI-TOF MS profiles of Acetobacter lambici sp. nov. and 
its closest phylogenetic neighbours. Asterisks indicate the set of six peaks by which the 
strains could be differentiated from other species of the genus Acetobacter. The profiles 
are visualized using mMass 5.5.0 (Strohalm et al., 2010). 
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Figure S 5.1.1 Maximum-likelihood tree based on dnaK gene sequences (627 bp) 
showing the phylogenetic relationships of the isolates LMG 27439T and LMG 27440 and 
their closest phylogenetic neighbours. Gluconacetobacter liquefaciens LMG 1381T was 
used as an outgroup. The substitution model used was the Tamura-Nei model (Tamura 
& Nei, 1993). The sequence accession numbers are given between brackets. Bootstrap 
percentages (>50%) are shown next to the branch points. Bar, 5% sequence divergence. 

 

 
Figure S 5.1.2 Maximum-likelihood tree based on groEL gene sequences (715 bp) 
showing the phylogenetic relationships of the isolates LMG 27439T and LMG 27440 and 
their closest phylogenetic neighbours. Gluconacetobacter liquefaciens LMG 1381T was 
used as an outgroup. The substitution model used was the Tamura-Nei model (Tamura 
& Nei, 1993). The sequence accession numbers are given between brackets. Bootstrap 
percentages (>50%) are shown next to the branch points. Bar, 5% sequence divergence. 
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Figure S 5.1.3 Maximum-likelihood tree based on rpoB gene sequences (582 bp) 
showing the phylogenetic relationships of the isolates LMG 27439T and LMG 27440 and 
their closest phylogenetic neighbours. Gluconacetobacter liquefaciens LMG 1381T was 
used as an outgroup. The substitution model used was the Tamura-Nei model (Tamura 
& Nei, 1993). The sequence accession numbers are given between brackets. Bootstrap 
percentages (≥50%) are shown next to the branch points. Bar, 10% sequence 
divergence. 
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5.2 Gluconobacter cerevisiae sp. nov., isolated from the brewery 

environment 
Redrafted from: Freek Spitaels*, Anneleen D. Wieme*, Tom Balzarini, Ilse Cleenwerck, Anita 
Van Landschoot, Luc De Vuyst and Peter Vandamme, Gluconobacter cerevisiae sp. nov. 
isolated from the brewery environment, International Journal of Systematic and Evolutionary 
Microbiology 64, 1134-1141. 
*These authors contributed equally to this work and are considered joint first authors. 

Author contributions: conceived and designed the experiments: FS, ADW and PV; 
performed the experiments: FS and ADW; determination of the production of keto-D-gluconic 
acids: TB and FS; analyzed the data: FS and ADW; wrote the manuscript: FS and ADW; 
critically reviewed the manuscript: LL, ADW, IC, AVL, LDV and PV.  

The Genbank/EMBL accession numbers for sequences generated in this study are HG329624, 
HG329625, HG424633 and KF700364 for the 16S rRNA gene sequences; HG424630-
HG424632 for the 16S-23S ITS gene sequence; HG329570-HG329587 for the dnaK gene 
sequences; HG329588-HG329605 for the groEL gene sequences and HG329606-HG329623 
for the rpoB gene sequences. 

 Abstract 

Three strains, LMG 27748T, LMG 27749 and LMG 27882 with identical 

MALDI-TOF mass spectra were isolated from samples from the brewery 

environment. Analysis of the 16S rRNA gene sequence of strain LMG 27748T 

revealed that the taxon it represents was closely related to the type strains of 

Gluconobacter albidus (100% sequence similarity), Gluconobacter kondonii 

(99.9%), Gluconobacter sphaericus (99.9%) and Gluconobacter 

kanchanaburiensis (99.5%). DNA-DNA hybridization experiments towards the 

type strains of these species revealed moderate DNA relatedness values (39-

65%). The three strains used D-fructose, D-sorbitol, meso-erythritol, glycerol, 

L-sorbose, ethanol (weakly), sucrose and raffinose as the sole carbon source 

for growth (weak growth on the latter two carbon sources was obtained for 

strains LMG 27748T and LMG 27882). The strains were unable to grow on 

glucose-yeast extract medium at 37°C. They produced acid from meso-

erythritol and sucrose, but not from raffinose. D-Gluconic acid, 2-keto-D-

gluconic acid and 5-keto-D-gluconic acid were produced from D-glucose, but 

not 2,5-diketo-D-gluconic acid. These genotypic and phenotypic 

characteristics distinguish strains LMG 27748T, LMG 27749 and LMG 27882 

from species of the genus Gluconobacter with validly published names and, 

therefore, we propose to classify them formally as representatives of a novel 

species, Gluconobacter cerevisiae sp. nov., with LMG 27748T (=DSM 27644T) 

as the type strain.  
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The genus Gluconobacter belongs to the family Acetobacteraceae within the class 

α-Proteobacteria and currently comprises 13 validly named species. Gluconobacter 

strains oxidize glucose to gluconic acid (De Ley & Frateur, 1970; Gammon et al., 

2007) rather than ethanol to acetic acid, differentiating them from most acetic acid 

bacteria (AAB) (Andres-Barrao et al., 2013; De Ley & Frateur, 1970). They are 

unable to oxidize acetate to carbon dioxide and water (Yamada & Yukphan, 2008). 

Strains of the species of the genus Gluconobacter thus prefer carbohydrates as 

carbon sources, whereas other AABs such as members of the genus Acetobacter 

thrive in alcohol-rich environments (Vaughan et al., 2005). Strains of the species of 

the genus Gluconobacter are able to grow in highly concentrated sugar solutions and 

at low pH values (Deppenmeier et al., 2002). This capacity for growth can be 

detrimental, for instance when it leads to spoilage of lager or ale beers, soft drinks, 

wines and ciders, but beneficial to the production of vinegar, red sour ales and 

lambic beers (Andres-Barrao et al., 2013; Bokulich & Bamforth, 2013; Gammon et 

al., 2007; Raspor & Goranovic, 2008; Sakamoto & Konings, 2003; Van Oevelen et al., 

1977; Vaughan et al., 2005). 

Strain LMG 27748T was isolated during a study of the fermentation process of acidic 

lambic beers. The latter beers are the product of a spontaneous fermentation, which 

progresses for at least two years in wooden casks. Strain LMG 27748T was isolated 

on acetic acid medium (AAM), an AAB enrichment medium that consists of 1.0% 

(wt/vol) D-glucose, 0.5% (vol/vol) ethanol, 1.5% (wt/vol) peptone, 1.5% (wt/vol) 

agar, 0.8% (wt/vol) yeast extract and 0.3% (vol/vol) acetic acid (Lisdiyanti et al., 

2003). The medium was adjusted to a pH of 3.5 and supplemented with 5 ppm 

amphotericin B and 200 ppm cycloheximide to prevent fungal growth. Isolates 

grown on AAM were subjected to matrix-assisted laser desorption/ionisation time-

of-flight mass spectrometry (MALDI-TOF MS) as described previously (Wieme et al., 

2012). MALDI-TOF MS was shown useful for the identification of AAB involved in the 

production of vinegar (Andres-Barrao et al., 2013) and was used as a dereplication 

tool in the present study. A total of 14 AAB isolates obtained from two different 

lambic breweries (an industrial and a traditional type located 74 km apart in 

Belgium) and a spoiled brewer’s yeast starter culture of a third brewery displayed 
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identical mass spectra that differed from those of established AAB species, which 

suggested a unique taxonomic position (data not shown). 

Random amplified polymorphic DNA (RAPD) analysis of a selection of six AAB 

isolates representing the three breweries was performed as described by Williams 

et al. (1990), using primers RAPD-270 and RAPD-272 (Mahenthiralingam et al., 

1996). The results revealed three RAPD patterns, corresponding with the three 

breweries (Figure 5.2.1) and thus indicated the presence of three genetically distinct 

strains. Subsequently, one isolate from each brewery was chosen for further 

analyses: strain LMG 27748T representing isolates of the industrial lambic brewery, 

strain LMG 27749 originating from the spoiled brewer’s yeast starter culture and 

strain LMG 27882 isolated in a traditional lambic brewery. 

 

Figure 5.2.1 Patterns of the RAPD analysis of six representative AAB isolates using 
primers RAPD-270 (1-6) and RAPD-272 (7-12). Lanes: 1/7, LMG 27748T; 2/8, LMG 
27882; 3/9, LMG 27749; 4/5/10/11, two additional isolates from an industrial lambic 
brewery; 6/12, additional isolate from a spoiled brewer’s yeast starter culture. M 
denotes the size marker and P represents a positive control sample. 

 

The 16S rRNA gene sequence of strain LMG 27748T was determined as described 

previously (Snauwaert et al., 2013). EzBioCloud analysis (Kim et al., 2012) of this 

16S rRNA gene sequence revealed similarity to those of Gluconobacter albidus NBRC 

3250T (100%), Gluconobacter kondonii NBRC 3266T (99.9%), Gluconobacter 

sphaericus NBRC 12467T (99.9%) and Gluconobacter kanchanaburiensis BCC 15889T 
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(99.5%) (pairwise similarity values in parentheses). All 16S rRNA gene sequences 

were aligned using the SILVA Incremental Aligner (SINA v1.2.11) (http://www.arb-

silva.de/aligner/) (Pruesse et al., 2012), with the corresponding SILVA SSURef 115 

database (Pruesse et al., 2007), and phylogenetic trees were reconstructed using the 

MEGA 5.2 software package (Tamura et al., 2011). Tree topologies were analyzed 

statistically using 1000 bootstrapping replications. The maximum-likelihood and 

maximum-parsimony method trees (data not shown) showed the same topology as 

the neighbour-joining method tree (Figure 5.2.2). 

 

Figure 5.2.2 Neighbour-joining tree based on nearly full-length 16S rRNA gene 
sequences (1363 bp) showing the phylogenetic relationship of isolates LMG 27748T, 
LMG 27749 and LMG 27882 and of the type strains of all species of the genus 
Gluconobacter with validly published names. Acetobacter aceti NBRC 14818T (= LMG 
1504T) was used as an outgroup. Evolutionary distances were computed using the 
maximum composite likelihood method (Tamura et al., 2004). Sequence accession 
numbers are given in parentheses. Bootstrap percentages (> 50%) are shown next to 
the branch points. Bar, 1% sequence divergence. 

 

Because of the limited taxonomic resolution of the 16S rRNA gene in the AAB group 

of bacteria, the 16S-23S rRNA gene internal transcribed spacer (ITS) sequence of 

strain LMG 27748T was determined using the same protocol as used for the 16S 
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rRNA gene sequence (Snauwaert et al., 2013). The 16S-23S rRNA gene ITS primers 

16S-23S-ITS-1F 5’-TGCGGCTGGATCACCTCCT-3’ (positions 1522–1540 on the 16S 

rRNA gene, Escherichia coli numbering) and 16S-23S-ITS-2R 5’-

GTGCCAAGGCATCCACCG-3’ (positions 38–22 on the 23S rRNA gene, E. coli 

numbering) were used. BLAST analysis (Altschul et al., 1997) of the 16S-23S rRNA 

gene ITS sequence revealed that the LMG 27748T ITS sequence was similar to that of 

Gluconobacter kondonii NBRC 3266T (96.0%) and Gluconobacter albidus NBRC 3250T 

(94.0%) (pairwise similarity values in parentheses). Phylogenetic trees were 

reconstructed using the MEGA 5.2 software package (Tamura et al., 2011). Tree 

topologies were analyzed statistically using 1000 bootstrapping replications. The 

maximum-likelihood and maximum-parsimony trees (data not shown) showed the 

same topology as the neighbour-joining method tree (Supplementary Figure S 5.2.1). 

Additionally, the phylogenetic position of the taxon represented by strains LMG 

27748T, LMG 27749 and LMG 27882 was analyzed using partial sequences of the 

housekeeping genes dnaK (encoding the chaperone protein DnaK), groEL (encoding 

a 60-kDa chaperonin) and rpoB (encoding the DNA-directed RNA polymerase beta 

subunit) (Cleenwerck et al., 2010). Sequences of type and additional taxonomic 

reference strains of the genus Gluconobacter were determined to make a 

comprehensive multilocus sequence analysis MLSA dataset for the entire genus. 

Sequences of at least 654, 534 and 510 nt were generated for dnaK, groEL and rpoB, 

respectively. All gene sequences were aligned at the amino acid level using the MEGA 

5.2 software (Tamura et al., 2011). Trees were reconstructed using the maximum-

likelihood model. A discrete gamma distribution was used to model evolutionarily 

rate differences among sites and the rate variation model allowed for some sites to 

be evolutionarily invariable. Tree topologies were analyzed statistically using 1000 

bootstrapping replications. Numerical analysis of the individual (Supplementary 

Figure S 5.2.2, Figure S 5.2.3 and Figure S 5.2.4) and concatenated (Figure 5.2.3) 

gene sequences revealed that strains LMG 27748T, LMG 27749 and LMG 27882 

could be clearly differentiated from their nearest neighbours, G. kondonii LMG 1367T 

t1 and G. albidus LMG 1356T. The concatenated MLSA data revealed that most 

species of the genus Gluconobacter were well separated, with the exception of G. 

nephelii LMG 26773T that grouped with G. japonicus strains. A pairwise comparison 
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of the 16S rRNA gene sequence of G. nephelii LMG 26773T with that of G. nephelii 

RBY-1T (AB540148) revealed a sequence similarity value of 99.8%, i.e., a difference 

of 3 out of 1410 nt. With G. japonicus NBRC 3271T (AB178410) a sequence similarity 

value of 99.9% was found, i.e., a difference of 1 out of 1406 nt. Gluconobacter nephelii 

strain RBY-1T was originally deposited as NBRC 106061T in the NITE Biological 

Resource Center (NBRC, Japan) and G. nephelii strain LMG 26773T is a direct 

subculture of the G. nephelii strain NBRC 106061T culture. The 16S rRNA gene 

sequences of the subcultures LMG 26773T and NBRC 106061T (16S rRNA gene 

sequence retrieved from the NBRC website, 

http://www.nbrc.nite.go.jp/NBRC2/NBRCCatalogueDetailServlet?ID=NBRC&CAT=0

0106061) are fully identical, suggesting that LMG 26773T and NBRC 106061T 

represent the same strain. Therefore, it is likely that the sequence of RBY-1T with 

accession number AB540148 contains sequencing errors or that the biological 

material that was deposited in the NBRC culture collection does not correspond to 

strain RBY-1T (Figure 5.2.2) (Kommanee et al., 2011). 

DNA-DNA hybridizations were performed between strains LMG 27748T and LMG 

27749 and the type strains of their nearest phylogenetic neighbours as described 

previously (Cleenwerck et al., 2008). DNA-DNA hybridization values are presented 

as means of reciprocal reactions (A×B and B×A, values are indicated between 

parentheses), where each reciprocal reaction was performed at least in three-fold. 

Strains LMG 27748T and LMG 27749 showed 80% (81% and 80%) DNA-DNA 

relatedness. The DNA-DNA relatedness between strain LMG 27748T and the type 

strains of its nearest phylogenetic neighbours was 65% (66% and 64%) towards G. 

kondonii LMG 1367T t1, 54% (60% and 49%) towards G. albidus LMG 1356T, 45% 

(56% and 36%) towards G. sphaericus LMG 1414T and 41% (52% and 30%) towards 

G. kanchanaburiensis LMG 26774T. The DNA G+C content of strains LMG 27748T and 

LMG 27749 were determined as described previously (Cleenwerck et al., 2008) and 

were 58.0 mol% and 57.7 mol% respectively. 
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Figure 5.2.3 Maximum-likelihood tree based on concatenated dnaK, groEL and rpoB 
gene sequences (a total of 1698 bp) showing the phylogenetic relationship of isolates 
LMG 27748T, LMG 27749 and LMG 27882 and all species of the genus Gluconobacter 
with validly published names. Acetobacter aceti LMG 1504T (= NBRC 14818T) was used 
as an outgroup. The substitution model used was the General Time Reversible model 
(Nei & Kumar, 2000). Sequence accession numbers for dnaK, groEL and rpoB gene 
sequences are given in parentheses in that order. Bootstrap percentages (> 50%) are 
shown next to the branch points. Bar, 10% sequence divergence. 

 

The phenotypic characteristics of strains LMG 27748T, LMG 27749 and LMG 27882 

were determined as described previously (Cleenwerck et al., 2002). Type strains of 

closely related AAB (G. albidus LMG 1356T, G. kondonii LMG 1367T t1, G. sphaericus 

LMG 1414T and G. kanchanaburiensis LMG 26774T) were included as positive or 

negative controls. For microscopy and morphological examination of colonies, 

strains were grown aerobically on AAM agar at 28°C for 48 h. The biochemical 

characteristics tested included a Gram-stain reaction, analysis of catalase and 
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oxidase activities, growth on 0.3% D-fructose, D-sorbitol, meso-erythritol, glycerol, 

sucrose, raffinose, L-sorbose or ethanol as the sole carbon sources, growth at 37°C 

on GY agar (5% D-glucose, 1% yeast extract and 1.5% agar). In addition, acid 

production from 1% meso-erythritol, sucrose and raffinose was determined as 

described previously (Asai et al., 1964), results are shown in the species description.  

For testing the production of 2-keto-D-gluconic acid and 5-keto-D-gluconic acid, cells 

were grown as described by Gosselé et al. (1980) and the presence of both keto-D-

gluconic acids was determined as described by Spitaels et al. (2014). All three 

strains produced D-gluconic acid, 2-keto-D-gluconic acid and 5-keto-D-gluconic acid, 

but not 2,5-diketo-D-gluconic acid (data not shown).  

Strains LMG 27748T, LMG 27749 and LMG 27882 could be differentiated from G. 

kondonii, G. albidus, G. sphaericus and G. kanchanaburiensis by means of multiple 

biochemical characteristics, such as acid production from sucrose and raffinose and 

growth on ethanol as sole carbon source (Table 5.2.1). The biochemical test results 

did not always correspond to published data. The utilization of L-sorbose and 

raffinose by G. kondonii LMG 1367T t1 was as reported by Yukphan et al. (2010) 

(positive for L-sorbose and negative for raffinose) and differed from results reported 

by Malimas et al. (2007, 2009b). Similarly, acid production from maltose (absent) 

and growth on D-arabitol (present) by G. cerinus NBRC 3267T as reported by 

Malimas et al. (2009b), Tanasupawat et al. (2004) and Yukphan et al. (2010) 

contradicted results reported by Tanasupawat et al. (2011). In addition, Kommanee 

et al. (2011) reported both characteristics as present in G. cerinus strains. These 

discrepant test results were obtained using the same test procedures (Asai et al., 

1964; Gosselé et al., 1983; Katsura et al., 2002; Mason & Claus, 1989; Yamada et al., 

1969, 1976, 1999). Therefore, these biochemical tests appear to reproduce poorly as 

observed previously by Yukphan et al. (2004) and the inclusion of sufficient and 

appropriate control strains is warranted when performing them. 

Numerical comparison of the MALDI-TOF mass spectra of strains LMG 27748T, LMG 

27749 and LMG 27882, and those of reference strains of their nearest phylogenetic 

neighbours by means of the Pearson product-moment correlation coefficient 

allowed a very straightforward separation of these taxa. As described above, the 

three strains displayed indistinguishable spectra that could be differentiated from 
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those of species of the genus Gluconobacter with validly published names by the 

consistent presence of five biomarker peaks characterized by m/z values of 3253.4 ± 

4.6, 4912.4 ± 5.9, 6371.2 ± 7.1, 6506.3 ± 7.2 and 9171.0 ± 9.3 (Figure 5.2.4); some of 

these peaks were present in the mass spectra of strains of other species of the genus 

Gluconobacter, but never all five simultaneously. 

In conclusion, the present polyphasic study provides taxonomic data demonstrating 

that the taxon represented by strains LMG 27748T, LMG 27749 and LMG 27882 

could be differentiated, by means of multiple genotypic [i.e., 16S-23S rRNA gene ITS 

sequence analysis (Supplementary Figure S 5.2.1), MLSA (Figure 5.2.3) and DDH] 

and phenotypic characteristics [i.e., MALDI-TOF MS analysis (Figure 5.2.4), acid 

production and growth on several carbon sources (Table 5.2.1)] using various 

methodologies, from its nearest phylogenetic neighbours. We, therefore, propose to 

assign these strains to a novel species, Gluconobacter cerevisiae sp. nov., with LMG 

27748T (=DSM 27644T) as the type strain. 



 

 

 

 

Table 5.2.1 Differential characteristics for Gluconobacter cerevisiae and the type strains of the validly named Gluconobacter species. 
Taxa: 1, LMG 27748T; 2, LMG 27749; 3, LMG 27882; 4, G. albidus (LMG 1356T); 5, G. kondonii (LMG 1367T); 6, G. sphaericus (LMG 1414T); 7, G. 
kanchanaburiensis (LMG 26774T); 8, G. uchimurae (ZW 160-2T); 9, G. oxydans (NBRC 14819T); 10, G. roseus (NBRC 3990T); 11, G. wancherniae (BCC 
15775T); 12, G. cerinus (NBRC 3267T); 13, G. japonicus (NBRC 3271T); 14, G. frateurii (NBRC 3264T); 15, G. thailandicus (BCC 14116T); 16, G. 
nephelii (NBRC 106061T). Data for taxa 1-3 were generated in this study. +, positive; -, negative; w, weakly positive; vw, very weakly positive;  ND, 
not determined. *Data taken from: a, Tanasupawat et al. (2011); b, this study; c, Malimas et al. (2009a); d, the original species description; e, 
Malimas et al. (2007); f, Kommanee et al. (2011). 

Characteristic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Water-soluble brown pigmenta* - - - - - + + + - - + - - - - - 

2,5-Diketo-D-gluconic acid productiona - - - - - + + + - - + - - - - - 

Growth at 37°Ca - - - - - - - + + - - - - - w - 

                                  

Acid production from:                                 

Sucrosea + + + + -b + -b - - + w + w - - w 

Raffinosec - - - + + + w -a w + vwd w + + w +f 

meso-erythritole + + + +b + -b w ND + - - + + w + + 

                                  

Growth on:                                 

D-Fructosef + + + +b + +b wd ND + +d +d + +c + + + 

D-Sorbitolf + + + +b +b +b +d ND + vwd +d + +c + - + 

Glycerolf + + + +b + -b +d ND + vwd +d + +c + + + 

Sucrosef w + w +b -b vwd +d ND - +d -d w +c + + + 

meso-erythritole + + + +b + -b +d +a w -d w + + - w w 

Raffinosec w + w + -b - wd ND - +d -d - w + w +f 

L-Sorbosec + + + - +b - + ND - - +d - + - - +f 

Ethanol w w w -d -e -d wd -a ND -d vwd +d -c ND ND -f 

                                  

G+C (%)a 58 57.7 ND 60 59.8 59.5 59.5 60.5 60.3 60.5 56.6 55.9 56.4 55.1 55.8 57.2 
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Figure 5.2.4 MALDI-TOF MS profiles of Gluconobacter cerevisiae sp. nov. and its close 
phylogenetic neighbours. Asterisks indicate the set of five peaks (m/z 3253.4 ± 4.6, 
4912.4 ± 5.9, 6371.2 ± 7.1, 6506.3 ± 7.2 and 9171.0 ± 9.3) by which the strains could be 
differentiated from the species of the genus Gluconobacter with validly published 
names. The profiles are visualized using mMass 5.5.0 (Strohalm et al., 2010). 
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Description of Gluconobacter cerevisiae sp. nov. 

Gluconobacter cerevisiae (ce.re.vi’si.a.e. L. fem. gen. n. cerevisiae of beer, referring to 

the source from which the three cultures have been isolated) 

Cells are Gram-stain-negative, non-motile rods and are approximately 1 µm × 2-3 

µm long. Cells occur separately or in pairs. Catalase activity is exhibited, but no 

oxidase activity. After 48 h of incubation on AAM agar at 28°C colonies are round, 

rough, brownish beige and slightly raised, with a diameter of approximately 1-2 mm. 

D-Gluconic acid is produced from D-glucose as well as 2-keto-D-gluconic acid and 5-

keto-D-gluconic acid. Able to grow on D-fructose, D-sorbitol, meso-erythritol, glycerol, 

L-sorbose and ethanol (weakly) as the sole carbon source. Growth on sucrose and 

raffinose as the sole carbon source is variable, ranging from weak (LMG 27748T and 

LMG 27882) to strong (LMG 27749). Unable to grow on glucose-yeast extract 

medium at 37°C. Acid is produced from meso-erythritol and sucrose, but not from 

raffinose. 

The type strain is strain LMG 27748T (=DSM 27644T), which was isolated from 

fermenting lambic beer. The DNA G+C content of strain LMG 27748T is 58.0 mol%.  
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Figure S 5.2.1 Neighbour-joining tree based on 16S–23S rRNA gene ITS sequences (627 
bp) showing the phylogenetic relationship of strains LMG 27748T, LMG 27749 and LMG 
27882 and of their closest phylogenetic neighbours. Acetobacter aceti NBRC 14818T (= 
LMG 1504T) was used as an outgroup. Evolutionary distances were computed using the 
maximum composite likelihood method (Tamura et al., 2004) and are expressed as the 
number of base substitutions per site. Sequence accession numbers are given between 
brackets. Bootstrap percentages (> 50%) are shown next to the branch points. Bar, 2% 
sequence divergence. 
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Figure S 5.2.2 Maximum-likelihood tree based on dnaK gene sequences (654 bp) 
showing the phylogenetic relationships of strains LMG 27748T, LMG 27749 and LMG 
27882 and all species of the genus Gluconobacter with validly published names. 
Acetobacter aceti LMG 1504T (= NBRC 14818T) was used as an outgroup. The 
substitution model used was the General Time Reversible model (Nei & Kumar, 2000). 
Sequence accession numbers for the dnaK gene sequences are given between brackets. 
Bootstrap percentages (> 50%) are shown next to the branch points. Bar, 10% sequence 
divergence. 
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Figure S 5.2.3 Maximum-likelihood tree based on groEL gene sequences (534 bp) 
showing the phylogenetic relationships of strains LMG 27748T, LMG 27749 and LMG 
27882 and all species of the genus Gluconobacter with validly published names. 
Acetobacter aceti LMG 1504T (= NBRC 14818T) was used as an outgroup. The 
substitution model used was the General Time Reversible model (Nei & Kumar, 2000). 
Sequence accession numbers for the groEL gene sequences are given between brackets. 
Bootstrap percentages (> 50%) are shown next to the branch points. Bar, 10% sequence 
divergence. 
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Figure S 5.2.4 Maximum-likelihood tree based on rpoB gene sequences (510 bp) 
showing the phylogenetic relationships of strains LMG 27748T, LMG 27749 and LMG 
27882 and all species of the genus Gluconobacter with validly published names. 
Acetobacter aceti LMG 1504T (= NBRC 14818T) was used as an outgroup. The 
substitution model used was the General Time Reversible model (Nei & Kumar, 2000). 
Sequence accession numbers for the rpoB gene sequences are given between brackets. 
Bootstrap percentages (> 50%) are shown next to the branch points. Bar, 10% sequence 
divergence. 
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Chapter 6. The microbiota and metabolites of 

aged bottled gueuze beers 

Preamble 

Lambic beers are commonly blended to produce gueuze beers. 

These beers are carbonated by the spontaneous bottle 

refermentation after bottling. These beers are commonly aged for 

several years, but little is known about the microbial and metabolic 

processes during the bottle refermentation and therefore their 

aging process. Hence, several bottled gueuze beers of different ages 

were obtained from the same traditional lambic brewery. Next to 

the microbial diversity present in the bottled beers of different 

ages, targeted metabolites were analyzed to obtain more 

information about the processes that drive gueuze beer aging. 
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6.1 Microbiota and metabolites of aged bottled gueuze beers 

converge to the same composition 
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 Abstract 

Abstract: Gueuze beers are prepared by mixing young and old 

lambic beers and are bottle-refermented spontaneously for aging 

The present study analyzed the microbiota and metabolites present 

in gueuze beers that were aged between a few months and up to 17 

years. Yeasts were cultivated from all beers sampled, but bacteria 

could not be grown from beers older than 5 years. Lactic acid and 

ethyl lactate concentrations increased steadily during aging, 

whereas ethanol concentrations remained constant. The 

concentrations of isoamyl acetate and ethyl decanoate decreased 

during the aging process. Hence, ethyl lactate and ethyl decanoate 

can be considered as positive and negative gueuze beer-aging 

metabolite biomarkers, respectively. Nevertheless, considerable 

bottle-to-bottle variation in the metabolite profiles was found, 

which hindered the generalization of the effects seen during the 

aging of the gueuze beers examined, but which illustrated the 

unique character of the lambic beers. The present results further 

indicate that gueuze beers are preferably aged for less than 10 

years  
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Introduction 

Bottle refermentation or conditioning is a common practice in the production of 

Belgian specialty beers (Van Landschoot et al., 2005). Beer bottles are incubated to 

enable a secondary fermentation after the addition of yeast cells and an energy 

source during beer bottling process (Vanderhaegen et al., 2003b). The yeast cells 

protect the beer from oxidation by scavenging oxygen and can add new flavors to 

the beer upon maturation (Vanderhaegen et al., 2003b). For some beers, such as 

Berliner Weisse beer, a starter culture of yeasts and lactic acid bacteria (LAB) is used 

for refermentation (Verachtert & Derdelinckx, 2005). Other beers, such as gueuze 

beers, are the refermented products of mixtures of spontaneously fermented lambic 

beers (Verachtert & Iserentant, 1995). For the production of gueuze beer, a young 

(typically one-year old) lambic beer with residual dextrin carbohydrates is mixed 

with old (typically three-years old) lambic beer, which contains the microbiota that 

can convert the dextrin carbohydrates to more simple fermentable carbohydrates 

(Verachtert & Iserentant, 1995). Once mixed, the beer referments spontaneously, 

without the addition of energy sources, yeast or bacterial cells (Verachtert & 

Iserentant, 1995). Dekkera spp. and LAB species are the dominant microorganisms 

in the refermenting beer, although after 14 months of refermentation only LAB are 

isolated (Verachtert & Iserentant, 1995). In contrast to the storage of some wines, 

beer storage is usually considered negative for the flavor quality of the beer 

(Vanderhaegen et al., 2006). Nevertheless, aging of gueuze beers is a common 

practice in traditional lambic beer breweries and is well appreciated by the 

consumers. Aging may last for more than ten years and hence means an investment 

by the brewery in end-products and space. It is however not clear to what extent this 

long-lasting aging process contributes to the (flavor) quality of gueuze beers. 

Lambic beers are the result of a spontaneous fermentation process that proceeds for 

up to three years. We previously reported the microbial succession of a traditional 

lambic beer fermentation process in the Belgian lambic beer brewery, Cantillon 

(Spitaels et al., 2014). This fermentation process consists of a succession of three 

phases that starts with an Enterobacteriaceae phase, which proceeds for up to 1 

month and in which multiple Enterobacteriaceae species are dominant. After one 

month, the main fermentation phase starts, which is characterized by the dominant 
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presence of Saccharomyces cerevisiae and Saccharomyces pastorianus until month 3. 

The last phase is the maturation phase, in which the beer obtains its characteristic 

acidity and dryness, and is characterized by the presence of Pediococcus damnosus 

as the only LAB species and Dekkera bruxellensis as the dominant yeast species. Both 

microorganisms are still cultivable in the lambic beer at the end of a two-years 

monitoring period (Spitaels et al., 2014). In addition, acetic acid bacteria (AAB) are 

isolated inconsistently throughout this period. 

The flavor of gueuze beers is somewhat different from that of most beers, because of 

the high concentrations of organic acids (mainly lactic acid) that create a profound 

acidity (Van Oevelen et al., 1976). As Dekkera spp. are commonly the most 

metabolically active microorganisms in gueuze beers, carbohydrates and 

oligosaccharides are completely degraded (Shanta Kumara et al., 1993). During 

aging, both enzymatic and non-enzymatic changes in beer flavor prevail 

(Vanderhaegen et al., 2006). Esters soften the sour taste and add fruity notes to the 

beers (Verstrepen et al., 2003). Ethyl decanoate (also referred to as ethyl caprate) is 

a typical ester present in lambic and gueuze beers (Van Oevelen et al., 1976). In 

contrast, the concentration of isoamyl acetate, which yields a banana-like flavor, is 

lower as compared to other beers (Van Oevelen et al., 1976). Additionally, the use of 

aged hops deprives gueuze beers of the typical hop bitterness, while the maturation 

in oak barrels imparts additional flavors (Scholtes et al., 2012). 

The aim of the present study was to assess the impact of aging on the microbial 

species diversity and the metabolite profile of gueuze beers. The microbiota was 

studied using culture-dependent and culture-independent techniques. The 

metabolite profiles were determined through a metabolomics analysis. 

Materials and methods 

Brewery 

Samples were obtained from the Cantillon brewery (http://www.cantillon.be). This brewery is the 

most traditional, still active, lambic brewery in Brussels, Belgium, and uses the same infrastructure 

and still most of the original equipment since 1900, the year when the brewery was founded. 

http://www.cantillon.be/
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Sampling 

In June 2013, gueuze beers of different ages were obtained from the brewery, where they had been 

stored at cellar temperatures (ranging from 12°C in winter to 20°C in summer) since their bottling in 

1996, 2004, 2008, 2010, 2011, and early 2013. Different batches of lambic beer were used for the 

production of these beers over the years and therefore these bottled beers cannot be regarded as 

aged replicates. Per bottling year, three bottles prepared from the same mixture of lambic beers were 

available and analyzed. Bottles were opened and samples were taken aseptically. Per bottling year, 

one bottle (further referred to as bottle 1) was used for microbiota cultivation, while all three bottles 

of each bottling year were subjected to polymerase chain reaction-denaturing gradient gel 

electrophoresis (PCR-DGGE) and metabolite analysis (see below). All cultivation experiments were 

performed at the day of sampling and cell pellets and supernatants (see below) were stored at -20°C 

until PCR-DGGE and metabolite analysis, respectively. 

Besides the gueuze beer bottle samples, a maturation phase sample of a three-year old lambic beer 

that was still fermenting in a cask was obtained. The analysis of this lambic beer was the subject of a 

former study, during which the microbiological characterization was restricted to the first two years 

of fermentation (Spitaels et al., 2014). The wooden cask had a volume of approximately 400 L and 

possessed two apertures, namely a bung hole at the top of the cask, which was inaccessible due to the 

piling of the casks, and a second aperture at the front of the cask. The latter was positioned about 10 

cm above the cask bottom and was used for sampling. The opening was plugged with a cork and a 

500 mL sample was taken after approximately 100 mL of lambic beer was discarded. The lambic beer 

sample was transported on ice to the laboratory and was processed the same day. For this sample, 

only the microbial communities were examined. After the final sampling the lambic beer was used by 

the brewer for the production of a fruit lambic beer. 

PCR-DGGE 

The bottled gueuze beers were homogenized by swirling and three crude beer samples (100 mL 

each) per bottle, i.e., three replicate samples per gueuze beer bottle and thus nine replicate samples 

per bottling year, were centrifuged at 8000 × g for 10 min (4°C). Cell pellets were stored at -20°C until 

further processing. DNA was prepared from the cell pellets as described by Camu et al. (2007). The 

DNA concentration, purity, and integrity were determined using 1 % (wt/vol) agarose gels, stained 

with ethidium bromide and by optical density (OD) measurements at 234, 260, and 280 nm. The 

quality of the DNA was assessed as good, when absorbance ratios were OD260/OD280 > 1.8 and 

OD234/OD260 > 0.5. Total DNA solutions were diluted to an OD260 of 1.0. Amplification of about 200 bp 

of the V3 region of the 16S rRNA genes with the F357 (with a GC clamp attached) and R518 primers, 

followed by DGGE analysis, and processing of the resulting fingerprints was performed as described 

previously (Duytschaever et al., 2011), except that DGGE gels were run for 960 min instead of 990 

min. For the amplification of about 200 bp of the D1/D2 region of the 26S rRNA gene, the NL1 (with 

GC clamp) and LS2 primers were used as previously reported by Cocolin et al. (2000). However, PCR 
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amplicons of both 16S rRNA and 26S rRNA genes were not consistently obtained from the gueuze 

beer samples and a nested PCR approach was therefore applied by means of a second PCR assay 

using the same primers and the products of the first PCR assay as template. 

All DNA bands were assigned to band classes using the BioNumerics 5.1 software (Applied Maths, 

Sint-Martens-Latem, Belgium). Dense DNA bands and/or bands that were present in multiple 

fingerprints were excised from the polyacrylamide gels by inserting a pipette tip into the bands and 

subsequent overnight elution of the DNA from the gel slices in 40 μL 1 x TE buffer (10 mM Tris-HCl, 5 

mM EDTA, pH 8) at 4oC. The position of each DNA band extracted was confirmed by repeat DGGE 

experiments using the excised DNA as template. The DNA extracted was subsequently re-amplified 

and sequenced using the same protocol and primers (without GC clamp). EzBioCloud and BLAST 

(Altschul et al., 1997; Kim et al., 2012) analyses were performed to determine the most similar 

sequences in the public sequence databases (NCBI). 

Culture media, enumeration and isolation 

Samples were serially diluted in 0.9 % (wt/vol) saline and 50 µL of each dilution was plated in 

triplicate on multiple agar isolation media.  

All bacterial agar isolation media were supplemented with 5 ppm amphotericin B (Sigma-Aldrich, 

Bornem, Belgium) and 200 ppm cycloheximide (Sigma-Aldrich) to inhibit fungal growth and were 

incubated aerobically at 28°C, unless stated otherwise. Samples were incubated on de Man-Rogosa-

Sharpe (MRS) agar (Oxoid, Erembodegem, Belgium) (De Man et al., 1960) at 28°C aerobically and at 

20°C anaerobically for the isolation of LAB. Violet red bile glucose (VRBG) agar (Mossel et al., 1962, 

1978) was used for the isolation of Enterobacteriaceae and acetic acid medium (AAM) agar 

(Lisdiyanti et al., 2003) was used for the isolation of AAB.  

All yeast isolation media were supplemented with 100 ppm chloramphenicol (Sigma-Aldrich) to 

inhibit bacterial growth and were incubated aerobically at 28°C. DYPAI agar [2.0 % (wt/vol) glucose, 

0.5 % (wt/vol) yeast extract, 1.0 % (wt/vol) peptone and 1.5 % (wt/vol) agar] was used as a general 

yeast isolation medium. To favor the slow-growing Dekkera/Brettanomyces, DYPAI agar was 

supplemented with an additional 50 ppm cycloheximide (DYPAIX) (Abbott et al., 2005; Licker et al., 

1998; Suárez et al., 2007). Furthermore, universal beer agar (Oxoid) was supplemented with 25 % 

(vol/vol) commercial gueuze beer (Belle-Vue; AB Inbev, Anderlecht, Belgium), as recommended by 

the manufacturer, and was used as an additional general yeast agar isolation medium (UBAGI). 

Simultaneously, enrichment cultures were prepared. Therefore, 30 mL of gueuze beer was filtered 

over a 0.45-µm cellulose nitrate filter (Whatman, Maidstone, Kent, UK) and the filter was 

subsequently incubated in MRS broth at 20°C and 28°C and in AAM broth, VRBG broth, DYPAI broth, 

and DYPAIX broth at 28°C containing the appropriate antimicrobial agents. Enrichment cultures 

showing growth were serially diluted in 0.9 % (wt/vol) saline and 50 µL of each dilution was plated 

on their corresponding agar isolation medium. 
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Colonies on plates comprising 25 to 250 colony forming units (CFU) were counted after 3 to 10 days 

of incubation and for each of the seven isolation conditions used, about 20-25 colonies or, if counts 

were lower, all colonies were randomly picked up. 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) dereplication and identification 

Isolates were subcultured twice using the respective isolation conditions and MALDI-TOF MS was 

performed on the third generation of pure cultures using the 4800 Plus MALDI TOF/TOFTM Analyzer 

(AB/SCIEX, Framingham, MA, USA), as described previously (Wieme et al., 2012). In short, Data 

Explorer 4.0 software (AB/SCIEX) was used to convert the mass spectra into .txt-files to import them 

into a BioNumerics 5.1 database (Applied Maths). Spectral profiles were compared using the Pearson 

product moment correlation coefficient and a dendrogram was built using the unweighted pair group 

method with arithmetic mean (UPGMA) cluster algorithm. Homogeneous clusters consisting of 

isolates with visually identical and/or virtually identical mass spectra were delineated. From each 

cluster, at least one isolate per sample was chosen for further identification through sequence 

analysis of the 16S rRNA gene and other molecular markers. Sequence analysis of the pheS gene was 

used to identify LAB (De Bruyne et al., 2007, 2008; Naser et al., 2005, 2007). Yeast isolates were 

identified through sequence analysis of the D1/D2 region of the 26S rRNA gene (Kurtzman & Robnett, 

1998). All PCR assays were performed as described by Snauwaert et al. (2013). Bacterial DNA was 

obtained via the protocol described by Niemann et al. (1997), whereas yeast DNA was obtained using 

the protocol of Harju et al. (2004). 

Metabolite analysis 

Determination of the concentrations of carbohydrates 

High-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-

PAD) was used for the determination of the concentrations of glucose, fructose and sucrose, as 

described previously, but with the following modifications (Van der Meulen et al., 2007). An ICS 3000 

chromatograph (Dionex, Sunnyvale, CA, USA) with a CarboPacTM PA10 column (Dionex) was used. 

The mobile phase, at a flow rate of 1.0 mL/min, consisted of ultrapure water (0.015 μS/cm; eluent A), 

167 mM NaOH (eluent B), and 500 mM NaOH (eluent C), and was used with the following gradient: 

0.0 min, 87 % A and 13 % B; 20.0 min, 87 % A and 13 % B; 25.0 min, 100 % C; 30.0 min, 100 % C; 

31.0 min, 87 % A and 13 % B; and 35.0 min, 87 % A and 13 % B. To remove proteins, 150 µL of Carrez 

A reagent [3.6 % (wt/vol) K4Fe(CN)6∙3H2O] and 150 µL of Carrez B reagent [7.2 % (wt/vol) 

ZnSO4∙7H2O] were added to 300 µL of the tenfold diluted beer samples. After microcentrifugation 

(14000 rpm for 10 min), the supernatant was filtered (UNIFLO 13/0.2 µm RC; Whatman) and 

transferred to an appropriate vial prior to injection. Calibration was performed using external 

standards. 
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High-performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD) 

was used for the determination of the concentrations of maltose, maltotriose, maltotetraose, 

maltopentaose, maltohexaose, maltoheptaose, and higher malto-oligosaccharides. A Waters 

chromatograph (Waters Corporation, Milford, MA, USA) was used, equipped with a 2424 evaporative 

light-scattering detector, a 600 controller, a 717Plus autosampler, and a Grace Prevail Carbohydrate 

ES column (250 x 4.6 mm, 5 µm, 35°C; Grace Davison Discovery Sciences, Columbia, MD, USA). The 

mobile phase, at a flow rate of 1.0 mL/ min, consisted of ultrapure water (0.015 μS/cm; eluent A) and 

acetonitrile (eluent B), and applied with the following gradient: 0.0 min, 25 % A and 75 % B; 50.0 

min, 40 % A and 60 % B; 51.0 min, 25 % A and 75 % B, and 60.0 min, 25 % A and 75 % B. Proteins 

were removed by adding 500 µL acetonitrile to a 500 µL beer sample. All samples were 

microcentrifuged (14000 rpm for 10 min), filtered (UNIFLO 13/0.2 µm RC; Whatman) and 

transferred to an appropriate vial prior to injection. Calibration was performed using external 

standards.  

Determination of the concentration of lactic acid 

Concentrations of lactic acid were determined by HPAEC with conductivity under ion suppression 

(CIS), using the same apparatus as described above, equipped with an AS-19 column (Dionex), 

according to the procedure described previously, but with the following modifications (Lefeber et al., 

2011). Briefly, the mobile phase, at a flow rate of 1.0 mL/min, consisted of ultrapure water (0.015 

μS/cm; eluent A) and 0.1 M KOH (eluent B). The following gradient was applied: 0.0 min, 96 % A and 

4 % B; 15.0 min, 100 % B; 20.0 min, 100 % B; 21.0 min, 96 % A and 4% B; and 25.0 min, 96 % A and 4 

% B. A standard addition protocol was used as described previously (Vrancken et al., 2008), with the 

following standard solutions (g/L): ultrapure water (0.015 μS/cm; solution A); 7.5 g/L lactic acid 

(solution B); 15.0 g/L lactic acid (solution C); and 22.5 g/L lactic acid (solution D). All samples were 

microcentrifuged (14000 rpm for 10 min), filtered (UNIFLO 13/0.2 µm RC; Whatman) and 

transferred to an appropriate vial prior to injection. 

Determination of the concentrations of ethanol, ethyl lactate, and short-chain fatty 

acids 

The concentrations of ethanol, ethyl lactate, and short-chain fatty acids (SCFAs; in particular, acetic 

acid, propionic acid and isobutyric acid) in the beer samples were measured by GC, using a Focus gas 

chromatograph (Interscience, Breda, The Netherlands) equipped with a Stabilwax-DA column 

(Restek, Bellefonte, PA, USA), a flame ionization detector (FID), and an AS 3000 autosampler. 

Hydrogen gas was used as carrier gas with a constant flow rate of 1 mL/min; nitrogen gas was used 

as make-up gas. The injector and detector temperatures were set to 240°C and 250°C, respectively, 

and the following temperature program was used: 0.0 min at 40°C, 10.0 min at 140°C, 12.0 min at 

230°C and 22.0 min at 230°C. A volume of 900 µL of a mixture (638:250:12) of acetonitrile:1-butanol 

(1.0 mL/L):formic acid was added to 300 µL of a non-diluted (in the case of ethyl lactate and SCFAs) 

or ten times diluted (in the case of ethanol) sample. Prior to injection, the samples were 
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microcentrifuged (14000 rpm for 10 min), filtered (UNIFLO 13/0.2 µm RC, Whatman) and 

transferred to an appropriate vial. A volume of 1.0 µL was injected using a split ratio of 40:1. 

Quantification was performed using external standards. All samples were analyzed in triplicate and 

the results are presented as means of the three independent measurements with respective standard 

deviations. 

Determination of volatile organic compounds 

The targeted analysis of volatile organic compounds (VOCs), in particular esters and higher alcohols, 

was performed using static headspace gas chromatography-MS (SH-GC-MS; semi-quantitative 

analysis), solid-phase microextraction GC-MS (SPME-GC-MS; qualitative fingerprinting analysis), and 

selected ion flow tube-mass spectrometry (SIFT-MS; semi-quantitative fingerprinting analysis). Odor 

thresholds were taken from Simpson and Miller (1984) and Engan (1972). 

SH-GC-MS 

A semi-quantitative targeted analysis of VOCs was performed through SH-GC-MS by means of an 

Agilent 6890 gas chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent 

5973N mass spectrometer (Agilent Technologies), equipped with an MPS2 Gerstel autosampler 

(Gerstel GmbH & Co. KG, Mülheim-an-der-Ruhr, Germany), with the following modifications (Ravyts 

et al., 2009). The samples were prepared in headspace vials containing 5 mL of beer and 100 µL of an 

internal standard solution (1-butanol, 1 mL/L). Prior to injection, the samples were equilibrated in 

appropriate vials in the shaker-incubator of the MPS2 Gerstel autosampler by agitation at 60 °C for 30 

min. Depending on the compound to be analyzed, a split of 20:1 (in the case of isobutanol, ethyl 

acetate, and isoamyl alcohol) or no split (in the case of isoamyl acetate, ethyl hexanoate, ethyl 

octanoate, ethyl decanoate, and ethyl hexadecanoate) were applied. The needle temperature was 90 

°C. The capillary column was a DB-WAXetr (Agilent Technologies) with a length of 30 m, an internal 

diameter of 0.25 mm, and a film thickness of 0.5 µm. Helium was used as carrier gas with a flow rate 

of 1 mL/min. The oven temperature program consisted of an initial step at 40°C for 5 min, followed 

by a linear increase to 120°C at 20°C/min and a linear increase from 120 to 225°C at 10°C/min. 

Finally, the temperature was kept constant at 225°C for the rest of the run, which lasted 24.5 min. The 

temperature of the transfer tube was held at 280°C. Peak identification was done by comparison with 

pure standard compounds and library information (NIST 08, National Institute of Standards and 

Technology, Gaithersburg, MD, USA). Quantification was done by comparison with external 

standards, corrected for the response of the internal standard. Samples were analyzed in triplicate 

and values are presented as the means of the three independent measurements with respective 

standard deviations. 

SPME-GC-MS 

The SPME device (Supelco, Bellefonte, PA, USA) was equipped with a 75-μm 

divinylbenzene/carboxen/polydimethylsiloxane (DVS/CAR/PDMS) fibre and was mounted on a 

MPS2 Gerstel autosampler, which was connected to an Agilent 6890 gas chromatograph coupled to 
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an Agilent 5973N mass spectrometer (Agilent Technologies). The device was operated as described 

above and reported previously (Ravyts & De Vuyst, 2011). No split was applied. Samples were 

analyzed at least in triplicate. The results of components positively identified in at least 66 % of the 

samples analyzed were retained. 

SIFT-MS 

A selected ion flow tube-mass spectrometer, the Syft Voice 200 (Syft Technologies, Christchurch, New 

Zealand), was used to record a spectrum (m/z of 10-250) of the VOCs present in the headspace of a 

diluted beer sample. Briefly, 50 µL of gueuze beer was added to 5 mL of ultrapure water (0.015 

μS/cm) in a 100 mL Schott bottle capped with a PTFE/silicone septum (VWR, Radnor, PA, USA). The 

samples were kept at room temperature for 15 min prior to analysis. Upon analysis, the septum was 

pierced by an inactivated needle connected to the HEX-inlet of the Syft Voice 200 and a full scan was 

started instantly. To minimize the pressure drop in the closed bottle, the scan length was limited to 

100 s. All gueuze beer samples were analyzed in hexaplicate. The concentrations of important volatile 

gueuze beer metabolites were calculated using the SIFT-MS database provided with the LabSyft 

software package (version 1.3.1, Syft Technologies) that included 2-phenylethanol, acetic acid, 

ethanol, ethyl acetate, ethyl hexanoate, ethyl octanoate, isoamyl acetate, and lactic acid. The 

methodology was validated using three commercial beers differing in VOC fingerprint, namely a 

Flemish sour ale beer, a gueuze beer, and a lager beer. The results obtained during this study were 

verified using SH-GC-MS and an additional technique appropriate for every compound. 

Statistical analysis 

Statistical analysis was performed using the SPSS 20 software package (IBM, Armonk, NY, USA). 

ANOVA (p < 0.05) was performed on quantitative data of the following metabolites: acetic acid, 

ethanol, ethyl acetate, ethyl lactate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 

hexadecanoate, isoamyl acetate, isoamyl alcohol, and isobutanol, using the individual bottles as 

populations. For lactic acid, however, populations were based on years. Homoscedasticity was tested 

using Levene’s test (p < 0.05). In the case of homoscedasticity, Tukey’s HSD test was used as a post 

hoc test, while Dunett T3 was used in the case of heteroscedasticity. The correlation coefficients were 

calculated using the Pearson’s correlation coefficient. Significance is reported at the p ≤ 0.01 and 

p < 0.05 levels using a two-sided test.  

Sensory analysis 

The gueuze beer samples were subjected to a preliminary descriptive sensory analysis by twelve 

assessors. The assessors were asked to give a general evaluation of the beers and to score acidity, 

bitterness, fruitiness, and sweetness on a scale from 0 to 10, both for smell and taste. Crackers were 

used to clean the palate during all tastings. 
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Results 

Microbiological analysis 

PCR-DGGE community fingerprints of the gueuze beers  

The community profiles obtained through PCR-DGGE analyses of the bacterial and 

yeast communities of the gueuze beer samples that aged between a few months and 

up to 17 years and of the three-years old lambic beer were compared with the 

bacterial and yeast community profiles of the two-years old lambic beer obtained 

previously (Spitaels et al., 2014; Figure 6.1.1). An overview of the excised PCR-DGGE 

bands and the species to which they were assigned through comparative gene 

sequence analysis is presented in Supplementary Figure S 6.1.1 and Supplementary 

Table S 6.1.2, respectively. The three sample replicates of each of the gueuze beer 

bottles examined yielded identical bacterial and yeast PCR-DGGE community 

profiles (data not shown). With the exception of the yeast community fingerprints of 

the 2008 production year, the bacterial and yeast community profiles of all gueuze 

beer bottles of the same bottling year were also highly similar (data not shown). The 

2008-2 and 2008-3 PCR-DGGE yeast community profiles differed however strongly 

from those of all other gueuze beers (Figure 6.1.1B). For the 2008-3 sample, this 

could be explained by the cork that was disintegrated by mold growth, although the 

cork of the 2008-2 sample was still intact. In the following, the beers are grouped 

according to the time of ripening. 
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Figure 6.1.1 Representative DGGE profiles of bacterial (A) and yeast (B) communities in 
lambic and aged gueuze beers. Bottling year, bottle numbers and band classes 1-27 are 
shown. An overview of the excised DNA bands and their identifications are presented in 
Supplementary Figure S 6.1.1 and Table S 6.1.2. DGGE fingerprints of the two-years old 
lambic beer samples were taken from Spitaels et al. (2014). The band classes 14, 15 and 
16 in this profile were previously assigned to Wickerhamomyces strains, Dekkera strains 
and Naumovia strains, respectively (Spitaels et al., 2014). 

 

Three-years old lambic beer  

The bacterial PCR-DGGE community profiles of the three-years old lambic beer were 

very similar to the community profiles of the two-years old lambic beer (Figure 

6.1.1). Each of the DNA bands (Figure 6.1.1A, band classes 1-8) was assigned to 

Pediococcus/Lactobacillus. An overview of the excised DNA bands and their 

identifications is represented in Supplementary Figure S 6.1.1 and Supplementary 

Table S 6.1.2. The yeast PCR-DGGE community profiles of the three-years old lambic 

beer differed to some extent from the yeast profiles of the two-years old lambic beer. 

Band class 14 (originating from Wickerhamomyces) was not present in the profiles 

of the three-years old lambic beer, which only comprised bands assigned to Dekkera 

(Figure 6.1.1B, band classes 17, 18 and 21). Bacterial counts on AAM and MRS agars 

of a sample of the three-years old lambic beer were about 103-104 CFU/mL, whereas 

yeast counts were about 104 CFU/mL (Supplementary Table S 6.1.1). All isolates 

from AAM agar (n = 22) were identified as Acetobacter lambici. All but one of the 

MRS agar isolates (8 out of 9 isolates) were identified as P. damnosus. The remaining 
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isolate was identified as A. lambici. Yeast isolates from DYPAI and UBAGI agars (n = 

42) were identified as Pichia membranifaciens (23 isolates), D. bruxellensis (10 

isolates), Dekkera anomala (4 isolates), Candida patagonica (4 isolates) and 

Wickerhamomyces anomalus (1 isolate). 

Gueuze beer samples from 2013 

The bacterial PCR-DGGE community profiles of gueuze beers bottled in 2013 

contained bands originating from Pediococcus/Lactobacillus strains (Figure 6.1.1A, 

band classes 1-8) and Enterobacteriaceae strains (Figure 6.1.1A, band classes 9-11), 

while the yeast PCR-DGGE community profiles of these samples comprised bands 

originating from Dekkera strains (Figure 6.1.1B, band classes 17 and 18) and 

Saccharomyces strains (Figure 6.1.1B, band classes 19 and 20). Cultivation 

experiments on isolation agars of this 2013 gueuze beer sample yielded high 

bacterial counts (about 105 CFU/mL) but very low yeast counts (about 102 CFU/mL) 

(Supplementary Table S 6.1.1). On MRS agar (n = 20), P. damnosus was the only 

bacterial species isolated. Dekkera anomala was predominantly isolated from DYPAI 

and UBAGI agars (8 out of 10 isolates), besides D. bruxellensis (2 out of 10 isolates). 

The former was the only species isolated from DYPAIX agar (n = 4). The enrichment 

cultures also yielded bacterial and yeast growth. Also, P. damnosus was the only 

bacterial species isolated after enrichment, as it was the case after direct plating on 

MRS agar. The DYPAI enrichment culture gave S. cerevisiae (16 out of 20 isolates), P. 

membranifaciens (3 out of 20 isolates), and one isolate of D. anomala. DYPAIX agar 

isolates were primarily D. anomala (19 out of 20 isolates); one isolate was D. 

bruxellensis. 

Gueuze beer samples from 2011 and 2010 

Bacterial PCR-DGGE community profiles of the gueuze beers bottled in 2010 and 

2011 did no longer show bands that were assigned to members of the 

Enterobacteriaceae, but comprised an additional band that was also assigned to 

Pediococcus/Lactobacillus (Figure 6.1.1A, band class 12). In the yeast PCR-DGGE 

community profiles, one of the two Saccharomyces bands (Figure 6.1.1B, band class 

20) disappeared from the 2011 gueuze beer profiles, while the 2010 gueuze beer 

profiles only showed two prominent bands originating from Dekkera strains, which 
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were also found in the 2013 and 2011 gueuze beer profiles (Figure 6.1.1B, band 

classes 17 and 18). Pediococcus damnosus was the sole LAB species isolated from the 

2011 and 2010 gueuze beer samples (all 48 isolates were recovered from MRS agar), 

while yeast strains could not be isolated from the 2011 and 2010 gueuze beers. The 

enrichment cultures showed growth of both bacteria and yeasts. Again, all bacterial 

isolates were identified as P. damnosus. Brettanomyces custersianus (26 out of 36 

isolates) and D. bruxellensis (n = 10) were isolated from the gueuze beer bottled in 

2011. All isolates from the 2010 gueuze beer were identified as D. bruxellensis. 

Gueuze beer samples from 2008 

The bacterial PCR-DGGE community profiles of the gueuze beers bottled in 2008 

comprised a DNA band assigned to Lactobacillus (Figure 6.1.1A, band class 13) and a 

very faint band assigned to Pediococcus/Lactobacillus (Figure 6.1.1A, band class 12). 

The 2008-1 gueuze beer yeast community profiles were highly similar to those of 

the previous years, except for a prominent DNA band that was again assigned to 

Dekkera and which was also seen in the three-years old lambic beer sample (Figure 

6.1.1B, band class 21). Sequence analysis of DNA bands (Supplementary Figure S 

6.1.1 and Supplementary Table S 6.1.2) of the 2008-2 and 2008-3 gueuze beer 

samples revealed that three bands originated from Dekkera strains (Figure 6.1.1B, 

band classes 17, 26 and 27); other bands originated from Candida (Figure 6.1.1B, 

band classes 22, 23 and 24) and Saccharomyces (Figure 6.1.1B, band class 25) 

strains. Cultivation experiments did no longer yield bacterial isolates, while only D. 

bruxellensis was isolated from an enrichment culture of the gueuze beer bottled in 

2008. 

Gueuze beer samples from 2004 and 1996 

The bacterial PCR-DGGE community profiles of the gueuze beers that were bottled in 

2004 and 1996 comprised a single band that was assigned to Lactobacillus (Figure 

6.1.1A, band class 13). Three yeast bands (Figure 6.1.1B, band classes17, 18 and 21) 

were detected in the 2004 and 1996 gueuze beer samples, all originating from 

Dekkera yeasts (Supplementary Figure S 6.1.1 and Supplementary Table S 6.1.2). 

Cultivation experiments again yielded D. bruxellensis isolates, after enrichment only, 

but no bacteria. 
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Metabolite analysis 

None of the gueuze beers examined contained fermentable monosaccharides 

(glucose and fructose) or disaccharides (sucrose and maltose) at concentrations 

higher than 0.1 g/L. Maltotriose and other maltodextrins (up to maltoheptaose) 

were present in the beers, but their concentrations were low to zero in the gueuze 

beers bottled in 2004 and 1996 (Figure 6.1.2). The ongoing degradation of these 

carbohydrate sources was reflected in the gradual increase of the lactic acid 

concentrations for all gueuze beers, except for those bottled in 1996 (Table 6.1.1). 

Additionally, the bottle-to-bottle variation was remarkable, i.e., the lactic acid 

concentration in gueuze beer 2004-2 was much higher than the concentrations 

found in gueuze beers 2004-1 and 2004-3. 

The ethanol content of these gueuze beers did not vary significantly (Table 6.1.1). In 

contrast, the acetic acid concentrations did vary considerably between the beers 

bottled in different years (Table 6.1.1). An elevated concentration of acetic acid was 

found in gueuze beer 2013-3, while the concentrations in gueuze beer samples 

2008-1, 2008-2 and 2008-3 were lower compared to the concentrations in gueuze 

beer samples 2004-1, 2004-2 and 2004-3. The significantly lower acetic acid 

concentrations (p < 0.05) in gueuze beer samples 1996-1, 1996-2, and 1996-3 

indicated a further conversion of acetic acid. Both propionic acid and isobutyric acid 

were under the limits of quantification (0.01 g/L) for all gueuze beer samples 

examined. 

The concentrations of ethyl lactate clearly increased during aging (Table 6.1.1). The 

evolution of the ethyl lactate concentrations strongly correlated with the evolution 

of the lactic acid concentrations in the gueuze beers of different ages 

(Supplementary Table S 6.1.4). In contrast, the evolution of the isoamyl acetate 

concentrations was negatively correlated with the evolution of both the lactic acid 

and ethyl lactate concentrations (p < 0.01) (Supplementary Table S 6.1.4). However, 

the individual variations between the bottles were again noteworthy. For example, 

an elevated ethyl lactate concentration was present in gueuze beer sample 2013-3 

compared to gueuze beer samples 2013-1 and 2013-2. 
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Figure 6.1.2 Comparison of a representative profile of malto-oligosacharides from 
beers bottled in 2008 (black line) and 2004 (grey line), as monitored by HPLC-ELSD. 



 

 

 

 

Table 6.1.1 Comparison of the concentrations of the major metabolites present in in aged gueuze beers, as determined by HPAEC-CIS (lactic acid), GC-
FID (ethanol, acetic acid, and ethyl lactate), and SH-GC-MS (ethyl acetate, ethyl decanoate, and isoamyl acetate). Standard deviations are based on three 
replicates taken from each bottle. 

 

Component

Bottle

2013-1 4.7±0.5 4.5±0.5 1.36±0.05 68±3 118±28 4.6±0.5 0.25±0.01

2013-2 3.7±0.1 3.8±0.5 1.05±0.02 44±1 163±26 11.8±0.1 0.29±0.02

2013-3 4.9±0.1 6.2±0.9 2.15±0.13 195±15 130±7 11.3±0.5 0.27±0.02

2011-1 4.6±0.3 6.2±0.8 1.89±0.13 166±17 170±110 3.3±1.3 0.26±0.02

2011-2 4.4±0.7 5.7±0.7 1.88±0.09 175±12 252±42 8.7±0.7 0.32±0.01

2011-3 4.4±1.1 5.3±0.6 1.82±0.23 162±28 292±59 7.5±0.4 0.33±0.02

2010-1 4.3±0.4 7.5±1.4 1.79±0.18 249±28 203±6 2.9±0.1 0.19±0.01

2010-2 5.2±1.1 8.5±0.9 2.02±0.20 295±37 283±39 8.2±0.2 0.26±0.01

2010-3 4.9±1.4 10.6±0.6 2.24±0.47 332±75 285±47 6.5±0.1 0.26±0.02

2008-1 4.7±1.1 9.6±0.4 1.22±0.19 371±70 125±13 2.2±0.1 0.06±0.01

2008-2 4.8±0.9 13.8±1.6 1.27±0.22 413±86 319±134 5.7±0.4 0.10±0.01

2008-3 4.8±1.2 11.9±1.2 1.29±0.18 415±63 246±51 5.6±0.4 0.12±0.01

2004-1 5.0±0.8 13.3±0.8 1.85±0.25 630±94 140±10 2.0±0.3 0.11±0.02

2004-2 4.9±1.5 17.6±1.2 1.80±0.50 592±182 197±27 3.4±0.3 0.16±0.01

2004-3 4.6±0.9 11.3±0.8 1.43±0.08 464±38 178±8 2.7±0.3 0.17±0.02

1996-1 4.6±0.4 10.9±2.4 0.72±0.03 526±24 89±20 1.8±0.4 0.04±0.02

1996-2 5.3±0.9 14.1±1.2 0.93±0.06 778±76 150±94 3.9±0.2 0.07±0.03

1996-3 4.2±0.6 10.2±0.1 0.71±0.04 556±33 169±61 2.5±0.3 0.05±0.02

Lactic acid 

(g/L)

Ethanol 

% (vol/vol)

Isoamyl acetate 

(mg/L)

Ethyl decanoate 

(mg/L)

Ethyl acetate 

(mg/L)

Ethyl lactate 

(mg/L)

Acetic acid 

(g/L)
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Fatty acid ethyl esters, ranging from ethyl C2 (ethyl acetate) to ethyl C16 (ethyl 

hexadecanoate) were detected in all gueuze beer samples, using SH-GC-MS and 

SPME-GC-MS (Supplementary Table S 6.1.3). Ethyl acetate was the most prevalent 

fatty acid ethyl ester (Table 6.1.1). However, no relationship between the age of the 

beer and the ethyl acetate concentrations was found. The concentrations of ethyl 

hexanoate and ethyl octanoate were the lowest in the gueuze beers bottled in 2004. 

However, gueuze beers bottled in 2011 also showed decreased ethyl hexanoate 

concentrations, when compared to the gueuze beers bottled in 2013 and 2010. A 

strong correlation (p < 0.05) was found between the evolution of the ethyl octanoate 

concentrations and the evolution of the ethyl hexanoate concentrations 

(Supplementary Table S 6.1.4). In addition, significantly lower concentrations (p < 

0.01) of ethyl decanoate were present in the gueuze beers bottled in 2004 and 1996 

compared to the others. The evolution of the ethyl decanoate concentrations were 

also positively correlated with the evolution of the ethyl octanoate concentrations, 

whereas they were negatively correlated with the evolution of both the ethyl lactate 

and lactic acid concentrations (p < 0.05) (Table 6.1.1 and Supplementary Table S 

6.1.4). In general, low concentrations of isobutanol and isoamyl alcohol were 

present in all gueuze beer samples (Supplementary Table S 6.1.3). The concentration 

of isoamyl acetate decreased with the aging of the gueuze beers (Table 6.1.1). 

Similar fingerprints of the VOC contents of all gueuze beers were obtained by SPME-

GC-MS (Supplementary Table S 6.1.3). The compounds 2-phenylethanol, 4-

ethylphenol, 4-ethylguaiacol, 4-vinylguaiacol, and diethyl succinic acid were found in 

all gueuze beers (Supplementary Table S 6.1.3).  

Several important volatile gueuze beer metabolites were found by SIFT-MS that 

were present in the SIFT-MS Labsyft database, the concentrations of which were 

compared with the concentrations obtained by GC-FID, HPAEC-CIS, or SH-GC-MS 

(Figure 6.1.3). Ethanol was found to be the most abundant metabolite, followed by 

ethyl acetate, lactic acid, and acetic acid. However, the overwhelming presence of 

ethanol limited the detection of other volatile compounds by SIFT-MS. Although the 

concentration of ethanol measured by SIFT-MS and GC-FID showed similar results 

(Figure 6.1.3), the concentrations of other volatile compounds found were not 

comparable when using different techniques, except for the lactic acid 
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concentrations (Supplementary Table S 6.1.5). The evolution of the lactic acid 

concentrations showed a significant correlation (p < 0.01) when measured with both 

HPAEC-CIS and SIFT-MS. 

 
Figure 6.1.3 Comparison of the ethanol concentrations in aged gueuze beers, as 
measured by SIFT-MS in the headspace of a diluted sample (black bars, ppmv) and by 
GC-FID with liquid injection (white bars, vol/vol %). 

 

Sensory analysis 

The sensory analysis revealed that all beers were assessed as highly acidic. The 

perceivable fruitiness was the lowest in the beers bottled in 1996. A preference 

towards the beers bottled in 2008 was noticed. 

Discussion 

A previous study of the traditional lambic beer fermentation process revealed that 

Dekkera bruxellensis and Pediococcus damnosus are the dominant microorganisms in 

lambic beers (Spitaels et al., 2014). The present study revealed that the microbial 

communities present in the three-years old lambic beer were highly similar to those 

in the two-years old lambic beer originating from the same batch (Spitaels et al., 

2014). As this lambic beer fermentation is performed in closed wooden casks, 

inoculation from the cask surroundings does not occur during the fermentation 
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process, explaining maintenance of the prevailing microorganisms upon maturation. 

Lambic beer from casks is used to produce gueuze beers through mixing of lambic 

beers of different ages (Verachtert & Iserentant, 1995). As such, the final gueuze 

beers in the bottles are the products of a spontaneous bottle refermentation of these 

mixtures. The present study showed that a bottle maturation process of gueuze 

beers has a profound influence on the microbiota present in these beers. This was 

reflected in the bacterial PCR-DGGE community profiles of the gueuze beers, which 

gradually changed from the presence of multiple DNA bands assigned to 

Enterobacteriaceae and Pediococcus in the youngest gueuze beers to the presence of 

a few bands originating from Lactobacillus and Dekkera in the 17-years old gueuze 

beer sample. The observation of DNA bands originating from Enterobacteriaceae, 

long after these bacteria were active and could be isolated from the lambic beer 

fermentation, is remarkable (Spitaels et al., 2014). Indeed, the DNA extraction 

method of the present study did not discriminate between live and dead cells, thus 

enabling the DNA extraction of dead Enterobacteriaceae cells (Nocker & Camper, 

2006). The bacterial PCR-DGGE community profiles of the oldest gueuze beers 

converged to a profile that only contained a band originating from Lactobacillus. The 

detection of Lactobacillus DNA in the bacterial PCR-DGGE community profiles of the 

oldest gueuze beers examined was remarkable when considering its absence in 

gueuze beers which that were bottled in later years. Most likely, this suggests that 

Lactobacillus rather than Pediococcus was dominant in the Cantillon lambic beer 

fermentation process in this period. 

Yeast PCR-DGGE community profiles of the old gueuze beers only yielded Dekkera 

bands, whereas bands originating from Saccharomyces strains were found in 

younger gueuze beers. The aberrant yeast profiles of the 2008 gueuze beers may 

indicate deviations in the gueuze beer production process at the time of bottling. 

This may explain the bottle-to-bottle variations that can be introduced during the 

bottling process of these beers. Multiple yeast species could be isolated from gueuze 

beers that had been aged for a few months and for two years. Brettanomyces 

custersianus was isolated from the gueuze beer bottled in 2011 and was in a 

previous study also isolated from air samples from this lambic beer brewery in a 

previous study (Spitaels et al., 2014). The presence of this yeast species in the 
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gueuze beer bottled in 2011 indicates that it was present during the lambic beer 

fermentation process in this period or that it was introduced during the bottling 

process. Only D. bruxellensis could be isolated from beers that were matured for 

more than three years. This suggests that Dekkera yeasts are better adapted for 

survival in bottled beers compared to LAB and other yeasts, although the absence of 

LAB could also indicate batch-to-batch variations in the production process of the 

gueuze beers. An enrichment culture was needed to isolate yeast from the gueuze 

beers bottled prior to 2013. Bottle refermentation conditions and carbon dioxide 

pressure build-up might have created a selective stress on these yeasts, initiating a 

VBNC state, which was reversed in the enrichment medium, as shown for aging wine 

(Divol & Lonvaud-Funel, 2005; Millet & Lonvaud-Funel, 2000). This effect is likely 

less pronounced in the fermenting lambic beer where the carbon dioxide can escape 

through the cask wood. Likewise, an enrichment culture enabled the isolation of 

additional yeast species from the gueuze beer bottled in 2013. 

The maturation/refermentation process also influenced the metabolites present in 

the gueuze beers. No monosaccharides or disaccharides were found. These 

carbohydrates are used prior to sequential degradation of maltodextrins during 

lambic beer fermentation (Shanta Kumara et al., 1993). The degradation of 

maltodextrins might indicate a limit for the ongoing secondary fermentation and 

aging, due to gradual depletion of these carbohydrate sources to low concentrations, 

as was the case in the gueuze beers bottled in 2004 and 1996 (Shanta Kumara et al., 

1993; Verachtert & Iserentant, 1995). Indeed, the increase of the lactic acid 

concentrations throughout aging pointed to an ongoing refermentation. The slower 

increase or even decrease of the concentrations of lactic acid in the gueuze beers 

bottled prior to 2008 was a further indication for this age limit. The acetic acid 

concentrations were the lowest in gueuze beers bottled in 1996. Despite some 

batch-to-batch variation, the acetic acid concentrations found in all gueuze beers 

were clearly above the estimated odor threshold of 0.175 g/L (Simpson & Miller, 

1984), thus introducing a certain desirable tartness in the gueuze beers. The 

concentrations of propionic acid and isobutyric acid were very low, as reported 

previously (Van Oevelen et al., 1976). Elevated isobutanol and isoamyl alcohol 

concentrations can be considered as a defect. The concentration of isobutanol was 
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below the odor threshold in all gueuze beers and this compound most likely did not 

play a role in the gueuze beer flavor formation. The concentrations of isoamyl 

alcohol were around or above the odor threshold (Engan, 1972; Simpson & Miller, 

1984). 

The concentrations of the ester ethyl lactate increased with the age of the bottled 

gueuze beers, coinciding with the increase of the lactic acid concentrations. Indeed, 

the concentrations of the former compound proportionally increased more rapidly 

compared to the lactic acid concentrations. While the lactic acid concentrations 

tripled during aging, the ethyl lactate concentrations increased six-fold. 

Esterification is catalyzed by the esterase of D. bruxellensis (Spaepen & Verachtert, 

1982) and is enabled by a combination of low pH and high concentrations of lactic 

acid and ethanol (Van Oevelen et al., 1976). Ethyl lactate is absent in most ale and 

lager beers, but can be produced during aging of these beers (Vanderhaegen et al., 

2003a, 2006, 2007). Ethyl lactate is also associated with the malolactic fermentation 

in wines (Maicas et al., 1999; Ribéreau-Gayon et al., 2006). It has been defined as an 

essential flavor compound of gueuze beers (Van Oevelen et al., 1976; Vanderhaegen 

et al., 2007). Therefore, it could be suggested that ethyl lactate is an important 

marker compound, indicative for gueuze beer aging, at least up to a certain age. 

Moreover, considering its estimated odor threshold of 0.25 g/L (Simpson & Miller, 

1984), the presence of this compound possibly contributes to a softening of the taste 

of gueuze beers. The higher concentrations of ethyl lactate in the 2013-3 gueuze 

beer samples compared to other gueuze beers of the same age clearly demonstrated 

the bottle-to-bottle variation from the bottling process onwards. A decreasing 

concentration of isoamyl acetate during the gueuze beer aging process was found; 

the concentration of this compound is remarkably lower in gueuze beers compared 

to other beer types, i.e., ales (Langos et al., 2013). A breakdown of isoamyl acetate 

can also be catalyzed by an esterase that is produced by D. bruxellensis, although this 

compound can also hydrolyze spontaneously during the aging of beers (Spaepen & 

Verachtert, 1982; Van Oevelen et al., 1976; Vanderhaegen et al., 2003a; Wilhelmson 

et al., 2012). 

Fatty acid ethyl esters possibly contribute to the perceived fruitiness of the gueuze 

beers (Verstrepen et al., 2003). Ethyl acetate was present in all bottles above the 
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expected concentration (Van Oevelen et al., 1976). The changes in the 

concentrations of this compound might however be negligible, compared to the high 

concentrations that were produced during the lambic beer fermentation process, as 

no correlations in the evolution of the ethyl acetate concentrations and the evolution 

of both the acetic acid and ethanol concentrations could be found (Van Oevelen et al., 

1976). Nevertheless, ethyl acetate could have a synergistic effect on other esters that 

were present below their threshold concentrations (Engan, 1972). Other fatty acid 

ethyl esters, such as ethyl hexanoate, ethyl octanoate, and, in particular, ethyl 

decanoate are important contributors to the typical flavor of gueuze beers (Spaepen 

& Verachtert, 1982). The concentrations of ethyl decanoate decreased during aging, 

while the concentrations of ethyl hexanoate and ethyl octanoate were quite similar 

for all samples. A decreasing concentration of ethyl decanoate has been reported 

previously during aging of top-fermented beer (Vanderhaegen et al., 2003a). By the 

degradation of ethyl decanoate, other flavor volatiles might have prevailed and thus 

changed the flavor profile of the two oldest gueuze beers sampled (Vanderhaegen et 

al., 2003a). The strong negative correlations of the evolution of the ethyl decanoate 

concentrations with the evolution of both the ethyl lactate and lactic acid 

concentrations, combined with the strong positive correlation with the evolution of 

the isoamyl acetate concentrations support the identification of ethyl decanoate as a 

marker for the aging of gueuze beers. Nevertheless, taking into account individual 

odor thresholds, ethyl hexanoate, ethyl octanoate and ethyl decanoate all 

contributed to the flavor of all gueuze beers, with the exception for the gueuze beers 

2004-2 and 2004-3, in which ethyl octanoate concentrations were below the flavor 

threshold (Simpson & Miller, 1984). These results are comparable with the 

evolution during aging of other beer types, such as Belgian ale beers, albeit that 

these compounds are of lesser importance in the latter beers (Vanderhaegen et al., 

2003a, 2006, 2007). 

The volatile profile was assessed using a qualitative SPME-GC-MS analysis, as this 

methodology allows the screening of volatile compounds present in low 

concentrations, due to the enrichment on the SPME fiber (Rodriguez-Bencomo et al., 

2012). Several components commonly associated with Dekkera spp. metabolism 

were found, i.e., 4-ethylphenol, 4-vinylguaiacol, 4-ethylguaiacol, and 2-
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phenylethanol (Romano et al., 2008). Additionally, the presence of diethyl succinic 

acid in all bottles was indicative for aging, since succinic acid and ethanol, both 

produced during lambic beer fermentation, can lead to the formation of esters 

during beer storage (Câmara et al., 2006; Martens et al., 1992). Similarly, ethyl 

isovalerate can also be considered as indicative for beer aging. However, the origin 

of isovaleric acid is uncertain, as both Dekkera spp. and aged hops could be 

responsible for its presence (Romano et al., 2008; Vanderhaegen et al., 2006). 

SIFT-MS analysis was applied to provide more quantitative information concerning 

the importance of minor volatile compounds. Indeed, SIFT-MS was capable of 

measuring volatile compounds, as illustrated by the measurement of ethanol. The 

SIFT-MS technique does not involve prior separation of the volatile sample 

compounds and as such delivers fast analysis times. However, the lack of prior 

separation hinders the analysis of complicated matrices (Langford et al., 2014). 

Possibly, the overwhelming presence of ethanol limited the detection of other 

volatile compounds, as indicated by the poor agreement between the results 

obtained by SIFT-MS and those obtained with other techniques. 

The low perceived fruitiness in the oldest gueuze beers during the sensory analysis 

might indicate a loss in flavor complexity upon aging by the abundance of organic 

acids such as lactic acid and the decrease of ethyl acetate. Together with the data 

mentioned above, this indicates that gueuze beers are preferably aged for less than 

10 years. 

Conclusion 

The bacterial and yeast communities of bottled gueuze beers converged from 

Pediococcus damnosus, Dekkera anomala, Dekkera bruxellensis, Pichia 

membranifaciens and Saccharomyces cerevisiae, also present in the lambic cask beers 

they are derived from, to D. bruxellensis as the sole isolated species upon aging. 

These microbiota are present in the casks and can be considered as microbiological 

biomarkers. Yet, during bottling other microorganisms may enter the beers. The 

concomitant degradation of residual malto-oligosaccharides might impose a limit on 

gueuze ageing, as malto-oligosaccharides were absent in bottles aged for more than 

five years. Similarly, lactic acid and ethyl lactate concentrations increased upon 
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aging. Ethyl lactate could be considered as a positive gueuze beer-aging metabolite 

biomarker. Oppositely, the concentrations of isoamyl acetate and ethyl decanoate 

decreased upon aging. The latter compound could be proposed as a negative gueuze 

beer-aging metabolite biomarker. 
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Figure S 6.1.1 Representative DGGE profiles of bacterial (A) and yeast (B) communities 
in aged gueuze beers. Excised bands that were sequenced are numbered in white font. 
The assignment of the bands is gathered in Supplementary Table S 6.1.2. 

 

Table S 6.1.1 Results of plate counts on different agar isolation media. MRS agar was 
used for the growth of LAB, AAM agar was used for the growth of AAB, DYPAI and 
UBAGI agars were used as global yeast growth media and DYPAIX agar was used for the 
growth of Dekkera species. The values are expressed in log CFU/mL. ULD: under limit of 
detection (< 20 CFU/mL); ULQ: under limit of quantification (the estimated CFU/mL is 
provided between brackets); AN: anaerobic growth conditions. 
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MRS 20°C AN MRS 28°C AAM 28°C DYPAI 28°C UBAGI 28°C DYPAIX 28°C

Three years old lambic 3.90 2.88 3.62 3.91 3.90 ULQ (453)

Gueuze bottled in 2013 5.25 5.31 ULD ULQ (80) ULQ (66) ULQ (80)

Gueuze bottled in 2011 3.87 3.88 ULD ULD ULD ULD

Gueuze bottled in 2010 3.49 3.96 ULD ULD ULD ULD
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Table S 6.1.2 Identification of the DGGE bands excised from the polyacrylamide gels 
(Supplementary Figure S 6.1.1). 

 

  

Band number
Accession number 

highest hit*
Similarity Identification

1 AJ318414 100% Pediococcus/Lactobacillus

2 AJ853891 100% Enterobacteriaceae

3 AB681216 100% Pediococcus/Lactobacillus

4 AB681216 100% Pediococcus/Lactobacillus

5 AB681216 100% Pediococcus/Lactobacillus

6 M59155 100% Enterobacteriaceae

7 AB681216 100% Pediococcus/Lactobacillus

8 AB681216 100% Pediococcus/Lactobacillus

9 AF047186 100% Enterobacteriaceae

10 AJ271383 100% Pediococcus/Lactobacillus

11 AB681216 100% Pediococcus/Lactobacillus

12 AB681216 100% Pediococcus/Lactobacillus

13 AB681216 100% Pediococcus/Lactobacillus

14 AB681216 100% Pediococcus/Lactobacillus

15 AB681216 100% Pediococcus/Lactobacillus

16 AB681216 100% Pediococcus/Lactobacillus

17 FR683099 100% Lactobacillus

18 FR683099 100% Lactobacillus

19 FR683099 100% Lactobacillus

20 AY969049 100% Dekkera

21 AY969049 100% Dekkera

22 AY969049 100% Dekkera

23 AY969049 100% Dekkera

24 BR000309 100% Saccharomyces

25 BR000309 100% Saccharomyces

26 AY969049 100% Dekkera

27 EU011598 100% Candida

28 AY969049 100% Dekkera

29 EF550286 100% Candida

30 EF550286 100% Candida

31 BR000309 100% Saccharomyces

32 BR000309 100% Saccharomyces

33 AY969049 100% Dekkera

34 AY969049 100% Dekkera

35 AY969049 100% Dekkera

36 AY969049 100% Dekkera

*Highest hit with first type strain in BLAST results
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Table S 6.1.3 Relevant volatile compounds detected in aged gueuze beers by SPME-GC-
MS. The concentration ranges in the aged gueuze beers were determined using the 
appropriate techniques (HPAEC-CIS, GC-FID, or SH-GC-MS). nq.: not quantified. 

 

Component Presence in beer bottle
Concentration range 

(mg/L)

Acids

2,5-dimethyl-4-hexenoic acid All bottles nq.

acetic acid All bottles 700-2200

octanoic acid All bottles nq.

nonanoic acid Not detected in the bottles of 2011 and 2013 nq.

decanoic acid All bottles nq.

Alcohols (aliphatic)

ethanol All bottles 3000-4200

1-octanol All bottles nq.

2-nonanol All bottles nq.

isobutanol All bottles 10-30

isoamyl alcohol All bottles 60-150

Aldehydes

furfural All bottles nq.

nonanal Not detected in the bottles of 1996-2, 1996-3, 

2004-2, and 2004-3

nq.

Esters (linear)

butyl octanoate All bottles nq.

ethyl acetate All bottles 90-320

ethyl butyrate Bottles of 2004-3 nq.

ethyl valerate Not detected in the bottles of 1996-2 and 1996-3 nq.

ethyl hexanoate All bottles 0.38-0.87

ethyl 3-hexenoate Only detected in the bottles of 2013-2 and 2013-3 nq.

ethyl heptanoate All bottles nq.

ethyl octanoate All bottles 0.5-1.0

ethyl nonanoate All bottles nq.

ethyl decanoate All bottles nq.

ethyl decanoate All bottles 2.0-12

ethyl dodecanoate All bottles nq.

ethyl tetradecanoate All bottles nq.

ethyl hexadecanoate All bottles 0.13-0.28

ethyl hexadecenoate Not detected in the bottles of 1996-2 and 1996-3 nq.

Esters (others)

isoamyl acetate All bottles 0.04-0.32

isoamyl octanoate All bottles nq.

isoamyl decanoate All bottles nq.

ethyl isovalerate All bottles nq.

ethyl phenylacetate All bottles nq.

ethyl lactate All bottles 40-180

diethyl succinate All bottles nq.

Phenolic compounds

2-phenylethanol All bottles nq.

2-phenylethyl acetate All bottles nq.

4-ethylguiacol All bottles nq.

4-ethylphenol All bottles nq.

4-ethyl-1,2-dimethoxybenzene Not detected in the bottles of 2013-2 and 2013-3 nq.

ethyl benzoate Not detected in the bottles of 2013-2 and 2013-3 nq.

methyl salicylate All bottles nq.

phenol All bottles nq.

styrene All bottles nq.

4-vinylguaiacol All bottles nq.



 

 

 

 

 

Table S 6.1.4 Correlations between relevant volatile compounds originating from aged gueuze beers as determined by HPAEC-CIS, GC-FID, or SH-
GC-MS. Two-tailed correlations significant at the 0.05 level (*) and 0.01 level are indicated (**) are indicated. N = 12. 

 

 

Ethyl lactate Ethanol Lactic acid Acetic acid Ethyl acetate Isobutanol Isoamyl alcohol Isoamyl acetate Ethyl hexanoate Ethyl octanoate Ethyl decanoate

Pearson Corr. 1 0.536 0.846** -0.438 -0.238 -0.023 -0.407 -0.860** -0.429 -0.34 -0.860**

Sig. (2-tailed) 0.072 0.001 0.155 0.457 0.943 0.19 0 0.164 0.28 0

Pearson Corr. 0.536 1 0.473 0.348 0.117 -0.045 -0.161 -0.267 0.159 0.171 -0.263

Sig. (2-tailed) 0.072 0.12 0.267 0.716 0.889 0.618 0.402 0.621 0.595 0.409

Pearson Corr. 0.846** 0.473 1 -0.276 0.017 -0.266 -0.408 -0.742** -0.279 -0.497 -0.767**

Sig. (2-tailed) 0.001 0.12 0.385 0.958 0.404 0.188 0.006 0.381 0.1 0.004

Pearson Corr. -0.438 0.348 -0.276 1 0.36 0.003 -0.022 0.705* 0.31 0.131 0.408

Sig. (2-tailed) 0.155 0.267 0.385 0.25 0.991 0.946 0.011 0.327 0.685 0.188

Pearson Corr. -0.238 0.117 0.017 0.36 1 0.132 0.299 0.239 0.395 0.057 0.013

Sig. (2-tailed) 0.457 0.716 0.958 0.25 0.683 0.345 0.454 0.203 0.861 0.967

Pearson Corr. -0.023 -0.045 -0.266 0.003 0.132 1 0.465 0.243 -0.142 0.391 0.083

Sig. (2-tailed) 0.943 0.889 0.404 0.991 0.683 0.128 0.447 0.66 0.208 0.798

Pearson Corr. -0.407 -0.161 -0.408 -0.022 0.299 0.465 1 0.23 0.397 0.645* 0.567

Sig. (2-tailed) 0.19 0.618 0.188 0.946 0.345 0.128 0.472 0.202 0.023 0.054

Pearson Corr. -0.860** -0.267 -0.742** 0.705* 0.239 0.243 0.23 1 0.303 0.333 0.763**

Sig. (2-tailed) 0 0.402 0.006 0.011 0.454 0.447 0.472 0.338 0.291 0.004

Pearson Corr. -0.429 0.159 -0.279 0.31 0.395 -0.142 0.397 0.303 1 0.712** 0.569

Sig. (2-tailed) 0.164 0.621 0.381 0.327 0.203 0.66 0.202 0.338 0.009 0.054

Pearson Corr. -0.34 0.171 -0.497 0.131 0.057 0.391 0.645* 0.333 0.712** 1 0.653*

Sig. (2-tailed) 0.28 0.595 0.1 0.685 0.861 0.208 0.023 0.291 0.009 0.021

Pearson Corr. -0.860** -0.263 -0.767** 0.408 0.013 0.083 0.567 0.763** 0.569 0.653* 1

Sig. (2-tailed) 0 0.409 0.004 0.188 0.967 0.798 0.054 0.004 0.054 0.021

Ethyl decanoate

Ethyl lactate

Ethanol

Lactic acid

Acetic acid

Ethyl acetate

Isobutanol

Isoamyl alcohol

Isoamyl acetate

Ethyl hexanoate

Ethyl octanoate
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Table S 6.1.5 Pearson correlation coefficient for relevant volatile compounds from aged 
gueuze as determined by SIFT-MS and HPAEC-CIS, GC-FID, or SH-GC-MS. Two-tailed 
correlations significant at the 0.05 level (*) and 0.01 level (**) are indicated. N = 12. 

 

  

Component SIFT-MS

Ethanol (GC-FID) 0.152

Lactic  acid (HPAEC-CIS) 0.735**

Acetic acid (GC-FID) 0.078

Ethyl acetate (SH-GC-MS) 0.652*

Isoamyl acetate (SH-GC-MS) 0.021

Ethyl hexanoate (SH-GC-MS) -0.405

Ethyl octanoate (SH-GC-MS) -0.157
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Chapter 7. General discussion and future 

perspectives 

Acidic lambic beers are the result of a spontaneous fermentation process that lasts 

for one to three years (De Keersmaecker, 1996; Verachtert & Iserentant, 1995). 

Some other acidic beers are produced using backslopping, i.e., the repitching of a 

mixed culture of yeasts and bacteria from a previous fermentation (Martens et al., 

1997; Verachtert & Derdelinckx, 2005). Lambic beers in particular and 

spontaneously fermented beers in general are currently highly appreciated all over 

the world since they are trademarks of traditional craftsmanship. Traditionally, 

Belgian lambic beers were produced in the Senne river valley (southwest of 

Brussels) and in the southeast of Brussels. 

Notwithstanding the increasing popularity of lambic beers, the fermentation process 

was studied only in some detail in a few microbiological studies between 1976 and 

1995 by the research group of Prof. em. Hubert Verachtert (Martens et al., 1991, 

1992; Shanta Kumara & Verachtert, 1991; Spaepen et al., 1978, 1979; Van Oevelen et 

al., 1976, 1977; Verachtert & Iserentant, 1995). These studies were performed using 

biochemical methods solely and were limited in the number of isolates dealt with 

and the taxonomical information that was obtained (Van Oevelen et al., 1977; 

Verachtert & Iserentant, 1995). Since the publication of these early studies, the 

taxonomy of bacteria and yeasts involved in the lambic beer fermentation process 

underwent several changes and biochemical identification methods were shown 

inadequate to reliably identify these microorganisms (Cleenwerck & De Vos, 2008; 

De Bruyne et al., 2008; Kämpfer & Glaeser, 2012; Kurtzman & Robnett, 1998; Nhung 

et al., 2007). 

The present study was initiated for a number of reasons. First, to update our 

knowledge of the microbial succession in the lambic beer fermentation process and 

to assess the applicability of MALDI-TOF MS as a dereplication tool to identify 

hundreds of microbial isolates obtained. Furthermore, to investigate differences 

between the lambic beer fermentation processes in a traditional and an industrial 

brewery and in addition to unravel the story of the Senne valley. Finally, as lambic 
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beers are mostly blended to produce gueuze beers, which are refermented in bottles, 

these beers can be matured for several years, and therefore the microbiota and 

metabolites present in several aged gueuze beers were also examined. 

7.1 The microbiology of traditional lambic beer fermentation 

The present study aimed to exhaustively describe the microbial communities 

involved in the spontaneous fermentation process of lambic beers. Previous studies 

examined the microbiota and metabolite profiles of traditional lambic beers over a 

period of two years. In these studies, samples obtained from multiple brews and 

multiple casks from a single brewery were analyzed and covered a two-year 

monitoring period (Van Oevelen et al., 1976, 1977). Moreover, the microbiota 

present was monitored using culture-dependent techniques only and a limited 

number of isolates were identified using biochemical identification techniques. In 

the present study, the traditional lambic beer fermentation process was monitored 

in two independent batches of lambic beer during a period of two years by sampling 

the same casks. The microbial communities were studied through state-of-the-art 

identification of more than 2000 bacterial and yeast isolates, collected at nine time 

points during the fermentation process and using culture-independent PCR-DGGE of 

both the bacterial and yeast communities. 

Previous research of the microbiota and their metabolites divided the lambic beer 

fermentation process into four phases: the Enterobacteriaceae phase, the main 

fermentation phase, the acidification phase, and the maturation phase (Van Oevelen 

et al., 1976; Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). Each phase was 

characterized by the presence of specific microorganisms and metabolites (Van 

Oevelen et al., 1977; Verachtert & Iserentant, 1995). The culture media used were 

selected based on previous studies and the observation of increased concentrations 

of acetic acid and lactic acid, indicating the presence of AAB and LAB (Van Oevelen et 

al., 1976). Enterobacteriaceae were isolated from the cooled wort in the cooling tun 

and the cask (Martens et al., 1991; Van Oevelen et al., 1977; Verachtert & Iserentant, 

1995). The Enterobacteriaceae phase was reported to start after 3 to 7 days of 

fermentation, when cell numbers reached up to 108 CFU/mL, to proceed for 30 to 40 

days, and to be characterized by Enterobacter cloacae and Klebsiella pneumoniae as 

the predominantly isolated Enterobacteriaceae species (Martens et al., 1991). 
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Enterobacter aerogenes, Citrobacter freundii, Escherichia coli and Hafnia alvei were 

additionally isolated (Martens et al., 1991), along with the cycloheximide-resistant 

yeasts Hanseniaspora uvarum (its asexual form is named Kloeckera apiculata [Meyer 

et al., 1978]) and Naumovia dairensis (previously known as Saccharomyces dairensis) 

(Kurtzman, 2003) as well as S. uvarum (previously known as S. globosus [Nguyen 

and Gaillardin, 2005]) (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). 

During this phase, the pH dropped one value, and considerable levels of butanediol 

and dimethyl sulfide (DMS) were formed, along with formic acid, acetic acid and 

lactic acid, and ethanol (Verachtert & Iserentant, 1995). 

A similar start of the lambic beer fermentation was found in the traditional brewing 

process (two batches) examined during the present study (Chapter 4.1; Figure 

7.1.1). Cooled wort already contained high cell numbers of Enterobacteriaceae in the 

cooling tun (106-107 CFU/mL). The number of Enterobacteriaceae was the highest 

(108 CFU/mL) after 1 to 2 weeks. Escherichia coli was also isolated in the present 

study. In contrast to previous studies, however, Hafnia paralvei was isolated an 

opportunistic human and animal pathogen (Huys et al., 2010). It is likely that 

isolates from previous studies were in fact also H. paralvei, as this species was 

separated from H. alvei only very recently (Huys et al., 2010). Other isolates from the 

Enterobacteriaceae phase were identified as Enterobacter hormaechei, Enterobacter 

kobei, Klebsiella oxytoca, Citrobacter gillenii and Raoultella terrigena. All these 

species are coliform bacteria and thus indicator microorganisms for fecal 

contamination of surface waters and foods. Although these species are considered to 

be opportunistic pathogens, they are commonly found in various spontaneously 

fermented foods and beverages, and some were previously isolated from lambic 

beer as well (Bokulich et al., 2012; Chao et al., 2013; Martens et al., 1991). 

Remarkably, most of these microorganisms were previously reported as spoilage 

microorganisms in sweet unfermented wort and pitching yeast (Bokulich & 

Bamforth, 2013; Van Vuuren & Priest, 2003; Vriesekoop et al., 2012). 

Debaryomyces hansenii and Saccharomyces cerevisiae were two yeast species 

isolated immediately after the transfer of the wort into the cask. Saccharomyces 

pastorianus and Naumovia castelii were subsequently isolated from the one-week 

old wort sample. Debaryomyces hansenii is a known beer spoilage yeast (Bokulich & 
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Bamforth, 2013), whereas N. castellii was previously known as Saccharomyces 

castellii and part of the Saccharomyces sensu stricto group (Kurtzman, 2003). A DNA 

band originating from H. uvarum was detected in the bacterial PCR-DGGE 

community profiles of the traditionally produced lambic wort samples, but this 

species was not isolated. Hanseniaspora uvarum has a low fermentative capacity and 

is commonly isolated during the first phases of wine and cider fermentations 

(Beltran et al., 2002; Morrissey et al., 2004). Sometimes, this species is found at later 

stages of wine fermentations, since it can survive elevated ethanol concentrations 

(Ocón et al., 2010; Wang & Liu, 2013). Similar to Dekkera bruxellensis, H. uvarum is 

capable of producing ethyl esters, and it was long considered as a wine spoilage 

yeast (Romano et al., 2003). Currently, this species is increasingly regarded as 

beneficial for the complex aroma it can add to wines (Moreira et al., 2011). 

Hanseniaspora uvarum originates from the fruit surface in wine and cider 

fermentation processes (Beltran et al., 2002), but it is known as an environmental 

contaminant in ales and lagers (Bokulich & Bamforth, 2013; Manzano et al., 2011). 

The Enterobacteriaceae phase was followed by the main fermentation phase or 

alcoholic fermentation phase, which started after 3 to 4 weeks. Pediococcus 

damnosus [P. cerevisiae] was commonly isolated during and after this main 

fermentation phase, in addition to low numbers of AAB (Acetobacter spp. and 

Gluconobacter [Acetomonas] spp.), which were isolated irregularly (Van Oevelen et 

al., 1977; Verachtert & Iserentant, 1995). Unfortunately, the latter isolates were not 

identified to the species level. The main fermentation phase was however primarily 

characterized by the predominant isolation of S. cerevisiae, S. bayanus/S. pastorianus 

and S. uvarum (Van Oevelen et al., 1977; Verachtert & Iserentant, 1995). During this 

phase, the majority of the ethanol present in the lambic beers was produced, and the 

level of DMS (produced during the Enterobacteriaceae phase) decreased by the exit 

of CO2 bubbles produced by the yeasts still present from the fermenting lambic beer 

(Verachtert & Iserentant, 1995). Simultaneously, higher alcohols, fatty acids and 

esters, including hexanoate, octanoate, decanoate and their ethyl esters respectively, 

were formed as well (Spaepen et al., 1978; Van Oevelen et al., 1976; Verachtert & 

Iserentant, 1995).  
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In the present study, many samples were collected during this main fermentation 

phase. Acetobacter lambici (Chapter 5.1) was first isolated at the end of the main 

fermentation phase of batch 2 in the traditional brewery (Chapter 4.1). This species 

and one isolate of Gluconobacter cerevisiae were occasionally isolated during the 

lambic beer fermentation process. From 2 months onwards, P. damnosus was 

consistently present (Figure 7.1.1). High numbers of S. cerevisiae and S. pastorianus 

were present at the start of the main fermentation phase, but after three months of 

fermentation most isolates were identified as S. pastorianus. Previous studies only 

reported the presence of S. cerevisiae, S. bayanus/S. pastorianus and S. uvarum in the 

main fermentation phase and did not provide detailed information for different 

sampling moments. It is however not clear why S. pastorianus outlives S. cerevisiae in 

the lambic beer fermentation process of the traditional brewery in the present 

study. The genomic background of the hybrid species S. pastorianus was recently 

elucidated, as discussed in Chapter 2.2 (Libkind et al., 2011). In Saccharomyces, 

especially the hybridization events between cryotolerant and non-cryotolerant 

Saccharomyces species offer a benefit for the resulting hybrids, because of the 

capacity of these hybrids to ferment at lower temperature (Peris et al., 2012). 

Consequently, all commonly used lager-type yeasts are domesticated strains of the 

initial pastorianus and bayanus hybrids (Libkind et al., 2011). The ambient 

temperature of the rooms where lambic beers are fermenting is rarely 20°C or 

higher during the first fermentation months, which may explain the predominance 

of S. pastorianus in the traditional lambic brewery process. Vidgren et al. (2010) 

reported that ale (generally S. cerevisiae) and lager (generally S. pastorianus or S. 

bayanus) strains exhibit a similar maltose transport activity at 20°C, but at 0°C, the 

activity of lager strains was higher by the expression of cryotolerant maltose and 

maltotriose transporters. The different temperature sensitivity of the maltose and 

maltotriose transporters could have an influence on the survival of different 

Saccharomyces hybrids, since the transport of these molecules is assumed to be the 

rate-limiting step in the utilization of these sugars (Cousseau et al., 2013). 

After 2 to 3 months of main fermentation, an acidification phase has been reported 

that was characterized by the increasing isolation of Pediococcus and occasionally 

Lactobacillus strains (only in breweries with large casks), while Dekkera strains 
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became prevalent after 4 to 8 months of fermentation. Simultaneously, the number 

of Saccharomyces yeasts decreased (Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995). Dekkera and LAB species have a synergistic effect on beer 

attenuation (Andrews & Gilliland, 1952; Shanta Kumara & Verachtert, 1991). The 

acidification was characterized by a strong increase in lactic acid and ethyl lactate 

concentrations (Verachtert & Iserentant, 1995). During the warm summer months, 

LAB can cause slime in the fermenting lambic beer (Van Oevelen & Verachtert, 1979; 

Van Oevelen et al., 1977). The final maturation phase, during which the wort was 

gradually attenuated and Dekkera strains were dominant, started after 10 months of 

fermentation. During this phase, cell-bound esterases of Dekkera yeasts can form 

and degrade several esters in the fermenting lambic beer (Spaepen & Verachtert, 

1982). Furthermore, Dekkera yeasts can degrade the high-molecular-mass dextrins, 

which disappeared from the lambic beer (Shanta Kumara et al., 1993; Verachtert & 

Iserentant, 1995). At the end of this phase, after about 2 years, the number of LAB 

and Dekkera yeasts was reported to decrease (Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995). AAB were also isolated during these phases.  

In the present study, the analysis of the microbiota at three and six months of 

fermentation did not allow to discriminate between an acidification phase and a 

maturation phase (Figure 7.1.1). A decrease of Saccharomyces yeasts and a 

consecutive increase of Dekkera yeasts was not observed, which is characteristic for 

the acidification phase. Indeed, yeast isolates from the three-months old sample 

were identified as Saccharomyces spp., those of the six-months old sample were 

identified as Dekkera spp. The ambient temperature of the cask storage room does 

have an influence on the pace of the fermentation and the ability of D. bruxellensis to 

dominate the fermentation, as observed during the monitoring of the two lambic 

fermentation batches (Chapter 4.1). Isolates of D. bruxellensis were predominantly 

isolated during the maturation phase of batch 2 (Chapter 4.1). The yeast species 

distribution of batch 1, which was fermenting at cellar temperature, was more 

complex (Chapter 4.1) and included Candida patagonica, Dekkera anomala, Pichia 

membranifaciens, Priceomyces carsonii, and Wickerhamomyces anomalus. The 

number of LAB was elevated in the six-months old sample compared to the three-

months old sample, and reached cell numbers that were comparable to those of 
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Dekkera yeasts. Consequently, the acidification probably occurred very rapidly 

between the sampling at three and six months and it was therefore considered as a 

part of the long maturation phase. The same was found in a study of American 

coolship ales (ACA) (Bokulich et al., 2012). LAB were isolated from all samples after 

the Enterobacteriaceae phase. In contrast to previous studies, P. damnosus was the 

only LAB species found. It is unclear why P. damnosus was the only LAB species 

isolated, while other studies reported the general presence of Lactobacillus spp., 

including Lactobacillus brevis, a well-known beer spoilage bacterium (De Cort et al., 

1994; Shanta Kumara & Verachtert, 1991; Vriesekoop et al., 2012). Finally, AAB 

were isolated irregularly during the traditional lambic beer fermentation process, 

i.e., from 3 months onwards. All isolates belonged to the newly described AAB 

species, A. lambici and G. cerevisiae (Chapter 5). 

As part of a study of the microbiota of aging gueuze beers, an additional maturation 

phase sample of the same batch of the fermenting lambic beer that was three years 

old, was obtained (Chapter 4.1 and Chapter 6). The microbial communities present 

in this three-years old lambic beer were highly similar to those present in the two-

years old lambic beer (Chapter 4.1) and consisted of P. damnosus, A. lambici, P. 

membranifaciens, D. bruxellensis, D. anomala, C. patagonica and W. anomalus. This 

contrasted with the results of Verachtert and Iserentant (1995), who reported a 

decrease in the number of LAB and yeasts towards the end of the fermentation 

process and suggested that this microbiota is highly adapted to growth and survival 

in lambic beer. 
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Figure 7.1.1 Schematic overview of the traditional lambic beer fermentation process, as 
unravelled during the present study. 

 

7.2 The microbiology of industrial lambic beer fermentation 

In the present study, the microbiota of a traditional and an industrial lambic beer 

fermentation process were compared, but also technical characteristics of both 

production processes differed, which might influence the microbiota and thus the 

fermentation process. In the industrial brewery, lambic wort was made using an 

infusion mashing rather than a turbid mashing scheme, the wort was acidified at the 

end of the wort boiling to pH 4 using lactic acid and, finally, the wort was prechilled 

after boiling, before it was transferred to the cooling tun. Together, this enables the 

industrial brewery to produce lambic beers throughout the year. 
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Figure 7.2.1 Schematic overview of the industrial lambic beer fermentation process, as 
unravelled during the present study. 

 

In contrast to the traditional lambic beer fermentation process, none of the cooling 

tun samples of the industrial brewery yielded DNA or isolates (Chapter 4.2; Figure 

7.2.1). Furthermore, members of the Enterobacteriaceae could not be isolated during 

the industrial lambic beer fermentation process, nor could their DNA be detected 

through PCR-DGGE experiments. Most likely, the acidification of the boiled wort 

before chilling prevented the growth of Enterobacteriaceae, which is known to be 

inhibited below pH 4 (Priest & Stewart, 2006). Bacteria and yeasts were isolated as 

soon as the cooled wort was transferred into the cask. These early isolates were 

identified as Pichia kudriavzevii, D. hansenii and Acetobacter orientalis (Chapter 4.2, 

batch B) and AAB were isolated from the start of the industrial fermentation process 

up to 6 months, which again contrasted with the traditional fermentation process. 

Saccharomyces cerevisiae was already dominant after one week of fermentation, but 

also D. bruxellensis was isolated from this sample. Pediococcus damnosus was 

present from 3 weeks onwards. If the dominance of D. bruxellensis and P. damnosus 

is again used to demarcate the maturation phase, like in the traditional lambic 
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fermentation process (Chapter 4.1) (Van Oevelen et al., 1977; Verachtert & 

Iserentant, 1995), then the main fermentation phase lasted for one month only 

(Chapter 4.2, batch B). Hanseniaspora uvarum was not characteristic, as it was only 

found in the initial samples of a sluggishly starting fermentation batch (Chapter 4.2, 

batch A), which confirmed that this species has a low fermentative capacity, as 

discussed above. 

Overall, the microbiota present during the maturation phase was the same as the 

one in the traditional lambic beer fermentation process, although the species 

diversity was more simple. Like in the traditional lambic beer fermentation, the 

main fermentation phase of the industrial lambic beer fermentation process was 

dominated by Saccharomyces spp. (Chapter 4.2). The dominant isolation of S. 

cerevisiae from batch B samples in the warm summer months (Chapter 4.2) 

supports the hypothesis that the dominance of S. pastorianus at the end of the lambic 

beer fermentation process in the traditional brewery is due to the tolerance of the 

maltose and maltotriose transporter of this species towards low temperatures. 

7.3 The inoculation source of the spontaneous lambic beer 

fermentation process 

The cooling tun sample of the traditional lambic brewery yielded various 

Enterobacteriaceae species (both through cultivation and PCR-DGGE), but no LAB or 

other microorganisms (Chapter 4.1). Additionally, Dekkera spp. were isolated from 

air samples of the traditional brewery, which confirmed the results of previous 

studies (Chapter 4.1) (Verachtert & Iserentant, 1995). LAB and yeasts might have 

been present in very low numbers in the cooling tun sample, compared to the 

Enterobacteriaceae, thus inhibiting their detection by cultivation or via PCR-DGGE. 

Nevertheless, sources other than brewery air may still be responsible for the 

inoculation of the wort.  

Besides the brewery air, another potential source of inoculation is the wood used in 

the brewery. Construction wood that is not covered or treated with paint is present 

in the truss of the cooling tun room and can be used as ceiling of the cask storage 

room of traditional breweries. The Belgian Federal Agency for the Safety of the Food 

Chain published a guide for auto-control of hygienic conditions in the breweries in 
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2007 (Belgian Federal Agency for the Safety of the Food Chain, 2007). Breweries 

should have adopted easy to maintain surfaces in the production area and the use of 

untreated wood was prohibited. However, several exceptions were included for the 

production of spontaneously fermented beers. Ceilings of the brewery should be free 

of moisture, except for the cooling tun room when lambic beer is brewed. 

Additionally, the presence of untreated wood was allowed in the production areas of 

lambic and red brown ale breweries (Belgian Federal Agency for the Safety of the 

Food Chain, 2007). These guidelines therefore acknowledge the importance of 

untreated wooden surfaces in the brewery as a major source of microbiota that 

could be introduced into the wort. Most likely, the reuse of non-sterile wooden 

barrels enhances the success of the fermentation, as is the case in natural cider 

fermentation processes (del Campo et al., 2003). Wooden tools and casks are known 

as safe harbors for bacteria and yeasts that are present during the spontaneous 

fermentation of wines and ciders (Swaffield & Scott, 1995; Swaffield et al., 1997). 

These microorganisms can penetrate the wood in a short period of time, where they 

are protected from cleaning procedures (Barata et al., 2013; Guzzon et al., 2011). 

Additionally, these microorganisms can survive for a prolonged time in the pores via 

micro-oxygenation (De Rosso et al., 2008; Hidalgo et al., 2010; Torija et al., 2009). 

Clearly, it is conceivable that the lambic beer microbiota too will persist in cask 

wood after the cleaning procedure, which consists of washing the inside of the cask 

with cold water and a treatment with low-pressure steam. 

Yet, spontaneous fermentation processes were reported to be successful even when 

new, unused casks and stainless steel fermentors were applied for the production of 

lambic beers (Verachtert & Derdelinckx, 2005). The microbiota and metabolites of 

the lambic beers in the latter study were monitored over a period of 18 months and 

the typical characteristics of lambic beers were found (Verachtert & Derdelinckx, 

2005). These characteristics include the presence of Enterobacteriaceae, 

Saccharomyces spp., Dekkera spp. and LAB, together with the presence of ethanol, 

acetic acid and lactic acid, and ethyl acetate and ethyl lactate (Verachtert & 

Derdelinckx, 2005). Furthermore, the wort was highly attenuated and there was a 

clear drop in pH (Verachtert & Derdelinckx, 2005). The authors also stated that all 

lambic worts will reach the expected characteristics of a lambic beer after a one-year 
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fermentation, irrespective of the fermentation profile or initial microbial load of the 

individual worts (Verachtert & Derdelinckx, 2005). Also, lambic beer fermentation 

was reported successful and yielded similar products when wort, brewed and cooled 

in a first lambic brewery, was fermented in other breweries (Verachtert & 

Derdelinckx, 2005). It should further be noted that a huge amount of carbon dioxide 

is produced during the main fermentation phase in traditional lambic breweries, 

which causes an overflow of beer through a temporarily loose plug in the bung hole. 

The brewer tops the casks off with fermenting wort of other casks to decrease the 

cask headspace and replaces this temporary plug with a permanent wooden plug or 

rubber stopper after the main fermentation phase. These practices will influence the 

microbiota composition and the fermentation process too. Together, these 

observations demonstrate that the sources of inoculation in the traditional lambic 

brewery may be diverse and brewery-dependent and/or that the impact of 

individual microorganisms on the resulting lambic beers may be overestimated. 

Together, these data also demonstrated that lambic beer fermentation is robust in 

the Senne river valley (Verachtert & Derdelinckx, 2005). 

Traditionally, the production of lambic beers was assumed to be only possible in the 

Senne river valley and the use of the cooling tun enabled the inoculation of the wort 

with the microbiota that were uniquely present in the air of the Senne river valley 

(Verachtert & Iserentant, 1995). However, two breweries in West-Flanders and 

therefore located outside the Senne river valley, and several American craft 

breweries have successfully adopted spontaneous fermentation processes for the 

production of lambic beer and American coolship ale, respectively (Bokulich et al., 

2012). Overnight cooled wort samples from the cooling tun of the industrial lambic 

brewery were not inoculated (Chapter 4.2). In contrast, as soon as wort was 

transferred into the cask, there was a detectable microbiota through cultivation. 

This unambiguously indicated that in the industrial brewery, the microbiota 

responsible for the fermentation did not originate from the air and, hence, the Senne 

river valley is not a conditio sine qua non. In addition, the industrial lambic beer 

fermentation process lacked an Enterobacteriaceae phase, while such a phase was 

present in the traditional lambic beer fermentation process studied (Chapter 4) 

(Van Oevelen et al., 1977; Verachtert & Iserentant, 1995) and in the ACA 
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fermentation process (Bokulich et al., 2012). In contrast to the traditional brewery, 

in the industrial brewery all surfaces are covered or treated with antifungal paint, 

which renders the surfaces smooth and easy to clean. Hence, there are no untreated 

wooden surfaces in the industrial brewery, except for the cask wood. Consequently, 

the influence of the cask wood on the successful inoculation and subsequent lambic 

beer fermentation is likely to be larger in the industrial brewery than in the 

traditional brewery. The wort in an industrial lambic brewery is chilled and the air 

flow in and near the cooling tun is upwards instead of sideways or downwards. The 

chilling temperature may influence the microbial growth in the cooling tun. Indeed, 

the wort of the sluggishly fermenting batch A in the industrial brewery (Chapter 

4.2) was chilled to a lower temperature than normally applied. Batch B of the 

industrial brewery was correctly chilled and isolates were obtained from the freshly 

transferred cask wort sample and the fermentation was initiated within one week 

(Chapter 4.2). Hence, the wort did not contain bacteria when it was transferred to 

the cask and only the low fermentative H. uvarum yeasts grew, rather than 

Saccharomyces spp. (Chapter 4.2). ‘Rebooting’ such sluggishly fermenting lambic 

batches by mixing it with another batch is a commonly applied procedure in this 

brewery and new barrels are filled with fermenting lambic wort prior to their first 

use. Most likely, the production of lambic beers in the industrial brewery is 

facilitated through a lambic core microbiota that is enriched in the cask wood. The 

close monitoring and mixing of aberrantly fermenting batches enables the brewery 

to control the fermentation process outcome. The lambic beer fermentation process 

in the industrial brewery is therefore successful without inoculation in the cooling 

tun and the transfer of chilled wort into a cask used previously for lambic beer 

production is sufficient to obtain a normal lambic beer fermentation process. 

However, when the wort would be cooled and transferred directly into a stainless 

steel tank, the fermentation probably will not take place, as described in the 

production of cider (del Campo et al., 2003). 

7.4 The microbiota and metabolites of aging gueuze beers 

In Chapter 6, the microbiota and selected metabolites of aged gueuze beers that 

were produced in the traditional brewery studied earlier were analyzed (Chapter 

4.1). Young and old lambic beers are blended by the brewer to make gueuze beers, 
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which spontaneously referment after bottling, a process that is referred to as ‘aging’. 

The gueuze beers examined in the present study were bottled between 5 months 

and 17 years prior to the sampling. Although time constraints prevented to monitor 

a single production batch for a prolonged period of time, the present study revealed 

changes in microbiota and metabolites that can be used as a proxy of the processes 

that occur during gueuze maturation. All gueuze beers showed the characteristic 

presence of D. bruxellensis and comprised acetic acid, lactic acid, ethyl acetate and 

ethyl lactate as most important metabolites. While pediococci were readily isolated 

from one-, two- and three-years old lambic beer, and from the gueuze beer bottled a 

few months before sampling, LAB or any other bacteria were no longer isolated from 

gueuze beers bottled prior to 2010. Different yeast species including D. bruxellensis, 

D. anomala, P. membranifaciens and S. cerevisiae were isolated from recently bottled 

gueuze, but this diversity decreased with age until only D. bruxellensis was isolated 

via enrichment culturing, even from the 17-years old gueuze beer. The low 

nutritional demand of this yeast species probably enabled its long-term survival in 

this environment (Aguilar Uscanga et al., 2000; Renouf et al., 2007). The latter is also 

supported by the versatile metabolism of Dekkera yeasts, which can both produce 

and assimilate carbon sources such as acetic acid and ethanol (Renouf et al., 2007). 

The yeast cells in these old gueuze beers most likely occurred in a VBNC state that 

could be reversed by the enrichment culture. The VBNC state allows yeast (and 

bacterial) cells to withstand several stress conditions (Millet & Lonvaud-Funel, 

2000). 

Further, the metabolite analyses revealed that the aging of gueuze beer is probably 

limited in time by the depletion of the available malto-oligosaccharides. Malto-

oligosaccharide concentrations were very low in the gueuze beer samples of 2004 

and 1996 and no further increase in the concentrations of lactic acid was found 

between the gueuze beer samples of 2004 and 1996. Furthermore, the acetic acid 

concentrations were the lowest in the gueuze beers bottled in 1996, indicating that 

acetic acid was further metabolized and that no new acetic acid was produced. Lactic 

acid concentrations increased steadily for beers aged up to 10 years, but no further 

increase was noticed in the beers that were aged for 17 years. 
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Additionally, the typical fruitiness was no longer perceived in the sensory analysis in 

the oldest gueuze beers examined (Chapter 6). This was probably caused by the 

degradation of the fatty acid ethyl esters, which are known to add fruitiness in beer. 

The increasing concentrations of ethyl lactate and decreasing concentrations of ethyl 

decanoate could be considered as positive and negative gueuze beer-aging 

metabolite biomarkers, respectively. 

7.5 The use of culture-dependent and culture-independent 

techniques in microbial biodiversity studies 

Microbial biodiversity studies have long been performed using culture-independent 

community fingerprint techniques in combination with traditional cultivation 

methods (Dolci et al., 2010; Scheirlinck et al., 2008; Van der Meulen et al., 2007; 

Wouters et al., 2013). Some studies focus on specific microbial groups of the 

communities, e.g., only the LAB or yeast diversity. In recent years, more advanced 

and high-throughput culture-independent methods, such as bar-coded amplicon 

sequencing and metagenomics, are gradually replacing community fingerprint 

methods, such as the DGGE approach applied in the present study. The data obtained 

are considered superior compared to culture-dependent data. Indeed, methods that 

involve cultivation of microorganisms are often considered less informative, as some 

microorganisms can be present in a VBNC state, and isolation media favor the 

cultivation of specific microorganisms only (Gorski, 2012; Millet & Lonvaud-Funel, 

2000). Moreover, these metagenomic techniques are also superior to classical 

fingerprint-based culture-independent techniques such as PCR-DGGE, because of 

their ability to detect low abundant species in the communities (Bokulich & 

Bamforth, 2013). 

However, culture-independent techniques also introduce biases, for instance 

through efficacy of DNA extraction or through PCR-based amplification of target 

sequences (Hong et al., 2009; Yuan et al., 2012), and potentially detect not only 

metabolically inactive but also dead cells. So, although these modern culture-

independent analyses provide a more in-depth analysis of the microbial community 

composition, they are not without limitations and also do not reveal which species 

are metabolically most active. Other tools, not only transcriptomics or meta-
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metabolomics but also the availability of pure cultures of the community members 

will be required to reveal a more complete image of the microbial diversity present. 

Ironically, the potential to examine microbial ecosystems by means of modern 

metagenomics approaches triggered a renewed interest in the development of new 

approaches to cultivate a large number of microorganisms that are known through 

the detection of their DNA only (Nature Reviews: Microbiology Editorial, 2013; 

Rappé, 2013; Teske, 2010). Based on metagenomics information about the genes 

and metabolic potential present, new culture media are being developed that target 

the isolation of specific microbial groups (Bomar et al., 2011). An approach referred 

to as culturomics (Lagier et al., 2012) is currently gaining momentum in the field of 

gut microbiome research. Culturomics refers to the high-throughput and 

miniaturized application of numerous classical media for the isolation of 

microorganisms and is limited only by the rate of identification of the isolates 

obtained. For this purpose, sequence-based identification methods are too slow and 

expensive but MALDI-TOF MS has been advocated as an ideal identification 

technique in culturomics approaches to study microbial diversity (Lagier et al., 

2012). Interestingly, culturomics was found to outperform bar-coded sequence 

analysis for the discovery of the rare microbiota in the gut microbiome of an 

immunocomprised patient (Dubourg et al., 2013) and another culturomics study of 

the human microbiome found not less than 31 new species (Lagier et al., 2012). 

7.6 MALDI-TOF MS 

Since the start of the present study in October 2009, MALDI-TOF MS research and 

studies applying this technique for the identification of microorganisms are 

increasingly reported and its range of applications is expanding.  

Its widespread application in food microbiology will require purpose-built 

databases, for instance of microorganisms relevant in food fermentation processes. 

Its high-throughput capacity can however be exploited already for the dereplication 

of large numbers of isolates. In the present study, MALDI-TOF MS was only used for 

the latter purpose. The instrument used, a 4800 Plus MALDI TOF/TOF™ Analyzer 

(AB Sciex, Framingham, MA, USA), was not designed for the identification of 

microorganisms and there was no support of the manufacturer for this application. 
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Spectra were exported into the BioNumerics version 5.1 software package (Applied 

Maths), which lacked an efficient peak-picking algorithm. Therefore, curve-based 

analysis methods were used for dereplication and combined with sequence analysis 

of representative isolates to identify the different MALDI-TOF MS clusters obtained. 

The development of a proper identification database for the lambic beer microbiota 

became feasible by the recent availability of the BioNumerics version 7.1 software 

package (June 2013). 

During the present study, in-house sample preparation protocols for bacteria were 

optimized (Wieme et al., 2014), but sample preparation of yeast cells was more 

problematic. Finally, good spectra were obtained from yeast cells by increasing the 

amount of cells used for the cellular extract preparation from one to three 1-µL 

loops. Increasing the amount of cells used for the cellular extract preparation also 

proved effective to generate good quality spectra of some problematic bacteria (data 

not shown), which confirmed the results reported by Marklein et al. (2009). 

7.7 Protection of lambic beers 

Industrial and traditional lambic breweries compete for the same consumers. The 

production scale and the use of beers other than 100% spontaneously fermented 

lambic beers for the production of gueuze beers, along with a lagging legislation that 

fails to clarify the differences between industrially and traditionally produced 

lambic beers, increasingly threaten traditional lambic beer breweries. In 1997, 

lambic and gueuze beers were entitled to use the endorsement ‘traditional specialty 

guaranteed product’ by the European Commission (1997a, b). Lambic beer was 

defined as a spontaneously fermented beer, in which D. bruxellensis plays a crucial 

role in the maturation. In addition, specifications for lambic beer were provided and 

included that the beer should have an initial density of at least 12.7 °P, a maximal pH 

of 3.8, a maximal color of 25 EBC units (European Brewery Convention) and a 

maximal bitterness of 20 Bitter Units (European Commission, 1997a, b). However, 

as in Belgian law (Belgisch Ministerie van Economische Zaken, 1993), threshold 

percentages for the amount of spontaneously fermented beer in lambic beer were 

not specified (European Commission, 1997a). Furthermore, a beer is allowed to be 

named gueuze beer if it is produced by mixing of lambic beers, of which the oldest 

has aged at least for three years in wooden casks (European Commission, 1997a); 



 

224|Part IV Discussion 

 

also, the adjective ‘Oude’ or ‘Vieille’ (both meaning ‘old’ in Dutch and French, 

respectively) can only be used as prefix by traditional brewers if the lambic beer is 

composed of 100% spontaneously fermented beer or when the gueuze has a mean 

age of at least one year, is bottle-refermented, and aged for at least six months in the 

bottle (European Commission, 1997a). As both traditional and industrial lambic 

beer brewers have their own brewing protocol (e.g., malt types, mashing schemes 

and process aid products) and procedures for finishing and bottling the beer (e.g., 

filtration, sweetening, carbonation, bottle refermentation), the end-products can 

differ significantly in terms of metabolites present and taste. The legislation of 

lambic beers currently only focuses on a single microbial characteristic (the 

presence of D. bruxellensis) and a limited number of technological parameters, but 

does not address artificial acidification, chilling or mixing of the wort. 

7.8 Perspectives 

In the present study, the knowledge of the lambic beer microbiota was revisited and 

lambic beer fermentation processes were monitored in both a traditional and 

industrial lambic beer brewery. Both fermentation processes yielded largely the 

same microbial diversity, but some clear differences were apparent. The industrially 

produced lambic beer was not inoculated in the cooling tun and the 

Enterobacteriaceae phase that is characteristically present in the traditional 

fermentation process studied was absent (Chapter 4.1 and Martens et al., 1991; Van 

Oevelen et al., 1977; Verachtert & Iserentant, 1995). The presence of these 

Enterobacteriaceae was reported to slow down the pace of the main fermentation 

phase (Martens et al., 1991; Verachtert et al., 1989), but it is unclear if these bacteria 

have a substantial role in the lambic beer flavor development. 

Similarly to LAB and Dekkera strains, Enterobacteriaceae can produce biogenic 

amines (Bover-Cid & Holzapfel, 1999; Oelofse et al., 2008). These amines can cause 

deleterious effects, as they can be psychoactive (affecting the neural transmitters in 

the central nervous system) or vasoactive (acting directly or indirectly on the 

vascular system as vasoconstrictors or vasodilators) (Kalac & Krizek, 2003). 

Biogenic amines are naturally occurring, but unwanted in fermented foods and 

beverages (Spano et al., 2010). The levels of biogenic amines commonly found in 

spontaneously fermented beers are, however, below the levels found in 
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spontaneously fermented sausages or cheeses (Latorre-Moratalla et al., 2014; 

Linares et al., 2011; Loret et al., 2005). To reduce the biogenic amine content of 

lambic beers, lambic beer brewers have adopted an acidification step at the end of 

the wort boiling process, as it was applied in the industrial brewery during the 

present study. However, it is unclear to which extent this acidification is applied in 

all traditional lambic beer breweries, or if an Enterobacteriaceae phase is 

consistently absent in the fermentation processes of other industrial lambic beer 

breweries. The presence of an Enterobacteriaceae phase in American coolship ale 

breweries (Bokulich et al., 2012) suggests that the latter statement may not always 

be the case. Such an acidification step effectively inhibits the growth of 

Enterobacteriaceae and thus prevents the production of biogenic amines by these 

bacteria. However, the effect of this acidification on the total biogenic amine content 

in the produced lambic beers is unknown, as also other microorganisms are able to 

produce biogenic amines (Latorre-Moratalla et al., 2014; Linares et al., 2011; Oelofse 

et al., 2008; Spano et al., 2010). It should, however, be noted that it is unclear if 

Enterobacteriaceae strains affect the flavor of lambic beers, and therefore, the effect 

of acidification of the wort on the flavor of the lambic beer is not known. All this 

information is required before it can be considered to use the presence of an 

Enterobacteriaceae phase in the lambic beer fermentation process as a defining 

factor for the distinction between traditional and industrial lambic beer 

fermentation processes. The presence of the core microbiota in the lambic beer 

fermentations of both breweries examined indicated that the lambic beer 

fermentation process is very robust, since these microorganisms were present 

under the different environmental, brewing and fermentation conditions. The 

presence of the same core microbiota could be used to further describe and protect 

the lambic beer fermentation process. 

Further research of the lambic beer fermentation process in other breweries 

(traditional, industrial or those with intermediate characteristics) will also reveal to 

which extent the overall microbiota described in the present study is generic, or if 

additional (novel) species will be discovered as was the case in the present study. 

AAB were common in the lambic beer fermentation processes studied, although they 

were isolated only sporadically in the traditional lambic beer brewery. The 
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occasional isolation of these bacteria could be due to the sampling procedure 

applied. The cask content could not be homogenized prior to sampling and only one 

opening at the lower part of the casks could be used. AAB are obligate aerobes and 

probably survive in the fermenting lambic beer, because of a micro-oxygenation 

through the wood of the casks. Therefore, they are likely concentrated at the 

wort/air interphase at the top of the fermenting lambic beer, or attached to the cask 

inner surfaces. Due to the pressure relief when opening the bung hole, oxygen could 

be introduced into the wort, enabling the activation and isolation of these bacteria 

from the traditionally produced lambic brew samples. AAB are commonly regarded 

as spoilage bacteria in the beer and wine industry, as they can convert ethanol into 

acetic acid, which has a more stringent acidity compared to lactic acid (Bartowsky & 

Henschke, 2008; Vaughan et al., 2005). If feasible, sampling of the wort at several 

sampling points in casks may clarify their presence and role. 

The role of yeast species that are not commonly isolated from fermented beverages 

also deserves further attention. The isolation of Yarrowia lipolytica at late phases of 

the lambic beer fermentation from both the traditional and industrial lambic beer 

brewery suggests an advantage of these species to survive and prevail in lambic 

beers. Cheese is the main food product from which this yeast is isolated, next to 

fermented and raw meat products (Groenewald et al., 2014), but it has also been 

isolated occasssionally from soft drinks, wines and ciders (Groenewald et al., 2014). 

Finally, although the source of the microbiota in the industrial lambic beer brewery 

seems to be known, it is unclear where the lambic beer microbiota of the traditional 

lambic beer brewery precisely originates. Several findings indicate a role for both 

brewery air and the untreated construction wood and cask wood, but this may differ 

between breweries (Verachtert & Iserentant, 1995; Verachtert & Derdelinckx, 

2005). All these breweries produce lambic beers for a long time and the entire 

environment is probably enriched with the lambic beer microbiota. The precise 

mode of inoculation might therefore remain part of the mystery and tradition of 

lambic beer. 
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English summary 

Acidic lambic beers are the products of a spontaneous fermentation process that 

lasts for one to three years. The fermentation process is not initiated through the 

inoculation of yeasts or bacteria as starter cultures. Rather, microbial growth starts 

during the overnight cooling of the cooked wort in a shallow open vessel, called the 

cooling tun or coolship. Lambic beers are traditionally brewed in or near the Senne 

river valley, an area near Brussels, Belgium. However, also breweries outside the 

Senne river valley, i.e., in West-Flanders, have introduced the lambic beer brewing 

process. Brewing for the production of lambic beer traditionally takes place only 

during the colder months of the year (October to March), since cold nights are 

needed to lower the wort temperature to about 20°C in one night. The morning 

following the wort cooking, the cooled wort is assumed to be inoculated with a 

specific air microbiota of the Senne river valley and is transferred into wooden 

casks, which are stored at cellar or ambient temperatures, i.e., typically between 15 

and 25°C. Subsequently, the wort ferments and the lambic beer matures in thesame 

casks. The end-product is a noncarbonated sour beer. The sour character of the beer 

originates from the metabolic activities of various yeasts, lactic acid bacteria (LAB), 

and acetic acid bacteria (AAB). 

The present study mainly aimed to update the knowledge on the microbial diversity 

during the lambic beer fermentation process. Two traditional lambic beer 

fermentation batches were monitored over a period of two years, using cultivation 

and culture-independent polymerase chain reaction – denaturing gradient gel 

electrophoresis (PCR-DGGE) techniques. More than 2000 bacterial and yeast isolates 

from 14 samples per batch were obtained and matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used as a 

fast dereplication tool to decrease this high number of isolates to a non-redundant 

set of different strains. Three fermentation phases were identified during the 

traditional lambic beer fermentation process: an Enterobacteriaceae phase, which 

started from the cooling of the wort in the cooling tun onwards and lasted for one 

month. Several Enterobacteriaceae species were isolated, among which Hafnia 
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paralvei was the most isolated species at the end of this phase in both batches. After 

one month, the main fermentation or alcoholic fermentation phase started and was 

characterized by an increase in number of Saccharomyces cerevisiae and 

Saccharomyces pastorianus yeasts. The latter species was the most isolated yeast 

species at the end of the main fermentation phase after 3 months. In contrast to 

previous studies, the present investigations were unable to distinguish an 

acidification and maturation phase. Rather, the acidification phase appeared to be 

part of a long maturation phase. During the maturation phase, which was initiated 

after six months, Pediococcus damnosus was the only isolated LAB species. Dekkera 

bruxellensis was the most predominant yeast species, although the dominance of this 

yeast species was highly dependent of the place where the casks were located, and 

thus dependent of the ambient temperature of the cask room. New AAB species, 

named Acetobacter lambici and Gluconobacter cerevisiae, were isolated from lambic 

beer samples in the course of the present study. 

A second objective of the present study was to compare the lambic beer 

fermentation process in an industrial brewery located outside the Senne river valley 

to the traditional lambic beer fermentation process described above. Some technical 

aspects of the lambic beer brewing process differed between the traditional and 

industrial breweries, which may impact on the lambic beer fermentation process. 

The main difference was that the industrial lambic beer brewery acidified the lambic 

beer wort to a pH of 4, using lactic acid, at the end of the boiling process. The lambic 

beer wort was not inoculated after overnight cooling in the cooling tun, but bacteria 

and yeasts could be isolated from the wort as soon as it was transferred into the 

casks. No Enterobacteriaceae were isolated from the industrial lambic beer nor was 

Enterobacteriaceae DNA detected using PCR-DGGE analysis. This may have been 

caused by the addition of lactic acid. Hence, only two fermentation phases were 

found during the industrial lambic beer fermentation process, i.e., the main 

fermentation phase and the long maturation phase. The same species as in the 

traditional lambic beer fermentation process were found, although more AAB were 

isolated during the industrial lambic beer fermentation process. Lambic beer 

fermentation has long been considered only to be possible in the Senne river valley, 

since the air in this region is assumed to contain the microorganisms specific for 
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gueuze fermentation. However, microorganisms inoculating lambic beer wort could 

have other sources than the brewery air. Since the wort in the cooling tun yielded no 

growth, and because the cask samples were readily inoculated, the source of 

inoculation in the industrial lambic beer brewery seems to be restricted to the cask 

wood. 

Lambic beers are mostly used for the production of other beers, such as gueuze 

beers and fruit lambic beers. Gueuze beers are the spontaneous bottle-refermented 

products of the mixtures of lambic beers of different ages. These beers are 

commonly aged for several years in the breweries or by the consumers. However, 

the microbial and metabolite changes were not known and nor was it clear how long 

bottles should be allowed to age before consumption. The third goal of this research 

aimed to determine the microbial and metabolite changes in aged gueuze beers. The 

microbial profiles of the beers simplified over the years. While several yeast species, 

including D. bruxellensis, Dekkera anomala, Pichia membranifaciens and S. cerevisiae 

could be isolated from the youngest gueuze beer sampled, only D. bruxellensis could 

be isolated from old gueuze beers after an enrichment culture. Pediococcus 

damnosus could only be isolated from beers that were aged for a maximum of three 

years. Aging of gueuze beers appeared to be limited in time. No additional lactic acid 

was formed after 10 years and malto-oligosaccharide concentrations were low in a 

nine-years old gueuze beer. Ethyl lactate and ethyl decanoate were identified as 

potential positive and negative metabolite markers for the aging process of gueuze 

beers, respectively. 

In conclusion, the present study revealed that the lambic beer fermentation process 

consists of three rather than four phases, when based on bacterial and yeast 

diversity. Furthermore, the study showed that the microbiota present in both the 

traditional and industrial lambic beer fermentation processes were comparable, 

with the exception of an Enterobacteriaceae phase that was present in the former 

and absent in the latter. The precise mode of microorganism inoculation in the 

traditional lambic beer fermentation process was not elucidated and might therefore 

remain part of the mystery and tradition of lambic beer. 
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Nederlandstalige samenvatting 

Zure lambiekbieren zijn spontaan gefermenteerde bieren, waarvan de fermentatie 

één tot drie jaar duurt. Het fermentatieproces start niet door de toevoeging van 

bacteriën of gisten als starterculturen, maar de microbiële groei start reeds tijdens 

het overnacht koelen van het wort in een ondiepe open kuip, het zogenaamde 

koelschip. Traditioneel worden deze bieren geproduceerd in de omgeving van de 

Zennevallei, een regio rond Brussel, België. Enkele brouwerijen in West-Vlaanderen, 

en dus buiten de Zennevallei gelegen, passen hetzelfde productieproces toe voor de 

productie van lambiekbieren. Lambiekbieren worden traditioneel enkel gebrouwen 

tijdens de koudere wintermaanden (van oktober tot maart), aangezien de koude 

nachten nodig zijn om het wort overnacht te koelen tot ongeveer 20°C. Na het koelen 

wordt verondersteld dat het wort geïnoculeerd is door de micro-organismen die 

specifiek in de lucht van de Zennevallei aanwezig zijn. Hierna wordt het wort 

overgebracht in houten vaten, die worden gestockeerd bij kelder- of 

kamertemperatuur, tussen 15 en 25°C. Vervolgens fermenteert en rijpt het wort in 

deze vaten. Het eindproduct van dit proces is een niet-koolzuurhoudend zuur bier. 

De zure smaak van het bier komt voort uit de productie en omzetting van 

metabolieten door verscheidene gisten, melkzuurbacteriën (MZB) en 

azijnzuurbacteriën (AZB). 

Deze studie had als voornaamste doelstelling om de kennis over de microbiologische 

samenstelling van lambiekbieren tijdens het fermentatieproces op te frissen. Hierbij 

werden twee lambiekbierbrouwsels gedurende twee jaar opgevolgd in een 

traditionele lambiekbrouwerij. Hiervoor werden cultivatie en cultuuronafhankelijke 

polymerase chain reaction – denaturing gradient gel electrophoresis (PCR-DGGE) 

technieken gebruikt. Matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) massaspectrometrie werd toegepast als snelle dereplicatietechniek 

om de meer dan 2000 bacteriële en gistisolaten te reduceren naar een lager aantal 

niet-redundante isolaten. Drie fermentatiefasen werden onderscheiden tijdens het 

traditionele lambiekbierfermentatieproces: een Enterobacteriaceae fase duurde 

ongeveer een maand en startte vanaf het overnacht koelen van het wort in het 
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koelschip. Verscheidene Enterobacteriaceae species werden geïsoleerd, waaronder 

Hafnia paralvei het meest geïsoleerde species was aan het einde van deze fase en dit 

voor beide brouwsels. Daarna volgde de hoofdfermentatiefase (alcoholische 

fermentatiefase) die startte na één maand en gekenmerkt was door een stijgend 

aantal Saccharomyces cerevisiae en Saccharomyces pastorianus gisten. Isolaten van 

het laatstgenoemde species werden het meest geïsoleerd aan het einde van de 

hoofdfermentatiefase (na drie maand). In tegenstelling tot vorige studies was het 

niet mogelijk om een aparte verzurings- en rijpingsfase waar te nemen. De verzuring 

leek eerder onderdeel te zijn van een lange rijpingsfase. Tijdens de rijpingsfase (na 6 

maand) was Pediococcus damnosus het enige aanwezige MZB-species. Dekkera 

bruxellensis was het voornaamste gistspecies, alhoewel de dominantie van dit 

gistspecies zeer afhankelijk was van de plaats waar de vaten gestockeerd werden, en 

dus ook van de omgevingstemperatuur van deze vatenzalen. Nieuwe AZB-species, 

namelijk Acetobacter lambici en Gluconobacter cerevisiae, werden geïsoleerd uit 

lambiekbier tijdens deze diversiteitsstudies. 

Een tweede doelstelling van dit doctoraatsonderzoek was om het 

lambiekbierfermentatieproces in een industriële lambiekbrouwerij, gelegen buiten 

de Zennevallei, te vergelijken met de hoger beschreven resultaten van een 

traditionele lambiekbrouwerij. De productieprocessen in beide lambiekbrouwerijen 

vertoonden verschillen in enkele technische aspecten, die een invloed hadden op het 

lambiekbierfermentatieproces. Het grootste verschil in de industriële 

lambiekbierbrouwerij was het aanzuren van het wort met melkzuur tot pH 4 aan het 

einde van het kookproces. Hoewel het lambiekwort in het koelschip niet 

geïnoculeerd werd na overnacht koelen, werden wel bacteriën en gisten geïsoleerd 

uit het wortstaal uit het vat, direct nadat het wort hierin was overgebracht. Er 

werden geen Enterobacteriaceae geïsoleerd uit het industrieel geproduceerde 

lambiekbier noch werd DNA afkomstig van Enterobacteriaceae gedetecteerd tijdens 

de PCR-DGGE-experimenten. De afwezigheid van deze bacteriën kon veroorzaakt 

zijn door het aanzuren van het wort. Bijgevolg werden slechts twee fermentatiefasen 

waargenomen in het industriële lambiekbierfermentatieproces, namelijk de 

hoofdfermentatiefase en een lange rijpingsfase. Dezelfde species als in het 

traditionele lambiekbierfermentatieproces werden gevonden, hoewel meer 
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verschillende AZB-species werden geïsoleerd tijdens het industriële 

lambiekbierfermentatieproces. Lambiekbierfermentatie is lange tijd enkel mogelijk 

geacht in de omgeving van de Zennevallei, aangezien hier de nodige micro-

organismen in de lucht aanwezig zijn. Micro-organismen aanwezig tijdens het 

lambiekbierfermentatieproces kunnen echter nog afkomstig zijn van andere 

bronnen, naast de omgevingslucht. Vermits het wort van de industriële brouwerij 

niet geïnoculeerd werd in het koelschip, maar wel isolaten bekomen werden direct 

nadat het wort in het vat was overgebracht, lijkt het hout van het vat bijgevolg de 

enige mogelijke bron van micro-organismen voor de inoculatie van het wort in het 

industriële lambiekbierfermentatieproces te zijn. 

Lambiekbieren worden meestal gebruikt voor de productie van andere bieren, zoals 

geuzebieren en fruit-lambiekbieren. Geuzebieren worden verkregen door de 

spontane hergisting op fles van een mengsel van jonge en oude lambiek. Deze bieren 

worden veelal bewaard om te rijpen, zowel door de brouwerijen als door de 

consumenten. Zowel de veranderingen in microbiologische samenstelling als in de 

aanwezige metabolieten werden nog niet in detail bestudeerd. Meer nog, er was 

geen exacte informatie beschikbaar over hoelang deze bieren het best rijpen. Om 

deze reden werden in een derde doelstelling de veranderingen in gerijpte 

geuzebieren onderzocht, zowel op het vlak van microbiologische eigenschappen als 

op het vlak van aanwezige metabolieten. De microbiologische samenstelling van 

deze bieren vereenvoudigde naarmate de gueuzebieren langer werden gestockeerd. 

Verscheidene species, namelijk D. bruxellensis, Dekkera anomala, Pichia 

membranifaciens en S. cerevisiae, werden direct geïsoleerd uit het jongste geteste 

geuzebier. Uit oudere geuzebieren werd enkel D. bruxellensis geïsoleerd na een 

aanrijkingsstap. Isolaten van P. damnosus werden enkel bekomen uit geuzebieren 

van maximum drie jaar oud. De rijping van de bieren leek ook beperkt in de tijd. Er 

werd geen additioneel melkzuur aangemaakt na tien jaar rijping en de malto-

oligosaccharideconcentraties waren reeds laag in een negenjarig geuzebier. Er werd 

aangetoond dat ethyllactaat en ethyldecanoaat kunnen worden gebruikt als een 

potentiële respectievelijk positieve en negatieve metabolietmerker voor de rijping 

van geuzebieren. 
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De huidige studie heeft aangetoond dat, gebaseerd op de bacteriële en 

gistdiversiteit, een traditioneel lambiekbierfermentatieproces uit drie fasen bestaat, 

in plaats van de eerder gerapporteerde vier fasen. Verder heeft deze studie 

aangetoond dat de microbiële samenstelling van zowel traditionele als industriële 

lambiekbierfermentatieprocessen gelijkaardig zijn, met uitzondering van de 

afwezigheid van een Enterobacteriaceae fase in het industriële 

lambiekbierfermentatieproces. De precieze herkomst van de micro-organismen die 

verantwoordelijk zijn voor de inoculatie van het lambiekwort werden niet ontrafeld, 

waardoor dit bijgevolg een deel blijft van het mysterie en de traditie van de 

productie van lambiekbieren. 
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Strain list 

Strainnumber Genus Species Source Isolation year Geographical origin 

R-47367 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47368 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47369 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47370 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47371 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47372 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47373 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-47374 Enterobacter hormaechei Fermenting lambic beer 2010 Belgium 

R-47375 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47376 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47377 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47378 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47379 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-47380 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47381 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47382 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47383 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47384 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47385 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-47386 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49006 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49007 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49008 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49009 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49010 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49011 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49012 Citrobacter gillenii Fermenting lambic beer 2010 Belgium 

R-49013 Raoultella terrigena Fermenting lambic beer 2010 Belgium 

R-49014 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-49015 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-49016 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-49017 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-49018 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-49019 Escherichia/Shighella 
 

Fermenting lambic beer 2010 Belgium 

R-49020 Escherichia/Shighella 
 

Fermenting lambic beer 2010 Belgium 

R-49021 Escherichia/Shighella 
 

Fermenting lambic beer 2010 Belgium 

R-49022 Escherichia/Shighella 
 

Fermenting lambic beer 2010 Belgium 

R-49023 Enterobacter hormaechei Fermenting lambic beer 2010 Belgium 

R-49024 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49025 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49026 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49027 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49028 Hafnia paralvei Fermenting lambic beer 2010 Belgium 
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R-49029 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49030 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49031 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49032 Klebsiella oxytoca Fermenting lambic beer 2010 Belgium 

R-49033 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49034 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49035 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49036 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49037 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49038 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49039 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49040 Raoultella terrigena Fermenting lambic beer 2010 Belgium 

R-49041 Escherichia/Shighella 
 

Fermenting lambic beer 2010 Belgium 

R-49042 Enterobacter kobei Fermenting lambic beer 2010 Belgium 

R-49088 Gluconobacter cerinus Fermenting lambic beer 2011 Belgium 

R-49089 Gluconobacter cerinus Fermenting lambic beer 2011 Belgium 

R-49090 Acetobacter cerevisiae Fermenting lambic beer 2011 Belgium 

R-49092 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49093 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49094 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49095 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49096 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49097 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49098 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49099 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49100 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49101 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49102 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49103 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49104 Pediococcus damnosus Fermenting lambic beer 2011 Belgium 

R-49551 Enterobacter sp. Fermenting lambic beer 2010 Belgium 

R-49552 Enterobacter sp. Fermenting lambic beer 2010 Belgium 

R-49553 Pseudomonas azotoformans Fermenting lambic beer 2010 Belgium 

R-49554 Pseudomonas azotoformans Fermenting lambic beer 2010 Belgium 

R-49555 Hafnia paralvei Fermenting lambic beer 2010 Belgium 

R-49561 Hanseniaspora meyeri Fermenting lambic beer 2011 Belgium 

R-49562 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49563 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49564 Naumovia castelii Fermenting lambic beer 2010 Belgium 

R-49565 Priceomyces carsonii Fermenting lambic beer 2011 Belgium 

R-49566 Debaryomyces hansenii Fermenting lambic beer 2011 Belgium 

R-49567 Priceomyces sp. Fermenting lambic beer 2011 Belgium 

R-49568 Priceomyces carsonii Fermenting lambic beer 2012 Belgium 

R-49569 Wickerhamomyces anomalus Fermenting lambic beer 2012 Belgium 
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R-49570 Debaryomyces hansenii Fermenting lambic beer 2012 Belgium 

R-49639 Pichia fermentans Fermenting lambic beer 2011 Belgium 

R-49640 Dekkera bruxellensis Fermenting lambic beer 2011 Belgium 

R-49641 Pichia kudriavzevii Fermenting lambic beer 2011 Belgium 

R-49642 Saccharomyces cerevisiae Fermenting lambic beer 2011 Belgium 

R-49643 Dekkera bruxellensis Fermenting lambic beer 2011 Belgium 

R-49644 Saccharomyces cerevisiae Fermenting lambic beer 2011 Belgium 

R-49645 Hanseniaspora uvarum Fermenting lambic beer 2011 Belgium 

R-49646 Hanseniaspora uvarum Fermenting lambic beer 2011 Belgium 

R-49647 Candida friedrichii Fermenting lambic beer 2011 Belgium 

R-49648 Candida friedrichii Fermenting lambic beer 2011 Belgium 

R-49649 Pichia membranifaciens Fermenting lambic beer 2012 Belgium 

R-49650 Meyerozyma guilliermondii Fermenting lambic beer 2012 Belgium 

R-49651 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49652 Debaryomyces hansenii Fermenting lambic beer 2010 Belgium 

R-49653 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49654 Saccharomyces cerevisiae Fermenting lambic beer 2010 Belgium 

R-49655 Saccharomyces cerevisiae Fermenting lambic beer 2010 Belgium 

R-49656 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49657 Dekkera anomala Fermenting lambic beer 2012 Belgium 

R-49661 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49662 Saccharomyces cerevisiae Fermenting lambic beer 2010 Belgium 

R-49663 Acetobacter orientalis Fermenting lambic beer 2011 Belgium 

R-49664 Acetobacter fabarum Fermenting lambic beer 2011 Belgium 

R-49665 Gluconobacter sp. Fermenting lambic beer 2011 Belgium 

R-49666 Acetobacter fabarum Fermenting lambic beer 2011 Belgium 

R-49667 Acetobacter fabarum Fermenting lambic beer 2011 Belgium 

R-49668 Acetobacter lambici Fermenting lambic beer 2011 Belgium 

R-49740 Acetobacter orientalis Fermenting lambic beer 2011 Belgium 

R-49741 Acetobacter fabarum Fermenting lambic beer 2011 Belgium 

R-49742 Acetobacter lambici Fermenting lambic beer 2011 Belgium 

R-49743 Acetobacter fabarum Fermenting lambic beer 2011 Belgium 

R-49744 Gluconobacter sp. Fermenting lambic beer 2010 Belgium 

R-49811 Hanseniaspora uvarum Fermenting lambic beer 2011 Belgium 

R-49812 Hanseniaspora uvarum Fermenting lambic beer 2011 Belgium 

R-49813 Pichia fermentans Fermenting lambic beer 2011 Belgium 

R-49814 Saccharomyces cerevisiae Fermenting lambic beer 2011 Belgium 

R-49815 Saccharomyces cerevisiae Fermenting lambic beer 2011 Belgium 

R-49816 Hanseniaspora uvarum Fermenting lambic beer 2011 Belgium 

R-49817 Pichia fermentans Fermenting lambic beer 2011 Belgium 

R-49818 Pichia fermentans Fermenting lambic beer 2011 Belgium 

R-49819 Hanseniaspora uvarum Fermenting lambic beer 2011 Belgium 

R-49820 Naumovia castelii Fermenting lambic beer 2010 Belgium 

R-49821 Saccharomyces cerevisiae Fermenting lambic beer 2010 Belgium 
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R-49822 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49823 Saccharomyces bayanus Fermenting lambic beer 2010 Belgium 

R-49824 Wickerhamomyces anomalus Fermenting lambic beer 2011 Belgium 

R-49825 Debaryomyces hansenii Fermenting lambic beer 2011 Belgium 

R-49826 Wickerhamomyces anomalus Fermenting lambic beer 2011 Belgium 

R-49827 Priceomyces carsonii Fermenting lambic beer 2011 Belgium 

R-49828 Dekkera bruxellensis Fermenting lambic beer 2011 Belgium 

R-49829 Dekkera bruxellensis Fermenting lambic beer 2011 Belgium 

R-49830 Dekkera bruxellensis Fermenting lambic beer 2011 Belgium 

R-49831 Dekkera bruxellensis Fermenting lambic beer 2011 Belgium 

R-49836 Candida parapsilosis Fermenting lambic beer 2011 Belgium 

R-49837 Kazachstania servazzii Fermenting lambic beer 2010 Belgium 

R-49838 Kazachstania servazzii Fermenting lambic beer 2010 Belgium 

R-49839 Candida sp. Fermenting lambic beer 2012 Belgium 

R-49840 Candida patagonica Fermenting lambic beer 2012 Belgium 

R-49843 Debaryomyces marama Fermenting lambic beer 2012 Belgium 

R-49844 Debaryomyces hansenii Fermenting lambic beer 2012 Belgium 

R-49845 Pichia kudriavzevii Fermenting lambic beer 2012 Belgium 

R-49846 Yarrowia lipolytica Fermenting lambic beer 2012 Belgium 

R-50193 Acetobacter lambici Fermenting lambic beer 2011 Belgium 

R-50194 Acetobacter lambici Fermenting lambic beer 2011 Belgium 

R-50447 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50448 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50449 Staphylococcus sp. Lambic brewery air 2013 Belgium 

R-50450 Lactobacillus curvatus Lambic brewery air 2013 Belgium 

R-50451 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50452 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50453 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50454 Pseudomonas azotoformans Lambic brewery air 2013 Belgium 

R-50455 Pseudomonas azotoformans Lambic brewery air 2013 Belgium 

R-50543 Acetobacter lambici Fermenting lambic beer 2013 Belgium 

R-50544 Pediococcus damnosus Fermenting lambic beer 2013 Belgium 

R-50545 Acetobacter lambici Fermenting lambic beer 2013 Belgium 

R-50546 Rahnella aquatilis Fermenting lambic beer 2013 Belgium 

R-50547 Enterobacter/Citrobacter 
 

Fermenting lambic beer 2013 Belgium 

R-50548 Leuconostoc mesenteroides Fermenting lambic beer 2013 Belgium 

R-50549 Gluconobacter sp. Fermenting lambic beer 2013 Belgium 

R-50550 Leuconostoc mesenteroides Fermenting lambic beer 2013 Belgium 

R-50551 Enterobacter/Citrobacter sp. Fermenting lambic beer 2013 Belgium 

R-50552 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50553 Pediococcus pentosaceus Lambic brewery air 2013 Belgium 

R-50554 Leuconostoc mesenteroides Lambic brewery air 2013 Belgium 

R-50555 Lactobacillus nenjiangensis Lambic brewery air 2013 Belgium 

R-50556 Pediococcus pentosaceus Lambic brewery air 2013 Belgium 
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R-50557 Enterococcus faecium Lambic brewery air 2013 Belgium 

R-50558 Pseudomonas azotoformans Lambic brewery air 2013 Belgium 

R-50559 Hafnia alvei Lambic barrel 2013 Belgium 

R-50560 Acetobacter sp. Fermenting lambic beer 2013 Belgium 

R-50561 Acetobacter sp. Fermenting lambic beer 2013 Belgium 

R-50562 Lactobacillus malefermentans Fermenting lambic beer 2013 Belgium 

R-50563 Lactobacillus buchneri Fermenting lambic beer 2013 Belgium 

R-50564 Lactobacillus buchneri Fermenting lambic beer 2013 Belgium 

R-50565 Ophiostoma stenoceras Fermenting lambic beer 2013 Belgium 

R-50566 Trichosporon gracile Fermenting lambic beer 2013 Belgium 

R-50567 Blastobotrys arbuscula Fermenting lambic beer 2013 Belgium 

R-50568 Cryptococcus heveanensis Fermenting lambic beer 2013 Belgium 

R-50569 Candida glabrata Fermenting lambic beer 2013 Belgium 

R-50570 Pichia membranifaciens Fermenting lambic beer 2013 Belgium 

R-50571 Trichosporon sp. Fermenting lambic beer 2013 Belgium 

R-50572 Candida friedrichii Fermenting lambic beer 2013 Belgium 

R-50573 Candida patagonica Fermenting lambic beer 2013 Belgium 

R-50574 Pichia membranifaciens Fermenting lambic beer 2013 Belgium 

R-50575 Trichomonascus apis Fermenting lambic beer 2013 Belgium 

R-50576 Saccharomyces cerevisiae Fermenting lambic beer 2013 Belgium 

R-50578 Priceomyces sp. Lambic brewery air 2013 Belgium 

R-50580 Meyerozyma guilliermondii Lambic brewery air 2013 Belgium 

R-50582 Meyerozyma guilliermondii Lambic brewery air 2013 Belgium 

R-50584 Candida boidinii Lambic barrel 2013 Belgium 

R-50585 Saccharomyces bayanus Fermenting lambic beer 2013 Belgium 

R-50586 Brettanomyces custersianus Fermenting lambic beer 2013 Belgium 

R-50741 Pantoea sp. Lambic brewery air 2013 Belgium 

R-50742 Pseudomonas sp. Lambic brewery air 2013 Belgium 

R-50743 Acinetobacter guillouiae Lambic brewery air 2013 Belgium 

R-50744 Pseudomonas sp. Lambic brewery air 2013 Belgium 

R-50745 Serratia sp. Lambic brewery air 2013 Belgium 

R-50746 Pseudomonas sp. Lambic brewery air 2013 Belgium 

R-50747 Pseudomonas sp. Lambic brewery air 2013 Belgium 

R-50748 Pseudomonas azotoformans Lambic brewery air 2013 Belgium 

R-50749 Azomonas sp. Lambic brewery air 2013 Belgium 

R-50750 Bacillus sp. Lambic brewery air 2013 Belgium 

R-50751 Bacillus sp. Lambic brewery air 2013 Belgium 

R-50752 Serratia marcecens Lambic brewery air 2013 Belgium 

R-50753 Bacillus sp. Lambic brewery air 2013 Belgium 

R-50754 Bacillus sp. Lambic brewery air 2013 Belgium 

R-50755 Staphyllococcus sciuri Lambic brewery air 2013 Belgium 

R-50756 Pediococcus pentosaceus Lambic brewery air 2013 Belgium 

R-50757 Bacillus sp. Lambic brewery air 2013 Belgium 

R-50758 Pseudomonas sp. Lambic brewery air 2013 Belgium 
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R-50759 Pseudomonas psychrotolerans Lambic brewery air 2013 Belgium 

R-50760 Pseudomonas psychrotolerans Lambic brewery air 2013 Belgium 

R-50766 Pichia fermentans Lambic brewery air 2013 Belgium 

R-50767 Candida glabrata Lambic brewery air 2013 Belgium 

R-50768 Candida glabrata Lambic brewery air 2013 Belgium 

R-50769 Candida glabrata Lambic brewery air 2013 Belgium 

R-50770 Pichia fermentans Lambic brewery air 2013 Belgium 

R-50771 Pichia fermentans Lambic brewery air 2013 Belgium 

R-50772 Candida glabrata Lambic brewery air 2013 Belgium 

R-50773 Candida glabrata Lambic brewery air 2013 Belgium 

R-50774 Pichia fermentans Lambic brewery air 2013 Belgium 

R-50775 Candida glabrata Lambic brewery air 2013 Belgium 

R-50776 Cryptococcus carnescens Lambic brewery air 2013 Belgium 

R-50777 Trichosporum domesticum Lambic brewery air 2013 Belgium 

R-50778 Trichosporum domesticum Lambic brewery air 2013 Belgium 

R-50779 Staphylococcus caprae Lambic brewery air 2013 Belgium 

R-50780 Bacillus mycoides Lambic brewery air 2013 Belgium 

R-50781 Bacillus aryabhattai Lambic brewery air 2013 Belgium 

R-50782 Rumeliibacillus pycnus Lambic brewery air 2013 Belgium 

R-50783 Staphylococcus aureus Lambic brewery air 2013 Belgium 

R-50784 Staphylococcus caprae Lambic brewery air 2013 Belgium 

R-50785 Staphylococcus caprae Lambic brewery air 2013 Belgium 

R-50786 Aerococcus urinaeequi Lambic brewery air 2013 Belgium 

R-50787 Staphylococcus hominis Lambic brewery air 2013 Belgium 

R-50788 Staphylococcus petrasii Lambic brewery air 2013 Belgium 

R-50789 Aerococcus urinaeequi Lambic brewery air 2013 Belgium 

R-50790 Staphylococcus succinus Lambic brewery air 2013 Belgium 

R-50791 Staphylococcus hominis Lambic brewery air 2013 Belgium 

R-50792 Staphylococcus succinus Lambic brewery air 2013 Belgium 

R-50793 Staphylococcus sp. Lambic brewery air 2013 Belgium 

R-50794 Staphylococcus caprae Lambic brewery air 2013 Belgium 

R-50795 Staphylococcus petrasii Lambic brewery air 2013 Belgium 

R-50796 Staphylococcus epidermis Lambic brewery air 2013 Belgium 

R-50797 Kocuria rhizophila Lambic brewery air 2013 Belgium 

R-50798 Pseudomonas psychrotolerans Lambic brewery air 2013 Belgium 

R-50799 Moraxella osloensis Lambic brewery air 2013 Belgium 

R-50800 Staphylococcus hominis Lambic brewery air 2013 Belgium 

R-50801 Bacillus aerophilus Lambic brewery air 2013 Belgium 

R-50802 Staphylococcus sp. Lambic brewery air 2013 Belgium 

R-50803 Staphylococcus sp. Lambic brewery air 2013 Belgium 

R-50804 Staphylococcus hominis Lambic brewery air 2013 Belgium 

R-50805 Staphylococcus caprae Lambic brewery air 2013 Belgium 

R-50806 Bacillus licheniformis Lambic brewery air 2013 Belgium 

R-50807 Staphylococcus epidermis Lambic brewery air 2013 Belgium 



 

252|Annex 

 

Strainnumber Genus Species Source Isolation year Geographical origin 

R-50808 Bacillus simplex Lambic brewery air 2013 Belgium 

R-50809 Lysinibacillus macroides Lambic brewery air 2013 Belgium 

R-50810 Staphylococcus haemolyticus Lambic brewery air 2013 Belgium 

R-50811 Kocuria kristinae Lambic brewery air 2013 Belgium 

R-50813 Streptococcus parauberis Lambic brewery air 2013 Belgium 

R-50814 Bacillus subtilis Lambic brewery air 2013 Belgium 

R-50815 Bacillus subtilis Lambic brewery air 2013 Belgium 

R-50816 Bacillus licheniformis Lambic brewery air 2013 Belgium 

R-50817 Klebsiella oxytoca Lambic brewery air 2013 Belgium 

R-50818 Serratia grimesii Lambic brewery air 2013 Belgium 

R-50819 Serratia sp. Lambic brewery air 2013 Belgium 

R-50820 Cryptococcus sp. Lambic brewery air 2013 Belgium 

R-50821 Trichosporon gracile Lambic brewery air 2013 Belgium 

R-50990 Acetobacter fabarum Fermenting lambic beer 2011 Belgium 

R-51007 Gluconobacter oxydans Fermenting lambic beer 2013 Belgium 

R-51008 Acetobacter orientalis Fermenting lambic beer 2013 Belgium 

R-51009 Acetobacter orientalis Fermenting lambic beer 2013 Belgium 

R-51010 Gluconobacter japonicus Fermenting lambic beer 2013 Belgium 

R-51011 Gluconobacter albidus Fermenting lambic beer 2013 Belgium 

R-51012 Acetobacter orientalis Fermenting lambic beer 2013 Belgium 

R-51013 Acetobacter orientalis Fermenting lambic beer 2013 Belgium 

R-51014 Gluconobacter cerinus Fermenting lambic beer 2013 Belgium 

R-51015 Gluconobacter oxydans Fermenting lambic beer 2013 Belgium 

R-51016 Lactococcus lactis Lambic brewery air 2013 Belgium 

R-51017 Propionibacterium cyclohexanicum Lambic brewery air 2013 Belgium 

R-51018 Leuconostoc citreum Lambic brewery air 2013 Belgium 

R-51019 Propionibacterium thoenii Lambic brewery air 2013 Belgium 

R-51020 Pediococcus damnosus Lambic barrel 2013 Belgium 

R-51021 Pediococcus damnosus Lambic barrel 2013 Belgium 

R-51022 Lactobacillus malefermentans Fermenting lambic beer 2013 Belgium 

R-51023 Lactobacillus malefermentans Fermenting lambic beer 2013 Belgium 

R-51024 Leuconostoc pseudomesenteroides Fermenting lambic beer 2013 Belgium 

R-52105 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52106 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52107 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52108 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52109 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52110 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52111 Brettanomyces custersianus Gueuze beer 2013 Belgium 

R-52112 Dekkera bruxellensis Gueuze beer 2013 Belgium 

R-52113 Pichia membranifaciens Gueuze beer 2013 Belgium 

R-52114 Saccharomyces cerevisiae Gueuze beer 2013 Belgium 

R-52115 Saccharomyces cerevisiae Gueuze beer 2013 Belgium 

R-52116 Dekkera anomala Gueuze beer 2013 Belgium 
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R-52117 Dekkera anomala Gueuze beer 2013 Belgium 

R-52118 Dekkera anomala Gueuze beer 2013 Belgium 

R-52119 Dekkera anomala Gueuze beer 2013 Belgium 

R-52120 Saccharomyces cerevisiae Fermenting lambic beer 2013 Belgium 

R-52121 Saccharomyces cerevisiae Fermenting lambic beer 2013 Belgium 

R-52122 Pediococcus damnosus Gueuze beer 2013 Belgium 

R-52123 Pediococcus damnosus Gueuze beer 2013 Belgium 

R-52124 Pediococcus damnosus Gueuze beer 2013 Belgium 

R-52125 Pediococcus damnosus Gueuze beer 2013 Belgium 

R-52126 Pediococcus damnosus Gueuze beer 2013 Belgium 

R-52127 Pediococcus damnosus Gueuze beer 2013 Belgium 

R-52128 Pediococcus damnosus Gueuze beer 2013 Belgium 

 


