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Samenvatting

Algemene situering

Alle stellaire structuren in het heelal, van zonneste)falthopen en galaxieén, tot groepen,
clusters en superclusters van galaxieén, en de donkeezigihtlo’s die hen omgeven,
worden vormgegeven door een enkele dominerende krachar@ksacht. De vraag hoe
deze systemen zich gedragen is dan ook een fundamentegktukan de theoretische
astrofysica.

In wezen zijn er twee complementaire technieken ontwikketdde dynamische struc-
tuur van grote gravitationele systemen te analyseren. Beeamethode behelst numerieke
N-deeltjessimulaties, die ons helpen om de evolutie varstanvorming in het heelal te
doorgronden. De tweede methode, die de focus zal zijn vae dissertatie, is stellaire
dynamica, dit wil zeggen de constructie van theoretischdetien door technieken uit de
statistische fysica toe te passen en aldus discrete systemgeschrijven in termen van
continue grootheden. In het bijzonder wenst men zogenaalistiibutiefuncties in de
faseruimtete construeren, en hun eigenschappen te bestuderen.

Hoewel zulke dynamische modellen noodzakelijkerwijsigaliseerde beschrijvingen
zijn van stellaire structuren — men moet systemen beschoualieegeévolueerd zijn naar
een quasi-evenwichtstoestand, met weinig substructusneteen hoge graad van symme-
trie (sferisch, axiaal symmetrisch, etc) — is ondanks depetkingen stellaire dynamica
een essentieel instrument om inzicht te verkrijgen in deadyische structuur van stel-
laire systemen, bijvoorbeeld door hun baanconfiguratieiofdnelheidsverdeling te tonen.
Bovendien kunnen dynamische modellen dienst doen om beyilities te genereren voor
bijkomendeN-deeltjessimulaties. Beide technieken vullen elkaar dussia de studie van
gravitationele systemen.

Dynamisch modelleren: algemeen

Een distributiefunctie in de faseruimte beschrijft in egmede waarschijnlijkheid dat men
een object vindt in het systeem op een bepaalde plaats ereméepaalde snelheid. Als
ook de totale gravitationele potentiaal gegeven is, dareipahn van dit object volledig
gedetermineerd; met andere woorden, een distributiguhetschrijft de volledige dy-

namische structuur van een stellair systeem, en alle odisemele grootheden kunnen
hiervan afgeleid worden. De belangrijkste hiervan zijn adittheid en de snelheidsdisper-
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sies (die de gemiddelde kwadratische snelheden op eenleppdaats en in een bepaalde
richting weergeven).

Het centrale vraagstuk in stellaire dynamica betreft aloeiszoeken naar geschikte
distributiefuncties die consistent zijn met een gegevemamaeling datapunten. Dit kun-
nen ruimtelijke grootheden zijn, bijvoorbeeld data geliiéstrd uit simulaties van donkere
materie-halo’s, maar het kunnen ook geprojecteerde ohsenele grootheden zijn, zoals
de posities aan de hemel en de Dopplersnelheden van gatarieén cluster.

Een belangrijke stelling zegt dat voor een brede klasse wamvechtssystemen de dis-
tributiefunctie enkel afhankelijk is van hoogstens drieegralen van de beweging. Maar
desondanks blijft het algemene geval te gecompliceerd ote tgssen. We zijn daarom
genoodzaaktom systemen te beschouwen met extra symemetiidiet bijzonder beperken
we ons tot sferische systemen zonder rotatie. Voor dezee&kiam systemen is de distribu-
tiefunctie enkel afhankelijk van twee integralen, de ba@ngie en het draaimoment.

Natuurlijk is sferische symmetrie een aanzienlijke veveediging, maar dit laat ons
toe om op een elegante en geavanceerde manier distrilndiefs te construeren, en hun
eigenschappen op een gedetailleerde manier te analy&oeandien zijn dergelijke mo-
dellen een betekenisvolle benadering voor de systemenadiellen beschouwen, namelijk
clusters van galaxieén en donkere materie-halo’s. Dentekbn die we in deze dissertatie
zullen behandelen zijn dan ook een eerste aanzet, die maaté kunnen uitgebreid wor-
den naar algemenere (axiaal-symmetrische) structuren.

Dynamisch modelleren: probleemstelling

De meest gebruikte techniek in dynamisch modelleren is dermamd&chwarzschild
methodeDeze houdt in dat men een distributiefunctie opbouwt dedividuele banen toe
te voegen die een gegeven dataset fitten. Hoewel deze matbedalgemeen is, heeft ze
ook nadelen: zo creéert een collectie van discrete baree®eat onfysische dynamische
structuur, die moeilijk te interpreteren is. Bovendien & humeriek lastig om uit een
dergelijke distributiefunctie alle relevante observaéte grootheden te berekenen.

In onze onderzoeksgroep is er daarom een meer geavancegiaet van deze me-
thode ontwikkeld. In dit algoritme wordt een distributiafitie niet opgebouwd uit aparte
banen, maar gecreéerd als een lineaire combinatie van ef@aentaire analytische ba-
sisfuncties van de integralen. De bijbehorende datagitiormt hierbij een kwadratisch
programmeervraagstuk.

Deze techniek is in de loop der jaren met succes toegepasrop/@aier van syste-
men, zoals bolhopen en galaxieén. Het oorspronkelijkédoedit onderzoek was om de
methode te gebruiken voor clusters van galaxieén, madvihgootten we op een aantal
tekortkomingen in het algoritme. Onze focus werd daardedegd naar het oplossen van
deze problemen, waarvan deze dissertatie het resultaat is.

We identificeerden drie moeilijkheden. De voornaamste isdbalgoritme een verte-
kening vertoont: het is meer geneigd om modellen te cregérentangentiéle banen dan
modellen met radiale banen. De reden hiervoor is dat hetoeeliyer is om basiscom-
ponenten aan de distributiefunctie toe te voegen die baeestten met een kleine excen-
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triciteit, omdat zulke banen een vorige fit slechts wijzigereen beperkte regio en dus
heel gericht kunnen verbeteren. Componenten met meetaddinen daarentegen hebben
zowel een invloed op kleine als op grote afstanden van hetwean zodat zulke basis-
functies een bestaande fit significanter wijzigen en dus liji@ikunnen verbeteren. Het
probleem om aldus modellen te construeren met radiale Hameet name nefast bij grote
structuren zoals clusters van galaxieén, vermits hurebsié regionen gedomineerd wor-
den radiaal invallende sterrenstelsels.

Een tweede probleem was dat de bestaande basiscomponentéaioende gesofisti-
ceerd waren om snelheidsdispersies te genereren die agtgreEnen met waarnemingen
en simulaties van grote structuren. Met name de snelhagigeopie, die de verhouding
uitdrukt tussen tangentiéle en radiale dispersies, wade in de modellen een te steile
overgang van centrale waarden naar waarden op grote affdgmarobleem kwam vooral
tot uiting bij het modelleren van donkere materie-halo’s.

Een derde, meer algemeen probleem dat inherent is aan ¢ikg-fitocedure, is het
feit dat de datapunten doorgaans bestaan uit een mix varhgaen (in het bijzonder
dichtheid en snelheidsdispersies). Daardoor rijst deg/na@ men deze gemengde data op
een representatieve manier met elkaar kan vergelijken emtoet laten meewegen in de
fit.

Dynamisch modelleren: oplossing

Geconfronteerd met deze drie moeilijkheden zijn we op zaglagn naar een manier om
dit te verhelpen. Onze oplossing bestaat erin om meer geagage basisfuncties te on-
twikkelen, die elk een anisotropie-profiel genereren det algemener is dan de bestaande
basisfuncties. We slaagden hierin door gebruik te makerveameerderde dichtheden
een elegante methode waarmee dynamische systemen kunraamvib@schreven, equiv-
alent met distributiefuncties. De bekomen basiscompamektinnen daarbij uitgedrukt
worden in termen van zogenaamiex H-functies een heel algemene familie van spe-
ciale wiskundige functies, die een waaier van meer bekamnugies omvat. Daarenboven
kunnen deze functies ontwikkeld worden in machtreeksen.isDéen bijzonder nuttige
eigenschap, niet alleen omdat ze op die manier efficienhémworden berekend, maar
ook omdat dit toelaat om hun asymptotisch gedrag te bestnder

Vermits deze componenten een snelheidsanisotropie kwmaetbrengen die voldoen-
de algemeen is, hoeven we deze laatste niet langer in eelfiefgn te construeren. In
plaats daarvan kunnen we een snelheidsanisotropie ree@®dpand postuleren, en enkel
de dichtheid te gebruiken als data in de fitting methode; ethar anisotropie (die we in een
parameterruimte kunnen laten variéren), kunnen we op ohezeer een distributiefunctie
genereren die deze exact voortbrengt, en aldus een paréangte van fits construeren.
Hiermee lossen we zowel het bias-probleem op (zodat we neodainnen maken met ra-
diale banen) als het probleem van gemengde data. We dem@mstlit door onze techniek
toe te passen op enkele specifieke onderwerpen.
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Overzicht

Na een inleidend hoofdstuk geven we een algemeen overzchstellaire dynamica in
Hoofdstuk 2 (grotendeels gebaseerd op werk van anderera)jteaarbij we eveneens het
modelleringsalgoritme beschrijven en de tekortkomingema zonet aangehaald hebben.

Vervolgens introduceren we in Hoofstuk 3 de Héxfunctie die we nodig zullen hebben
voor onze distributiefuncties. Aangezien deze functienigebekend is in de theoretis-
che astrofysica, besteden we de nodige aandacht aan haeas@igppen, en we demon-
streren haar kracht door verschillende eigenschappené&sic®n Einasto dichtheden af
te leiden als Fox{-functies. Met dit wiskundig gereedschap in de hand kunneromze
basis-distributiefuncties afleiden in Hoofdstuk 4. Dezechies blijken op zichzelf ook
een algemene familie van modellen te genereren, namelijiettmmann modellen, en we
beschrijven eveneens hun eigenschappen.

De volgende drie hoofdstukken zijn gewijd aan diverse tesjp@en van onze model-
leringstechniek. In Hoofdstuk 5 tonen we aan dat we distieéfuncties kunnen genereren,
gebaseerd op Dehnen-McLaughlin profielen, die verscheideniversele” eigenschap-
pen van gesimuleerde donkere materie-halo’s omvattenweéisepaalde dichtheid, een
bepaalde verhouding tussen dichtheid en dispersie diesalsnachtwet verloopt, en een
lineaire relatie tussen het verloop van de dichtheid en @émanpie.

In Hoofdstuk 6 bestuderen we een bepaalde theoretischeseigap van sferische sys-
temen, die bekend staat als de GDSAI ('global density slopaisotropy inequality’). Een
studie van Ciotti & Morganti (2010) toonde aan dat voor eariggfamilie van modellen het
verloop van de dichtheid steeds groter is dan tweemaal detaopie, wat de vraag deed
rijzen of deze eigenschap algemeen geldig was. Onze té@msgelden ons in staat om
te bewijzen dat de ongelijkheid inderdaad geldig is voor ggecifieke klasse van syste-
men, namelijk die met een separabele vermeerderde didhthis de centrale waarde van
de anisotropie kleiner is dary2. Bovendien konden we met onze modelleringsprocedure
systemen construeren die niet voldoen aan de GDSAI, met aherdying dat deze tegen-
voorbeelden dynamisch instabiel zijn. In onze studie tomeraan dat de GDSAI in feite
een speciaal geval is van algemenere restricties op de gederele dichtheden. We brei-
den deze studie vervolgens uit om nodige en voldoende veodea af te leiden waaraan
systemen met een positieve distributiefunctie moetenoesid

Vervolgens passen we in Hoofdstuk 7 onze techniek toe opreditenele data, met
name een groep van dwerggalaxieén in de Fornax clustee @odellen suggereren dat de
gas-arme galaxieén op banen bewegen met een hoge exiteittiat bewijs levert voor
de hypothese dat ze hun gas hebben verloren door zogenaamegwessure stripping,
wanneer ze door het hete intracluster-gas in de centrale@gvan de cluster passeerden.

Een laatste hoofdstuk behandelt een zij-project, waarirvevieekken van een fami-
lie van distributiefuncties met en zonder een superzwaasraal zwart gat, en hieruit een
verzameling discrete deeltjes genereren met behulp vaMeaie Carlo algoritme (eve-
neens ontwikkeld door de auteur). Deze deeltjes dedenigemsdienst als begincondities
voor N-deeltjessimulaties, om de stabiliteit van deze modelemniderzoeken. Het bleek
dat de centrale zwarte gaten een stabiliserend effect haxjldeze systemen.
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Alle resultaten van Hoofdstukken 3 tot en met 8 zijn gepwddid in een reeks artikels;
een lijst van deze publicaties kan men achteraan deze tdissasinden.
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Chapter 1

Introduction

General background

All stellar structures in the universe, from solar systegisbular clusters and galaxies,
to groups, clusters and superclusters of galaxies, andattkendatter haloes that surround
them, are shaped by a single dominating force: gravity (seeXample the large galaxy
cluster Abell 1689, shown in the left panel of Fig. 1.1). Henthe question how these
systems form and behave has always been a fundamentaltdpiedretical astrophysics.

Two main techniques have been developped to analyse thenilyedastructure of grav-
itational systems. The first method involves the use of nizakN-body simulations,
which enable us to understand the evolution of structunaédion in the universe (e.g. the
10 billion particle Millennium-II simulation, shown in thgght panel of Fig. 1.1). The sec-
ond is stellar dynamics: the construction of theoreticatlels, by applying techniques of
statistical physics to approximate discrete systems vatitinuous ones. In particular, one
wishes to find full phase-space distribution functionsheafavhich completely determines
a gravitational system, and study their properties.

Both approaches have advantages and limitations. The nraimgsh of N-body sim-
ulations is their versatility. However, in order to obtaisficient amount of resolution
one requires substantial computational power. Moreovet,l@s to set up suitable initial
conditions if one wants to explore particular scenariosnalyse observational data. Also,
it is not straightforward to gain insight into the dynamistlicture ofNV-body systems. On
the other hand, modelling techniques do allow us analydaisstructures, for example by
revealing their velocity distribution or their orbital cliguration. They also can be set up to
generate very specific models, with particular propertigisfortunately, their main draw-
back is the fact that dynamical models are idealizationsdaa only be applied to simple
configurations, such as (quasi-)equilibrium states, amstiegys with limited amounts of
substructure and with a high degree of symmetry (spheag@éymmetric, etc).

The real strength of both methods comes to light when one thess in a comple-
mentary way. Together with observational data, the outcom€-body simulations can
be subsequently modelled and analysed. Conversely, ongaraarate sets of particles
from a distribution function, which can serve as initial daions in a follow-up/N-body
simulation. However, for this to succeed, one needs to dpvalgorithms that produce
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Figure 1.1 Left panel: Cluster Abell 1689 (image credit: NASN. Benitez (JHU),
T. Broadhurst (The Hebrew University), H. Ford (JHU), M. @igin(STScl), G. Har-
tig (STScl), G. lllingworth (UCO/Lick Observatory), the ACScience Team and ESA).
Right panel: Millennium-II Simulation, following 2160particles in box of side length
100r~1 Mpc (image credit: Boylan-Kolchin et al. 2009).

sufficiently sophisticated models that can be applied thsteasystems. The aim of this
dissertation is to create such an algorithm for sphericailiegium systems. More specif-
ically, we will construct linear combinations of analyti¢in the sense that they can be
expressed as Taylor expansions of elementary functioss)lition functions that can be
fit to a given density and a specific (but quite general) vgjyaanisotropy profile, and we
explore several applications. As we develop the necessahniques, we will encounter
a family of very powerful mathematical functions, the sdied Fox H-functions. As a
by-product we will demonstrate the use of these functionseds

Dynamical modelling: general principles

Let us outline how we can transform an-body problem into a dynamical model; a more
detailed treatment will be given in Section 2.1. If we canebaidealize the particles
within a gravitational system as point masses with masses. . ,my, and considering the
framework of Newtonian physics within three-dimensionatkdean space, the complete
state of these particles is determined once their positiods/elocities are known at a time
to,

N. (1.1)

cey

Ti(to) = 7"7;70, i=1
v;(to) = w0, a
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With these initial conditions, the question of deriving thasitions and velocities at any
timet defines anV-body problemformulated by & first-order differential equations

Vi = Ty,

b; = Z 7 1=1,...,N. (1.2)
Js 378 | i TJ|
In principle, the particles can also be influenced by an amftht external force. Evidently,
these equations can only be solved numericallyvit- 2. If the number of particles is
sufficiently large, we can smooth the positions of the plasiénto a totalmass density
pot(r,t). The gravitational field generated by and acting upon thégies can then be
expressed asg@ravitational potential

b(r,t) G///pﬁfirt' v, (1.3)

Note that we defined the potential as a positive function. &verewrite the above equation
as

V2(r,t) = —4rGpror(r, 1) (1.4)

known as thePoisson equationIn this manner, every particle can be regarded as a test
particle, for which the orbit is stipulated by the graviteial potential. If its initial position
in six-dimensionaphase spacér, v) is known, its motion is determined by the force

7 (t) = Vi(r,t), (1.5)

whereV denotes the gradient. Following the motion of a particlérret its position-(¢)
traces out alrbit, with an associated velocity(t).

Instead of all particles, we can also study the motion of aysulp of particles, with
a densityp(r,t) # piot(r,t), whose motions are completely determined by the global po-
tential. Examples of these are the behaviour of luminousanwaithin dark matter haloes,
such as stars within a galaxy or galaxies within a clusteanincase, if we want to treat our
particles as test particles, we require that the dynamyjcaéms areollisionlessi.e. they
are systems where interactions between individual pestiate negligible. This is a safe
assumption for cold dark matter haloes; for stellar systemthe other hand, we follow
Section 1.2 of Binney & Tremaine (2008) and considerrtiaxation time

0.1N
trelax ~ NN tcross (1.6)

with teross= R /v thecrossing timewhich is the time needed for a typical particle to cross
the system once. The relaxation time is a measure for thestiabe at which particle inter-
actions become significant: more precisely, it is the tinterafhich the average velocity of
a particle has changed by the same order due to cumulatieeieters with other particles,
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thereby significantly altering its orbit compared to whaitvduld be in a smooth gravita-
tional field. If either N is large (such as in galaxies) tfossis large (such as in galaxy
clusters), the relaxation time is indeed sufficiently latg@ssume a collisionless system.
Such a system satisfies tbellisionless Boltzmann equation

Z—f(r,v,t) = %—f(r,v,t) +uv- g—f(r,v,t) + Vi(r,t)- g—i(r,v,t) =0. 2.7)
This means that the evolution of a sample of particles withigravitational potential is
completely determined by their phase space coordinategiaea time, described by the
so-calleddistribution function in phase spadbereafter DF) and denoted &4, v,t).

In other words,F'(r,v,t) d*r d®v, expresses the likelihood of encountering a particle at
time ¢ in the infinitesimal volume elemenfdd®v centred around the coordinate, v).
Evidently, this function has only a physical meaning if inisnnegative everywhere in its
entire domain, and the corresponding system is calbegistentAgain, such a distribution
does not have to encompass all particles of the system. Btanice, it can be used to
describe the state of luminous matter within a dark mattkr.ha

Dynamical modelling: fitting the data

The general Boltzmann equation is much too complicatedli@sdé-ortunately, the prob-
lem simplifies significantly if we limit our study tequilibrium systemswherein the po-
tential and the DF do not depend on the timdn other words, we will not focus on the
dynamical evolution of astrophysical systems, but inseealyse their structure after they
relaxed into a virialized state. As we will show in Sectioi,2he DF then reduces to a
function of at most three isolating integrals of motion.

In our study, we will study primarily large structures, ndym@mulated data from large
dark matter haloes and observational data from galaxyemsisSuch structures allow us
the introduction of additional symmetries: we will only cter spherical systems with no
net flow. Naturally, this is a serious restriction; real syss are not the proverbial spherical
cows. However, our limitations to spherical symmetry doegiis an ideal test case to
develop our advanced mathematical tools and subsequéundy the dynamical structure
of the DFs that we will create. Also, in the case of galaxy ©tsand dark matter haloes
the deviations from spherical symmetry are limited enowghstify the use of our models
as useful first approximations. Moreover, instead of staglyfhe complete DFs in great
detail, we can derive from them more useful quantities Ik elocity distributions and
their low-order moments. In future work, our techniques barurther extended to create
models with rotation and axial symmetry.

With these considerations in mind, let us now pose the cquestihat data we can
extract from a given structure to create a dynamical modeair dpherical systems, it
is natural to express any position-velocity vecfer,v} either in Cartesian coordinates
{(z,y,2), (vz,vy,v,)} OF spherical coordinate§r, 8, ), (v,,vg,v,)}. We shall adopt the
convention that théz, y)-plane coincides with the local celestial sphere aroundyktem,
so that thez-axis represents the line of sight, taken as positive in tfeeton of increasing
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distance (we will assume that the angular size of the systesufficiently small so that the
lines of sight for all particles are parallel). The angleand are the standard angles of
spherical coordinates, with the angle between theaxis and the position vector, and
the angle between the:-plane and the meridional plane of the particle (see Fig. 2.1

If we have a collection ofV particles for which we the full position vectors (as in the
case of dark matter haloes), we can estimate the spatiatipaitensity at a radius by
binning a subset af: particles that lie in a shell surrounding this radius:

3 m

p(’f‘) ~ ET;}”_T§7

(1.8)

wherer, andr,,, are the radii of the particles closest to and furthest froenctntre.

If we only have observational information about the pragegbositions of the particles
on the celestial sphere, but not their distance (as in theeafagalaxies in a cluster), we can
similarly estimate the projected density at a projectedlsel = \/x2 + y2:

1 m
For spherical systems, there is a 1-1 correspondence hetivespatial and the projected
density (see Eq. (2.69)), so thatan be deprojected inja
The simplest useful velocity information is given by thedocity dispersiorat a certain
position and in a directiod, which is the root-mean-square of the velocities in thaioneg

03 = <(vd — (vd>)2>. Analogously to the density, we can give a simple estimate feet
of m particles as

1 m 2 1 m
05~ m; (va;—(va))®,  {va) = — > vai, (1.10)

=1

although there exist more sophisticated statistical edtins (e.g. Danese et al. 1980).
Again, we need to discern between systems for which we hdi/sgatial information,
and those for which only projected observational data idaa. In the former case, we
can construct the dispersion profiles(r), o4 (1) ando, (r). In fact, for spherical systems
os(r) = 0,(r). Itis also useful to introduce Binneyaisotropy parameter

Blr)=1— 7(r). (1.11)

o?(r)

In the case of observational systems, we only have velacftyrination along the line of
sight (v,) through redshift data. In this case, we can only constraoetdispersion profile,
namely the projected line-of-sight dispersiags(r). Just as for the density, there is again a
relation with the spatial dispersion (Eq. (2.75)), but tirise the correspondence is not 1-1,
sinceop depends on a combination ®f andoy. In other words, different combinations of
the spatial dispersions can yield the same projected digper
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A given set ofp(r), o.(r), og(r), and total potentiab(r) are related through thieans
equation

0'2 T
P 1)+ 220 po2(r) = p(r) S ). (112)

This equation can be derived from the spherical Boltzmanragon, but we shall give
an alternative derivation in Section 2.3.1. If the densibgsinot trace the potential, then
Eq. (1.12) can be used to fing(r), and therefore the total mass distribution of the system.
On the other hand, if both the density and the potential aoavkir(for example, if the given
density also generates the potential through Poissonatie), then the Jeans equation
shows thap, .., andoy are not independent. Similar relations exist between highaer
moments (Eq. 2.117).

In some cases, itis possible to extract more informatiomfitee data. For example, one
can try to constrain the 4th-, 6th- or even 8th-order pr@@otoments, although their statis-
tics become increasingly worse (e.g. Gerhard 1993 ; van deelMt al. 2000 ; Richardson
& Fairbairn 2013). Alternatively, one can try to constrale tline-of-sight velocity dis-
tributions using a maximum likelihood method (Dejonghe & kit 1992 ; Woijtak et al.
2008).

But if we wish to create a full dynamical model, we have to finday to construct the
entire velocity distribution. A naive approach would be tstulate a multivariate Gaussian
velocity distribution in every direction (Hernquist 1998jith dispersions constrained by
the data. This approach however fails, because the regulistributions do not obey the
Boltzmann equation, and consequently do not generateilequih systems (Kazantzidis
et al. 2004). Instead, we need a more sophisticated methiberive consistent DFs. It is
important to remark though, that even under the restristafrspherical symmetry, we can
never hope to have enough data to construct unique DFs. rniplé, an infinite number
of DFs can be fit to a limited data set of velocity moments.

In Chapter 2 we give a general overview of dynamical modg]imhich will act as the
basis for all subsequent chapters. As such, most of the ehizpd summary of concepts
that have been developed in previous work, in particulanBgiie (1986). However, in the
final section of the chapter we outline the key issues tha¢ pmempted the subsequent
work that is presented in the rest of this dissertation.

Dynamical modelling: quadratic programming

A commonly used method to create a dynamical model is to fividdal orbits to the

data with a linear programming algorithm, and build the DFRaasim of delta functions
(smoothed into narrow Gaussians) of the orbital valuess Ehknown as Schwarzschild’s
method (Schwarzschild 1979), and it has been applied in mumsestudies (e.g. Merritt
& Saha 1993; Gerhard et al. 1998 ; Cappellari et al. 2004 ; Elégupet al. 2006 ; van de
Ven et al. 2006 ; Chanamé et al. 2008 ; Vasiliev 2013). A sdtemepresentation of this
technique is shown in Fig. 1.2. While this method is quiteagah the drawback is that one
thus essentially obtains discrete systems, wherein thigsddek an underlying physical
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Figure 1.2 Schematic representation of Schwarzschild'setiog method (Cappellari
et al. 2004).

relation. Not only are such models somewhat unphysicalth®yt also make subsequent
integrations (to obtain observable quantities) cumbeesom

In order to create DFs that are smooth functions of the drbiéments, a more sophis-
ticated method was developed at our department. With tg@rishm, the DF is gradually
built as a linear combination of a set of base functidi&;,v) = > F;(r,v), instead of
individual orbits; in other words, this is an advanced vansif the Schwarzschild method.
By adding components, the algorithm then seeks an incrglgdietter fit with the data
using aquadratic programmindQP) technique (Dejonghe 1989), which means that the
model is fit to a set of data points withy& minimization procedure. This method has been
used for a variety of gravitational systems, and accorgiitdglas been gradually extended
over the years (e.g. De Rijcke & Dejonghe 1998 ; Baes et al020@ Bruyne et al. 2001 ;
Famaey et al. 2002; De Bruyne et al. 2004 ; Rindler-Dalleid.e2@05 ; De Rijcke et al.
2006 ; see also Dejonghe et al. 2001 for a review).

Originally, we planned to apply the modelling method to tdus of galaxies (prelimi-
nary results were given in Van Hese & Dejonghe 2002). Howehiés work revealed that
the algorithm did have its shortcomings.

The main issue was that the method was biased towards pragdoeddels that are
tangentially anisotropic at their outskirts (i@(r) < 0 for larger). The reason is that it
is easier to add components that generate predominargby&irorbits, because they only
affect the existing fit in a limited range of radii, whereasnpmnents with radial orbits
will change the DF over a wide range of radii. Consequertilyalgorithm tends to select
the more tangential components, especially when only pt@jedata is available for the
fit. We will address this in more detail in Section 2.4. Thigspecially problematic for
large structures, since these are formed through radiall,infus one expects the outer
regions to be dominated by radial orbits. Moreover, theavidence from simulations and
observations that many galaxies also have a significardlradisotropy at large radii (e.qg.
Kronawitter et al. 2000 ; Oforbe et al. 2007).
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A second problem, which became apparent when we tried to firef@r the Dehnen &
McLaughlin (2005) systems (see Chapter 5), was that thdirgibase components were
too simple to reproduce systems with a realistically insimg anisotropy. Even though
linear combinations of components can in principle prodygdee general profiles, it turned
out that the transition from central to outer anisotropy um models was too abrupt to fit
the data.

A third problem concerns the fitting of mixed data: when comig different quanti-
ties, such as densities and second-order moments, it idestwhat relative importance
should be given to them; also, these data are in general depé@ndent. Naturally, this is
an issue foeveryfitting procedure, not just our quadratic programming attaon.

Overview of our main work

In this dissertation, we aim to find a solution to these protgdeOur approach is to fix the
velocity anisotropy profiled(r) beforehand, and create a family of base DF components
that each generate this anisotropy profile exactly, withatthditional requirement that any
linear combination still produces the same profile. This lbarachieved using so-called
augmented momentsxplained in Section 2.3; in particular, the augmented eras of
our distributions will be separable functions of their argnts. For a giverd(r) and a
corresponding set of base components, the QP techniqubarabé used to constructa DF
that fits a given spatial densip(r) or projected densit¥(r). If necessary, the algorithm
is run for a whole parameter range of anisotropy profiless ttanstructing a collection of
models, from which those DFs are selected whose derivedtitjgarcorrespond best to
additional data (e.g. projected dispersions). This me#iodinates both the bias in the
velocity anisotropy as well as the problem with mixed datarébver, it provides us with
a mechanism to test whether a given anisotropy profile isistamd with a set of data.

This method is only effective if we manage to construct DF pornents that can pro-
duce sufficiently generad(r) profiles. On the other hand, we still want our components
to be analytically tractable, for two reasons: first, all Yeéocity moments are integrations
of the DF, so the computations should be as efficient and atzas possible; second, it is
substantially easier to gain insight in the behaviour of Bifeg can be expressed as series
expansions. As we show in Chapter 4, we were able to find daattisy compromise, by
constructing a family of DF components that produce vejoaitisotropy profiles of the
form

_ Bot Beo (r/ra)”

B(r) 1+ (r/ra)25

(1.13)

This four-parameter family covers a wide range of systeniik, anisotropies that change
monotonically from a central value to a value at large raldiiprinciple, we can generate
even more general systems, by fitting several DFs to a givasitye each for different
parameters of(r), and summing these DFs. The individual DF components thoahymre
these anisotropy profiles generate systems of their owrerged by Veltmann density-
potential pairs (Veltmann 1979). Our effort to find suitable components required the use
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of rather sophisticated analytical tools; as it turns chg,¢omponents can be expressed in
the form of a very general family of analytic functions, eallFoxH -functions (Fox 1961).
These encompass the vast majority of well-known speciattfans (elliptic functions,
gamma functions, Bessel functions or hypergeometric fanst to name a few). Since
these general functions are not widely known in astroplisysie devote a separate chapter
(Chapter 3) to list some of their properties, and we dematestheir power by deriving
several expressions related to Sérsic and Einasto patel@nsity pairs in terms of Fox
H-functions, which can be used e.g. to inspect their asynutehaviour.

With all the necessary tools at hand, we apply our QP-metbdtree case studies,
presented in Chapters 5, 6 and 7. First we examine the dyahstiacture of simulated
dark matter haloes. Such simulations have unveiled a nuofdaniversal’ relations in-
dependent of their scale: a similar density profile (e.g.aMavet al. 1996 ; Fukushige &
Makino 1997 ; Moore et al. 1999; Jing & Suto 2000; Navarro e28D4 ; Merritt et al.
2005), a power-law behaviour of the rapigo®(r) (Taylor & Navarro 2001 ; Rasia et al.
2004 ; Ascasibar et al. 2004) and a linear relation between#msity slope () andjs(r)
(Hansen & Moore 2006). Dehnen & McLaughlin (2005) derivedaatipular family of
{p(r),5(r)} that obey these three relations. As thés¢e) profiles are of the form (1.13),
we were able to extend their work by creating a family of disttion functions that gener-
ate these profiles. In this manner, it becomes possible torgare insight into the origin
of these universal relations, in terms of an underlyingtatlsitructure.

In the next chapter, we study a more general theoreticalgotppf spherical systems,
which has become known as the global density slope — anotrequality (GDSAI);
in a paper by An & Evans (2006), it was proven that the centesisity slope and the
central velocity anisotropy always satisfy the inequaligy> 25,. Subsequent work by
Ciotti & Morganti (2010b) showed that this equality actydtleld over all radii in a large
class of spherical systems, thereby posing the questiotheher not the inequality would
be true ineverysystem. Our mathematical tools allowed us to prove thatrthguality in
fact does hold everywhere for systems with separable augmienoments, ifjp < 1/2.
Furthermore, using our QP-method we were able to constradeis with5p > 1/2 that
violate the GDSAI. However, the velocity distributions bése counter-examples revealed
that they are dynamically unstable, which suggests thhlesstystems do obey the GDSAI.
In our analysis, we demonstrate that the GDSAI is in fact aighease of more general
necessary constraints on the augmented moments in ordbtaim monnegative DFs. We
then extend this study to derive a full set of necessary affidismt consistency conditions
on separable augmented moments.

In Chapter 7, we apply our modelling technique to obserwatioata, namely a pop-
ulation of dwarf galaxies in the Fornax cluster. Using a gthg Mori & Burkert (2000),
who calculated the minimum core mass that a dwarf galaxy hawst to retain its gas when
subjected to a given ram pressure, we were able to constsetiod DFs for both the early-
type (gas-poor) and late-type (gas-rich) dwarf galaxiashewith a different a priori fixed
velocity anisotropy profile. Our models indicate that theyetype galaxies have highly
eccentric orbits, which supports the hypothesis that thigyrated from late-type galaxies
that underwent ram-pressure stripping when they passedghrthe hot intracluster gas in
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the central region of Fornax.

These three applications demonstrate the versatility ofnoodelling method in the
theoretical study of gravitational systems. It is worth émgizing though that one should
be cautious not to over-analyse the DFs at the fine-grainedl lénstead, they should be
regarded as a guiding tool to investigate the general streicif gravitational systems.

In afinal chapter, we report the results of a side projectreinave explored the reverse
route, i.e. to start with given DFs that generate Hernquisfiles with and without central
super-massive black holes, and extract from these sewatabdts of particles by means of
a Monte Carlo algorithm that was also created by the authoes@ data sets then serve as
initial conditions of N-body simulations in order to examine the radial-orbit afwlity of
these systems. It was found that the central black holesffitEntly massive, do act as
stabilizers of these systems.

With the exception of Chapter 2, the results presented ih ehapter has been pub-
lished in peer-reviewed journals:

e For Chapter 3, see Baes & van Hese (2011) and Retana-Mombegte). (2012) ;
e For Chapter 4, see Baes & van Hese (2007);

e For Chapter 5, see Van Hese et al. (2009);

e For Chapter 6, see Van Hese et al. (2011) and An et al. (2012);

e For Chapter 7, see De Rijcke et al. (2010);

e For Chapter 8, see Buyle et al. (2007).



Chapter 2

Dynamical modelling

In this chapter, we outline the basics of our dynamical miodgprocedure.
We define the main properties of dynamical systems, in pdaticspherical
equilibrium systems. We then introduce the augmented mofmamework,

which will play a central role in the construction of our distition functions.

These sections provide a summary of the key concepts in dgabmodelling.

The last section however will form the basis for the rest &f thssertation. We
discuss the quadratic programming modelling algorithnt &sisted prior to
this work, and we discuss the shortcomings it had and thedwgmnents that
we set out to develop and use in the subsequent chapters.

2.1 Dynamical systems: from discrete to contin-
uous models

Let us recall the discrete equations of motion (1.2) fromitiweductory chapter,

=g (—GZ |Ti_rj|), i=1,...,N. (2.1)

3> 374

These can be written in the form of a set of Lagrangian egnatio

d [0\ 0% .
&<am)_arizo’ i=1,...,N, (2.2)

with

N
Llrii) =y (;mzr +G Z P |) (23)
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Figure 2.1 Spatial and projected coordinates for sphesicstems. For observational data,
we take thecy-plane as the plane of the sky, and thaxis as the line-of-sight direction.

The transition to continuous functions can be made appénesubstituting the masses
with the integrals

ZN:mi = ///ZN:m 83(r —r;) dr. (2.4)
i=1 i=1

In the limit N — oo, these are replaced by integrals of a dengity(r,¢), so that the
Lagrangian becomes the integral of a Lagrangian deusity

Z = ///ptot'rt rrt)d (2.5)

with

L(r,it) —7' +G///”|‘°‘,:fi (2.6)

The corresponding equations of motion

d /oc\ oc
E(E) 5. =0 2.7)
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then lead to Eq. (1.5). As we noted in the Introduction, weaarsider a subset of particles
with a densityp(r,t) that doesn’t necessarily generate the total gravitatipatntial. All
the information about the positions and velocities of thaseicles at any given time can
then be conveyed by a single phase space distribution mgtir, v, ).

In the remainder of this section, we will summarize sevespkats outlined in Chapter
3 & 4 of Binney & Tremaine (2008). First, we require that ourtpdes do not change
or interact (significantly) as they move through the systdrhis implies a conservation
of probability in phase space, and just like an incomprésdibid, it is described by the
continuity equation

oF 0, . 0 :
E‘f’g(F’r‘)—l—a—v(F’U)—o. (2.8)

With the aid of Hamilton’s equations

P L 2.9)
ov

S or’
and Eq. (1.5), it is straightforward to show that this couiynequation can be written as

Z—f(r,v,t} = %—f(r,v,t} +uv- g—f(r,v,t) +Vi(r,t)- g—i(r,v,t) =0, (2.10)
which is called theollisionless Boltzmann equatioNote also that the total time derivative
is dF'/dt = 0. In other words, the phase space density around a patticdeghout its
motion remains constant.

As mentioned in the Introduction, we will only consideguilibrium systemgor which
the Boltzmann equation reduces to

v~g—f(r,v)+vw(r)~g—f(r,v):0. (2.11)

The DF will generate any observable quantity as a funqiignv) obtained by integrating
a kernelu over the entire phase space, i.e.

u(r,v) = M/,E(r’,v’) F(r' o) &, (2.12)

whereM can denote the mass of the sample, or any other conversitm {aach as lumi-
nosity). In particular, the density is

p(r) = M///F(r,v) dv. (2.13)

If the sample density represents the entire system and gfesdhe total mass, then

p(r) = pro(r), M = Mo, (2.14)
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the model is calledelf-consistent

Following the motion of a particle in time, its positior{t) marks out arorbit, with
an associated velocity(t). Any function/; of the phase space coordinates that remains
constant along all orbits is called artegral of motion

I (r(t),v(t)) = C;. (2.15)

The integrals themselves are clearly steady-state sokitibthe collisionless Boltzmann
equation, so that any function that depend$@am) only through one or more independent
integrals of motion,

F(r,v)=F (I1(r,v),...,I,(r,v)), (2.16)
also satisfies this equation. Indeed,

dr "~ OF 0I; "\ OF 0I;

E(Ila oo 7In) =v- o 8_11'%(,’47’0) + V"/J(T) ’ o oI, %('P,’U) =0, (217)

and is therefore also an integral of motion. Converselyryesteady-state solution of the
Boltzmann equation is itself an integral of motion, whichane that any steady-state DF
can be written as a function of a set of independent integrfafaotion. This important
property is called thdeans theorem

Furthermore, every orbit that has three independatating integrals.J, J,, J3 (that
is, integrals that put boundaries on the orbits in phaseejpaccalled aregular orbit.
We can use these integrals as Hamiltonian canonical momaitteassociated conjugate
coordinated)1,9,,93. This six-coordinate set is called thetion-angle variablesWe find

: oM

Ji=—55-=0, (2.18)
. OM .
di=or i=1,2,3. (2.19)

Since the Hamiltonian does not depend#n the latter equations imply that thg (¢)
are linear functions of, i.e. 9;(t) = 9;(0) + C;t for some constant§;. If the orbits are
bound, then the Cartesian coordinates must be periodidifunscof thev, (¢). Indeed, if
we increase onég,(t) while keeping all other angles and actions fixed, we musttesadiy
return to the same point in phase space where we started. Wadways scale thé; such
that their periods arer2

Under these conditions, we can prove #tmng Jeans theorenthe DF of a steady-
state stellar system in which almost all orbits are reguitlt non-resonant frequencies can
be written as a function of only three independent isolaitidegrals.

Indeed, if almost all orbits are regular, then we can assinatephase space is covered
by a set of action-angle variablés, .J). If we write the DF in terms of these coordinates,
F(9,J) then any steady-state observable quantity can be exprassed

Q)= / Q(9,J)F(9,J) B9 dJ. (2.20)



2.2 Spherical equilibrium systems 17

From thetime averages theore(Binney & Tremaine 2008) it then follows that the proba-
bility F(9,J) d*9d°J that a particle has action-angles ifkt®.J is equal to d9/(27)3
the probability that the particle has actions tJd Therefore, the DF is independent of the
anglesd, so that every observable quantity is a function

Q) = / Q. J)Fy(J) P9, (2.21)

whereF;(J) is a DF of at most three independent isolating integrals dieno

2.2 Spherical equilibrium systems

In our study of large structures, we will consider only spbadly symmetric models. The
orbits of such models have in total 4 isolating integralsWaH as one additional non-
isolating integral), namely the orbital binding enetyand the angular momentum vector
L =r x v. The conservation of the latter immediately leads to thetfzat every orbit is
planar, since both the position and velocity vectors arpgrdicular toL. Furthermore,
we will limit ourselves to systems with no net rotation, sattthe orbits in the system
have no preferred orientation. This means that the DF candepend on two isolating
integrals, the energi and the total angular momentuin= | L|. Thus we obtain a DF of
the formF'(E, L), with

Ezw(r)—%vg—%vg, (2.22)
L = rvy, (2.23)
with

v, = U3+ 02, (2.24)

the transverse velocity (see Fig. 2.1), ad) the positive gravitational potential; note that
we definedE such that a positive value corresponds to a bounded orlsit Adte that the
DF does not depend ap andv, separately. The Poisson equation (1.4) then reduces to

1 d (rzd_w

g K (T)) = —47G piot(r). (2.25)

In other words, if the total mass inside a radiusf the system is given by

Miot(r) = 4m / 72 prog(r’) dr, (2.26)
0
we find that
OI—w(r) = —ML;(T) <0, (2.27)

dr r
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which means that the potential is a monotonically decrggsinction of the radius, from a
central value)y = 1(0), to zero air = +oo. Note that if the system extends to an infinite
radius, its total mass is finite if and only if the total depdalls off more steeply than
1/r3. Also, sinceMiqy(r) is a monotonically increasing function, the (negative pslof
the potential satisfies the boundaries

diny
“diny S h

andy(r) ~ 1/r at large radii. Once a DF is known, all dynamical propertigbe systems
can be obtained. In the next three sections, we will derigeftimulae for the orbital
distributions and the velocity distributions. Example<dis plotted in(E, L)-space can
be found in Fig. 5.5.

0< (2.28)

2.2.1 Orbits

Integral space and turning point space

Each type of orbit of a spherical system corresponds to desipgir of values(F,L).
However, the converse is not generally true: not every vafitiee integrals correspondsto a
physical orbit. Indeed, since the orbits are constrainetth®ysolating integrals, the motion
of a particle on an orbit will be confined between tiwoning point radii a pericentre _
and an apocentre, . At these turning points, the radial velocity is zero, so that

2r3 ((re) — E) — L? =0, (2.29)

which has indeed at most two solutiongif> 0: the potential is a positive, monotonically
decreasing function, thus the left-hand side is negatiseratl and large radii. It can be
positive within one interval of radii, provided tha€ is small enough. Then,

TE¢KT+)“TE¢(r7)

E— - 7 (2.30)
2r2 y2
L2 = ——% (¥(ro) —o(ry)). (2.31)

re—r-

+

In other words, an orbit is also determined by the pair, . ). A few special cases deserve
our attention. Firstly, iftL. = 0, then Eq. (2.29) has only one solution, an apocentrand
vy = 0. This means that a particle will move on a straight line, pask through the centre,
i.e. it will move on a radial orbit.

Secondly, consider the situation whdrehas the maximal value for which Eq. (2.29)
still has a solution. In that case, the turning points willidentical,r_ =r, =r¢, i.e. a
circular orbit. The angular momentum then becomes

2r2 2 (_lﬂ(T;):;ﬂ(T)) _ 3dw(rc), (2.32)

Li(re) = _lim =1y

T_—7¢ 'I"+ _|_ r_
ry—Te
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10

—1075 5 0 5
T

T,

Figure 2.2 Orbits in a Herquist potential, displayed inifyeplane (top left), thér, v,,v,)
phase space (top right), the turning point space (bottothdafl the integral space (bottom
right). See the text for details.

so that we can define the circular velocityat radius-; as

d
vg(re) = —Tcd—f (rc)- (2.33)
In this manner, the integrals of motion of a circular orbib ¢g expressed as
1
Ee = (re) = 5 v (rc), (2.34)
LC = chc('f’c). (235)

For a givenE, no orbits exist ifL > L¢(E). In other words, the curvé¢(E), or equiva-
lently Ec(L), marks the boundary in the integral space for physical 8rbit
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Finally, if £ < 0, then the apocentre is infinite. Such unbounded orbitsatrallowed
in an equilibrium model, so we are constrainedxo- 0. In fact, the easiest way to truncate
a system to a finite extenfyax is to limit the DF to a cut-off energy,

F(E,L)=0 if E< Ey, (2.36)

with Ep = 9(rmax). Though one loses with this approach some tangential onliitsn
Tmax it IS a straightforward way to implement finite models. Idlerto alleviate notation,
we implicitly assume in the remainder of this chapter thaalirelevant integrations the
integrands are zero for orbits with energies below a giveroffuFy.

For any given value off andL, the orbital motion of the particle can be readily derived
(see also Section 3.1 in Binney & Tremaine 2008); withous lo§ generality, we can
confine our orbit to théd = 7/2)-plane, so that

1., I?
L=rv,= r2p. (2.38)

It follows that the radial period of the orbit (i.e. the timequired to travel from pericentre
to apocentre and back) is

(2.39)

T+ dr
= /T_ V2[00 _B]_LZi2

In this period, the azimuthal angleincreases by an amount

™+ dy /T+ L dt /T+ dr
NAp=2 —Zdr=2 ——dr=2L . 2.40
v /L dr " . r2dr " T2 \/2[¢(r) — E]— L?/r? ( )

In general, the angle does not increase by some fractionr afftér each orbital period,
so that in the orbits are not closed. An example of such atm#egiven in the top left
panel of Fig 2.2. Here, the orange curve (a) is a segment obrthie of a particle with
pericentrer; and apocentre, in a Hernquist potential (see Eq. (4.101)). We also plot the
circular orbits with radiug (b) andr; (c) and the radial orbits with apocentrg(d) and
r1 (e); finally, we show a tangent velocity vectoon orbit (a) and its radial and azimuthal
components, andv,.

In the top right panel, the orbit (a) traces out a curve in(the,,v,) phase space; the
yellow area indicates the locus of constant endrgassociated with this orbit. The circular
orbits (b) and (c) reduce to points, and the radial orbitsa(d) (e) are also displayed.

In the bottom panels, the orbits (a) - (e) are representedmtspin the turning point
space and the integral space. The blue lines are the locusarbis which haver; as
pericentre (full) or apocentre (dashed); similarly, theegr lines are the locus of all orbits
that haver, as apocentre (full) or pericentre (dashed). The locus abdilal orbits is the
cyan vertical line, and the locus of all circular orbits i€ thrown line, which is also the
boundary line of possible orbits. Finally, the light yellawea is the locus of all orbits
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with E values above the energy of the orbit definedhyr,); this area corresponds to the
inside of the yellow surface in the top right panel.
Examples of DFs in turning point space can be found in Fids.412 and 5.5.

The orbital distributions

It is important to stress thdf(E, L) is a distribution of particles in phase space. That is,
it denotes the likelihood of a particler,v), expressed in terms of its integrals of motion.
However, itdoes nogive the probability of a particular orbit with integrdlg, L). Indeed,
because of spherical symmetry, phase space will consistapfyrorbits with the same
integrals of motion. The total integrated phase space &gy

) 2 2
47r/0+ p(r)r? dr—lﬁnz/ r dr/\/w dvr/\/dj F(E,L)deUT:l, (2.41)

where the first identity follows from Eq. (2.59) in Sectior22. It is straightforward to
convert the integration over the velocities i@, L), to yield

+oo  py(r) V224 (r)—E)
1672 / dr / dE / F(B,L) L dL =1. (2.42)
0 0 0 V24 (r)— E)— L2/r2

Now, if we change the order of integration, we find

%o L¢(E
/ dE / N(E,L)dL =1, (2.43)

with 19 = 1(0) the central potential (which can be infinite, when the systama central
black hole), and

N(E,L)=F(E,L)G(E,L), (2.44)

where N(E, L) is theorbital distribution function andG(E, L) denotes the 'density of
states’, i.e. the orbital density,

r(E,L) dr
G(E,L) = 16r°L / (2.45)
(B,1) V21 —12/r2

Examples of these orbital distributions can be found in Bi§. Integrating oveL or E,
we obtain respectively thenergy and angular momentum distributions

Le(E) +oo
N(E)= / N(E,L)dL = 4r Fp(r,E)r?dr, (2.46)
0 0
Ec(L) +00
N(L)= / N(E,L)dE = 4r Fr(r,L)r?dr, (2.47)
0 0
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with
A (r)=E) F(E,rv;) dv?
Fg(r,E) = 271'/ 4 L, (2.48)
0 2(¢(r)— E) —v?
4r [Y0-LY2% pp DV LdE
FurL) =5 / (£, L) —. (2.49)
0 NZ —E)—L%/r

Fg(r,E) essentially gives the probability that a given particleaatinsr lies on an orbit
with energyE’; the meaning of';, (r, L) is analogous. See Figs. 5.4 and 5.8 for examples.

It is also possible to derive the orbital distributions ie tlurning point space (i.e. the
probability density of orbits with a given peri- and apoeeitby changing in Eq. (2.42) the
integration variables BdL into dr_ dr, and using the conversions (2.30) - (2.31). After
some algebra, we obtain

Nr_,r)=Fr_,r)G(r_,ry), (2.50)
with
B 2r? rz 2 dr
Glr-re) = (r2 —12)3 1o / V20 —12/12

(2 —r2)r ) (ry) +2r2 ((r _>—w<m>)

X

02— 2 () 4202 (0lr) ~ ()| (25D)

Examples of these distributions can be seen in Fig. 5.6.

2.2.2 Spatial velocity moments

While the orbital distributions offer us insight into thebital structure of a system, our
input data is usually in the form of positions and velocitieteally, we know (or postulate)
some of the so-calledlue (spatial) velocity moments

+o00 +o00 +o0o
Wimon (1) = ]\/[/ dvr/ d?}e/ F(E,L) vivglvg dvy, (2.52)

with £ and L expressed in terms of (2.22). The DF of a non-rotational spalesystem is
an even function of,., vy andv,, i.e. there is no net flow in any direction. Consequently,
any moments with odd values 6fm, or n will be zero. The even lowest-order moments
however are of particular significance: the spatial derisigimply

p(r) = pooo(r) ]\/[// F(E,L) dv, dvg dv,, (2.53)
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while the second-order velocity moments are

p(1)? (1) = p2oo(r ]\/[// F(E,L)v? dv, dvg dv,,, (2.54)
p(r)og(r) = pozo(r ]V[// F(E,L)v3 dv, dvg dv,,, (2.55)
p(r)ai( ) = Hoo2(T ]V[// F(E,L) v dv, dvg dv,, . (2.56)

Evidently, the velocity dispersions., oy, andaw are the root-mean-squares of the radial
and angular velocitiegp?)/2, (v7)*/2, and(v2)*/2 respectively. These definitions are the
continuous equivalent of the discrete quantmes (1.1d@Mnfthe introductory chapter.

It follows immediately thafp(r)o7(r) = p(r)o2(r), and we can combine them into a
transverse second-order velocity moment

+OO “+o00 +o0o
p(r)o%(r) = pozo(r) + pooa(r) M/ / dug F(E,L)v2dv,.

— 00

(2.57)

We can generalize this notion by writing the angular velesiin polar coordinates (see
Fig. 2.1)

vy = v COSN, v, = v Siny, (2.58)

so that d dv, = vy dur dn, which allows us to introduce the so-callagisotropic velocity
moments

V2u(r) V2p(r) =02
ti2n.2m (1) = 4T M / / F(E Lyv? p2m iy, (2.59)
From these, one can easily recover the true velocity moments
1 1 1
Ml,m,n(r) = ;B (m+ §7n+ E) /1'2l,2(m+n) (’f‘), (260)
with
1 /2
B(z,y) = / 1ty tdt =2 / (sinn)?*~Y(cosn)®~Ld, (2.61)
0 0

the beta function. Also,

p(r)=poo(r),  poi(r) =pzo(r),  pof(r)=2p0f =2p0% = poo(r). (2.62)

In the Introduction, we defined in Eq. (1.11) a very usefulriemd known as Binney'’s
velocity anisotropy profile, which we can also write in thenfo

i

202

B =1~

(r), (2.63)
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which is an indicator of whether the system contains predantly radial orbits §(r) > 0)
or more circular orbits/(r) < 0) at a given radius. Examples can be found in Figs. 4.1,
4.2,5.3,6.1and 7.5.

Finally, we can see that the functions, o(r) andguo 2., () are the moments of two ve-
locity distributions, theadial and transverse velocity distributionsbtained by integrating
the DF over one velocity component:

Zd)(r)—v%
E,. (ryv.) = 27r/ F(E,L)v, dvy, (2.64)
0

21/1(7’)—1)%
Fy,(r,vr) = 47T’UT/ F(E,L)dv,. (2.65)
0

Evidently, their integrals are just the density

2¢(r) 2¢(r)
p(r)= ]\/[/ F,. (r,v.)dv,. = ]\/[/ Fy, (r,v7) dvy. (2.66)
—\/2¢(r) 0

We can also derive the velocity distributionsdg or v,. These require an additional
integration:

ZTZJ(T)—Ug 21/1(7’)—1)%
Fy, (r,v9) = 4/ de/ F(E,L)dv, (2.67)
0 0

1 2’(,[1(7’)—1}5 1
_ _/ - R, (r, . /vg+u3,) do, . (2.68)
T
0 \/ Vg + 02
andF,, (r,v,) has exactly the same form. For examples, see Figs. 5.4 and 6.1

2.2.3 Projected velocity moments

The spatial velocity distributions give us important infation about the intrinsic velocity
structure of the system, but unfortunately we often havelniass data at our disposal.
Observationally, such as for clusters of galaxies, we oalehnformation of positions on
the celestial sphere and line-of-sight velocities throtegshift data. With these, we can
attempt to construct some of tipeojected velocity momengs a starting point to find a
suitable DF.

Theprojected densitis related to the spherical density through an Abel intégnat

S(r) :2/R+Oop(\/R2+22) dz:Z/R \/% dr. (2.69)

—+o0
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This relation can in fact be inverted, so that the spatiakitgcan be directly derived from
the projected density; we find

=_L [T _dr
PO == | dr V22

To obtain the second-order line-of-sight velocity momerg start with the spatial function

(2.70)

pobs(r // F(E, L)v?dv, dvg dv,,. (2.71)
It can be easily seen that the projected velocity is given by
v, = v, COSH — vg SING. (2.72)
Consequently,
poi(r // F(E,L) (v3(r) co20 + v3(r )sin29) dv, dvg dv,, (2.73)
=po(r )00529+p09( ) sin® ), (2.74)

where we used the fact thag 1 o(r) = 0. Examples are given in Figs. 4.1, 4.2 and 7.4.
With an additional Abel integration, we then obtain the pot¢d line-of-sight velocity
dispersionsZ () as

So2 (r) =2 /R - (af(r) co20 -+ o2(r) sir? 9) \/% dr (2.75)
N R?\ po?(r)r
_ z/R (1_ ﬂ(r)ﬁ) T . (2.76)

Note that the line-of-sight dispersion depends on bothiaps¢cond-order moments. In
principle, one can define higher-order moments in a simiky, Wwut these are usually not
well constrained by the data. There are however instansasg @ maximum-likelihood
estimator, where it is possible to get some information abiwafull line-of-sight velocity
distribution

Fos(R,v;) = // F(E,L) dv, dv, dz. (2.77)

An example of such a LOSVD is given in Fig. 7.6.

The central question is to seek an appropriate DF that caergtmna given data set of
guantities, within a gravitational potential. In the rendgr of this chapter, we will de-
velop the necessary tools to tackle this task. First, weihtce a powerful framework that
will alleviate the problem substantially, namely the augitee moments. This approach
was first introduced by pioneering work from Lynden-Bell 29, and further developed
by various authors (Hunter 1975 ; Nagai & Miyamoto 1976 ; LaR81 ;Dejonghe & de
Zeeuw 1988 ; Evans et al. 1990 ; Hunter & Qian 1993). The mdshsive treatment how-
ever was presented in Dejonghe (1986), and this study willrenain guide in the next
section; we will follow a similar line of reasoning to arrie¢ Eq. (2.91), while the rest of
the section is based on our own derivation.



26 Chapter 2: Dynamical modelling

2.3 The augmented moment concept

An augmented anisotropic velocity momeat, »,,, (¢, 7) is an extension of a velocity mo-
ment into a bivariate function, by treating the potentigbleitly as an independent vari-
able. The corresponding velocity moment is then simply

H2n,2m (’f‘) = ﬁZn,Zm (’(/J(T),’f‘) . (278)

The advantage of this concept is threefold: first, we shalltkat a dynamical system is
completely determined by a single augmented moment, sattbam be used as an alter-
native to the DF. Moreover, the augmented moments can be easibr related to given
data, which will enable us to impose specific propertiesiobthfrom observations. And
finally, by making the potential a free variable, the funoove will derive remain the
same regardless of the gravitational potential, so theybear-used for different forms of
¥(r). However, this doesot mean that we can ignore the corresponding DFs altogether:
a dynamical system is only physical if its DF is nonnegatiwergwhere, so this condition
still needs to be checked. One can formulate equivalenistensy conditions for the aug-
mented moments, but these are much more complicated; werexplese in Section 6.4,
for systems with separable augmented moments.

Our analysis will be split in two; we will start with the gercase, and then simplify
the situation further.

2.3.1 General spherical systems

The distribution function

The relation between an augmented velocity moment and théodws directly from
Eq. (2.59):

2'4[) 'uz
fi2n,2m (¥,7) 47TM/ / F(E,L)v¥v¥dy, (2.79)

2Ap—E) n—1/2 o 2
—2nM / dE [ F(E,rv) (20— B)—v?)" Y202m 2. (2.80)
0 0

Since bothu3, 2., and the DF are functions of two independent variables, itsitively
clear that they provide equivalent descriptions of a dymaisystem. For a given potential
¥ (r), a boundary radiugnax and the general cut-off @y = 1) (rmax) in mind as defined in
Eq. (2.36), we impose the following constraints on the augiemoments:

e The momentgz, 2., (v, 7) are defined for & r < rmaxand, for a given, Eg <9 <
e(r);

¢ Within the above intervals, they,, 2., (¢, ) areCy differentiable with respect t¢
andr;
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e At and outside of the)-boundary,

8m+n

H2n.,2m
—_— = < Eb. )
Gyrmn (Y,r)=0 fory < Ey (2.81)

The last equation can be understood from Eq. (2.79), wifeamdv? both depend orp.

There are several methods to derive the DF from a given augtienoment, all of
them involving integral transformations; Lynden-Bell 69 used two Laplace transforms,
while Hunter (1975) adopted a Stieltjes transform, whiajuiees an analytic continuation
of the density into the complex plane. A third and particyipowerful technique consists
a combination of a Laplace and a Mellin transform (Dejong®@8); for a general function
of two variablesf(z,y), its Laplace-Mellin transform is given by

—+o00 —+o00
FeN = £ MU= [ [ e e oy, (2.82)
Wherever we perform this transform, we will postulate that function in question is zero
outside its boundaries. The inverse transform can, atieastlly, be written as a complex
double integral,

otioco  pAgtioco
fay) = LTIM{FE N} = A &7y F(€,)) déd, (2.83)

—>w)\—> o—1ico 0—10c0

where the integrations are to be performed along pathslebtalthe vertical axis, with
offsets given by the real constaigtsand\g, chosen such that they lie within a convergence

strip in the complex plane that depends on the functionahfof 7 (¢, A). Applied to the
DF and the augmented moments, we have

+o0 +o0
L £LM {F(E,L)}:/ e—fEdE/ LA YF(E, L)dL, (2.84)
+oo
Lo Mz (o)} = [ et / iz g (0,7 (2.85)

Eq. (2.79) thus becomes

+oo +oo
L M {ﬁzn,zm} = 47TM/ e &v dw/ A1y
Pp—E r—A 0 A

—+o00 —+o00
/ dv, F(E,L)v?"v?" dv,. (2.86)
0 0
Rearranging the integrations, this can be written as

+oo 2 +o00 2
LM {fizaom} = 47M / vr" e/ 2 do, / N e ST 2 oy
YP—Er—A ' 0 0

+o0o +o0o
/ e ¢fdE / LAF(EB,L)dL, (2.87)
0 0



28 Chapter 2: Dynamical modelling

and with the aid of the formula

“+oo 1 1
/ 2P e dy — 5T (#) g P2 ps 1 g>0, (2.88)
0

the relation between both functions takes the form

L M &/ N LM {ji 2.89
E—¢ L— A{ b= Afwl_(m+1—)\/2)l'(n+1/2)¢Q§Tﬁ>\{“2"x2m}v (2.89)

provided thatt{¢} > 0 andR{\} < 2(m+ 1). Naturally, the most useful of all augmented
moments is thaugmented density

(¥=F) F(E rv,)
=2rM | dE dv? 2.90
plonr) =2 / / m (2:90)
in which case Eq. (2.89) reduces to
(/2B N2
EL—:>£ L/\_/l) {F(E,L)} = Mn3/2T (1—\/2) v—¢ TMA {p(,m)}. (2.91)

Before we analyse this relation further, we will delve dedpto the connection between
the augmented moments.

The augmented velocity moments

Eliminating the DF from Egs. (2.89) and (2.91), it followsth

3 F(n+1/2)T(m+1-\/2) (2"
Ee M iznam} = NG F(1-)1/2) <E) LMk (292)

By solving this equation, we can derive any augmented moifnemithe augmented den-
sity. Given that the augmented moments are only defined inntieevals]0, rmax and
[Eo, v (r)], we need the Heaviside step function

0 if x <a,

2.93
1 ifzx>a ( )

to facilitate the calculations. First we write the Mellimirsform ofp{¢y, ) as follows

+o0o
M ApW,r)} = / p(p,r)dr (2.94)

+oo
-2 / p2N2=1mm) (:2m 5 1) 2, (2.95)
0
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Integrating by parts, and with the upper boundary-far mind, this becomes

. 1/2 5 +oo .
r/l)/l)\ {6} = )\/2%,” [rﬁ\waxp(warmax) _/o p2/2=m) 0,2 (,r,Zmp) drz} , (2.96)

where we used the shorthand notat@nfor the partial derivative with respect ta The
first term can be written as

A
T, ~ m o~ —2m
)\_m;%PW,T‘maX):Tr%qaxp(vamaX) T/L/l/\{r 2 H(T—Tmax)}a (2.97)

sinceR{A\} < 2(m+1). Thus, if we limit ourselves to the region®r < rmax, We can
ignore this term. In this manner, we obtain aftetintegrations by parts

+oo
MDY, r)} = (m—)\/2)1-/-2-(1—)\/2)/0 2270 o (2 p(, 7)) dr? - (2.98)
M(1-—x/2 .
= T 4, (0 (7)) @99

The above trick eliminates the Mellin transforms from Eq9@), leaving only the Laplace
transforms,

. M(n+1/2) (2\"™" o
wi"&{uz"’zm}:%(g) LATEEE)) (2.100)

We can tackle the Laplace transformaf, 2., (¢,r) in a similar way. Recalling that the
-dependent parts of the augmented moments are defined imténesl| Fo, ¢ (r)], we find

“+o00
L Afizn2m} = / € %Y fign,om (¢,7) dip (2.101)
—¢ 0

1 p(r) 1 +oo
= [—— et ,&Zn,Zm(djaT):l + —/ e %Y 9y (fizn,2m) . (2.102)
5 Eg 5 0

The first part reduces to

—%ﬂzn,Zm(¢(T)7T) &) = —fign am V(1)) £ {H W =1(r)} (2.103)

where we used the conditions (2.81). So once again, if we comgider the regiog <

¥ (r), this term can be omitted. Repeating the above procedum@muptin integrations by
parts, we find

£ o (i an(wr) ) (2.10)

££ {,u2n,2m} = W e

¥
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and Eq. (2.100) reduces to the elegant relation
m—+n
NZs

Assuming that these functions are continuous, the relaiafso valid at the boundaries
r = rmax andey = ¢ (r) (and at the origin- = 0, if the functions are finite there). Finally,
afterm + n integrations, we find

O™ (fizn,2m (9, 7)) =

M(n+1/2) 8% (r*"p(,7)). (2.105)

y 2mtn [ (n+1/2 e o )
fizn,2m (1, 1) = 7 %f (=)™ Lo (PP Gy r)) dy. (2.106)

0

Using an additional integration by parts, we can write tlijgation in the alternative form

» 1/2),, (¥ mtn - ,
fizn,2m (,7) = (inizl)!/o (20— ") 0 (127 0 (5)) (2.107)
where we also introduced the Pochhammer symbol for thegrfsictorial,
k
@) =z@+1)(@+k-1)=[J@+i-1)= r(r“:(l')k). (2.108)
i=1

Relation between the velocity moments

We can show from Eg. (2.105) that the velocity moments of aadyinal system are not
independent. We have

m-+n

O™ (fizn,2m) = =T +1/2)3 (r2r2<m—1>5) (2.109)
2y 1/2)§: (m> o () o~ (P Y5)  (2.110)
a AV
- zj;nl'(n—i—l/Z)[rzaﬁ(rz(m Bp)+m a2 )| 2.111)
2m+n

= ot |00 (10,2 fi2n 2 1) + M i2n 2m )| - (2:112)

Furthermore,

200 C(01/2)

8m+ (/,Lz'n, Zm) 2m+n 1 r(n 1/2)

MZ(n—l),zm) . (2.113)
Both equations can be simplified and combined into

6111 (ﬂZn,Zm(war)) = zmﬁZn Z(m 1) (% )+ra (ﬁZn,Z(m—l)(w7r)) (2114)
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Within a potentiak)(r), the derivative of a velocity moment is given by

Vznzn (1) 22 y(0), 1) + L2224 0),r) (), (2116)
so that we obtain thgeneral Jeans equations
d
" Han2m-1) (1) = (21 = 1) ip(n 1) 2m (1) = 2m pi2n, 2(m-1)(7)
+ (2n = 1) 7 po(n—1) 2(m—1)(7) Z—f(r). (2.117)

These equations are a direct consequence of the collismeltzmann equation. The
best-known of them is the case = n = 1, which connects the density and the velocity
dispersions.

The augmented dispersions; the Jeans equation

The augmented dispersions are derived from Eq. (2.106),

~2 IUZO( ) 1 1/)~ / ’

) = B s [ty (2.118)
~2 fo2(¥,r) 2

Fhpr) = B2 SN = s / 0,2 (P2 5(4 ) A (2.119)
3. 1) — _UT(va)_ fo T( )dwl

26(¢,r) =2 52051 fo”w’ e (2.120)

Whereﬁ(uj, r) is an augmented version of the velocity anisotropy profileisaful alterna-
tive formulation are the pair

Ojiz0

pl,r) = —=— 90 (1), (2.121)
2B(v,r) = —a;:fjo (¥,7). (2.122)

The derivative of the radial second-order moment follovesfiEq. (2.116),

dpo? o ofi d
28 1) = L2 (w(r)r) + B220(0).) G ) (2129
so that, when)(r) is known, Egs. (2.121) - (2.122) can be combined to
dpo? 268(r) dy

. (") por(r) = p(r) - (7). (2.124)
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This special case of Eq. (2.117) is the often-usecbnd-order Jeans equatidfiwe recall
the definitions of the density slopgr) and the circular velocityc(r), and we introduce
the functionk(r),

dl dIno? d
1) =—S20), A= ST, o) = —ran(), (2.125)
then we can rewrite the Jeans equation as
o2(r) (v(r) = 28(r) + &(r)) = v3(r). (2.126)

For a given potential, one of the three profil€s), o,.(r) ando(r) is thus determined by
the other two. However, they do not determine the entire DE.important to emphasize
this: a given paifp(r) andg(r), for instance, can be generated by infinitely many DFs.
Indeed, if we define for example a functiafw,r) for which (¢ (r),r) = 1, and extend a
given fizo to fizo(v),r,7), We obtain

) = B201, 1)+ BT (), (2127)
ST RT3,
Then simply the condition
Olizo (¢(r),r1) =0, (2.129)
or

will generate the samg(r) and 5(r). Examples can be found in Dejonghe (1987). So
how many moments are required to determine the DF? Let usiegatime fourth-order
moments from Eq. (2.117),

r%(r) = 3p22(r) — 2pua0(r) + 3r p2o(r) %(r), (2.130)
rdgjz (1) = poa(r) — Apza(r) + 7 proa(r) Z—f(r). (2.131)

Clearly, the second-order momentso(r) and uo2(r) do not determine the fourth-order
moments: we have two equations for the three unknQwpg-), 22(r) anduoa(r). How-
ever, if in addition one of the fourth-order moments is knotte other two can be derived.
This remains true for higher-order moments: if one veloaitgment of every order is
known, then all others can be calculated, so that the enfirésletermined. In the next
paragraph, we show how the radial velocity moments alonergé® a dynamical system,
by exploring the radial velocity distribution.
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The radial velocity distribution

The radial velocity distribution (2.64) can be derived dthg from the augmented density.
First we define the auxiliary function

o [V 29 —vZ

lvr| Jo

ﬁv% (7, vf) = —ﬁvr (Y, r,v.) = F(E,L)v,doy, (2.132)

|or|

such that

/_:Oﬁww,mr)dvrz /Osz(w, 2) du?

“+oo - “+oo —
= / 2v, F 2 (v, Uf) dv, = / |vp| F2 (), 7, Uf) dv,.. (2.133)
0 e e

— 00

Its Laplace transform is given by

+oo
o 2 J— —S'U7 2 )
Ugés{Fv;(wm,ur)} _/ Foo(d,r)du (2.134)
+oo 00 —S _
/ V2" Fy, (1, 7) duy (2.135)
M (_S)n fizn,0(¥,7). (2.136)
n=0

As expected, all radial velocity moments are needed to néterthe radial velocity distri-
bution. With the use of Eq. (2.107), we find

£ {Fswrad) / S B oy i) L@ (2a30)
- 2 [NiRa2 s ) e, @139

where we introduced the confluent hypergeometric functfghefirst kind,

1
L A T Y 0 2.139

with z a complex number. Evidently, its inverse Laplace transfisrm

1F1(a,b; Z) =

&a—l _ 4\b—a—-1
£ aFi(abi—2)) = oo " Osted (2.140)

0 t>1
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Also, for a real constant > 0,

Fi(a,b—cz) = %%/Oce—zt (E)H (1— é)b_a_ldt, (2.141)

which leads to the property
£ HaFi(ab;—ez)} == ;1{1F1(a,b;—z)} : (2.142)

In this manner we can eliminate the Laplace transform in £4.38),

W
Fa(prad)= / s Lo A28} S ndy 2449
0

v

20y =)

L g o Y0 g o4
“wlh v (Cae) e @19

Finally, from Eqg. (2.132), we obtain the augmented raditdei¢y distribution,
- 1 1/)—1)3/2 'U2 -1/2 8ﬁ
E, . (Y,rv) = —— — L —— (', r)dy’. 2.145
o) =i [T (o) e (2.145)

Note also thatF’,, does not depend ot andv, independently, but on the combination
¢ —v?2/2. This is no surprise, as this term is found solely in the gygrart of the DF. So
if we write, for a given potential, the observational radielocity distribution as

S—

ﬁ,r (W(r),r,v.) = F,, (u,r), with w=1v(r) — v3/2, (2.146)

then we can apply an Abel inversion to Eq. (2.145), leading to

(w r \/_M/ u)Y? OF,, =Y (u, r) du, (2.147)

71’ ou

and

=V8M / Vi — s (u,r) du. (2.148)

In other words, the radial velocity distributiaf,, (r,v,) does determine the augmented
densityp(v,r), and thus the DF. Similarly, the transverse velocity disttion F,, (r,v;)
also generates a dynamical system, although the téfgr(sﬂm ) prevent us to write a
similar general formula. We will encounter Eq. (2.147) agahen we discuss the global
density slope — velocity anisotropy inequality in Chapter 6

After this short detour, it is time to further examine the DF.
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Back to the distribution function

As we mentioned, even though an augmented moment conta&irsathe amount of infor-
mation as the DF, we still need to know the latter to verifyt this nonnegative everywhere,
i.e. that the dynamical system is physical. To calculatesé,need to invert the Laplace-
Mellin transform in Eq. (2.91),

-1 Eo+ioco )\o+1ooe£E )\ 5/2) (3=-XN)/2

In general, this inversion has to be performed numericilhfortunately, this procedure is
mathematically unstable. This can be understood by notiagthe density, Eq. (2.53), is
an integration of the distribution function over velocifyage. As a result, the augmented
density will generally be much smoother than the distrimufunction. The inversion thus
involves the tricky job to "unsmooth” the augmented denskgr a more precise mathe-
matical demonstration of the unstable character of theréiwe formulae, with examples,
we refer to Dejonghe (1986).

So how can we avoid these problems? The solution is to buijthamical system as a
sum of simpler components, for which Eq. (2.149) can be sbivalytically (in the sense
that the functions can be written as power series). The "hasgions’ we will construct
are of a particular, very useful class: their augmented nmisrere separable functions.

0—to0

2.3.2 Separable systems

Nearly all self-consistent dynamical models found in ther&iture are actually analytical
separable systems (e.g. the isochrone sphere of Heénon th@80uddeford-Louis models
of Cuddeford & Louis 1995, the Plummer models of Dejongherl @8 Hernquist models
of Baes & Dejonghe 2002, the hypervirial models of Evans & A2, and the;-models
of Buyle et al. 2007). In all these models, the augmenteditieissa separable function of
1 andr,

p(,r) = f()g(r). (2.150)

Examples of such separable augmented densities are dislplayFig. 2.3, which shows
three functions that generate the same Hernquist densignpal pair (4.101) - (4.102),
but produce different anisotropy profiles. It immediatebjidws that every augmented
moment is a separable function,

m-+n n P
fion 2m (¥,7) = 2 NG %dﬁ(rz’”g(r)) /0 (=)™ f (@) dy'. (2.151)

This means that, in contrast with general spherical modelsparable system is completely
determined by just two observational moments: from two &qusg, one can derive the two
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0.01 1031

Figure 2.3 Three separable augmented densities of the fértiX). They intersect in
the orange curve, which means that each of these generasautie Hernquist density-
potential pair (black and purple curves); however, theydpoe different anisotropy pro-
files: (8o, 80 ) = (0,0) (blue),(—0.5,1) (red) and(0.5,—1) (green).

functionsf(¢)) andg(r). Again, our main attention goes out to the augmented deasity
the dispersion profiles

Y
_i / £y, (2.152)

5%(1&,7"):( ;3::;({) /f (2.153)

Note that the augmented radial dispersion only depends.oAn important property of
separable systems is that the corresponding anisotrofiledsoonly a function ofr,

dl
B(r) = —% dl:i (). (2.154)
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Because of thisj(r) can be written in terms of any radial velocity moment. Togethith
Eq. (2.113), we find

Ofizn,
uzwow’ ) = (2n — 1)fiz(n—1),0(¢,7), (2.155)
_10Injiz,0
B(r) = =518 (1), (2.156)
which can be combined into a simple form of the general Jeqnat®ns,
dyizn0 28(r) ch
5 1)+ == p20,0(r) = (2n = Dpig(n 1) o(r) 5~ (r)- (2.157)

This is a very convenient property: it offers us in princigihe opportunity to construct
dynamical models with a given potentialr), a density profilep(r) and an anisotropy
profile 3(r). First we solve Eq. (2.154) far(r). Next we invert the gravitational potential
asr(vy) and we set

g(¥) = g(r(¥)), (2.158)

p(¥) = p(r(¥)), (2.159)
W)

f) = 70 (2.160)

so that the augmented densit{t)}r) = f (1) g(r) defines the desired model. Clearly this
procedure cannot in general be performed analytically.ifbersion (2.149) has neverthe-
less become less daunting; it reduces to the form

§otico (3=1)/2
AP = gy [ e EEEDE £ 4 Mtato) e
(2.161)

So, can the DF be recovered without numerical problems? éwafses, it can. A widely
used example is a DF of the form

L _250 L2
Q) (r_a> @=E-57>0 (2.162)

0 Q <0,
with 75 the so-called anisotropy radius. This model has been defin€iiddeford (1991),

who in turn derived it as an extension of the system consitilbyeOsipkov (1979) and
Merritt (1985), whereggy = 0. The augmented density for this model is given by

N Q)u —26 r\ 2P0 2 Bo—1 )
B, r) = sz/ dQ/ \/_7_“<Ta) <1+r—§> du?,  (2.163)
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with
2
(1+ > 2 (2.164)
a
Thus the system is indeed separable, with
I(
f)= (27)3/22_%Mw/ (v —Q)Y* Pon(Q)dQ, (2.165)
and
—28 2y Po—1
T T
o= (2) )
Fromg(r), we can derive the anisotropy profile
_ Bo+ (T/Ta)z
Br) =T 0757 Y. (2.167)

This is a monotonically increasing anisotropy, from a caintalue3(0) = Gy (justifying
the notation) to purely radial orbits at infinig,, = 1. The functionk(Q) can be derived
from f (1) by means of an Abel-related inversion (Cuddeford 1991),

260 Qgntl d 1d
Q)= 50)(0 ] g o g

(2m)3/2MT (1— o)l (1— W1 Q=g O dgr (O)> , (2.168)

where we denoted = |3/2— y] anda = 3/2— 3p— n as the integer floor and fractional
part of 32— 5yo. The Cuddeford models contain a few special cases of thetaniy
profiles:

1. Models that are isotropic at the centre, 3g= 0, so thatF'(E,L) = h(Q). These
are theOsipkov-Merritt models

2. Models with constant anisotropy, i:@.— +oc:
p,r) = f()r=2%,  B(r)=pf,  F(E,L)=h(E)L %%,  (2.169)

3. Isotropic models, i.e. botbhy = 0 andry — +o0. In this case the augmented density
is only a function ofy, i.e. p(¢)), and the DF is the Eddington integral

1 Pl dy 1 dp
F<E>—m<o W7\m+ﬁ@@>' (2170
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Recall from Egs. (2.127) - (2.129) that these are not the spherical models with such
anisotropy profiles. They are the ordgparablesystems of this form, though.

The popularity of Osipkov-Merritt-Cuddeford-type modedsasy to see: Kazantzidis
et al. (2004) argued the importance to work with dynamicailégrium models as their ve-
locity distributions are often highly non-Maxwellian, a@ididdeford models are straight-
forward to implement, they can be applied to any density, #ed anisotropy profiles
Eq. (2.167) are general enough to try and model a broad refrgranatational systems.

For instance, structure formation by radial infall andalidation in the central regions
lead to dark matter haloes with central isotropy and mor&@tadbits at the outskirts (Cole
& Lacey 1996; Colin et al. 2000; Fukushige & Makino 1997 ; m&nd et al. 2005).
Moreover, there is evidence from simulations and obseymatihat many galaxies also
have a significant radial anisotropy at large radii (e.g.rnéwitter et al. 2000; Oflorbe
et al. 2007), while their inner regions range from isotrdpitangential, depending on the
dynamical processes that shape their nucleus (Quinlan €986 ; Quinlan & Hernquist
1997; Gebhardt et al. 2003).

However, the Osipkov-Merritt anisotropy profiles are toeegt to describe these sys-
tems adequately. For example, Mamon & t.okas (2005) showatcstmulated dark matter
haloes are not completely radial at infinity (i/2. < 1) and the transition from inner to
outer anisotropies is too abrupt; these authors suggesteafile of the form

1 r/Ta
C21+47/ra

B(r) (2.171)
On a dynamical note, the(@Q)-part of the associated DFs creates unphysical cut-offthoun
ary for orbits with@ < 0. Hence, the Osipkov-Merritt framework is too limited to deb
dark matter haloes, and a more extensive method is needetllastty, it has been noted
that the tangential velocity dispersion undergoes a jumpiasreases past.

Because of these issues, we would like to construct moddésdifferent anisotropy
profiles that resemble more closely the observational dat&t, we still need to avoid
the numerical instabilities involved in Eq. (2.149), so weds on simpler functions that
allow an analytical inversion. More sophisticated models then be constructed as linear
combinations of simpler components.

A set of very simple components that has been widely usedimgfidynamical models
is the set of Fricke components (Fricke 1952 ; Hénon 1978findd by the augmented
mass density

r=28(¢p — Eg)P 1 > Ey,
p(r,) = (2.172)
0 b < Eo.

Inserting this simple form of the augmented mass densityHut. (2.168), it translates into
a distribution function that is also a simple double poveerl

28 r(1+p)

FB.LD) = G Fa=p) T (p+ 5-1/2)

L™28(E — Eg)P+P=3/2, (2.173)
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provided thap+ 38— 3/2> 0. The corresponding self-consistent models are alsadctite

generalized polytropes, and were examined by Barnes di%6] and Nguyen & Lingam
(2013). Moreover, the hypervirial models (Evans & An 200&nf a sub-family of them.
A more sophisticated set of components is given by the Plummoelels (Dejonghe 1987),

3 523 r? e
p =—y>T P 1+ . 2.174
) = o2 (1415 @.174)
These components generate self-consistent Plummer systiéma monotonic, centrally
isotropicS(r) profile. The Fricke and Plummer components have been fugéresralized
(see De Rijcke 2000) into functions of the form

r —Zﬁo 'I"Z Bo—Boo
(¢ — Eo)? <r_) <1+—2> ; ¥ > Ep,

plry) = a 4 (2.175)

0 P < Eo,

which produce anisotropy profiles that extend the Cuddgboodiles to varying values of
Boo, I-€.

_ Bo+ Boc(r/ra)?
S ST

However, these anisotropy profiles still change more syelepin 5y to 5., than profiles
found in observations and simulations, like e.g. Eq. (2)1Also, if the central potential
g is finite, then the components (2.175) will generate degssitiith finite central values if
Bo = 0, so that a finite sum of them cannot generate models withtaatensp. Worse, the
central densities becomes zero (thus unphysical) i O.

These and other issues raised in the next section promptiedaxdend these gener-
alized Plummer components even further, which we describ@hapter 4. Indeed, as
we stated in the Introduction, our goal is to create DFs that groduce four-parameter
anisotropy profiles of the form

_ Bo+ oo (r/ra)”
1+ (r/ra)”
with 0 < § < 1. To make this possible, we shall need to develop severt.tdde first

step is an algorithm to create sums of components and to fit tbegiven data, which is
the subject of the next section.

(2.176)

B(r) (2.177)

2.4 Quadratic programming

Recall the general observable quantities derived from theHD. (2.12), applied to spher-
ical systems. Because they are linear functions, we cartraomhshem as sums of simpler
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base functions,

w(r,v) = / w(r' o) F(E,L)d* &', (2.178)

—Zaz/ (r' W) Fy(B,L)d*r' d® '—Zazuz (r,v). (2.179)

i=1

Now, suppose we want to fit a dynamical model to a given grtwital system (derived
from observations, simulations or theory; see the Intrtiday, from which we have ex-
tracted a set olVyata data points,

ugg]s(rm,vm), m=1,..., Noata (2.180)

We emphasize with the superscript] that the data can consist of different quantities.
Furthermore, we postulate a gravitational potenfiat). To model these data, we first
construct a library ofVj, separable base functions,

fi(h)gi(r) — Fi(E,L),  i=1 Nip, (2.181)

and we calculate the corresponding values (with the aidevtigmented densities),

T / e ) F(E. L) & (2.182)

V=Um

form=1,..., Ngawandi = 1, Njjp. The library can for example consist of the generalized
Plummer functions of Eq. (2.175), with varying parameteluga. Our aim is now to
construct a linear combination 8f components from this library that provides an adequate
fit to the given data. This fit is obtained by tié minimization

Nyata 2

Zw (Mobs (T, Um) Zazlh rm,'vm)>, (2.183)

=1

2
ag,...,aN Ndata

with weightsw,,, > 0 to give more or less importance to certain data points;famgple,
their values can be adjusted according to the error barseotiata points. For any set 6f
components, we are thus faced with a quadratic functionettiefficients:;,

Xa = min f(a), (2.184)

ag,...,an
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with a = (aq,...,ay) and

f(a) = (a"Aa—2Ba+C), (2.185)
& ]
Aip =3 wo "™ (P ) 15" (P 01, (2.186)
m=1
Nyata [ ] [ ]
Bi = Z Wmn Monbls(rm7vm)ﬂim (,’amvvm% (2187)
m=1
Ndata [ ] 2
=S wn (uongs(rm,vm)) . (2.188)
m=1

Of course, we also require that the resulting fit defines aiphlysodel, so we have to
impose the condition

N
> aiF(E,L) >0 (2.189)
=1

on the DF, for all values off and L. In practice, this means that we impose on a grid of
values(E;, L;) the conditions

N
> aiFi(E;,L;) >0  forj=1,..,J. (2.190)
=1

Finally, we might want to limit the coefficients further withset ofN¢qn additional linear
constraints,

N
k<Y Dpiai<up,  k=1,...,Neon (2.191)
=1

Such constraints can for instance be useful to keep the cieetts between some lower and
upper boundaries, so that he resulting linear combinafi@emponents can be computed
with sufficient accuracy and without too much computatiaruests.

The matrix A is positive definite, so that(a) is a convex function; in this case the
qguadratic program has a unique global minimizer if therestexsome feasible vectar
(satisfying the constraints) andff{a) is bounded below on the feasible region. The equa-
tions (2.184) - (2.191) hence define a quadratic programi@m®) problem, which can be
solved by a specialized numerical routine (in particulag,uged the code provided by the
NAG Library).

We still need a procedure to seleétcomponents out of th&/, library functions that
provide a good fit. It would be much too time consuming to thpaksible combinations;
instead we make use of the algoritt@aLs, developed at our department, that builds a
suitable set incrementally iV steps (Dejonghe 1989):
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1. In the first step, every component is selected in turn fieelibrary and used for a
one-dimensional QP fit. From thedé,, fits, the component with the Iowegﬁ is
then retained as the permanent first element of our bestgfitt.

2. In the second step, the remaining, — 1 library components are again in turn se-
lected and added to the first element, afig — 1 two-dimensional QP fits are per-
formed. The component that leads to the Iom@becomes the permanent second
element of the best-fitting set.

3. In each next iteration, the best-fitting set is extendeddying the component from
the library that yields the most improvement of the fit, utiie set containgVv
elements. In other words, suppose we have obtained thefithiesf-set of NV — 1
base functions. Then, we add in turn the remainNyg — N + 1 components from
the library, and calculate the coefficients for each contimnaby means ofN-
dimensional QP fits. The set with the lowegt, and corresponding coefficients
ai,...,ay is the final best-fitting model, generated by

N

ATy =Y ai fi) gi(r), (2.192)
=1
N

F(E,L)=> a;Fi(E,L). (2.193)
=1

Note that this procedure does not in general find the bestlpedi from a given library,
but that is not important. What matters is that it strives lbbain a satisfactory fit, in a
computationally efficient way.

This method has several other advantages. The resultingadFse smooth func-
tions of £ and L, unlike for example the results obtained by Schwarzschitdethod
(Schwarzschild 1979), where one ends up with a collectiodisdrete orbits. Our DFs
also remain analytically tractable, simplifying the cortation of all subsequent quantities.
Furthermore, only a limited number of data points are rexljirather than entire profiles.
This enables us to apply the technique to theoretical psddidgewell as data extracted from
simulations. Moreover, if all data are of the same type, theny?>-values have a statistical
goodness-of-fit meaning. While on the other hand a varietifiérent quantities can be
mixed together in the fitting procedure, the resultifg lose their statistical interpretation,
they still indicate the adequacy of the fits. And finally, asdas the base library is large
and diverse enough, then even sums of simple Fricke compoadow — in theory at
least — dynamical models with a wide variation of velocitgtdbutions. After all, any
spherical DF can be decomposed into a double-power seriésanfd L by means of a
two-dimensional Laurent series, so one should be able tmajpate it by a finite sum of
Fricke components (or more sophisticated base functicatsatte specifically designed for
certain modelling tasks).

Over the years, theALS routine has been applied successfully to a variety of gaavit
tional systems, like globular clusters and galaxies (seedferences in the Introduction).
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Unfortunately, the algorithm also has a number of seriovgats. First of all, not all
data lend themselves easily to be molded into functionseftR. For example, the most
complete observational knowledge of a system usually cdnoes its projected density
(possibly derived from individual positions) as well aselinf-sight velocities. Ideally,
these should be combined into a LOSVD; and for galaxy photonaad spectra, this can
be done (De Rijcke 2000). For discrete systems howeverghkaxy clusters, the positions
and redshifts are too sparse to create an accurate two-siomahLOSVD. So instead, we
are forced to clump the data together into (projected) \glasoments, consequently not
utilizing the full potential of the available informatiofrortunately, we can resolve this by
subjecting the best-fitting QP-models a posteriori to aoldétl goodness-of-fit tests, like
for instance a penalized maximum likelihood algorithm.

Alas, mixing different quantities into the?-fitting creates issues of deeper concern. We
already mentioned that such\@ has no longer a statistical meaning. More importantly,
it is unclear how to assign suitable weighis, to heterogeneous data: what relative im-
portance should be given to different quantities to obtaim@equate fit? Basically, we're
comparing apples and oranges. Also, bear in mind that thetiearnted quantities, and the
error bars on them, are not independent: they are assembiedlie underlying (obser-
vational, theoretical) data and thus depend on each otleamitplex ways. Evidently, this
problem is not specific to the QP-algorithm, it is a generabeon inanyfitting procedure.

But there is an even bigger Achilles heel. As we said, in themy suitable library
should be able to produce models of any kind. Practice, hewbas taught that when we
try to fit to projected data, it is generally difficult to constt models with a strong radial
anisotropy at large radii; we encountered this difficultyimr early attempts to fit galaxy
distributions in rich clusters (Van Hese & Dejonghe 2002X)eTeason for this problem is
that one needs to populate the model with radial orbits #eth large radii. Since such
orbits also contribute to the density at small radii, it negsi a delicate fine-tuning of the
different components to both satisfy the density and aroggtconstraints at small radii
while still retaining the radial anisotropy at large raddy contrast, tangential orbits only
affect the density in very limited ranges of the radius. Thisans that if one only knows
the velocity dispersion in one direction (like e.g. the paigd, the radial or the transverse
velocity dispersion), or if one thus know all velocity dispens yet with significant error
bars, then th&ALS fitting procedure will be biased towards models with tangdntather
than radial outskirts. In fact, the iterative nature of thgoathm worsens the bias in each
successive step, because every new component has to wetkéogvith the set of base
functions that is gathered in the previous step; it will imgel be easier to incorporate a
tangential component into the existing set than a radial ®hés bias is of less concern in
models of globular clusters or galaxies, but it is nefastdoge scale structures, which are
thought to develop by means of radial infall.

When we have data on the spatial dispersiong) ando(r) instead of the projected
dispersions alone, the bias is less problematic. But evesmsither issue became apparent:
the existing components (2.175) each produce anisotrayfilgs of the form (2.176). The
transition in these profiles from the central valggto the value at infinity5,, is much
steeper than profiles found in observations and simulatlikesEq. (2.171). Even though
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3(r) data: pops(rm) OF Lops(Rm)

input:
p m = 1,...,Ndmﬂ.

library of components
pi(,r) = fid)g(r) «—  F(E L)

pi(rm) = pi (Y(rm)sTm) or Xi(Ry)

l

In N successive steps, add the library
component that minimizes %

2

, ) 1 N N
Xy = min Y Wy (pobs(rm) - a Pi(rm)> '
@L5AN Ngaa py—1 i=1

N N
Y a;Fi(E,L) 20, 1 <Y Dyia; <uy.
=1 7

1

N
Best fitting model F(E,L) = a; F;(E, L)
izl

Check derived quantities with additional data

urv) = [ B o) F(E, L) & a0 —  po(r,v)

Figure 2.4 Schematic overview of our QP-algorithm.

linear combinations of these components can produce marergleanisotropy profiles,
it turned out that they remained too steep to obtain adedfitate This prompted us to
construct more advanced base components.

What can be done about these concerns? The solution is tetpredne the velocity
moments beforehand, eliminating them from the fitting pdare. Recall that a separable
system is determined by just two moments. We can use thisepsofo our advantage; let
us postulate an anisotropy profilkér), within a given potential)(r), that is realistic, yet
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simple enough to allow the construction of a libraryM§ base functions

pi(,r) = fi(¥) g(r), (2.194)
B(r) = _%3::;({(7«), (2.195)

that correspond to analytically tractable DFSE, L). If we have a set 0fVyata density
data pointgeps(r,, ) available, then we can fit a model using the QP-algorithm

Nyata 2

2
= min E m m E i fi Tm) Tm . 2.196
XN agsan Ndata w <Pobs7’ Qj f ( )) ( )

The procedure can also be performed with projected dessitidote that the resulting
model is still separablep(i,r) = f(v)g(r), with f() = >, a; fi(x). And since all
components have a priori the samie), their linear combination will automatically still
generate the desired anisotropy profile). In this manner, we can construct an unbiased
fit for a set of anisotropy profiles. If the data contain moffeimation, we can discriminate
between the obtained fits with further comparisons betwgeryanodel and the data, e.g.
with a maximum likelihood algorithm as previously mentidnerhus we have derived a
mechanism to test whether a given anisotropy profile is stersi with a certain data set.
A schematic overview of the procedure is displayed in Fig. 2.

This immediately raises two remarks. First, our modellinggedure is now confined to
finding only separable systems, and one can object thatutgspvere limits on our results.
True, if the data are detailed enough to impose significanstraints on the higher-order
velocity moments, then our technique might be too restectHowever, this is rarely the
case; one usually has to deal with the opposite problem cfrtzgcy.

The second problem is of course that the fitting now no longeks/with the simple
components mentioned in the previous section, so that wioered to design more intri-
cate base functions with general enough anisotropy profileis is the topic of Chapter 4,
where we will extend the generalized Plummer systems.

But before that, we note that the above two objections canmtiple be — partially —
resolved by constructing linear combinations of models #ne fitted to the same density,
but have different anisotropies. Thus one would be abledatera non-separable model
with the same density, but a more gengt@l). But such a sum of sums of course increases
the number of components, which makes accurate compusatiore difficult.

This concludes our introductory part. We have laid out theessary mathematical
machinery to create spherical dynamical models to a givenfsgata, which will be the
topic of the next two chapters. In Chapter 4, we shall devébtepfamily of library base
functions for our QP-algorithm. However, these DFs will bg@ressed as so-called Fox
H-functions, and we discuss these first in the next chapter.
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Chapter 3

Fox H-functions, applied to
kKinematical profiles

Before we construct our distribution functions, we firstraauce a very pow-
erful analytical tool, the Fox{-function. We will demonstrate its use by de-
riving several analytical expressions related to very camipotential-density
pairs: the Sérsic, Einasto and double power-law profildse main results of
this chapter are found in Baes & van Hese (2011) and Retarnaeviegro et al.
(2012). Section 3.5.1is based on work by E. Retana-Monterseyl F. Frutos-
Alfaro; Sections 3.4.1, 3.4.4 and 3.5.4 are based on work bBa#s; the rest
of the material was worked out by the author.

3.1 Definition of the Fox H-function

In the previous chapter, we outlined a method to derive spdledistribution functions
from (separable) augmented densities, where we encodrter®lellin transform(2.82)

—+o00
Fl= M@= [ e ) o 3.1)
Wherever we perform this transform, we will postulate that function in question is zero
outside its boundaries. The inverse transform can, atfeastlly, be written as a complex
integral,

uQ+100
f(x) =M YF@w)}= 1 / 27 F(u) du, (3.2)

u—z 2110 Jup—ioo

where the integration is to be performed along a vertica i = const in the complex
plane within the strip of analyticity of (u). As can be seen in Eq. (2.161), the distribution
functions that we seek will indeed be inverse Mellin tramsfs of certain functions.
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Since our aim is to find DFs that are advanced yet still comjmurtally tractable, it is
worthwhile to explore for which functional forms the integjon can be performed. It turns
out that a very broad range of special functions can be wrateinverse Mellin integrals
involving a product of gamma functions, knownellin-Barnes integrals The work of
Barnes (1908) focused on hypergeometric functions, butrgooitant generalization was
obtained by Meijer (1946). The broad class of functions tietonsidered has become
known asMeijer G-functions(see also Mathai 1993 ; Gradshteyn & Ryzhik 1965),

Gm,n . ai,...,ap _
pa bl,...,bq
1 / [Ty T (b +5) Ty T (1 —a;—s)

2 J 0T la 9 T a T8 =)

z7%ds. (3.3)

Here 0K n < p, 1< m < gandz—* = exp{—slIn|z| +iargz}. The possible contoui
for which the integrals exist can be more general than \adtiites (see below). This fam-
ily does indeed encompass many commonly used special fmsctsuch as exponentials,
Bessel functions, hypergeometric functions, and ellipttegrals. Nonetheless, we will
require for our purposes a further extension, the lessewhifrox H-functions(Fox 1961 ;
Mathai 1993; Kilbas & Saigo 1999 ; Mathai et al. 2009),

m,n (ala Al) PR 7(aP7AP) _
Hp’q <Z‘ (b17Bl) PR (bquq) ) a

z7%ds, (3.4)

2ri

with A;, B; positive real numbers. These functions evidently inclutispeecial functions
generated by Meije€-functions, but include also many other special functicush as
generalized Mittag-Leffler functions and generalized Be&mctions.

Note that ifA4,...,4, andBy,..., B, are rational numbers, the F@X-function can
be written as a Meije€-function, using the multiplication formula for the gammenttion
(see Eg. (4.40)). Since every real number can be approxihigter rational number to
arbitrary precision, it is not surprising that F@x and Meijer G-functions share many
properties.

The integration patli is a contour separating the poles of the gamma funcfidhst
B;s) from the poles of the gamma functiof$l — a; — A;s). We therefore require that
these poles do not coincide, that is

Ai(bi+u)# Bi(ag—v—-1), i=1,....m; I=1....,n; p,v=0,12... (3.5)

If we further define the quantities
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Figure 3.1 An illustration of the three contour paths C, andCs for a simple FoxH -
function, defined in Eq. (3.18).

Q—ZA ZP:AﬁiBj—iBja (3.6)

j=1 j=n+1 j=1 j=m+1
p q
s=T1A)Y | [T]B)" ], (3.7)
j=1 j=1
q p
A=>"B;—> Aj (3.8)
Jj=1 J=1
q p
5= b Za3+ (3.9)
7=1 7=1

then the functions exist under one of the following conditio

1. A contourC; starting at a point, — ico and going toy, + ioo for some real value
Yo, Such that all the poles &f(b; + B;s), i =1,...,m are separated from those of
Ml—a;—As), l=1,...,n. The integral exists if either

a>0, |argz| < %a, (3.10)
or
a=0, pA+R{d} < -1, argz=0, z#0. (3.12)

In the special case where all the pole$ @, + B;s) lie to the left of all the poles of
I (1—a;— A;s), or vice versa, then we can choaeto be a vertical line, so that the
integral is an inverse Mellin-Barnes transform.
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2. Aloop(C, beginning and ending atco and encircling all the poles 6f(b; + B;s), i=
1,...,m once in the positive direction, but none of the pole§ (f —a; — A4;s), I =
1,...,n, provided that

A>0, 20, (3.12)
or

A=0, 0<|z| <p, (3.13)
or

A=0, |z| =08, R{6} < -1 (3.14)

3. A loop C3 beginning and ending atoco and encircling all the poles df(1—a; —
A;s), 1=1,...,n once in the negative direction, but none of the polef @f +
Bis), i=1,...,m, provided that

A<O, z#0, (3.15)
or

A=0, |z|> 8, (3.16)
or

A=0, |z|=8, R{6}<-1 (3.17)

If the integral exists on more than one path, then the resilllbe the same for each of
those paths. We illustrate these three paths in Fig. 3. héosimple example

11 (1,1) 1 1 s
H1,1<z (_2371) )—%/CI'(S—&I'(E—s)z ds, (3.18)

where the pole§3— u; p=1,2,...} are indicated by the blue dots, affl/2+v; v =
1,2,...} are the green dots.

3.2 lllustrative examples

As we mentioned, a very broad range of special functions eanttained as particular
cases of MeijeG-functions and FoxX{ -functions (see Chapter 3 in Mathai 1993 and Sec-
tion 1.8 in Mathai et al. 2009 for an overview). They inclufa;, example, exponential
functions,

e = M(s) z~°ds, (3.19)
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binomial series,

(1-2)"°= r(la)%/l'(—s) MN(s+a)(—2)"*ds, (3.20)
C
confluent hypergeometric functions,
i = O L [TOT20 g, e
C

Gaussian hypergeometric functions,

2F1(a,bic;2) = %2—; j M) T{a—=s)T(b—s) (—z)~*ds, (3.22)

generalized hypergeometric functions,

9T 1 / M(s) [ 1T (aj —s)

Fila1...a,,01...b5,2) = =——— —
pFal P a:%) ler(aj) 271 H?zlr(bj—s)

z7%ds, (3.23)
and Mittag-Leffler functions,

e ! F(s)M(1—s) .
Ea(z)_;)m_% CW(_Z) ds, (3.24)

to name a few. Other functions, like beta functions, Beasattions and elliptic functions,
are special cases of hypergeometric functions, hence #nesaecluded as well.

3.3 Series expansions

The real strength of the Fai{ -function is that, under the conditions for the pathor C3
listed in Section 3.1, the integral can be evaluated usiegothwerful Residue Theorem.
This allows us to evaluate and study it as a series expankitrus write the function in
the form

m,n (G,,A) _i/ —s
4 (Z 6.B) )~ 2ni C@(S)z ds, (3.25)
with
™ T (b;+ B; " T(l—a;—A;
o(s) = qufl (b, JS)ijl p( a; ;$) ' (3.26)
Hj:m+l r(1-b;—Bjs) Hj:n+1 Ma;+Ajs)
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First we examine the integration alog, encircling the poles of the functiods(b; +
B;s), i=1,...,m. With the short-hand notation

ﬁzkbz_(b1+kz)/3u i:l,...,m, ki:O,...,+oo, (327)
we obtain
m,n (a7A) > - - —S
H™" 2 = Res s)z . 3.28
w5 ) =5, B ) 529

(—
R _l 7 1\M )
Sﬁ?f{sa —* SJgjk{ — Bik;) Y =0i(Bik;) B

(3.29)

wherep;(s) is ¢(s)/I(b; + B;s). As a result, if all gamma functioris(b; + B;s) have
only single poles, we obtain the series expansion,

5‘2323 )-

m o _ b+l~c . bitk;
ko T 17#1r(b —Bi )HJ 1r(1 4+ AT ) L (bitk)/B;
i s
i=1k;=0 k B H] =m+1 (1 b +B = +k ) Jj= ”+1r (aj _Aj bzgikb)

(3.30)

in agreement with Eq. (3.4) in Kilbas & Saigo (1999).
The integration along the path, encircling the poles df (1 —a; — A;s), i=1,...,n
is completely analogous:

Hqun< ‘ > ZZ 'A
=i !
1— al+kl) ( M)
i r(b +B; [lim1m (-0 — A4, R
H m+1r(1 b; — B; 1= al+kl) j:n+lr(aj+A = al+kl)

Ay

(3.31)

in agreement with Eq. (3.12) in Kilbas & Saigo (1999).

However, if two or more gamma functions share a pole, thexytbie is of higher order,
and the calculation becomes more involved. Kilbas & Saidi®@) demonstrate that the
Fox H-function can then be expressed as a logarithmic-powezseaiher than a simple
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power series. They present a generic expression valid fardérs of pole multiplicity.
Here, we present a less general, but more explicit, serigansion for the pathi, in the
case that two gamma functioigb; + B;s) share some of their poles. Without loss of
generality, we can place these two gamma functions at time, fso that we can write

o(s) =T (by+ B1s) (b + Bas) ¢(s), (3.32)

H;-n:?’ I'(b7 +B S) Hn I'(l— aj— AJS)

o(s) = .
O = T, By [T (@) + Ay9)

(3.33)

Now, suppose there is a tuple,, k2) of indices so that

Bk = B2,k (3.34)

The residue of this second-order pole is then, after sonebedg

Res {e()=p = tim { (Aot 3.35)
_ l:—InZ—FB (b/(ﬂl,kl)
= 1llJ(k1—|—1)+Bzw(k2+1)+7¢(ﬁlk j X (3.36)
(-1 (~1)k2 2~
Bk T T By (3:37)
with
W(s) = rr’((;)’ (3.38)

the so-calleddigamma function Moreover, note that(s) is a product and quotient of
gamma functions, so that(s)/¢(s) can also be expressed as a sum of digamma functions.
This means that all the machinery is available to expres&txe -function as the rather
daunting-looking series expansion

H;’fq’"(z o >=

(b.B)
2

m bi+ki n ; itk
o k! B; I er1F(1 b+ B; b+k) j= n+1r(aj_Ajbi§iki)
o Tl ()
k! k-lele 1% ial (1—bj+B BB TTY T (o — 4,255 )

o (bitk1)/B; (Cr, —Inz), (3.39)
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with the constant€’;, defined as

Cry = B1(k1 +1) + Ba(k2 + 1)

+ iij (ba‘ —ij%kl) _zn:Aﬂw (1_aj+Ajb1§fl)
i=3 =1

q p
+ 30 B (1ot B ) = ST A (0 4y ) (3.40)

j=m+1 j=n+1

The prime in the first summation in Eq. (3.39) indicates thist$um covers only the single
poles, and the double prime in the second summation indi¢h#t this summation runs
over the second-order poles. In the latter summation, wéset By (b1 + k1)/B1 — ba.
Alternatively, one can usk, as summation index and et = By (b2 + k2)/ B2 — bs.

For the integration patliz, one can obtain completely analogous equations involving
the poles of (1 —a; — 4;s), 1 =1,...,n, but we shall not need these in our subsequent
work. In principle, one can extend this scheme further, wineme gamma functions have
poles in common, although it is clear that the calculatiarslzecome substantially elabo-
rate.

For numerical implementations though, one can always "Ehézen the gamma func-
tions share poles, by changing some of the relevant parasiteted, b, B) by small con-
stants in such a way that all the poles become simple and)(3(3M0) can be used. This
is how commercial software packages likeple® andMathematica® deal with Meijer
G-functions.

To conclude this section, we list several useful propedfaébe digamma function:

1 = 1
UJ(S):—W—E‘FS;ma (3.41)
1 1 1
w(s+m)=w(s)+g+s+1+---+S+m_1, (3.42)
m—1
W(ms) = Inm—i—% > W(s+k/m), (3.43)
k=0
1 1
PA+m)=1+=++——7, (3.44)
2 m
W(1/2) = —y—2In2, (3.45)

with v = 0.57721566 the Euler-Mascheroni constant. Let us now exahtnewve can put
all that horsepower to use, deriving various quantitieatesl to two widely-used density-
potential pairs. We will start with the Sérsic model.
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3.4 Analytical expressions for the deprojected
Sersic model

3.4.1 Introduction

The Sersic (1968) surface brightness profile has becomerétiered model to describe
the surface brightness profile of early-type galaxies arditiiges of spiral galaxies (e.g.
Davies et al. 1988; Caon et al. 1993; D’Onofrio et al. 1994lidDe et al. 1994 ; An-
dredakis et al. 1995; Prugniel & Simien 1997 ; Mollenhoff &idt 2001 ; Graham &
Guzman 2003; Allen et al. 2006 ; Gadotti 2009), and it has bé&en used to describe disc
galaxy mergers (Aceves et al. 2006). Due to this popularigny analytical properties of
this model have been discussed in the literature, for cepmiameter values (Ciotti 1991 ;
Ciotti & Lanzoni 1997; Ciotti & Bertin 1999; Trujillo et al. @01 ; Mazure & Capelato
2002 ; Cardone 2004 ; Graham & Driver 2005 ; Eliasdottir &IMi 2007 ; Baes & Gentile
2011).

An important inconvenience of the Sérsic model is thatégrdjected luminosity den-
sity, i.e. the spatial 3D luminosity densityr) that projects on the plane of the sky to the
Sérsic surface brightness profile, cannot be expressed eEmentary functions or evenin
terms of standard special functions (for a numerical dggtan using series expansions,
see Bendinelli et al. 1993). It was long thought that no ai@dyexpression could be ob-
tained, when quite unexpectedly, Mazure & Capelato (206®)ecup with an analytical
expression fop(r) in terms of the MeijeG-function for all integer Sérsic indices. Baes
& Gentile (2011) took this analysis one step further and stbthat the deprojection of
the Seérsic surface brightness profile for general values ofin be solved elegantly using
Mellin integral transforms and gives rise to a Mellin-Basrietegral.

The result is that the Sérsic luminosity density can betemitompactly in terms of a
Fox H-function, which reduces to a Meijé#-function for all rational values of.. Using
this property, Baes & Gentile (2011) calculated a numberdafitional properties of the
Seérsic model for rationah, including the asymptotic expansion of the luminosity digns
at small and large radii, the cumulative light profile andghnavitational potential.

In this section, we extend and complete the analysis thatpnesented in Mazure &
Capelato (2002) and Baes & Gentile (2011): we will providenpact and elegant ex-
pressions for the density, potential and luminosity prefile terms of the general Fox
H-function, which are valid foall values of the Sérsic index rather than just for integer
or rationalm. We also present a completely general series expansioresé tlunctions
that enables both a numerical evaluation and a straighd¢fiehanalytical study of their
asymptotic behaviour.
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3.4.2 Analytical properties of the Srsic model

The Sérsic model is defined by the intensity profile projgcte the plane of the sky,

1/m
I(r) = Ipexp [—b (5) 1 : (3.46)

Re

which generalizes the de Vaucoulei¥* model (de Vaucouleurs 1948). The 3D, depro-
jected luminosity density(r) of a spherically symmetric system can be recovered from
the surface brightness profil¢r) using the standard deprojection formula (2.70)

r) 1 /°dl dr
r)=—— —_———
P 7). Or VmZ_,2
Substituting the Sérsic profile (3.46) into (3.47) we obtan integral that cannot readily
be evaluated using the standard ways or look-up tables. &a@&sntile (2011) applied

a Mellin integral transform technique to convert this im@go a Mellin-Barnes contour
integral,

(3.47)

rema)r (3 my\ 2
gy = 2ndo, 1 1 [T@maT (G42) (b=, (3.48)
LS 2ri Jeo M(x) Re
or, given the definition (3.4), to the compact expression
2mIobm 1 20( 2 (0, 1) >
ry=——"utH> | u , 3.49
= Tere 2\ f0.2m). (3.0) (349
where we have used the reduced coordinate
b™mr
= . 3.50
= (3.50)

As a check on this formula, Baes & Gentile (2011) calculateditbtal luminosity of the
Seérsic model for rationah by integrating the luminosity density over the entire space

obtain the results, they used the integration propertigseoMeijer G-function, combined
with several applications of Gauss’ multiplication thenore As a generalization of this
result, and as a nice example of the power of the Hekunction, we calculate the total
luminosity from the general formula (3.49), i.e.

_ - 2, 4mymIorE [ 50 (0,1)
L—47r/0 p(r)r dr—T A Hip(t (O,Zm),(%,l) dt. (3.51)

To evaluate this integral, recall that the F&xfunction is an inverse Mellin transform of
a combination of gamma functions. As a result, the Mellim$farm of a FoxH -function
reads

(a,A) )zs_ldz: [[Z1T (0 + Bjs)[Tj—1 T (1—a; — A;s)

?:erlr(l—bj—BjS)Hp I'(aj+Ajs)'

j=n+1
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(3.52)
Applying this to (3.51) withs = 1, we obtain

_ 4T IorZ T(2m)T(3)  wIor2T (2m +1)

L b2m ra b2m ’

(3.53)

in agreement with the value obtained by integrating theasarrightness profile (3.46)
over the plane of the sky.

From the luminosity density, a humber of other importantrditi#@s can be derived,
most importantly the cumulative luminosity profile(r) and the gravitational potential

P(r),

L(r) =4z / p(r')r'?dr. (3.54)
0

°° L(r")dr!
Y(r)=GY [ —F—, (3.55)
whereY is the mass-to-light ratio. Mazure & Capelato (2002) andsB&aésentile (2011)
calculated these quantities for the Sérsic model for eitegd rational values of the Sérsic
parameter, respectively, using the integration propediethe MeijerG-function. It is,
however, possible to calculate these properties for génera an elegant way by directly
applying the integrations on the Mellin-Barnes integrahimf the luminosity density. We
obtain for the cumulative luminosity profile

L(r)=8m\/?fo/or [i/cl'(Zm;v)l'(%—kx) (me,>_zmd4 "

2mi r(z) o
= Smﬁfo%/c r(mer)(l;)(%+x) (2%)_230 {/Orr’l_zrdr’] e
_ 4m\b/2EmIoR§ u? HE. (u? o 2175()): (1%(1‘;%)_1 1)) , (3.56)

For the gravitational potential we find after a similar cédtion

= 2O 2 (2 g A a ) (3.57)

() = (0.2m),(~3,1).(~1.1)

The formulae (3.49), (3.56) and (3.57) form a triplet of fadare that describe three impor-
tant spatial properties of the Sérsic model in a compact way

A straightforward way of checking these formulae is to lookhee model that corre-
sponds ton = % In this case, all components of the vectetsand B are equal to one,
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such that the Fo¥/-function reduces to a Meijer-function. We find

. IO\/E ~1,~2,0 2 O o IO\/B _u2
p(r)= ﬁReu G5 u O,% = ﬁRee , (3.58)
2/mIoR3 21( >| 0,0 > 7 IoRZ 2 2

L(r)y= "——=u*Gy3| u ’ =——2= lerffu——ue " |, (3.59)

b 23\ 10,2,-1 b N

ﬁGYIORe 21( 2 070 ) WGYIORe erfu
r)=———uGy;| u = . 3.60
¥(r) NG 2,3 07_2_2L’_1 Vb u ( )

These expressions can also be derived by substitutingtéesity I (r) = Ioe~""/%% into
the expressions (3.47), (3.54) and (3.55) and directlyuataig the resulting integrals.
More generally, one can check that the formulae (3.49),6(3ahd (3.57) reduce to the
Egs. (22), (40) and (44) of Baes & Gentile (2011) for ratioreles ofm.

3.4.3 Explicit series expansions

While the expressions (3.49), (3.56) and (3.57) form anetipf compact formulae that are
useful for analytical work, they are not readily useful tamerically evaluate the spatial
properties of the Sérsic model. For rational valuesmfthe Fox H-functions reduce to
Meijer G-functions, and some numerical software packages havéuiision now imple-
mented. However, the numerical evaluation of Mefjefunctions with large parameter
vectors (which easily occurs in our case for rational valies:, as can be seen in Baes
& Gentile 2011), proves to be difficult, in particular in casehere second-order poles
are present in the integrand of the inverse Mellin transfdvoreover, for general values
of m, the expressions (3.49), (3.56) and (3.57) cannot be writtederms of the Meijer
G-function or any other special function, and we are not awdi@y implementations in
numerical software that can evaluate general Hefunctions.

In this subsection, we derive explicit series expansiong(o), L(r) andy(r), which
both enable a numerical calculation and again highlightpthveer of FoxH -function as
a useful mathematical tool. Note that for all three profilesfind A = 2m > 0, with A
defined in (3.9). This means that we can perform the intemratalong the path%.

The form of the series expansions depends on the multipb€the poles of the gamma
functionsl (b; + B;s). Forp(r) andL(r), the poles of these gamma functions are found at
—k1/2m and—1/2 — k, with k; andk, any natural number. The gamma functions corre-
sponding to the expression of the potenti@l) contain the same poles with an additional
pole at 2. The good news is that each pole can at most occur twice gith@dws is that
this happens quite often: for all integer and rationaln = p/q where the denominatar
of the fraction is odd, double poles do occur.

Let us first consider the case whereis non-rational or rational with an even denom-
inator. The gamma functions then have simple poles, so llgatxpansions are power
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series, given by Eq. (3.30). We find

Am/TIoRZ |
1) = T [Z r

k=1 2m
2T (—m — 2mk) (—=1)* 2<+3
,; r(-3-k) k! 2k+3|’ (3.62)
) = ZmﬁbGYIORe [i r(-4 —k%) (—1)k yh/m+1
m —or(-L) K k+2m
2T (m —2mk) (=1)* u?*
2 r(3—k) ko 2k+1| (3.63)

Notice that the ternt = 0 in the first sums is omitted, since the factb(®) in the denom-
inator make those terms vanish. In factyifis a rational numbes/q with ¢ even, then the
terms in the first sums for which= 0, p, 2p,... vanish; ifp = 1, these first sums vanish
completely. A particularly interesting case is (again} % where we find

IoVb S (—1)F 5 Tovb 2
_ _ u 3.64
p(r) ﬁRe;) Uy L (3.64)
47 IoRS = (—1)F wBt?F 1 IoRZ 2 2
L(r) = — fu— e v 3.65
) D DR b il L N b (3.65)

2/7GYIgRe o= (—1)F  u?* 7 GYIgRe erfu
_ - 3.66
¥(r) NG ; B 2k+1 N (3.66)

in agreement with formulae (3.58), (3.59) and (3.60).

When the Sérsic index: is integer or rational with an odd denominator, two of the
gamma function§ (b; + B;s) in p(r), L(r) andy(r) share some of their poles, and the
expansions of the FoK -functions become logarithmic-power series of the forn393. If
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we defineko = (¢ +1)/2, one obtains after quite some algebra

2m Igb™ >~ (- im _1)k g k/m-1
p(r) = Z (- 2a) (1)
VT Re r(
kmoap;«éo

3 A ~1F = (=1 I 2k

3 I'( m 2mk) (=1)* 5, 1 3 (17 (2k+1)! (g) .

= T(-2-k ¥ ™ 2m  (2km+m) kKl \ 2
(k+kg) modg+£0 (k+ko)

[—m(%)+w(k+1)+mq;(2k-m+m)—¢(2k+1)] , (3.67)

Am/7 IoRZ =T ;—im — 1)k g k/m+2
L(’I”) — \Ifz_m e Z (2 ) ( )
o T
kmodp#0
i 2r (—m—2mk) (=1)F u+3
r (_l — k) k' 2k+3

wd & (-1)P (2k+1)! (E)ka
VI = 2km+3m (2km+m) Kk 2
(k+ko) modg=0

{_m (%) + Tlﬂ Sk D) S mykm+m) - Y2k+1)| S, (3.68)

SYENGIALCY S N G b i N )
b (%) & k+2m =«

=

k=1
kmodp#0
2T (—m —2mk) (—1)F u?++2
r(-3-k) (k+1)!2k+3
(k+kg) modq#0
u? i (-1)P (2k+1)! (E)ka
m = 2km+3m (2km+m) k! (k+1)F \2
(k+ko) modg=0

[M]8

ko

=0
Of

N

U 1 1
[—m (5) ot gt Wk D+ mu@kmtm) W2k 1)| §. (3.69)
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In these expressions, we again used the digamma functi88@)(3n(r), the third term
2r (m) /y/7 corresponds with the residue of the péleAgain, the terms in the first sums for
whichk =0, p, 2p,... vanish, and these first sums vanish completehy=f1. On the other
hand, ifg =1, i.e. ifm is an integer value, the second sums vanish, since thentdggamds
for p(r) and L(r) have no simple poles; j,, while for 1(r) only the pole% remains as
a single pole. On the crossroad of these two cases werhavel: for this model, both
the first and second sums in the expansions (3.67) - (3.6%lvaompletely, apart from
a single term for the potential. Astrophysically, the &nrsodel withm = 1 corresponds
to a model with an exponential surface brightness profilemfised for the description of
low-luminosity elliptical galaxies and pseudo-bulgeseB& Gentile (2011) calculated the
luminosity density of the exponential model by directly dgpcting the surface brightness
profile and through its representation as a Mefjefunction. For the luminosity density
we get

i‘jer = (3)" [ () + e+ )] = 22 Ko(w) (3.70)

with K, (z) the modified Bessel function of the second kind (Section 8.@liadshteyn

& Ryzhik 1965). This expression is in agreement with equa{@4) of Baes & Gentile
(2011). Similarly, we obtain for the cumulative luminosity

_ AIgRE & 8 u 2k+3 u 1
L == ];(zms)k!k! (3) [_'”(§)+2k+3+‘“(k+1)]

T 2
= 2 ggRe u {Kz(u) Li(u)+ K1(u) Lo(u) — 3;; uKl(u)] , (3.71)

with L, (u) the modified Struve function (Section 8.5 in Gradshteyn & iR¢Z965). Fi-
nally, for the potential of the exponential model we get thpamsion

_ 4GYIore > 2 u\2+2
Y(r) = ?{1_;(Zk+3)k! (k+1)! (E) %

{—In (%)+%H)+Tiz+w(k+1)]}

- 20 () L)+ Kol L)+ 2w (372

b 3r

These last two expressions can also be obtained by sulrjite luminosity density (3.70)
into the recipes (3.54) and (3.55).

3.4.4 Asymptotic behaviour

With all the explicit power series of Section 3.4.3 avaiighi is fairly straightforward
to examine the asymptotic behaviour of the spatial functibthe Sérsic model at small
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radii, generalizing the results of Baes & Gentile (2011)e ensity has the following rich
behaviour, depending on the valuernf

p(r)wlob [I’(l—m)+}|—(1—3m)u2} ]‘0r0<m<%0rm:%7
T Re 2
(3.73a)
Iobt/3 2 1 u 3\ » 1
o)~ 1T (3) — 3 3In(3) +7+3 ) u form =1, (3.73b)

[N

1

Tob™ VT (G—253) 1ym-1
~ r(1— yr m /g 1/m for & 1 andm # 3
p(r) ﬂRe[( m) o= — i or i <m<1landm# 3,
(3.73c)
Iob u
plr) ~ -in(5) -] form = 1, (3.73d)
b 1 T(G—55) 1jm-1
~ - m m form > 1 3.73e
O e T k) " : o
with againy the Euler-Mascheroni constant. The luminosity behaves as
4[0Rg 3
L(r) ~ 3,7 Mr1l-—m)u form <1, (3.744a)
AT R% u 1] 4 B
L)~ 2 [_m (E)—y—ké}u form = 1, (3.74b)

Ir: 2y7 T(3-5)
L(r) ~ m/ g, 1/m+2 for 1 3.74c
(T) me 2m+ 1 r (1_ Z;I.n u m > ( )
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Finally, the potential approaches- 0 as

w@p% [4r(1+m)— %r(l—m)uz} form < 1,
(3.75a)
GYIgRe | 2 u 5\ , B
Y(r) ~ A _4+§<In(§)+7—6)u} form =1,
(3.75b)
GYlore | Vi T (=3—23) 1
N 4r(1 m /m+1 f 1.
p(r) = ( —|—m)+2m+1 Fa-oL) u orm >
(3.75¢)
If we setr = 0 in the expressions (3.75), we recover the central polentia
o = %r(m 1), (3.76)

for every real valuen > 0, in agreement with Eq. (12) of Ciotti (1991).

3.5 Analytical expressions for the Einasto model

3.5.1 Introduction

Einasto models (Einasto & Haud 1989) are closely relatectsi§profiles, so that we can
study their analytical properties in a similar way. Einagtofiles have gradually gained
popularity in the description of simulated dark matter lesl¢Navarro et al. 2004 ; Merritt
et al. 2005 ; Merritt et al. 2006 ; Graham et al. 2006 ; Gao €2@(08 ; Duffy et al. 2008;
Stadel et al. 2009 ; Navarro et al. 2010), as their centrahielr appears in some cases
to match high-resolution simulations more closely thantdeypower-law models (which
we will study in the next chapters). Nevertheless, theréligension with observations of
dwarf galaxies, which favour density profiles with a flat cahtore, a discrepancy known
as the cusp-core problem (see de Blok 2010 for a review).

Some aspects of the Einasto model have been presented bglsewbors (Mamon &
tokas 2005 ; Cardone et al. 2005 ; Merritt et al. 2006 ; Dhar &8li#whs 2010). The most
complete study of the properties of the Einasto model is thk\lwy Cardone et al. (2005),
who provide a set of analytical expressions for quantitiehss the mass profile and grav-
itational potential and discuss the dynamical structurebfith isotropic and anisotropic
cases. Nevertheless, the Einasto model has not been samgigdically as extensively as
the Sérsic models, and several properties still have tafbedr investigated in more detail.
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The most important lacuna concerns the surface densityeopléime of the sky, an im-
portant quantity that defines the lensing properties of k hatter halo. Since gravitational
lensing is an important tool to investigate the differenoesveen theory and observation,
we will also provide analytical formulae that describe thading properties of Einasto
models. We published these results as part of a collaboréietana-Montenegro et al.
2012), and in the following sections we will focus on our waxithin this study.

3.5.2 Analytical properties of the Einasto model

Spatial properties
The Einasto profile is characterized by a power-law logaritislope,

din
1) = ~iny

with n, which we call the Einasto index, a positive number definimg $teepness of the
power-law. Integrating leads to the general density profile

p(r) :psexp{—dn [(é)lm— 1 } (3.78)

wherers represents the radius of the sphere that contains half dbthkmassps is the
mass density at = rs, andd,, is a humerical constant that ensures thais indeed the
half-mass radius. Equivalently, we can write

(r) oc r¥/™, (3.77)

r

1/n
p(r) = Poexp{— (E) ] : (3.79)
Here, we introduced the central density
po = ps€ln, (3.80)

and the scale length

h="1% (3.81)

oy
The total mass that corresponds with the Einasto densitypedound as
M = 4x poh3nT(3n). (3.82)

If we use this formula to replace the central denggyy the total masd/ as a parameter
in the definition of the Einasto models, we get
M 1/n

— S

p(’f’) = me 5 (383)
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with

At small radii, the density profile behaves as

p(r)z#jr(sn)(l—sl/"—i—m).

The cumulative mass profile
M(r) = 47T/ p(r')r'2dr’,
0
is then, for the Einasto density,

M(T):M[l—w]’

I(3n)

wherel (o, z) is the incomplete gamma function,

r(a,x):/ tole~tdt.
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(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

Given the radius of the sphere that encloses half of the ogals, we find thad,, is the

(numerical) solution of the equation

2r (3n,d,) =T (3n).

The spherical gravitational potential can be calculatethfEq. (3.87)

v = [ MUD g,

and we obtain the profile

P(r)

_GM 4, I (3n,s%/™) n sT(2n,sY™)
h I (3n) I(3n)

Evidently, the Einasto model has a finite potential well egivoy

4o GM (21
0 T T(3n)

~

~—

(3.89)

(3.90)

(3.91)

(3.92)
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Projected properties

The surface mass density of a spherically symmetric lenv&dy integrating along the
line of sight of the 3D density profile:

oo

p(r) rdr
R VIZ—r2

Inserting Eq. (3.79) into the above expression, we obtain

S(r)=2 (3.93)

00 e_sl/n

sds
b
. V22

where we have introduced the quantities: r/h ands = r/h.

As discussed by Cardone et al. (2005) and Dhar & Williams (20the integral (3.94)
cannot be expressed in terms of elementary or even the nmggardunctions for all the
values ofn. Only the central surface mass density can be evaluategteadlly as

3(2) = 2poh (3.94)

(0) = 2npohT (n). (3.95)

This situation is very similar to the deprojection of thes$ésurface brightness profile. The
obvious similarity between these two cases invites us tdyahp same Mellin transform
technique as for the Sérsic profiles. We obtain

B 1 [Tl (-3+y)
Z(a:)—Znﬁpohx% . 20 2

[2%] ™ dy. (3.96)

which can be written in the following compact form

©,1) ) . (3.97)

3(x)=2nmpohx leg (332 (0, 2n) (_% 1)

An important quantity for gravitational lensing studiestis cumulative surface mass den-
sity, i.e. the total mass contained in a infinite cylindetwidiusr,

R
M (Rr)= 277/ S(R)R'dr’. (3.98)
0
We find,

M(z)=2n 7r3/2po he 23 szé (xz

1
(=2:1.(0.9) 1 ) : (3.99)
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Lensing properties

In the context of spherically symmetric lenses, tledlection anglef a gravitational lens
is defined as (Schneider et al. 1992)

2 * / Z(I/) / 2 /I / /
alz)==[ 2/ ="2d' == [ 2'k(2')d2’, 3.100
@==2 [ w3 =2 [ arnia) (3.100)
where
>
= ﬂ, (3.101)
Zerit
is the convergence ark;; is the critical surface mass density defined by
CZDS
2ot = InGD. DS’ (3.102)

with ¢ the speed of lightz the gravitational constant, and_, Ds and D, s are the an-
gular distances from observer to lens, from observer tocgguand from lens to source,
respectively. Evidently, the deflection angle is relatethwintegrated mass as

_ M(x)
or) = T2 St

Introducing the central convergeneg, a parameter that determines the lensing properties
of the Einasto profile,

_3(0) _ 2pohnl (n)

(3.103)

= = 3.104
e zcrit zcrit ( )
we can writen(x) in the form
’{Cﬁ 2 21( 2 (_171)5(07 1) )
o(x) = x“ Hyy |z 2 ) 3.105
( ) r(n) 23 (07 Zn),(—%,l),(—%,l) ( )

with a completely analogous behaviour®gz) in Eq. (3.99).
The deflection potential)(x) for a spherically symmetric lens is the integral of the
deflection angle

U(x) = /Ora(x’)dx’- (3.106)

Inserting Eq. (3.99) into (3.106), we obtain again a resw#t tan be re-expressed as a Fox
H-function

o) = pelm a2 (o

(-3.1).(-3,1),(0,1)
(0, zn),(z_%,l),(z_%l)’(_%’l) ) (3.107)

For other lensing properties of the Einasto profile, suchagnification and shear, we refer
to Retana-Montenegro et al. (2012).
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3.5.3 Explicit series expansions

The derivation of the series expansionsd«), M (x) andJ(x) is completely analogous

to the Sérsic case. We fild= 2n > 0, so that we have to choose again the integration path

C,. Likewise, the form of the series expansion depends on tHapieity of the poles of
the gamma functionB(b; + B;s). These poles areky/2n and 1/2— kp, with kq andk;
any natural number. We encounter again two cases:

Case 1: ifn is either non-rational or a rational numhefg with an even denominator
(andp, q coprime), all poles are simple and the expansion is a powss.30),

0 ) (_1)1@ ph/nt+l

ok
X(z) =2nVmpoh Z 2) o
k=1 2n )

I\)II—‘

> M(n—2nk) (-1)*
+Z (n—2nk) (-1) 22k . (3.108)
the mass is

P r(=3_ %) (_1)k ,k/n+3
M (z) = 2n7>? poh® _Z (-3-2) Dk =

(n—2nk) (1" .2
3.109
+§: (3—Fk) k+1)x .+ (3.109)

and the deflection potential is

r(-

I\le

_L) (_1)k pk/n+3
—Zi k' 3n+k

Gl RN

1
2k+-2

Z (n—2nk) (-1 x (3.110)

2T (k) (b1 k+1

Case 2: ifn is integer or a rational number/q with an odd denominator, some poles
are of second order, and the expansion is a logarithmic-pserées (3.39). If we define
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ko= q;zl then we obtain after some algebra,

o 1 kY (_1)k pk/ntl n
5(2) = 2007 poh Z r(r(z_%z)n) ( k]'-) - + r\(/E)

4+ 3 [on—zb <—}>kx2k + 20l Z CP@)

2 T(I-k) M (2nk —n) k1 &I
(k+ko) modg#0 (k+k0) modq
x 1
[—ln (E) — o5 H Uk + 1)+ np(2nk—n) — W(2k— 1)] . (3.111)

for the mass we find

3
M (z) = 2n7>? po 322 —Z (-3

k modp760

2) DR AP T
5 m 2 | /F

(n— an (—1)* o (—1)P (2k)! N
+ Z 1_ (/~s+1)!4’32]c + 2mpoh’a’ kz_; (2nk —n)1 k! (k+ 1)! (E) X

(k+ko) modq#o (k-+ko) modg=0

[_m (%) - % - Tlﬂ Lk +2) +np(2nk—n) — Y(2k— 1)] . (3.112)

and the deflection potential becomes

Kicﬁxz _Z M(=3-2) (~1)F gF/ntt

n _ 2

Y@ =2 2 TT(-&) K 3tk
kmodp#0

+ + Z (n— an (=1)k 22k

1 k) (k+1)'k+1
(k+k0) modq;«éo

Iic —1)P (2k)! x\ 2k
o Z 2nk—n)l (k+ 1)l (k+1)! (E) .

(k+ko) modq

[—In(;) —%—l—dJ(k—FZ)—i—nljJ(an—n)—ljJ(Zk—1) . (3.113)
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For particular values of, these series will simplify and reduce to more elementangfu
tions. Examples for simple cases like= 1 andn = 1/2 are given in Retana-Montenegro
etal. (2012).

3.5.4 Asymptotic behaviour

The series expansions allow us to directly investigate gteabiour of Einasto models at
small radii. It follows that the central asymptotic behaui@f the surface densit§(x)
depends on the value of If n < 1, we find the following expansion at small ralii < 1)

3(z) ~ poh [2r (n+1)+T (1—n)a?]. (3.114)
If n =1, then the expansion has the form
3(z) ~poh[2+ (2In(3) — 1) 2?]. (3.115)
Finally, if n > 1, the central surface density behaves as
VT (nz—_l) 1+31
Z(x) ~poh |2 1) ——— x|, 3.116
(l‘) Po (TL—|— ) n+ir (275;1) T ( )

The behaviour of the cumulative surface mag$x) is more straightforward. At small
radii, we find the asymptotic expression

M (z) ~ 21 poh®T (n+ 1) z2. (3.117)

The slope is not unexpected, given that the Einasto models &dinite central surface
mass density. The asymptotic behaviour of the Ebkunction at large radii is described
in Kilbas & Saigo (1999). We obtain the following expansigass> 1)

S(x) ~VBnmpohe =" 4t~ 3, (3.118)
and
M(z) ~ 47 poh3nT (3n) — 2(2mn)%2 pohle="" 43 7. (3.119)

3.5.5 Conclusions

As we demonstrated, the Fdk-functions are a powerful tool obtain analytical expressio
for various quantities related to well-known theoreticaldsls, in casu Sérsic and Einasto
profiles. These expressions can be readily implementedrirerioal codes for arbitrary-
precision calculations; moreover, they enable us to déhieasymptotic behaviour of these
functions in a straightforward manner, which is very helpéunderstand their properties.
In the next chapter, we return to our dynamical modellingopgm. As we said, our

aim is to construct a family of sophisticated yet analyticabctable DF components. The
Fox H-functions will prove invaluable for this task.



Chapter 4

A DF family of Fox H-components

We now have all the necessary mathematical tools to constrd@mily of

distribution functions, which will generate models with ary general 4-
parameter anisotropy profile. These DFs themselves forfatsabistent Velt-
mann models, and will serve as base functions to build marergédynamical
models. The results in this chapter are published in Baesr&Hease (2007).
The specific DFs for the Plummer and Hernquist models werd&eeout by
M. Baes; the rest of the material was developed by the author.

4.1 Motivation

In Section 2.4, we outlined our method to construct DFs asalicombinations of base
componentst'(E, L) = Zf\il F;(E, L), each of which have separable augmented densities
that generate the same a priori given anisotropy profile,

i) = Fi@)glr) @1)
5 =~ G ). 42

As we stated, the existing set of components (2.175) thatalraady implemented, is
not sufficiently general for our purposes. Indeed, we woikdel bur base functions to be
capable of fitting a wide variety of gravitational systemspérticular, we wish to optimize
them to model the large family of double power-law densjtééso referred to as the Zhao
models ofa5y-models (Hernquist 1990 ; Zhao 1996),

plr) = & (4.3)

(r/rs) (1+ (r/rs)n)(%o—vo)/n ’

These densities have an central slegean outer slopey,,, a transition rate), a scale
radiusrs and a factops defined so thaps = 207 =70)/7(r5). With the auxiliary notation

(/)"
X1 /™

(4.4)
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we can write these densities in the form
plr) = ps (X012 = x)1>/1), (4.5)
or in terms of the logarithmic slope,

_ dlnp(,r,) _ Y0+ Yoo (T/Ts)n

1+ (T’/Ts)n = 70(1_ X) + Yoo X- (46)

The corresponding integrated mass can be easily calcylated

47 3— 00_3
M(r) = WPSTSBX( n%a VT) ) 4.7)

where we used the incomplete beta function

Bm(a,b):/ 1911 — 1)Lt = 2 i&x" (4.8)

0 n!(a+n)

As required, systems with,, > 3 have a finite mass at infinite radius. In self-consistent
systems, the double power-law densities are, through Gtogsequation, equivalent with
the gravitational potentials (Zhao 1996)

4rG r 30 Yoo —3 —2 22—
W(r) = 22 pgr2 [—SBX( 7",7—) +Bl_x(7 —7")} (4.9)
7 r 7 " 7 "

These potentials are thus analytically tractable; alse o condition O< v < 2. The
family encompasses a wide variety of profiles, including safithe best-known systems:

(70, Yoo 1) Name Reference
(0,5,2) Plummer sphere Plummer (1911)
(1,4,1) Hernquist profile Hernquist (1990)
(2,4,1) Jaffe profile Jaffe (1983)
(1,3,1) NFW profile Navarro et al. (1997)
(2—n,34+1n,m) a-profile Veltmann (1979)
(v,4,1) ~-profile Dehnen (1993)

(1-n/2+ Bo,3+mn,m) Dehnen-McLaughlin profile Dehnen & McLaughlin (2005)

More importantly, we wish to create base functions that geeeobservationally real-
istic anisotropy profiles. The logical choice is an extengibthe profiles generated by the
generalized Plummer functions Eq. (2.176). The obviougg#ization is

Bo+ Boo (/12)%°

o (4.10)

Br) =
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with 0 < § < 1. These profiles extend the anisotropies described in E4Z 12, as well as
the Cuddeford anisotropies (2.167). Furthermore, whenbioed with the density slopes
Eq. (4.6), they allow the construction of dynamical modefgeves(r) is a linear function
of v(r); this occurs whem = 26 andr, = rs. Numerical simulations have revealed that
dark matter haloes obey this striking relation (Hansen & Ma2006), and it is one of the
key features of the dynamical models that we will create iajilér 6.

To summarize, we want to construct separable augmentediderisr which the DFs
can be computed analytically, yet are sophisticated entaugh

1. generate thg(r) profiles of Eq. (4.10);

2. be able to model densities with either central cusps @s;or

3. be able to model systems with either finite or infinite ekten

4. be optimized to model the family of double power-law pexfibf Eq. (4.3).

These requirements lead quite naturally to a family of basetions of the form

3 B w_EO p w_EO s14 r —209 720 Bs

Alr) _po<¢o—EO) [1_ <¢0—Eo) ] (7“_a> (1+@) ’ (1)
for ¢ > Ep, with

s = 50_5@”. (4.12)
In other words, we have a separable system with

-o(8) - (R)]
ro=m( 2= ) - (22 ] @13)
P\ 2% P28 Bs
g(r)= (T_a) <1+ @> , (4.14)

with ¢(r) derived from (4.2) and (4.10). These functions have a namnalfactorpy and
eight parametersEg = v(rmax) determines the extent, for a given potentidl), p > 0
controls the behaviour at large radji< 0 controls the inner slope (where we assume that
the potential is finite at the centre),> 0 defines a transition rate between them, and the
four remaining parameters, 6., 0 andr, generate the anisotropy profile. Note that the
central behaviour of the density not only dependg dout also onsp.

If the functions extend to infinity, i.eZy = 0, we have to ensure a finite total mass. On
the other hand, ifzy > 0, we impose that the corresponding DF is zero at the boundary
E = Ejy. This leads to the following conditions:

p+28s >3 if Eo=0, (4.15)
P+ Boo > 3/2 if Eo> 0, (4.16)
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where the latter condition can be seen by inspection of theddies expansionin Eq. (4.54)
in Section 4.2.2. Of course, one can trivially extend thasgnzented densities to more
general3(r) profiles by taking finite sums

g(r)=>_cig;(r), (4.17)
j=1

with ¢; positive constants angl;(r) of the form (4.14) but each with different parameter
values. We will not consider such extensions in the restisfdtssertation.

While the augmented densities (4.11) are particularlyablét to fit double power-law
profiles, they can be used without problems for other desssiis we will demonstrate in
Chapter 7.

In the following sections, we will derive the DF and momeritattcorrespond with
these components. We start with a detailed calculationeéitstribution function.

4.2 Derivation of the distribution function

4.2.1 Integral form

Let us first tackle the simpler function

. B w_EO P r —2089 7”26 Bs
won=m(im) () (i) @19

We have to consider several cases, depending on the parasete

Case 1:3; is a natural number

First we consider the special case whéyés zero or a natural number. Then the augmented
density is simply a finite sum of positive Fricke componergs(2.172),

Bs

_ p —280+2ks
on=m(2) (0 G) (@19

k=0

which leads immediately to

-3/2
F(E.L) = P0 <E—Eo)p
) et mo o Bo)

Ps r1+p) 12 —Bo+ko
Z ( k) F1—0Bo+kd)T(p—1/2+ Bo—kd) <2T§(E—Eo)> , (4.20)
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for E > Ep. This series is a special case of Eq. (4.54). It is clear thatconditions
(4.15) - (4.16) guarantee that all the gamma functions aséipe, so that the entire DF is
nonnegative everywhere.

Case 2:85 <0

When s < 0 we can apply the Laplace-Mellin formalism: the connecti@tween the
distribution function and the augmented density is giveiy(2.91),

2A/2 5(3—)\)/2
E££ L/\—/l>>\ {F(E,L)} = ]W(27T)3/2 I'(l— %) 1/)55 {f()} rjl/l)\ {g(r)}. (4.21)

Since the augmented density is a separable functiopn ahdr, the transforms can be
calculated separately: we find

—&Eo

e —&Y €
wﬁg{(w—Eo)p}:/Eo & (0~ Eo)” =T (1+1) Sy (4.22)

and

+oo T —269 720 —(Boo—B0)/6
- 1z 147 d
Mloon= [ (Z) (1+%) r

1 (A=20 28—
25 25 728 ’

(4.23)

which is valid if we choose to lie in the convergence strigfg < A < 28. Thus

_po r1+p)
Eég L&A{F(E’L)} © M(27)3/2 (o — Eo)?

A 2/2 _ _
2 A=200 2800 = A\ _ery c(1-0)/2—p
20 T(1-3%) B( o » )¢ -

The inversion of the Laplace transform is straightforward,

Eo+ioco

1

~1f g-¢EBoct-N/2—p) _ 1 (E—Eo) ¢(1-X)/2—p

£—£>E {e ¢ } 2mi /{_-o_ioo ¢ ¢ d
_ pop-(B-/2

_ BB (4.25)
rp—"%)
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leaving us with the inversion of the Mellin transform,

_ Po rd+p) o
) i) 3T n(ma) -

A—206p oo
M_l{zr(u—%grrz(ozl )(Ta(E_E(J))A/Z}’ o

A—L )

_ 2 M(1+p) (E >p_3/z><
M (27 (o — Eo 3/25r Yo — Eo

[ ><ﬁw )

’ < L? )_Sd (4.27)
_— s, .
2mi | T(1-s)T(p—3+s) \2rZ(E— Ep)

50—100

with s = A/2 andsg a real constant to be chosen such that the integral existasitwe

come to the point where we can put our tools of Chapter 3 tolasieed, we recognize in
the last equation a Fok -function (3.4):

_ po F(1+p) (E—Eo\"™*
O i entio- B AT (%—EO)

or equivalently,

_ po (L+p) (E—Eo\"™*
N entvo B T (%)

uflo 2 V(5% (-49)
H((m) (-31) (ofs) ) e

Even though the integration path of the inverse Mellin tfama is normally defined as in
Eq. (4.27), the integration in the specific case of a Hekunction can be performed along
three possible paths which are equivalent: if the integral converges for moantbne of
these three paths, then the result is the same. If the ihtegmaerges for only one path,
then that is the only one to be considered. Using the defirst{8.9), which we will give a
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prime to avoid notational confusion, we have

o = ? —2, (4.30)

g =1, (4.31)

A =0, (4.32)
1

o' =—p—3—Bs, (4.33)

So that the possible integration contours are

e a pathC; from —ioco to ico, such that the poles d'f(s%fo) lie on one side and

the poles oﬂ'(%) lie on the other side. The convergence is absolufe<if1

orif § =1 andp — % + Bs > 0. Previous work showed that in addition,dif= 1
andp+ 3 + 35 > 0 the integral is semi-convergent fbf # 2r2(E — Eg) (Dejonghe
1986).

e aloopCy, starting and ending atoo, that encircles the poles 51(%) onceinthe

positive direction and none of the polesl'(ﬁ%). The integral then converges if
p—3+ 05 >0andL? < 2/3(E — Ey).

e aloopCs, starting and ending atoo, that encircles the poles ﬁf(%) once in

the negative direction and none of the polef éf—}ﬁo). The integral then converges
if p— 346 >0andL? > 2r2(E — Ey).

It can easily be seen that the convergence criterion for §atinsures a well-defined DF,
i.e. continuous and nonnegative. Indeed, in this case thtoaois a line parallel to the
imaginary axis fromsg — ico t0 sg + i0co With Gy < sp < .. On this path, the real parts of
all the gamma functions are positive; this is trivial to seeT((s — o) /8), T ((Bec — 5)/3),
andl (1— s). Furthermore, the conditions Egs. (4.15) - (4.16) ensumettie real part of
p— % + s is positive if sg is chosen sufficiently close 18.,. Hence, the distribution function
is again nonnegative everywhere.

Case 3:35 > 0 and not a natural number

In the case off; > 0 and not a natural number, the Mellin transform does not.ekigw-
ever, we can solve this problem by rewriting the augmentetitiein a similar way as
Eq. (4.19): definingr as the smallest natural number such that 55, we obtain

N - b—Fo\” " O\ ~200+2ks 26 Bs—n
won=n(im) WG ) o e
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For the individual terms the Laplace-Mellin formalism degply, and the DF becomes

F(E,L) = £0
) M(Zﬂ'(dJO—EO))g/Z 6 (n—0Bs)

"~ /n\ 1 r(ﬂ*'k)r(m—l—n—k) 12 —s
Z<k>%/c<k) T—(l_s)r(p_é%+8) <2T§(E—Eo)> ds. (4.35)

k=0

F(1+p) ( E— Eo )”‘3/2
Yo — Eo

Now, it is easily observed that we can choose each of theratieg pathsC,, to be
identical, as the contouxs;, C, or C3 defined above. Therefore, the summation can be
performed inside the integral. Using the Pochhammer syrftbal Eq. (2.108) with its
properties

Fa+k) = ()M (@), and T(z—k) =(-1)* (4.36)

we find

i(Z)r(5;ﬂ°+k)r<ﬁ°°5_s+n—k) -

k=0
r(s_ﬁ°>r(ﬁ°°_8+n) 2F1(—n78_ﬁo S_ﬁ°°+1—n;1>. (4.37)

0 0 5 746

Finally, with the identity

ZFl(_na ba C, 1) =

(4.38)

the equation for the distribution function also reducesdo(®.28).

If the convergence criterion for path is valid, then every contow;, can be taken
as a linesy — ico to sy, +i00 With Bp — kd < s < B + (n — k)d. Following the same
reasoning as witl¥s < 0, one can verify that the real part of the integrand is pasitdr
eachk, so that the distribution function is once again well-dedine

4.2.2 A practical series expansion

For practical purposes, we would like to write these DFs anftirm of series expansions.
Following Section 3.3, we can use the Residue Theorem onatins@, (if L? < 2r2(F —
Ep)) andCs (if L? > 2r2(E — Ep)). Since these loops encircle gamma functions with
simple poles, the series follow immediately from Eqgs. (3.80d (3.31), and we obtain
(4.53) and (4.54), respectively.
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Itis also instructive to examine the special case wihegea rational number. It turns
out that the FoxH -functions then reduce to Meij&r-functions, which can be written as
sums of hypergeometric series. Indeed, # -, we can write

-3/2
F(EL) — £0 nr(l—l—p) <E—E0)p
) S ertvo B T8\ Bo)

1 [ T(=2Bp+ns)I (LB —ns) I? o
_./C (ng( )> ds. (4.39)

2mi I'(l—ms)l'(p—%—l—ms) E—Ey

Now, using the multiplication formula for the gamma functio

k—1
(k)= (Zﬁ)(l—k)/zkkz—l/ZHr<x—|—é)7 (4.40)
1=0

we can write the integral in the form of a Meijé-function (Gradshteyn & Ryzhik 1965):

Po r(1+p) ( E—Eo )p_3/2 x
M (27 (o — Eo))*/? T(=05) \vo—Eo

n"(ﬁoo—ﬁo)/m Gn’n LZ m
2ryr—mmp—172 ~ mnmn | \ 2205 Ey)

F(E,L) =

a1, ... ,0m+n )7 (441)

b17"'7b’m+n
with
—1 — Boo )
aiZ—Z— m_p for i=1,...,n,
n m
i—1 -1/2
Qpti = Z—+u for i=1,...,m,
m m
-1
b; = Z——@ for i=1,...,n,
n m
—1 -1
by = —— 4+ = for i=1,...,m. (4.42)
m m

Since for a general Meijag-function

ai,...,ap ’ (4.43)
bi,... b,

p.q

Gme <

with p = ¢ andz, a, b real, the integral convergences for pih(Mathai 1993) if|argz| <
em, with

1
€=m+n—§(p+q)>0, (4.44)
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orif |argz| = ew > 0, with
1 q P
Ezm—l—n—z(p—l—q):o, and Zbi—Zai<—1, (4.45)

we indeed obtain the conditions< 1 oré =1 andp — % + 35 > 0.

This MeijerG-function can be calculated as a sum of generalized hypergeic func-
tions (Gradshteyn & Ryzhik 1965). Fer< 1 the following equation is valid:

T1 =00 JIr@+bi—a)

al) E 1=1 1=1 mb;
b) - m+n m+n z x
=t Tr@+bi—b) []T(a—b:)

l=n+1 l=n+1

Gn,n m
m—+n,m+n z

m+nFm+n_1(1+ bi—a1,...,1+b;— amin;

L4 —b1,e by, Lk by — by (“1)™72™) | (4.46)

where the prime by the product symbol denotes the omissidheoproduct when = [,
and the asterisk in the hypergeometric function indicdte®mission on théh parameter.
Analogously, the equation far> 1 reads

n ﬁ/r(ai—al f[r 14b—a;)
f)- e
=1 J[r(+a—a) []r(ai—b)

l=n+1 l=n+1

G m
m-+n,m+n z

m+nFm+n—l(1+bl_aia .. 71+ bm+n —Q;,

14+ar—ai, ... %, ..., 1+ amon —ai; (=17 "2 _m) (4.47)
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With the coefficients from Eq. (4.42), we obtain fbf < 2r2E,

n,n L2 "o
Gern.,erﬂ ((m> b ) B
n—1 N\ =t
- Hr< )Hr<ﬁoo o L)
Zm Y 1B+l i (p+Bo—1/2+1 i )
— Hr( 0 +’L>Hr(p0— £>

m n m n

_ (ﬂm—ﬂo+ﬂ> 7nHl(1_p+5°_1/2+l+i)
Zz:o m " JiiZo m n/; y
— e i\ TS 1 Gokl i

0 H<1‘7>,H<T°+a>j

1=0 J1=0
( ) L2 —Bo+id+myj
_ mtn)j ( _  ~
(-1) (ng(E — Eo)) . (4.48)
Now, with the aid of the identities
™
Mz)F(l-z)= sin(r)’ (4.49)
and
n—1

Hw(’%) - (4.50)

k=1
a p—
b=

we can simplify this expression to
Boo — ﬁo l+i4+nj
n— o0 r
C - T0 ( -

nn L2 "
Grﬂ+nm+n 02
’ ZTa(E—Eo)
1=0 )
T
o ( + z—i—n]

=0 _
7 n
1
m—1 -1 . x
Hr<1 ﬂo+l z—l—n]) r(p+ﬁo—1/2+l ’L+n])
m n
=0 =0
_ —Bo+id+mj

(271')” 1 i LZ
AP P — 4.51

n (=1 2r2(E — Ep) ’ (4.51)
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so that, using again Eq. (4.40), the distribution functieduces to

~3/2
FE.L) = po r1+p) (E—Eo>p
o M (2n (o — Eo) )3/2 M(=Bs) \vo—Eo 8

n—1 oo r(ﬁooé—ﬁo_’_i_'_jn)
X
Mp+pBo—1/2—id—jm)T(1— Bo+id+ jm)

M

i=0 5=0

(_1) i+nj L2 —Bo+id+mj
Fr1+i+jn) (2r§(E—E0)) '

(4.52)

Finally, the double summation can be grouped into a singled#& = i + nj, and we obtain
for L2 < 2r2(E — Ey),

E— F >p—3/2 )

£0
F(E,L)= 32 <¢0—Eo

M (27 (1o — Eq))

(s r1+p) 12 —Bo+ko
kz < k) M1—pBo+k0)M(p—1/2+ fo— ko) <2T§(E—Eo)) . (4.53)

Similarly, for L? > 2r2(E — Ejp), we find

po E— Eo )”‘3/2
F(E,L)=
L) M (2x (o — Eo))*'? (wo—Eo .

— (Bs r(1+p) 12 —Boo—kd
; (k> MN1l— P —kO)M(p—1/24 B+ k) (ZTg(E—E0)> . (4.54)

Although these expressions have been derived for rati@haés ofy, they remain valid for
any real value, since these functions are continuous indeed, as we mentioned above,
they follow directly from Eqgs. (3.30) and (3.31).

4.2.3 Extension to systems with a central cusp

The set of power-law components presented in the previdusestion is very adequate to
fit a broad class of models. It is however, not fit to constryciasnical models for systems

that have a central density cusp afg)< 0. For such systems, we need the general form
(4.12),

5 B w_EO p w_EO s$74 r —209 720 Bs
p(¢’r)_po<¢o—E0> [1_<¢0—E0>} <T_a> (1+@) ’ (4.59)
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with ¢ < 0. Fortunately, this generalization is trivial, since wa expand the-dependent
factor as a power series,

=SS ()(52) () () s

j=0

which is nothing more than a positive sum of terms that allehine form (4.18). Thus,
our conditiong < 0 is sufficient to obtain a well-defined DF, which we can writen
immediately,

_ Po o (e r1+p+js) [ E—Ep p+js—3/2
F(E7L)_M(27T(¢0—Eo))3/2 ;( s (J) 6T (—B5) (%—Eo) X

or explicitly,
2 o0 4 . E—EO p+js—3/2
F(E,L)= ~1) .F1++s( ) X
) = oo )3/2;( >(]) T
5wt art)
o= BT (p+js—1/2+B) \24(E—Eo)) ~ °
with
60 — ko for L2 < ZTg(E — EO)a (4 59)
") B KO for L? > 2r3(E — Ey). |

These DFs will diverge in the limitl — 4y, if ¢ < 0. For practical implementations, the
double summatio) _, >, can be computed by changing the indice$tp> ., ;. For
each value of one then evaluates the inner summation, which conastsedﬁthl terms
(G=0k=0,(=1k=1-1),.., (j=1k=0). The index is increased until the total
(outer) sum alters by less than a required numerical éfrodue to the double summation,
the computational time is an inverse quadratic functioti/of

4.2.4 Velocity moments

In order to derive the corresponding velocity moments, weellg g(r) in (4.55) into a
series expansion as well. This expansion must be splitwmaégimes:

() EREOE T e
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with

(4.61)

Bo— kb for (r <ra) or (r=raandfy > Bso),
o Boo + k6 for (r >ra) or (r=raandfy < fuo).

When we plug this into the equations (2.106) for the augntemements, we obtain

m+n i B 2
fizn,2m (¥,7) = po (W=Eo)™™" ) (ﬂké) S <L) g

VT k=0 M(1—5k) Ta
0 \T(n+1/2)T(A+p+js) [ ¥—Eo \"™*
j;o(—l)ﬂ (J) Frm+n+1l4+p+js) <¢0—Eo> . (4.62)

In particular, the radial second-order moment reduces to

) PR PN (@) = Bo) (- Eo \PT
#2,0(%7‘)=P0(r—a> (1+@) Z(_l)j(j)1+p+js <¢0—Eo) ’

=0
(4.63)

and this allows us to derive the augmented velocity dispess{2.152) and (2.153),

52(yp) = (o~ Fo) (w_EO ),, [1—<¢_Eo )S]qBX(¥,1+q), (4.64)

s 1o — Eo 1o — Eo
_ _ 25
() =2 EL IS 52y, (4.65)

where we used the incomplete beta function (4.8), and

X = (;bo__?o) : (4.66)

The radial velocity distribution (2.64) can be derived bycaéating the integral (2.145).
We obtain

—28p 26\ Ps

~ 1

er(waT7UT)_ po (T> <1+:ﬁ> X
a

Ta

" V2rM Vio—Eo
0o (q\ T(p+js+1) [(¢—Eg—v?/2 p+is—1/2
Z(—l)ﬂ (J) F(p+js+1/2) ( Yo— Fo ) . (4.67)

=0
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Note that this function is separablerimndy — Eg —v2/2. To obtain the transverse velocity
distribution, we need to solve the integral (2.65) with thaes expansion (4.58). We find

~ _po_ vr = (q ()= Bo—?/2\"T
Pt = Sy D (§) w0 (S5

J

00 Os 1 2 U%/Z — By
x ; <k) F(1—B1)(p+is+5Be) <7§(w—Eo_Ug/2)) . (4.68)

As a sanity check, one can verify that indeed

2(p—Eo) _ 2(yp—Eyp)

F, (Y,r,v.)dv, :]\/[/ ﬁJT(ﬂi,T,Ur)dUT- (4.69)
0

pev.r) = |
-/ 2(¢—Eo)
The velocity distributions”,,, (r,ve) and F,, (r,v,) can be derived front,, (4,7, v;) by
the numerical integration (2.67). It is straightforwardctoeck that for isotropic models
Bs = 0 they are identical td,,. (¢, r,v,.).
Finally, the marginal distributions df' and . (2.48) - (2.49) become

Fy(y,r,E) =2 VIR, i(—l)j (;’) F(1+p+js) <E_Eo >”+-7'S‘3/2

M (o~ Eo)¥? £ o Fo
- 55 1 /r.2 (w_E) —Br
X - <k> F(3/2— )T (p—1/2+js+ Bx) (%(E—EO)) ., (4.70)
and
I PO L/TZ - i (q ' 1/1—E0—L2/2r2 ptjs—1
Fr(¢,r,L) = iV (0 — Eo) (1) (j) Nrl+p+js) (W)

=0

< Bs 1 1 L2/2 —Bk
X ; < k> r(l—ﬂk)r(p—l—j3+ﬁk) (r_§ 2(¢—E0—L2/2r2)) . (4.71)

Note thatF7, (¢, r, L) is essentially the same &S, (1, r,v;), with L = ru,.

4.3 Self-consistent analytical models

At the beginning of this chapter, we claimed that the familiyax H-components Eq. (4.11)
is particularly suited to generate the double power-law etBefore we use their full po-
tential with the QP-algorithm, we demonstrate our claim bgvging that the individual
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components actually generate an important subfamily ofithdole power-law models, i.e.
there are self-consistent models such that

p(r) = p((r),r), (4.72)

with ¢ (r) of the form Eq. (4.9)p(r) of the form Eq. (4.3)8(r) of the form Eq. (4.10)
andg(«,r) of the form Eq. (4.11). The existence of such analytical dyical models is a
significant step forward in our quest for simple but reaisiynamical models that can e.g.
be used as a framework in which to initiate detailed numeésicaulations.

4.3.1 A family of anisotropic Plummer models

One of the most obvious candidates is the Plummer spherm(fw 1911), as this model
has a rather straightforward potential-density pair

G Mot

w(T) = \/ﬁa (4.73)
3Mo 2\ ~°/2
plr) = 4mfgf< :_g) . (4.74)

This system, like all double power-law models, has infinitteet, so we have to séfy = 0.
When we further combine these functions with the expresgiril) and (4.10), we obtain
the condition

3]\/[t0t (1 T2 )_5/2

4mrd r2

2 -p/2 ;2\ 52 q -\~ 2% 125 —(Boo—B0)/8
3 T2 Ta r3

A straightforward solution is obviously given by

_ 3Miot

PO= Zm3 (4.76)
p=5, 4.77)
q=Po= P =0, (4.78)

which yields the isotropic Plummer model, defined by
5
~oy SMiot (st
p(Y) = ] ( e Mmt) : (4.79)
3 2rsE \"/?
F(E)= . 4.80
(&) 73 (G Miorrs)®/? (GMtot> ( :
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Our goal, however, is to determine the most general subsgdlve( Eo, p, ¢, s, 80, oo, 6, 7a)
parameter space such that the condition Eq. (4.75) is sati&fi allr. In particular we aim
for a subspace of the parameter space that has no restsictiofy and .., such that we
obtain a family of dynamical models with an arbitrary anispy at small and large radii.
It is obvious from Eq. (4.75) that, in order to find non-trivéalutions, we have to set

Eo=0, (4.81)
s=20=2, (4.82)
ra="Ts. (4.83)

We then obtain the requirement

Bo—q 2\ —5/24+p/2+q+Boc—Bo

3Mt0t ’1”2 T
_ 1+ — =1 4.84
wrs(z) (7) @59

The left- and right-hand side are identical for all values df
3M;
P=73 (4.85)
s

p=5—20, (4.86)
q = Po. (4.87)

We now have constructed a general two-parameter familyib€easistent Plummer mod-
els with the augmented density profile

p(,7)

_ 3Mmt( re >5‘2"°° y

B 47TT§ G]\/[tot
270 , 5\ —6o 2\ —(Boo—50)
75y T T
[l (G]th)] (Té) (1+r§) . (4.88)

From the conditiorg < O it follows that the central anisotropy has to satigfy< 0. This is
in fact a special case of the cusp slope-central anisottoggrém of An & Evans (2006):
a model without a density cusp cannot have a radial velodityoaropy in the centre. The
anisotropy at large radii can take any valtig < 1. By construction, the anisotropy profile
of this family of models reads

~ Bo+ Boo(r/1s)?
B(r) = TR (4.89)
Note that this3(r) is a linear function of the density slope
2
v(r)=5 (4.90)

rg—l—rz'
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The radial velocity dispersion profile can be written as

G M 2\ 5o 2 5/2—(Boc—P0)
gf(r) =5 tot <T_2> (1+ T—z) B 2 (83— Boos 14 So)- (4.91)
rs \T% 8 Zo

At large radii, the radial velocity dispersion profile shoaus~1 behaviour for all values of
the parametersy and S,

2 1 GMtot

or(r) ~ 5= e (4.92)
The asymptotic behaviour at small radii is
GMtot 1 T2 .
i T 1+ﬂ0% if Bo < —1,
os(r) ~ g (4.93)
G]\/[tot T2 0 .
—— BB— 1+ 050) | = if Bo>—1.
2rs rs

Except for the models that are isotropic in the centre, tdataelocity dispersions hence
always tend to zero at small radii. The asymptotic behavaiuhe tangential velocity
dispersionsry(r) = o, (r) follows immediately. At large radii we obtain

1- 6. GM,
) = 020) ~ g T (@.94)

,

whereas at small radii
G Mot 1— (o 12
rs 1+ o 12

1— Bo G Mot
2 Ts

if bo < —1,
oh(r) = o3 (r) ~ o
B(3— Boo, 1+ o) (%) if Bo > —1.
S

(4.95)
In the top panels of Fig. 4.1 we plot the radial and tangeniddcity dispersions for
a set of anisotropic Plummer models. The three models infiguge all have the same
anisotropyf.. = % at large radii, but a different central anisotropy. Apadnfrthe radial
and transverse velocity dispersion, we also plot the lifasight velocity dispersioaos(r)

on the plane of the sky, derived from Eq. (2.75). The distidgsufunction for our set of
Plummer models can be written as

F(EL) = 5> LSy <6) F(6+2j~20x)
j=0

2(2m)5/2 (G Miotrs)3/? i) T(Be—bo)

7/24-2§—2Bc0 2
e 9 _. L
H( —Bo, Bos = +2j — 2800, 1 ==— |, (4.96
(GMtot) (ﬁo,ﬁ 512 v} 2r§E) (4.96)
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Figure 4.1Top. Radial (red), tangential (green) and line-of-sight (bluelocity disper-
sion profiles for three Plummer models with anisotropy valgéieand(., displayed in the
figures. Bottom. The distribution function of these models, representedsbpriobability
contours in turning point space. High values are indicateteld contours, low values by
yellow contours. In all plots, we have used normalized unith G = Mot = rs = 1.

where the functiofil(a,b, ¢, d; x) is defined as (Dejonghe 1986)

1-b,c\ _ 1, (1-10,1),(c,1)
Lob d> = <x e M), (.97)

with G777 (z) the MeijerG-function. ThisH-function can conveniently be expressed as

H(a,b,c,d;x) = G;% (a:

M(a+0b)
MNe—a)l(a+d)

M(a+0b) 1\° _ 1 _
Fd—b)T(b+c) <;> 2F1<a+b,1+b—d,b—|—c,5> if 2> 1
(4.98)

x%2F1(a+b,14a—ca+d;x) if z<1,
H(a,b,c,d;x) =

In the bottom panels of Fig. 4.1 we plot the DF as a contour jpldhe turning point
space for the same models as the upper panels. The chandgedtr@py from tangentially
anisotropic at small radii to radially anisotropic at largdii can easily be seen in the slope
of these contours.
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An interesting subset of models in our two-parameter fawiilplummer models is the
one-parameter family witl#y = 0. These models are isotropic in the inner regions and
become anisotropic at large radii. Their augmented derssgiven by

5—2500 2 —ﬁoo
. _ Mot [ sy r
p,r) = 2mr3 ( e Mw) (1+ T§> . (4.99)

and in the expression for the distribution function (4.96lyathe term corresponding to
4 =0remains

3 1 M(6—20x)
2(277)5/2 (G]Wtotrs)?’/2 r(ﬁOO)

7/2_2ﬁoo 2
TsE 9 . I
(G]\/ftot> H<O?6007 5 2B, 1.@) . (4.100)

F(E,L) =

This subfamily of our current set of Plummer models was alygaresented by Dejonghe
(1987). Most of the kinematical properties, including thejected properties such as dis-
persions and higher-order moments of the line profiles, eacaliculated completely ana-
lytically.

4.3.2 A family of anisotropic Hernquist models

Another very popular and simple potential-density painestiernquist model (Hernquist 1990),
defined by

_ G Mot
Y(r) = et (4.101)
plr) = Lot __Ts (4.102)

2 r(rs+r)3

Contrary to the Plummer model, this model has a central density cusp and a more
realisticr—* behaviour at large radii. We can do the same exercise for #naddist model
as we did for the Plummer model. If we combine the potentéisity pair (4.101) - (4.102)
with expressions (4.11) and (4.10), we obtaipn= 0 and

-1 -3 -p
() (1) =m() -
2mrg \ s Ts Ts
—s14 —208o 25 —(Boo—B0)/9
[1— <1+1> ] (1> (1+%) . (4.103)
Ts Ta

Ta
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Similarly as for the Plummer model, it is clear that we willlpbe able to find a general
non-trivial solution if we set

Ep=0, (4.104)
s=26=1, (4.105)
ra="Ts. (4.106)
This yields the equation
—1-g+253 —3+p+q+2800—200
M‘;‘ (1> <1+ 5) =1, (4.107)
27T7°5P0 Ts Ts

from which we find

o= (4.108)
2mrg

p=4—20, (4.109)

q=203—1. (4.110)

We have now defined a two-parameter family of self-considtemnquist models with
augmented density

p(,7)

_ Mot st 420 %
27T7°§ GMtot

2601 —200 —2(Boo—Po)
st r r
1- — 1+— . (4111
( GMtot) <7°S) ( +TS) ( )

The parametef,, can assume all values, whereas the central anisoffgsy limited to
Bo < 1/2, in agreement with the cusp slope-central anisotropyrémamf An & Evans
(2006). By construction, the anisotropy profile of this fnuif Hernquist models reads

ﬂOTS + ﬂoo'r

B(r) = oty (4.112)
which is again a linear function of the density slope
rs+4r
= ) 4.113
Y(r) - ( )

The radial dispersion profile reads

1-269 3—2(Bo0—Ho)
o2(r) = G <i> <1+ 1) B rs (520, 200). (4.114)

Ts Ts
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At large radii, the radial velocity dispersion profile faflsr—1,
2 1 GMiot

~ 4.115
UT (T) 5 _ zﬂoo r I’ ( )
whereas the asymptotic behaviour at small radii is
_GMt 1 1 if Gy < O,
2(r) e o (4.116)
on(r)~ _ .
GMtot r 1-260 .
——— B(5—203,200) | — if 3o > 0.
Ts Ts

The radial velocity dispersion hence always disappeatsarténtre, except for the models
with the largest allowed central anisotropss (= 1/2) where it reaches a finite value. For
the asymptotic behaviour of the tangential velocity disperscy () = o, (r) at large radii
we obtain

1— B GMiot
200N — 20\
oy(r) =o5(r) 5 20 (4.117)
whereas at small radii
GMiot fo—1 1 it o < 0,
5(r)=02(r) e oo (4.118)
og(r)=05(r) ~ .
? v G Mot

Ts s

1-28¢
(1 Bo) B(5— 260, 250) (i) i o> 0,

The distribution function can most conveniently be writkasra series of hypergeometric
functions

X

1 1 relo \ /%
(2m)%/2 (G Miorrs)®/2 (GMtot>

i<65> r(5-26.) < 12 >‘B°+‘“/2X
k) T (1= o+ 5)T (3200 + fo—5) \272E

k=0

F(E,L)=

7 k rsd
Fi(5—20600,1—200; = — Boo + =; 4.119
2 1( &} Bo 3 B +5 GMtot) ( )

if L? <2r2E, and as

1 1 rell O\ ¥/2 2P
(2m)%/2 (G Miorrs)®/? (GMtot>

. (Bs r(5-26.) [2 \ Pt
Z(k>r(1—ﬁm—§)r(%—ﬁm+&) (ZTEE) )

k=0 2

X

F(E,L) =

7 k reE
Fi{5—2064,1—2080; = — 2650 —_— = 4.120
2 1( &} Bo 3 Boo + Fo > GM@) ( )
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Figure 4.2Top. Radial (red), tangential (green) and line-of-sight (bluelpcity dispersion
profiles for three Hernquist models with anisotropy valggsand 5., displayed in the
figures. Bottom. The distribution function of these models, representedsbpriobability
contours in turning point space. High values are indicateteld contours, low values by
yellow contours. In all plots, we have used normalized unith G = Mot = rs = 1.

if L2 > 2r2E. These sums only contain a finite number of termssifs a positive integer
number, i.e. wherify — 8 ) is a positive integer or half-integer number. This pargeul
subset of models, in which the outer regions are always namigentially anisotropic than
the central regions, has already been discussed by Baesda@reg (2002).

In a similar manner as for the Plummer model, we plot in Fig.the velocity disper-
sions and the distribution function for three Hernquist eledvith the same anisotroi,
but different anisotropys.
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4.3.3 Generalization to a family of anisotropic Veltmann
models

It is well-known that the Plummer and the Hernquist potésdensity pairs can be gener-
alized to a one-parameter family of models characterized by

G Mot
¢(r) = W, (4.121)
_ (14 \) Miot rd
) = g s (4.122)

This potential-density pair was first described by Veltmgi®i79) and is a special subset
(the a-models) of the general set of Zhao models (4.3). This piatledénsity pair has
regained much interest because it supports dynamical maddzad are hypervirial, i.e. in
which the virial relation is not only satisfied on a global higo on a local level (Evans &
An 2005; Iguchi et al. 2006 ; Sota et al. 2006). The paramgtéyring in the range 6
n < 2, determines the slope of the central density cusp. Weyaasibgnize the Plummer
model withn = 2 as the only core-density member of the family and the Hestquodel
as the model withy = 1.

We can now repeat the same exercise as for the Plummer anduigtrmodels. After
a little bit of algebra, we find that the parameters

Eo=0, (4.123)
po= %, (4.124)
7T7°s
p=3+1n—20c, (4.125)
qum, (4.126)
"
s=25=1, (4.127)
ra="s, (4.128)

are the general solution for the condition of self-consisye Notice that the initial con-
dition ¢ < 0 implies 5y < 1—1n/2, which is again in correspondence with the cusp slope-
central anisotropy theorem (An & Evans 2006). In other wpfdssthis family the condi-
tion ¢ < 0 is also necessary to yield physical models. In this manednave constructed a
three-parameter family of dynamical models defined by tlggreanted density

p(y,r) =

<1+n)Mtot< ret) )3*"‘2‘*“ y

47T rg G M tot

1 Tsw n71+2(Bo—1)/n N —2Bo/n 14 7 —2(Boo—P0)/n (4 129)
G]Wtot ’I”Q Tn ' '
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This augmented density self-consistently supports thepamameter potential-density pair
(4.121) - (4.122) and has by construction an anisotropy|lprofi

_ Pord + Boor”
rQ + "

B(r) , (4.130)

which varies smoothly fronfiy in the centre toward$,, at large radii. Once again, the
anisotropy is a linear function of the density slope

(2—m)rs + @+m)r"

v(r) = EI— (4.131)
The radial velocity dispersion can be written as
) B G Mo (Tn>_1+2(1—ﬁo)/77
or(r)=——| = X
nrs Ts
1\ 2+(1=2(Boo— o)) /n _ _
(1+r—n) B .» (1+2(2 f) 5 20 ﬁo)). (4.132)
T's n n

r'g+r'n

For general values of, the distribution function cannot be simplified and shoutddken
asin Egs. (4.57) - (4.58) with the values (4.124) - (4.128}.rRtional values ofi however,
distribution function simplifies to a sum of generalized Bggeometric functions. One such
case is the model with = 1/2, for which we obtain the potential-density pair

G Mot

() = —— ot (4.133)
(Vis+vT)
p(r) = oot E (4.134)

B ()

This model has a central density cups with a slppe « r~2/2, which has been obtained
by numerical simulations for dark matter haloes in a CDM colegical model (Moore
et al. 1998).

This concludes our construction and analysis of our DF corapts. These provide a sig-
nificant extension of previously implemented DFs, and imgiple they can be extended
even more (Lingam & Nguyen 2014). We now have all the necggeats to use our mod-

elling technique in several applications, building gehBigs as linear combinations of our
components, fitting given data sets. We will cover this warkhie next three chapters: in
Chapter 5, we model Dehnen & McLaughlin (2005) dark mattéods in Chapter 6, we

study the global density slope — anisotropy inequality (BDSand in Chapter 7, we exam-
ine the orbits of certain dwarf galaxies in the Fornax cluated their link to ram-pressure

stripping.



98

Chapter 4: A DF family of Fox H-components



Part Il

APPLICATIONS






Chapter 5

Dark matter haloes with universal
properties

With the DFs derived in the previous chapter, we now dematssthat we
can construct dynamical models with very general anisgtpopfiles, using
the quadratic programming algorithm described in Chaptém particular, we
will construct self-consistent models with Dehnen-McLhlighaloes. These
models are characterized by three "universal” propertesymonly encoun-
tered in CDM simulations. The main results in this chapter ublished in
Van Hese et al. (2009), but we will also include extra matggl the work

presented here has been carried out by the author.

5.1 Results from cosmological simulations

As N-body simulations of cold dark matter haloes have become ahetailed (see Springel
2005 for an overview), several common characteristics baverged over a large range of
mass scales. We highlight three of these "universal” prtiger

Firstly, numerous cosmological studies revealed simikamsity profiles over several
orders of magnitude in halo mass. Many simulations (e.g.ifxkb & Carlberg 1991 ;
Crone et al. 1994 ; Navarro et al. 1996 ; Fukushige & Makino7;9arlberg et al. 1997 ;
Navarro et al. 1997 ; Moore et al. 1998 ; Moore et al. 1999 ; dinguto 2000) hinted at
densities with a mild central cusp and ap(a) oc 2 falloff at large radii, but more recent
studies showed that the central density slope does varywgbatevith halo mass, ranging
from no inner slope for galaxy-sized haloes~or—°# in cluster-sized haloes (Navarro
etal. 2010; Del Popolo 2010; Del Popolo 2012). Two types ofifas are widely used to
describe these densities: the Einasto models (Einasto & 889 ; Navarro et al. 2004 ;
Merritt et al. 2005; Gao et al. 2008; Stadel et al. 2009; sse 8kction 3.5) and the
double power-law profiles (also known as generalized NFWilps) see citations above),
which are part of the Zhao family that we introduced in Eq3)4The difference between
these two families however is minimal, especially outsiue ¢entral region (An & Zhao
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2013). As we derived in the previous chapters the appraptiais to describe the double
power-law profiles, one such model will be the focus of our eilidg in the subsequent
sections.

A second relation was found by Taylor & Navarro (2001). Thaséhors identified
that a particular ratio between the density and the (to&laity dispersion, the quantity
Q(r) = p/a(r) (which has become known as the pseudo phase-space demsitgyes as
a power-law over 2-3 orders of magnitude in radius insidevthal radius,

Q(r) ocr™*. (5.1)

Other studies (e.g. Rasia et al. 2004 ; Ascasibar et al. 2B@%arro et al. 2010; Ludlow
et al. 2010; Ludlow et al. 2011) have confirmed the scalefi@ere ofQ(r), and their
results indicate that its slope lies in the range- 1.90+ 0.05. This property is remark-
able since the density(r) nor the velocity dispersioa(r) separately show a power-law
behaviour. It should be noted though that Schmidt et al. §2@8alled the universality of
this property into question, and suggested a more gendialaérs(r), with dispersions
in other directions and with different powers

Finally, the velocity anisotropy profile®(r) of dark matter systems also evolve towards
a similar shape, steepening gradually from isotropic incéagre to radially anisotropic in
the outer regions. Hansen & Moore (2006) and Hansen & Sta@6K) discovered a nearly
linear relation between the logarithmic density slege) and the velocity anisotropy pro-
file; they proposed thg — ~ relation

B(y) ~1—1.15(1+~/6). (5.2)

Why do dark matter haloes share these properties? How aredineected? Various ideas
have been proposed, such as phase mixing, violent relax@tjmden-Bell 1967 ; Kan-
drup et al. 2003), statistical mechanics (Hjorth & Willia2®10), radial orbit instabilities
(Henriksen 2007 ; Henriksen 2009), adiabatic contractioaldl et al. 2010), self-similar
collapse (Lapi & Cavaliere 2011 ; Alard 2013), and entrogga&t (He 2012). But the puz-
zle remains unsolved. A popular approach to tackle the proli$ to investigate whether
solutions of the Jeans equation (2.124) exist that encosrtpa®bserved properties of dark
matter haloes (e.g. Zait et al. 2008 ; Hansen et al. 2010)vémainteresting study, Dehnen
& McLaughlin (2005) analysed the anisotropic Jeans eqoatanstrained by a slightly
different form of the pseudo phase-space density, na@ely) = p/o?2 with o,.(r) the ra-
dial velocity dispersion. They found a special solutiome#y an analytical self-consistent
potential-density pair of the form (4.3) with an exactlydar3 — ~ relation. In other words,
their corresponding anisotropy profile is given by Eq. (4.10

r/Ta 25
() = Pl

with ra = rs and 2 = ), the same form for which we developed our DF components.& hes
Jeans models satisfy the three universal relations mesdiabove, but they don'’t provide
any additional information.

(5.3)
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With the QP-algorithm and the components derived in theiptesvchapter, we have
the tools to take the analytical study of dark matter systarstep further, i.e. to look for
full dynamical models that encompass the universal pragsefound in/N-body simula-
tions. In concreto, we will construct DFs with a separablgmented density that generate
the spatial density and anisotropy profiles of the Dehnehadghlin haloes with high ac-
curacy. Naturally, such dynamical models are an ideatmatictual DM haloes are more
"grainy” than smooth DFs (Zemp et al. 2009), so we shouldnéreanalyse these models.
Nevertheless, by mapping their orbital and velocity stitetwe provide an additional way
to gain more insight into the properties of DM haloes.

It is also interesting to note that, just prior to our pubiica, Wojtak et al. (2008)
presented a similar approach to generate dynamical mantgi®fential-density pairs with
a fairly general anisotropy profile. Instead of the augmemtensity, they proposed to
express the DF as a separable function of the fogtF) f1, (L), with

25 LZ Bo—Beo
— J —<4P0 R
=1 (10 55) 54

a double power-law function with three parametégs 5., and Lg. Once their values
have been determined, they derive the functfeitE) from the observed density profile
by a numerical inversion. This technique yields a threexpester anisotropy profile that
resembles Eq. (5.3), whefg has a similar role as, and a fixed transition rate®< § < 1.
The authors applied their method to an NFW density. This g is slightly simpler
than ours, but it does have a caveat: they mention a biasdsvi@o high kurtosis values,
indicating that three parameters are not sufficient to predaalistic models. The reason
is likely due to their transition rate, which is lower thamatlof an Osipkov-Merritt system,
but still higher than thé ~ 0.5 value found in simulations and observations (Mamon &
tokas 2005). Our four-parameter anisotropy profiles, witts an extra free parameter, are
able to solve this problem.

5.2 The Dehnen-McLaughlin haloes

In the context of dark matter halo studies, the model derbwe®ehnen & McLaughlin
(2005) is of particular interest. We summarize their masuhes in this section. Instead
of fitting a parametrized density profile f§-body simulations, they investigated the so-
lution space of the Jeans equation to search for modelsxpatidy obey the power-law
behaviour of the pseudo phase-space density. With the eatrdition of a linears —
relation they found a critical solution that satisfies thadition

Lo=Lea(2) (5.5)
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with r5 a scale radius. In the remainder of the chapter, we adoptimenon values = 3
and use the notation

Q.(r) = %(r). (5.6)
Dehnen & McLaughlin derived for this case the exponent
3
Qerit =1+ 2 (5.7)
4-2
n= 2220 fo (5.8)

The corresponding potential-density pair is part of thecZfaanily (4.3) - (4.9), namely

GMiot 1 11— 1
)= ——tZp (_, ﬁ°+_), (5.9)
rs n Tem\n 7 2
_ A4+n—200 Mot _., m—(veo—70)/n
p(r) = & 3 x”0 (14 z") , (5.10)
wherex = r/rs, By(a,b) is the incomplete beta function, and
7+10
10="1200 (5.11)
Yoo = 31_9250. (5.12)

The density can be equivalently written in terms of the slgfe, which has the same
elegant form as the velocity anisotropy profile-)

n

T (5.13)

_ ﬁo + ﬁooxn
B(r) = Toar (5.14)

Finally, the authors derived the corresponding velocigpdisions
1 G M 20 (Yoo —=70)/n—2
2 _ tot _1

0wy a—— (1+a:n) ’ (.19

1
o5(r) = o2 (r) = Eai(r) = (1= 5(r) o%(r). (5.16)

To summarize, these haloes are determined by five paramitersxponent in the pseudo
phase space densitytwo scaling constants i.e. the total mddg,; and a scale-length,
and the asymptotic anisotropy paramef@andfs... The authors also noticed the remark-
able property that the shape of the density profile (and héregravitational potential)
only depends oy and not onj.
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While the Dehnen-McLaughlin halo profiles are derived frdredretical considera-
tions, they also closely fit adequately galaxy-sized anthoecluster-sized haloes gener-
ated byN-body simulations (Diemand et al. 2005 ; Merritt et al. 20089wever, the den-
sity and velocity dispersions alone do not determine thepteta dynamical state of dark
matter systems. In other words, these profiles need to bepoated into self-consistent
dynamical models, described by honnegative DFs.

5.3 The modelling technique

5.3.1 Quadratic programming

As we explained in Section 2.4, we will build our DFs as lineambinations of base
functions, selected from a parameter library of components

N
F(E,L)=) a;Fi(E,L), (5.17)
i=1
with a corresponding separable augmented density of the for

N
A,y = ai fi(1) g(r). (5.18)
=1

Consider the potentiah(r) given by Eq. (5.9), the anisotropy profit§r) stated by Eq.
(5.14) and a set aNyata data pointoops(7m, ), With m = 1,... | Nyata drawn from the den-
sity profile Eq. (5.10). To model these data, we thus first tansa library of Ny, base
functions of the form (4.55),

i 55\ i —26g 25\ Ps
an) =i () (1-5 ) (£) (1455 (5.19)
0 a a

where the normalization constanig; are chosen such that the total mass of the compo-
nents is unity,

+o0
M; = 4n / pi(w(r),r)r?dr = 1. (5.20)
0

These functions extend to infinity, i.&y = 0. The four parameters that determine the
anisotropy profile (5.3) are fixed, withy and., to be chosen freely, and

Tra=T"Ts, (521)
26=1, (5.22)
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to match (5.14). Since all components have a priori the ddsi(r), all that remains is
to fit the f(¢)-part of these functions to the data extracted from the desi10). Our
library of base functions will therefore be constructedwitiree parameteys, ¢; ands;,
which respectively determine the asymptotic behaviounfatity, the inner slope and the
transition rate between these two regions. They satisfgaheitionsp; + 26, > 3,¢; <0
ands; > 0. For each component, we then calculate the correspondimgjtées in the given
data points,

pi(rm) == ﬁ’L (d)(Tm),Tm) . (523)

The DFs are then built itV steps. In each successive step, the previous best-fitttng se
is preserved and extended by adding the one component fremethaining library that
yields the most improvement of the fit, minimizing the quanti

Nyata 2

?\/' Z Wm <Pobs rm Zaz pz T'm ) 5 (524)

N data

where we setv,,, = 1/p2 {(rm).

5.3.2 The library of components

Every given Dehnen-McLaughlin halo requires a specific congmt library. In particu-
lar, the parameters;, ¢; are constrained by the potential. If we examine the asynuaptot
behaviour of the Dehnen-McLaughlin potential (5.9) in mdegail, we find

B(r) ~ do—ar@ 1094 for 1o,

o) ~ rt for r— oc. (5.25)

Introducing these asymptotic expansions in the expre¢5id®) we find for the inner and
outer slopes of the density

Fit(r)r) ~ p2R0taIm100/9 for g

Filir).r) o~ P for r— oo, (5:26)

Evidently, the parametegs stipulate the density slope at large radii. Because the lrode
fall asr~7°>°, no components can be used in the fitting routine that fadl tapidly. Using
Eq. (5.12), this puts a boundary on thg

piz TR (o). (527)

Conversely, the density slope at small radii depends on #nanpeters;;. The density
diverges toward the centre as7°, and we cannot use components in the fitting routine
that have a steeper slope. Thus we obtain from Eq. (5.11)

7—800

qi = T11-10%, = gmin(Bo)- (5.28)
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So if a fit to a halo has at least one component with paramgigrand one withymin, this
fit has the same slope as the given density at small and ladge ra

Finally, the parameters; have a similar role a§, in the sense that they control the
transition rate between the inner and outer density slofiesir value can be chosen freely,
but we found that excellent results are obtained with a sifiged value

§;=20=m, (5.29)

for all components. This is the same choice as the Veltmarthelaolt thus further facili-
tates the fitting process, leaving onlyandg; as free parameters, and it also simplifies the
computation of the DF components
OO i+in—3/2
po.i (@ (BN
F(EL)= —+——~ =07 (7 )T (1+p; —
(B.)= 1m0V <J> e +m)(wo> g

N Bs 1 1.2 —B
Z(k r(l—ﬁk)r(pi+jn—1/2+5k)<2T§E) , (5.30)

with 8 given by Eq. (4.59).

5.4 Results

5.4.1 The minimization

Now that we have derived the necessary mathematical toelsaw present the results for
the Dehnen-McLaughlin haloes. Without loss of generality,can work in dimensionless
units G = Mot = s = 5 = 1, and we limit ourselves to = 3. Consequently, the models
are determined by the anisotropy paramefigrandj... Although we are able to generate
models with arbitrary values for these parameters, réalistrk matter haloes are nearly
isotopic near the centre and radially anisotropic at laagl rso that we concentrate on six
representative models withy = 0 andS., =0, 0.2, 0.4, 0.6, 0.8, 1. We verified that the
modelling procedure works equally well for models with rero values ofjy. Finally, it
is evident from Eq. (5.8) thady = 0 sets the parametess= 26 =n =4/9.

As we demonstrated above, the very specific form of the basaifins (5.19) simpli-
fies our QP-algorithm considerably for these models. Ordypdrameters; andg; remain
to construct a library of components, and we have found thistaf only 30 components
are sufficient to extract excellent fits from. Recalling H§s27) and (5.28), the parameters
p; take five values, ranging fromnin(0, 5,) to 10 or 12, depending on the model, and the
parameters; take six values frorgmin(0), —0.5, —0.4, —0.3, —0.15, 0. The minimum val-
ues forp; lie betweerpmin(0,0) ~ 3.444 andpmin(0,1) ~ 1.444, whilegmin(0) ~ —0.636.
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Table 5.1. Components of the six QP-models; = 0, 0.2 and 0.4.

B = 0.0 p;=3.44,4,5,75,10 qi = —0.63,-0.5,-0.4,-0.3,-0.15,0

a10: 0.2047 —0.0380 ~0.5411 16652 00414
—3.8806 01312 25207 —0.2684 11652

Poi 0.0053 19783 00009 25540 04890
3.0677 00384 36728 61920 00008

Di 4.0000 100000 34444 100000 75000
10.0000 50000 100000 100000 34444

¢ —0.6364 —0.6364 00000 —0.5000 —0.6364
—0.4000 ~0.6364 —0.3000 00000 ~0.6364

X% 0.44x10° 0.17x10° 0.67x10"1 0.33x10°1 0.24x1072
0.17x1072 053x10™* 0.36x10™* 0.48x10°> 0.82x107/

B =0.2 pi=3.04,4,5,7.5,10 ¢ = —0.63,-0.5,-0.4,-0.3,-0.15,0

a10,i —~0.1534 155467 —0.0006 04549 ~0.2707
742329 886417 05880 ~0.7724 00165

Poi 0.0238 00017 34087 44609 113269
0.0014 00015 86356 54102 09797

i 4.0000 30444 100000 100000 100000
3.0444 30444 100000 100000 75000

4 ~0.6364 00000 ~0.6364 —0.5000 00000
—0.6364 —0.5000 —0.1500 —0.4000 —0.6364

X3 0.48x10° 027x10° 043x10°' 093x102 0.13x10?2
0.88x10°% 0.10x10* 0.95x10°° 048x10° 0.32x10°7

Boo = 0.4 pi=264,4,5,8,12 ¢ = —0.63,-0.5,-0.4,-0.3,-0.15, 0
a10 8.2375 ~1.4318 ~0.0467 02297 22705
-0.0111 01299 103097 -0.3108 183771

poi 0.0832 00032 109019 149246 00028
2.4301 233335 01015 186978 00934

i 4.0000 26444 120000 120000 26444
8.0000 120000 40000 120000 40000

¢ —0.6364 00000 —0.6364 —0.5000 —0.6364
—0.6364 —0.3000 —0.4000 —0.4000 ~0.5000

XA 0.48x10° 0.18x10° 0.28x10"! 0.93x1072 0.42x1072

0.14x 103 0.36x10% 0.13x10% 068x10° 0.24x10°%
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Table 5.2. Components of the six QP-models; = 0.6, 0.8 and 1.

Boo = 0.6 p; =2.24,35,5,8,12 ¢; = —0.63,-0.5,-0.4,-0.3,-0.15, 0

10 0.3552 20738 —0.0094 00086 163498
—17.4861 00731 —0.3019 —0.2109 01477

00i 0.1222 00063 167922 232672 00053
0.0055 43156 01372 80592 105109

i 3.5000 22444 120000 120000 22444
2.2444 80000 35000 80000 80000

4 —0.6364 00000 —0.6364 —0.5000 —0.6364
—0.5000 —0.6364 —0.5000 —0.3000 —0.1500

X% 0.44x10° 0.15x10° 0.18x10°! 0.67x1072 0.31x1072
0.16x10~% 0.13x10% 0.10x10% 0.17x10°° 0.20x10°°

B =0.8 p;=184,3,5,8,12 ¢; = —0.63,-0.5,-0.4,-0.3,-0.15, 0
10 —0.0321 —6.1421 00008 —0.0013 245830
—100.0000 —0.0163 —0.0926 405233 421774

00; 0.1791 00121 253820 355933 00101
0.0109 23877 02367 00105 00116

i 3.0000 18444 120000 120000 18444
1.8444 50000 30000 18444 18444

i —0.6364 00000 —0.6364 —0.5000 —0.6364
—0.4000 —0.3000 —0.3000 —0.5000 —0.1500

X3 0.40%x10° 0.11x10° 0.11x10! 046x102 0.22x10°2
0.66x10°° 0.26x10°° 0.13x10° 047x10°® 0.24x10°®

Boo = 1.0 p; =144,3,5,8,12 ¢; = —0.63,-0.5,-0.4,-0.3,-0.15, 0
10 —5.2047 01086 626962 401800 —0.0002
0.0003  —96.6969 —0.1234 00273 00128

00i 0.0192 29967 00201 00213 376938
44,2497 00207 37237 78118 08543

i 1.4444 50000 14444 14444 120000
8.0000 14444 50000 50000 30000

4 —0.6364 —0.6364 —0.5000 —0.3000 —0.6364
0.0000 —0.4000 —0.5000 00000 —0.1500

X% 0.35x10° 0.36x107! 0.10x10°! 0.24x10°° 041x10°4
0.16x10~% 0.13x10% 045x10°% 0.89x107 0.22x10°8
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Finally, we put additional constraints of the form (2.19h)the coefficients, namely
—100< a; < 100, Vi. (5.31)

These constraints are not necessary for the fitting, butghestly reduce the computational
cost in the calculation of the DF. The reason for this is glvdorward: if the components
are computed with numerical erraig; then the total numerical error of the DF is

N
SF(E,L)~ Y |ali6;F;(E,L). (5.32)
=1

The higher the absolute values of the coefficieats the smaller the error& F; need to
be to obtain a giveAF, which increases the computational time. Sensible boynddunes
(5.31) enabile efficient calculations of the DF, while maiimitzg satisfactory fits.

Naturally, the resulting DF also needs to be physical, ionegative everywhere in
phase space. We found that all our DFs automatically sétisycondition without impos-
ing explicit constraints.

For each model, we extractédiaia= 25 values of the densityops(r, ) (5.10), at radii
rm, distributed logarithmically between 18+, and 1¢ r,. Evidently, this range is much
larger than the virialized region iV-body simulations, where the profiles are valid. This
larger range is therefore not intended to be realistic, bthiar to demonstrate that our
models are accurate up to arbitrary distances. Furtherriosenakes it possible to create
discrete equilibrium systems from the DFs, by means of M@atdo simulators, that trace
very closely the Dehnen-McLaughlin haloes. After caldakathe densities of every library
component at these radij (P (r., ), ) (5.19), we can perform the QP-procedure for the
six values of3.., constructing iteratively the best-fitting linear comtina (2.183).

Our results for the six models are displayed in Tables 5.15ahdEach header list$,,
and the values gf; andg; of the 30 library components that are used for the constmct
the specific model. Below each header, the parameters ofils2gquently selected fitting
functions are given, from 1 to 10, with corresponding valyfaw X%o- The coefficients;
are those of the final fit with 10 components. It can be chedkatftr each model

10
> ai~ Migt=1. (5.33)
i=1

Combining this result with Egs. (5.32) and (5.31), it can éersthat ifV = 10, the numer-
ical errors of the base functiongF; need at most be a factor38maller than a given error
0F, allowing efficient computations of the DF with sufficiencacacy.

The resultingy%, values for each model are also displayed in Fig. 5.1. Evigent
N =10 components are more than sufficient to obtain very acedsatamical models. As
an example, Fig. 5.2 shows the 10 individual componentseoR-model withs., = 0.4.
Although this fit has the higheg£, of our set, its total density is a very close approximation
to the given data over the entire range in radius.
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108 3

1 2 3 4 5 6 7 8 9 10

Figure 5.1 The obtaineg?; for the six QP-models, explicitly as a function of the number
of components in the fit. The different curves correspong.to= 0, 0.2, 0.4, 0.6, 0.8 and
1, with respective colours red, green, blue, magenta, cyeryallow.
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Figure 5.2 The 10 individual components of the fitted derfsitghe QP-model wittto = 0
and ., = 0.4. Their sum is the QP-density (blue curve), fitting the 25adatints (blue
dots).

5.4.2 The velocity moments

Fig. 5.3 displays several moments for our six models, witltdfponents. The top row
shows the density(r), the pseudo phase-space denéltyr) and thed — ~ relation. Be-
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Figure 5.3 The most important moments for our set of reptasga models with 10 com-
ponents. Top row: the densip(r), the pseudo phase-space dengityr) and theg —~
relation. Below each graph, the relative errors with respec¢he theoretical profiles is
shown. Middle row: the radial velocity dispersien(r), the tangential velocity dispersion
o¢(r), and the anisotropg(r), also with the relative errors. Bottom row: the radial kur-
tosisk..(r), the tangential kurtosisy (r), and fourth-order anisotropys(r). The models
and colouring are the same as in Fig. 5.1.

low each graph, we calculated the residual errors betwem@its and the theoretical
curves, i.e. for each profilg(r) we have

Af(r) = 12087) = Joelr) °b5(;jbg( ;)QP(’”) . (5.34)

As can be seen, the relative errors on the densities areHassl02 along 7 orders of
magnitude in radius, and the correct asymptotic slopeseofitbhdels ensure excellent fits
even beyond this range. The power-law trendpfr) and thes — ~ relations are also
reproduced very accurately with errors10~3. Note that the small offset between the
pseudo phase-space density profiles for the different reésldue to the dependencef
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0N B

In the central row, we display the velocity dispersion pesfiy,(r), og(r) and the
anisotropiesi(r). It is striking that, while these quantities were not usedhia fit, the
deviations of these moments from the theoretical values\aa smaller. Evidently, since
the models have the anisotropies (5.14) by constructierth) profiles are exact, without
errors. Note also that all tangential velocity dispersiorfilesoy (r) intersect at a common
radiusr = rs(9/11)%/".

While the density and dispersions are defined by the Dehnelralvghlin haloes, the
higher-order moments are determined by the QP-models. dinéhforder moments, de-
rived from Eq. (4.62), allow us to derive the radial and tartge kurtosis,

ERCH N
fir(r) = "5 (1) =3, (5.35)
g,
ko (r) = —3(r) =3, (5.36)
o

(r), (5.37)

Interestingly, as a result of the separable form of the aujetedensities, we find that the
Ba(r) profiles are only a function of theé(r),

Ba(r) = 55(0) (3 6(r)) + 55 (o= () (5 = 3(). (538)

These profiles are shown in the bottom row of Fig. 5.3. We carthisse kurtosis values to
geta general idea about the non-Gaussianity of the veldistsibutions at a certain radius;
in the next section, we will show these distributions in flllur radial kurtosis values are
very large in the centre, which indicates that thedistributions are significantly peaked
(leptokurtic) at small radii. Thes,.(r) curves decrease rapidly as a function of radius:
they reach zero at radii between 0.26-0.36 and become wegdtiarger radii, leading
to flat-topped (platykurtic) radial velocity distributien This behaviour is in accordance
with N-body simulations (Kazantzidis et al. 2004 ; Wojtak et alD2D Clearly, the value
of B has little influence on the radial kurtosis, as in the cas@df-). In contrast, the
tangential kurtosig:g(r) curves do depend significantly gh,. All vg-distributions are
highly peaked at small radii. Fg#,, < 0.4 the tangential kurtosis decreases to slightly
negative values, i.e. at larger radii the tangential véyagistributions become slightly flat-
topped. If5,, > 0.4, theky(r) profiles reach a minimum value and increase again for
larger radii, in other words, they distributions will be peaked at large radii for the radially
anisotropic models.
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Figure 5.4 The distributions of the velocities, vy, v, and the integral&, L at different
radii: r =0.01, 0.1, 1, 10, 100 (rows).

5.4.3 The distributions of the velocities and orbital inte-
grals

InFig. 5.4, we show the full velocity distributiods,, (7, v,.), Fy, (1,v9), andF,,.(r,vy), de-
finedin (2.64), (2.67) and (2.65) respectively and caladatsing the augmented functions
(4.67) and (4.68). The velocities at a givehave been normalized @yax(r) = \/2¢(r).
We also display the orbital distributionsg(r, E') and Fy(r, L), defined in (2.48) and
(2.49), and calculated from (4.70) and (4.71). These fonstiare plotted at five differ-
ent radii:» =0.01, 0.1, 1, 10, 100; all the distributions have been normalized.

Inspection ofF,. (r,v,) and F,, (r,ve) confirms the conclusions we reached based on
the kurtosis values alone: at small radii, both velocitytritisitions are sharply peaked.
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The v, then broadens as increases, indicating that orbits with high (and thus high
eccentricity) become more prevalent. Tlhedistribution also broadens asipproachess,
but asr further increases, the distributions narrow again somévasaecially the models
with high 3., which show a strong peak at large radii. It would be inténgdio examine
more closely whether these distributions are in agreeméhttiose found in simulations
(Hansen et al. 2006 ; Hansen & Sparre 2012).

When we look at the energy distributiof (r, '), we see that at large radii the models
with high radial anisotropy3., > 0.6) show a peak towardBmax(r) = 1 (r), which is
the energy of a radial orbit with apocentrgthis is what we expect, as these models are
populated with highly eccentric orbits at their outskirtSince those orbits have small
pericentres, they also contribute to the population ofterbéar the centre. This must be
compensated by a higher abundance of low-energy orbitsineaentre, for those models.

SinceL = rvy, the distributions,,. (r,v,) andF, (r, L) are essentially equivalent. Note
though that they-axis for the former is logarithmic, while for the latter theaxis is log-
arithmic. At small radii, the models with high radial anisity contain relatively more
circular orbits ¢, or L large) than the other models. Near rs = 1, the orbital pop-
ulations become more similar in all models, while at largdiirdne distributions diverge
significantly: again, models with high values @£, are dominated by eccentric orbits at
their outskirts.

5.4.4 The distribution functions

The six top panels of Fig. 5.5 show the DF$E, L) of our radially anisotropic systems
with 6o =0 andf,, =0,...,1, expressed as logarithmic isoprobability contours and a
logarithmic colour gradient in the integral space, witlscaled tals, denoting the angular
momentum of a circular orbit with radiug. All models are clearly physical, i.e. the DFs
are nonnegative everywhere. This means that the Dehneradtllin Jeans models can
indeed be realized by full dynamical models. Moreover, mytto the Osipkov-Merritt
models, these functions fill the entire integral space. énisbtropic case, the contours are
horizontal (no dependence on angular momentum), and thieintation alters gradually
with increasings., in an intuitive way, as orbits with high eccentricities (ilew angular
momentum) become more abundant.

Alternatively, we can express these DFs(in,r, ) turning point space, with_ and
r, the respective pericentres and apocentres of the particies.oThese distributions are
shown by means of logarithmic contours in the bottom panelg 5.5. Because of the
central isotropy, the DFs are similar near the centre. Hewetie contours of orbits with
high apocentres become increasingly steeper functions fufr larger anisotropie8... In
particular, the structure of the isotropic model is strkirthe isoprobability contours are
equidistant to a high degree of accuracy. Consequentlygadhe lines of equal eccentricity

TL—T_

(5.39)

)
ry+r_

the isotropic DF has (near) power-law profiles as a functifon_ocor r, .
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Figure 5.5 The phase space DFs of the six models, exprestsgbashmic isoprobability
contours in the integral space (top panels) and turningtfsgiace (bottom panels). The
contour lines are drawn at the same values for all DFs. Theggie scaled to the central
potential and the angular momentum is scaled to the anguarentumL of a circular
orbit at radiugrs.
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Figure 5.6 The orbital DFs of the six models, expressed aarilitgnic isoprobability con-
tours in the integral space (top panels) and turning poextsgbottom panels). The contour
lines are drawn at the same values for all DFs. The energwgledto the central potential
and the angular momentum is scaled to the angular momehtuaf a circular orbit at
radiusrs.
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A closer inspection of all six models reveals that in factalhtours become nearly
equidistant forr_ = r,.. In other words, the distribution of circular orbits withdias r,
which we denote ag¢(r), follows closely a power-law. We show these profiles, as agll
their slopes, in Fig. 5.7. While the slopes do vary with radihis variation is very small,
and for all models the slopes lie in the range 2.1-2.4. Wesstiteat these features are not a
property of the individual components in our modelling &by, but an actual characteristic
of the fits. It is unclear how to interpret these intriguingults, and a more systematic
study with different haloes and anisotropy profiles mightawel if this property is linked
to the linears — ~ relation, the power-law behaviour ¢f,.(r) or the density profiles. It
would also be very interesting to investigate these distidims in V-body simulations.

As we explained in Section 2.2.1, the DFs express the prbtyadistributions of parti-
cles in phase space, but not in the integral space nor thmg¢upoeint space. It is therefore
instructive to view the true orbital distributiod$(F, L), given by Eq. (2.44), that describe
the likelihood to find an orbit with energlf and angular momentui.

The results are displayed in the top panels of Fig. 5.6 asrithgaic isoprobability
contours and a logarithmic colour gradient in the integpelce. Note that the contour
lines are almost parallel in the isotropic case with highbattlity for near-circular orbits.
For increasingi,., the contours gradually become steeper functions.ofhe number of
circular orbits (highZL) with low binding energiesw decreases, whereas the the number
of orbits with low £/ and intermediatd. significantly increases. As a result, models with
B~ > 0.5 form a saddle point in these regions.

Similarly, we can derive the orbital distributions in tumgi point spaceN (r_,r.),
given by Eq. (2.50), which express the probability to find abitovith pericentrer_ and
apocentre-.. As shown in the bottom panels of Fig. 5.6, these functioesvary regular,

l1cr3 102 100 1 100 1? 168 1ot

r/rs

Figure 5.7 The phase space distribution of circular orloitgtie QP-models, as a function
of the radius. These profiles follow closely a power-law hétar. The bottom panel
shows the slowly changing slope as a function of the radius.
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N(L)

0.0 0.2 0.4 06 08 1.0
E/yo L/Ls

Figure 5.8 The energy and angular momentum distributionBeix QP-models with 10
components. The angular momenta are scaled to the value$ a circular orbit with
radiusrs. The models and grayscaling are the same as in Fig. 5.1.

with high probabilities near the centre, and an increasimglmer of eccentric orbits for
largerfS...

5.4.5 The marginal distributions

We conclude the discussion of our Dehnen-McLaughlin DF& ait analysis of the mar-
ginal distributions. The differential energy and angulamentum distribution® ( E) and
N(L) are the integrals of the orbital distributions, given by H3@s46) - (2.47).

These curves are displayed in Fig. 5.8. The differentiatgndistributions are all
monotonously decreasing functions®f It is striking that these profiles are almost iden-
tical, regardless of the anisotropl,,. This result reinforces previous dynamical studies
(Binney 1982), and suggests thdt'), Q. (r) andx, (r) are linked to a universal differen-
tial energy distribution, independent 8f,, caused by the same physical processes.

In contrast, the angular momentum distributions depend.onmost notably for high
radial anisotropies. For increasing valuessgf, the fraction of orbits with low angular
momentum increases. Bullock et al. (2001) proposed a wavéorm for the integrated
angular momentum distribution in dark matter haldd$L). Alternatively, Sharma &
Steinmetz (2005) found a differential distribution

1
_ La—l
LG (a)

Nss(L) g L/ka, (5.40)
Our models indicate a similar profile, witlh > 0.9, although the functions (5.40) fall
steeper than ours dsincreases.

This concludes our dynamical modelling of dark matter heivéh Dehnen-McLaughlin

profiles. One of the characteristic properties of these nsddé¢he linear relation between
the density slope and the velocity anisotropy. This is a igp@ase of a more general
property; indeed, it turns out that most spherical dynahsgatems obey the so-called



120 Chapter 5: Dark matter haloes with universal properties

global density slope — anisotropy inequality, or GDSAI. h\tur mathematical tools, we
were able to give a complete analysis of this relation fotesys with separable augmented
densities. This will be the topic of the next chapter.



Chapter 6

The global density slope —
anisotropy inequality

In this chapter, we investigate some theoretical propediespherical dynam-
ical models, namely the relation between the density slopletlae anisotropy
profile. Using the augmented density concept, we showhgt> 26(r) at
all radii, for separable systems witly < 1/2. In addition, we investigate the
consistency requirements of spherical models with sepaelgmented den-
sities. The results of this chapter are published in Van He¢sé. (2011) and
An et al. (2012); all the work presented here has been caotiely the author.

6.1 Introduction

Recalling the definition of the density slope and the veloaitisotropy profile
dinp

1) =~ Gre(r), 6.1)
o5(r)

several theoretical studies addressed the question whaatlgegeneral statements can be
made about the relation between these two quantities. Itfauasd that systems with
a steeper density profile can support more radial anisottoay flatter models. First,
An & Evans (2006) proved that the central inequality> 23, is a necessary condition
for a consistent spherical dynamical model (i.e. a nonmeg@F). More recently, Ciotti
& Morganti (2009), Ciotti & Morganti (2010a) and Ciotti & Mganti (2010b) showed
that v(r) > 25(r) at all radii (hereafter called the Global Density Slope — Jatiopy
Relation, GDSAI) is a necessary condition for consisteifcyy < 1/2, in several fam-
ilies of dynamical models: multi-component Osipkov-Mé#rgystems (Osipkov 1979;
Merritt 1985), Cuddeford systems (Cuddeford 1991), Cudidkfouis models (Cudde-
ford & Louis 1995), the Plummer models of Dejonghe (1987§, Hernquist models of
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Baes & Dejonghe (2002), and the models we introduced in Bagear€Hese (2007) (see
Section 4.3). Their proof is based on the fact that all thesdets are characterized by hav-
ing a separable augmented density (see Section 2.3.2).al$®poted that at that time no
counter-examples of the GDSAI were known, but remarkedithtite case of Cuddeford
models with a central anisotropl > 1/2 the GDSAI is only a sufficient condition, so that
possible counter-examples could be found in this rangelobga

These results pose the question under which conditionsE#&ABholds for all spheri-
cal systems. In this chapter, we make advancements by pmgadomplete analysis of the
GDSAI for all well-behaved systems with a separable augetedensity. This group in-
cludes all aforementioned models, as well as the hypetwirdaels of Evans & An (2005),
the v-models of Buyle et al. (2007) and the Dehnen-McLaughlintesys discussed in
Chapter 5 and Van Hese et al. (2009), among others. Firsthawe that the GDSAI holds
for all separable systems, fiip < 1/2, by proving an equivalent criterion formulated by
Ciotti & Morganti (2010b). In this manner, we extend theieyious results. In fact, the
GDSAI is a special case of more general conditions.

Furthermore, we use our QP-algorithm to show that courntemgles of the GDSAI do
exist for separable systems with > 1/2, in other words, we demonstrate that the GDSAI
is not a universal property. However, the velocity disttibns of these models are extreme,
and all counter-examples are very likely dynamically ubkta

Recently, Barber & Zhao (2014) extended our results by coohg models with
non-separable augmented densities that also violate tHeAGRven if 5o < 1/2. How-
ever, their systems have densities timareasefor large radii, which is quite unrealistic
behaviour. This strengthens the impression that stabldileium systems do obey the
GDSAI.

In Section 6.2, we briefly repeat some aspects of sphericamical systems that we
will use for our proof in Section 6.3. Our analysis shows tiet GDSAI is actually a
special case of more general constraints on/tipart of the separable augmented density.
In Section 6.4, we extend this study by deriving a full set efessary and sufficient con-
ditions on the augmented densities for consistent sepanattiels, which we simplify to a
set of sufficient consistency conditions.

6.2 Dynamical systems

Let us recall that from the DF, we can obtain the anisotroplosity moments (2.59)
Hon,2m (1) = 20 M //F(E,L) v2" 2 du, duy. (6.3)

In particular, the density and the second-order moments are

p(r) = poo(r),  por(r) =pzo(r),  por(r) = poa(r), (6.4)
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ando?(r) = 20§(r). Spherical dynamical models satisfy the Jeans equati@242.

dpc? r d

9% 1)+ 2 02y = 51 L ), 65)
which can be written as

o2 (r) (7(r) = 28(r) + k(1)) = v2(r), (6.6)
with

dIng? d

K(r)=— dlnnc;r (r), ’Ug(’l“) = —Td—f(r). (6.7)
Evidently, it follows that

v(r)—=28(r)+k(r) =20, Vr. (6.8)

Ciotti & Morganti (2010a) and Ciotti & Morganti (2010b) shed that several systems
satisfy a stronger condition, the GDSAI

~v(r)—28(r) = 0, vr, (6.9)

and they pose the question whether this condition holddlfepherical systems. Naturally,
the inequality is valid outside the raditswherey(r,) = 2. Itis also valid ai- = 0, as was
proven by An & Evans (2006). In Section 2.3, we introducedpgbeerful framework of
augmented velocity momenis,, 2., (1,7) as an equivalent way to describe gravitational
systems. In particular, we will consider the augmented ityepgy, r),

(v—E) F(E,rvr) 2
5, 7) sz/ dE/ \/md (6.10)

The strength of the augmented density framework lies inifescti connection to observ-
able quantities like the velocity moments. For instance ghgmented velocity dispersion
profiles are given by

5,2 — 1 w~ / /

) =z [ awna 611)
A2 = s [ D [P ) 0w 612)
T B Jo T R |

whereD, . denotes the derivative with respectto The observed density and dispersions
are then simply recovered from

p(r) = p((r),r), (6.13)
2

2(r) =62(¢(r),m), (6.14)
o2(r) = Gr2(y(r),7), (6.15)

g
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and the density slope is
p

9(r) = So )., (6.16)

As remarked in the Introduction, Ciotti & Morganti have exaed the GDSAI in several
systems with a separable augmented density, i.e. systeting fifrm

p,r)=f(¥)g(r),  0<yP <o, (6.17)

with 1o = ¢(0) (for convenience, we will assume systems with infinite egjtefor such
models, the dispersion profiles simplify to

r dy
- 250

_rop
por

~2 _ 1 v / /
HORE /0 F)ydy, (6.18)
P
i) = (145508 ) 70 b Tnaw (619

and the velocity anisotropy profile of these systems hasithgls form

1ding
O0) = =3 dinr
As we demonstrated in the previous chapters, this propeotyiges a very elegant way to
construct dynamical models with a given potential, deresily velocity anisotropy. Indeed,
separable systems are completely determined(by, p(r) and3(r), sinceg(r) is defined
by Eq. (6.20) and, by inverting(r), the functionf () follows from

(r). (6.20)

_ p(r(®))
f)= ar@) (6.21)

However, one still needs to verify whether the correspogdif is nonnegative every-
where. Eq. (6.16) now reduces to

) =~ G 1) — G ) Gt (), (6.22)
so that we obtain

2w =L () —200)). (6.23)
In other words, as remarked by Ciotti & Morganti, the GDSAI

v(r) = 28(r),  Vr=0, (6.24)
is for separable systems equivalent to the statement

V>0 vo<ys<w (6.25)

dy

The question thus becomes whether this inequality is validlf separable systems. In the
following section, we will prove that this is indeed the casgy < 1/2.
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6.3 Analysis of the GDSAI for separable systems

Following the reasoning of An & Evans (2006), we assume thgtveell-behaved DF can
be written in the form

F(BE,L)= L% (Fo(E) + F1(E, L)), (6.26)
with
Fi(E,00=0, YO<E <4y (6.27)

The functionZ 2% Fy( F) in this Ansatz can be understood as the leading term of a haure
series expansion i at . = 0. Towards the centre — 0, the DF is dominated by this
term, which has the form of a system with constant anisot(@ay69). Consequently, the
central anisotropy of the entire model indeed eq@alsSince the DF has to be nonnegative
everywhere, it follows immediately thd(E) > 0 VE is a necessary condition to obtain
a physically meaningful DF.

If we consider separable systems, the corresponding augthdensity then has the
form

p(,r) = f()r2% (14 ga(r)), with g1(0) =0. (6.28)
By changing in Eq. (6.10) the integration variableto u? = 2(1/)1)—513) the relation between

the augmented density and the DF (6.10) can be written as

1 . —28
p(,r) =27T21/2_ﬁ0r_2ﬁ0]tf/ u du? x

. 0 V1—u2
/0 (v — E)Y/2-0 (Fo(E) o (E,ru\/Z(z/J - E))) dE. (6.29)

In separable systems, it follows that

p(,r)
flw) = . (6.30)
W=
Since the left-hand side of this equation is independerti@fadius-, the right-hand side
does not depend oneither. The equality is therefore valid for all valuesin particular,
we can take the limit of towards the centre,

)
= lim
f) = lim =0
This property is the key element to prove the GDSAI witln< 1/2: using (6.27) and
(6.31), it follows from Eq. (6.29) that

— (9)3/20~50 r(1-po) (¥ _n1/2—350
) = (@x)22 a0 [ = oy . (6.32)

= |im0r2ﬁ05(¢7r). (6.31)
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Remarkably, the functiorf () thus only depends ofp(F) andfp. In other words, for
separable systems the functidh(E, L) has no influence on the GDSAI. Concrete ex-
amples of this behaviour are furnished in the systems ceresitby Ciotti & Morganti.
For instance, the equivalent functi@«r) in Ciotti & Morganti (2010b) for generalized
Cuddeford systems does not depend on the anisotropy ragdisse their Eq. (13)).

The value ofgy splits our further analysis into three casel:< 1/2, 5o = 1/2, and

Bo>1/2.

6.3.1 Prooffor3p < 1/2

If 5o < 1/2, the derivative off (/) becomes

9 o) = (2my329-Bop s =60 | 12—
L= enprz-soar TP lE"LW B2 Ry(E) +

(%—%) /Ow(w—E)‘l/Z‘ﬁoFo(E)dE . (6.33)

Let us examine the first term inside the brackets: if

Elimd (v — B)Y2=P Fy(E) > 0, (6.34)
then
; _ —-1/2—p3p ~ i _ —a ;
LL'L%W E) Fo(E) E“Tu;w E) witha > 1, (6.35)
so that
P
/ (¢ — E)~Y2=Po [y(E)dE = +o0. (6.36)
0

In other words, if the limit is nonzero, then the integralhie second term becomes infinite,
and the condition (6.25) holds trivially. If on the other klathe limit term is zero, the
equation simplifies to

df o \320-poy, F(A=P0) [V Fo(E)
) = @t s | e > 0 ©30

so again (6.25) holds, and the GDSAI is proven.
The above relation can be generalized furthen: # |3/2— o] anda = 3/2— Bo—n
are the integer floor and fractional part of23- 3o, then

- —Bo (1~ 6o)
(1) = (2m)¥/2275 MF(B/Z—ﬂo—k) X

P
[ w-ppraimmzo  osk<n (639)
0

d*f
ik
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so the inequalities

d*f

W(W?O, VO<y <o, 0<k<n=|3/2— 0], (6.39)

are necessary conditions to obtain a separable system wihreegative DF. This extends
the results obtained by Ciotti & Morganti (2010a) for mutimponent Cuddeford models.
The GDSAI is thus a special case of the more general requiren(@.38).

6.3.2 Prooffor3g=1/2

WhenSy = 1/2, Eq. (6.32) reduces to

P
f(p) =2x2M /0 Fo(E) dE. (6.40)

The derivative is then simply

df
dy

so evidently, the GDSAI is again a necessary condition fdmgsjzal dynamical model.

() = 2n°M Fo(¢p) = 0, (6.41)

6.3.3 Counter-examples foiBg > 1/2

The proof is not applicable to systems with > 1/2. Indeed, the derivative has the same
form as Eq. (6.33), but now the two terms inside the bracketsaspectively-oco and—oo
whenFy(E) > 0, so their sum is undetermined. However, we can rewrite €8§2) using
integration by parts as

_ —Borys (1= Po)
(@) = (2m)¥227 %M =

&2 ) [WH" Rol0)+

P
/0 (4~ E)3/2-%0 Fy(E)dE

. (6.42)

whereF{(E) denotes the derivative dfp( E). After differentiation, we then obtain

df
dy

(V) = (277)3/22_ﬁ0]V[M

1/2— 8,
ez |V O

/O w(w—E)l/Z—ﬁo F)(E)dE|. (6.43)
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Figure 6.1 Three models for which the GDSAI does not hélg:0.3 (red),0 = 0.6 (green),
andd = 1.0 (blue). In the first panel, the density data points are ailsplayed.

Thus, separable systems with a monotonically increasygid@) (i.e. Fy(E) >0 VE),
satisfy the GDSAI. Again, this is an extension of the restdisgeneralized Cuddeford
systems found by Ciotti & Morganti (2010b).

Yet, the GDSAI is no longer a necessary condition for a ptajsitodel, which raises

_ GMiot
w(T)_(1+\/F)23
3M 1
p(r) =

C8r 21y )Y

the question whether systems can be found for which the binequality does not hold.
To this aim, we consider the potential-density pair

(6.44)

(6.45)
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with corresponding density slope

3/24+7/2\/r
— 6.46
Y(r) RV (6.46)
which is part of the family of Veltmann models that we studiadSection 4.3.3; this
potential-density pair was also discussed by Moore et 898). If Mot = M, then the
system is also self-consistent. For this pair, we consphgsical DFs that generate our
four-parameter anisotropy profiles

T/Ta 25
R o (6.47)
with 0 < § < 1, so that
N -\ 2% 720 Bs
Fapr) = £() (—) <1+ W) , (6.48)
with
s = % (6.49)

Yet this time, we are interested in models with a non-linear( relation, so we put our
QP-machinery to work (Sections 2.4 and 5.3.1). In particukee created models with
N = 12 components, fitting 25 density data points extracted fEom(6.45).

With this technique, we obtain several dynamical model$ wibnnegative DFs that
violate the GDSAI; three of them are shown in Fig. 6.1. Alle@rshare the anisotropy
parametergy = 0.75, 5, = 1 andra = 0.02, but have different values fér 0.3, 0.6 and
1.0 respectively; note that the latter is a Cuddeford-typdeh For the model with = 0.3,
we find thaty(r) < 23(r) for radii in the interval0,0.021], with a minimum around =
0.0057 (note that the centre is a local maximum, for whigh= 25p). In the model with
0 = 0.6, they — (3 relation reaches a local maximum arouné 0.0028, and the GDSAI
does not hold in the intervé.019 0.061], with a minimum arouna = 0.036. Finally the
largesty —  fluctuations occur in the Cuddeford modél=£ 1), with a local maximum
aroundr = 0.0054, and a GDSAI violation withif0.019,0.100, with a minimum for
r=0.044.

Evidently, we require rather extreme parameter values taimlthese (modest) vio-
lations, while maintaining nonnegative DFs. The centrasatnopy 5y has to be high,
and the profile3(r) has to increase very rapidly. It is therefore safe to assumaethe
self-consistent variants of these models are dynamicalbgable. This can be seen from
the standard criterion for radial-orbit instability 52 / K, = 2(v2) /(v2) = 5.45, 8.26 and
10.42 for the three models, which is much higher thantt#threshold for similar models
(see Merritt 1999 for an overview). Further evidence of dyital instability is given by
the radial velocity distributions

V29 (r)—v2
F, (r) =27 M /0 F(E,L) v, dor. (6.50)
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As shown in the bottom row of Fig. 6.1, these profiles have twthoee peaks at small

radii. These are indications of Henon instabilities (seer@s et al. 1986 ; Merritt 1999).

In theory, if the systems are instead not self-consistenembedded in a massive dark
matter halo, they might withstand these instabilities; @eev, one can safely argue that
such equilibrium systems are too extreme to arise in stradarmation.

6.3.4 The inverse relation

Finally, we remark that the functiofy(E) can be derived fronf (/) by means of an Abel-
related inversion (see Eq. (2.168), and Cuddeford 1991 ; Afvéns 2006), which holds
for all values of5p < 1,

260
2m)3ZMT (1— )T (1— o)

E'dn+lf dw 1 dnf

Fo(E) =

(0)> , (6.51)

where agaim = |3/2— p] anda = 3/2 — 5o — n are the integer floor and fractional part
of 3/2— f3p. Thus the additional condition

dn+lf
d¢n+l

() =0, VO <o, (6.52)

is sufficient to obtain a nonnegativg)(E). As Ciotti & Pellegrini (1992) and Ciotti &
Morganti (2010a) showed, this also implies that the entiFfeA¥E, L) is nonnegative in
the case of (generalized) Cuddeford systems. If fact, weleéine thdractional derivative
(Samko et al. 1993)

dn+af 1 P dn+lf dw
: = 6.53
dwn—s-a (w) r(l_ a) 0 dwlm—l (w _ ,(/Jl)a ) ( )
so that the condition
dn+af
qrra®) 20 VO<u <o (6.54)

together with (6.39), is necessary and sufficient for a ngatieeFy(£), and a nonnegative
generalized Cuddeford DF. However, these conditions edoa@ot sufficient to guarantee
consistent DFs for all separable systems, since the balvavid™ (F, L) might still lead
to negative values of the DF. In fact, there are also additioonstraints org(r), and we
will explore this in the next section.

The functionFy(E) can be interpreted in various ways: it can be thought of as the
distribution of particles at purely radial orbits, as thstdbution of particles at the centre,
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or as the energy distribution of the constant-anisotropymanent of the DF. A remarkable
consequence is that, if a separable system has a givenipbtent) and density(r), then
knowledge offp( F) alone is sufficient to construct the complete DF of the sysledeed,
we showed thafp(E) is equivalent tof (¢)), and in combination wittp(r), the function
g(r) = p(r)/ f(¥(r)) can also be derived, determining the augmented delfiity g(r)
and thusF'(E, L).

The next step would be to investigate the GDSAI for genei@h-separable spherical
models. One possible approach would be to consider a spheystems as a linear com-
bination of separable systems. In fact, an analyti¢,7) or F/(E, L) can be written as a
double sum of power-law functions, by means of a two-dimmmsi Laurent series expan-
sion. An alternative approach would be to ask the followingstion: given a spherical
dynamical system with a givep(r) and a non-separable dynamical model that generates
p(r) andg(r), does there always exist a separable model with a nonnedafthat gen-
erates the same density and anisotropy? If so, then then G&8&l analysis applies as
presented here.

Recent work by Barber & Zhao (2014) indicates that the angsweo: they were able
to construct consistent non-separable systems gt 1/2 that do violate the GDSAI.
However, the densities of their systems increase at largig 10 their models are not
physically realistic.

6.4 Conditions on the augmented density for a
consistent separable model

6.4.1 Consistency requirements

An essential requirement for a physical dynamical modehésronnegativity of the DF
over the relevant phase space. In turn, this consistencyreggent puts constraints on the
derived quantities, like the potential, density and vejpanisotropy. In other words, the
underlying DF determines the boundaries wherein the obbé\quantities can vary, and
which properties they should have to guarantee a physicdémo

Our analysis of the GDSAI revealed a set of constraintg @) that are necessary for
a consistent model. An (2011) demonstrated that there ae=ssary conditions fay(r) as
well:

d% (r*mg(r)) >0,  VYm. (6.55)

These conditions are however not sufficient. In this sectiemwill derive the full set of
necessary and sufficient conditions for consistent sepmnabdels. This set is too compli-
cated for practical purposes, but we will be able to simglifgm into sufficient conditions.
We now pose the question: which constraints are the augch@mbenents subjected
to, in order to guarantee a nonnegative DF? This problemasatto the so-calleBlaus-
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dorff moment problertHausdorff 1921 ; Hausdorff 1921) in probability theorynsider a
function F'() over a closed intervdD, 1), with the sequence of momehts

h
an/ 2" F(z)dz, (6.56)
0

thenF'(x) defines a nonnegative distribution if and only if the diffece sequences satisfy
the equations
(-1)*A*p, >0, Vn k>0, (6.57)
with A the difference operator defined as
ko /k . ko rk _
D= <Z> (=h)! pnhi =D (J) (=h)* . (6.58)
i=0 j=0

In other words, we require that

fin =0, (6.59)
—pimg1+ hpin =0, (6.60)
fins2 — 2ty 1+ hPpy >0, (6.61)

and so forth, for alh. We can apply this to the phase-space DF of a spherical gtmrial
system.

6.4.2 Necessary and sufficient conditions

We showed in Section 6.3 that the constraints (6.39) andl{&E&e necessary to obtain a
corresponding nonnegative DF. Now, let us in addition asstimat

dl

Hw=o  o<vsw osi<l, (6.62)

d s

—J > .

gux (1) =0, (6.63)
where) > 3/2— 5p. We will also assume the boundary conditions

dy

d—W(O) =0, 0<I< [N (6.64)
Now consider the functions

_ «/21/)—1)3

For (W, 7,0,) = 20 M / F(E,L)v?™*dv,. (6.65)

0

1The original Hausdorff moment problem applies to distiitms in the interval0, 1], but the extension to a
general upper bound follows simply by changing the integration variables.
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Note that the function withn = 0 is the radial velocity distribution (up to the factof).
Also, the functions do not depend grnandv,. separately, but only on the combination

u=1)—v?/2. (6.66)
We can thus write the above equation as
_ 2u
For(u,r) = 7TM/ F(u—v2/2,7v;) 02" dv?. (6.67)
0

These functions can be expressed in terms of the velocityentsnindeed,

) N
fozn(v.0) =2 [ Fan(w,rivn)de (6.68)
2 7
:/ F2m(w7’r7’u7’) dvg (669)
0 |vr |
Y Fo (u,r)
=V2 / 225 du. 6.70
0o VY—u (6.70)
The last equation is evidently an Abel integral, which carnberted to yield
Fom(.r) = —— [ <=0y (o', 1)) 0 (6.72)
2m\U, _\/iﬂ' 0 U_'(/JI ! (H0,2m 5 . .

With the aid of Eq. (2.151), this can be written for separalyltems as

_ om ¢’ // m—1
Foutr) = 2oz [Caw [t l—au(par, ©72)

for m > 0. By changing the order of the integrations, we obtain

Vim0 N

_ 1 mTZm °— m—1/2
g ) [ 12 wﬂ

which is also valid forn = 0. We can write this equation in a more general form using the
conditions (6.62) - (6.63) and the inversion of the fractilbderivative (6.53)

m " nm—1
Fopn (1,7) = —— 2y (y2m / dy () c/ wdw” (6.73)

dy (f) dv, (6.74)

1 P
)= £ /O (10— )1 (f) A (6.75)
1 P
W)= o, v a (6.76)



134 Chapter 6: The global density slope — anisotropy inequality

for A > 1. When we plug this into (6.74) and again change the ordéveoifttegrations, we
get

. 2m—l/2 U
F — dm 2m 2 Ym+A=3/2 d)\ d 6.77
7)== 302) [ (=) Mde,  (677)
which also holds i\ > 1/2. For fixed values of, r andv,, the functiond’y,,, (u,r) are the
moments of the DFF'(E, L) with respect ta2. In other words, we can apply the Hausdorff
conditions to Eq. (6.67) with

x =12, (6.78)
F(z)=mMF(E,L), (6.79)
h =2y —v? = 2u. (6.80)

Thus, if and only if
(=1)*A*Fy,, (u,r) >0, Vm, k>0, (6.81)

then the DF is nonnegative everywhere. This leads to theviiriig necessary and suffi-
cient conditions for the existence of a nonnegative DF, fitvesical systems with separable
augmented densities

k .
-k om+k—1/2, k—j ‘ ‘
—1)7 m-+7 2(m+j)
jzo( Y (J) F(m+j+X—-1/2) dz (7” 9(7‘)) X

/O u(u — )" HITATI2 4 f(y) dip > 0, (6.82)

for all k, m, and a fixed\ > 3/2— f.

6.4.3 Sufficient conditions

Evidently, the general equations (6.82) are too compléctdepractical purposes. We will
therefore look for more stringent yet simpler conditionsdaonnegative DF. We propose
the sufficient conditions

)=

~1) k 1 m+j (m+j)
,,-zo( Y (J) Fm+j+A—1/2) dz (7"2 v 9(7‘)) >0. (6.83)

Indeed, together with the constraints (6.62) - (6.63) 6n), this implies Eq. (6.82), as can
be seen in the following way: we can write (6.83) in the form

k
> (-1 (I;) timtj =0, (6.84)
=0

J
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with
. 1
Hmtd = Flm+ j+ A—1/2)

d:?rj (Tz(mﬂ) g(r)) . (6.85)

This means that the s¢t.”, } defines a moment sequence of some probability distribution
in the unit intervalO, 1]:

1
[, = / X™F(X)dX. (6.86)
0

Now consider the conditions

k j—k
> (-1y <k> (1— %) fir i >0, (6.87)
j=0

J
with ¢» < w. This is the same moment sequence (up to a constant factmoly for a
probability distribution in the intervdD, 1], with
u
u—1p

The corresponding probability distribution is simply theerse " (X ), extended to the
larger interval0, h] with a Heaviside step function:

> 1. (6.88)

h
u:n:/ X"F'(X)H(1—X)dX. (6.89)
0

In other words, Eq. (6.84) immediately implies Eq. (6.87)thWadditional factors and an
integration, we have

w k
/ > (-1 (’;) i 4 28T Y280 (y — )y TIA2 G £ () dyp > 0, (6.90)
0 —0 ’

which is nothing else than Eq. (6.82).
The sufficient conditions (6.83) can also be written into aermmpact form. To this
aim, we list the following auxiliary formulae (An 2011):

xmlo% (2" f(2)) = (332%) (f(@)). (6.91)
di—nn (z) = (—&%)n flw™) with w =271, (6.92)

d'z® Mo+l
dei  T(atl-7) (6.93)
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where we used the operator

(ﬁ%)%@) = (ﬁ% (ﬁ%--- (ng—i(x)>>). (6.94)

n derivatives

With z = 2 andw = 1, we find

i -k —m—j-1 d m+j
2y (J) r(mf—j FA—1/2) (””2@) (zg(x)) >0, (6.95)
j=0
and
k (k wmtitl . g(w—l)
;(_1) <J) Tm+j+A—1/2) d +J< o ) > 0. (6.96)

Multiplying by I (m 4 k + X — 1/2) w52 gives

k

m R\ Tn+k+A=1/2) L iin 32 ynty (9w
- JZZ:O <]> Fmaie A <T> 20 (697)

and now we recognize Eq. (6.93), with- k — j anda = m+ k+ X —3/2. In other words,

k
m K\ e mskia—3/2\ qmri (9w
- : : >
(—1) Z (J) d: (w ) d — ) >0, (6.98)
7=0
which is nothing more than the Leibniz derivation rule:
-1
(-1md {meHA_?’/Z o7 (—g lw )ﬂ >0, (6.99)
w

which is also equivalent to

(—1)F (;ﬂ%) ' [x_m_k_)‘+3/2 (;ﬂ%) " (;vg(x))} >0, (6.100)

and finally, using Eq. (6.91) twice, we get the compact foanul
(—1)kd [x3/2-* dn (;vmg(x))} >0, (6.101)

for all &, m (where we omitted the factar*t1). This means that for each, the functions
z%2=2d" (2™ g()) are completely monotonic. According to the Haussdorffrezin-
Widder theorem (Bernstein 1928), this implies that eaclhe$é functions can be written
as the Laplace transform of a nonnegative function. Thip@ry was further explored in
An et al. (2012).
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6.5 Explicit formulae

To summarize, we found a set of sufficient consistency requénts

dr

d—W(wDO, 0<v <o, 0<I<|A], (6.102)

d)\

%(d}) >0, (6.103)
(~1)dk [22/27 2 dy (a7 g(w))] > 0 (6.104)

for all k, m, and with\ > 3/2 — 3y. Note that the constraints ghandg are coupled. Also,
we recover the necessary constraints (6.55) discussed (804r1) as thé: = O case.

The conditions (6.83) or (6.101) put rather complicatedst@ints ong(r). To gain
more insight into them, we will look at some examples. Fiettus consider models with
a constant anisotropy, so thgt) = »—2%. Then we require

k

1V m+j 2(m+3—PBo) >
jzzo( Y <J> Frm+j+A-1/2) d2 (’” )/07 (6.105)

so that
k

- ([ (1_50)m+'

2[30 1\ j S
D (J) r(m+j+/\—1/2)/o’ (6.106)

=0
which leads to

T—Zﬁo(l - ﬂo)m

mzlﬂ(—k,l—ﬂo—i—m,m—l—/\—1/2;1):

—2B0(1 — _
(1= Bo)m M(k+ A+ 50—3/2) >0, (6.107)
Frk+m+A—21/2)T (A +Go—3/2)
Since\ > 3/2— [y, the inequality indeed holds, as expected. Now, let us exathie low-

order conditions for generdl(r). As stated above, the case= 0 leads to the necessary
conditions (6.55). Furthermore, we find:

k=1m=0: B(r)+A—3/2>0, (6.108)
k=1m=1: gz—f+(1—ﬁ)(ﬂ+/\—3/2)>o, (6.109)
k=2m=0: —%Z—f+(ﬂ+)\—1/2)(ﬁ+/\—3/2)20. (6.110)

Evidently, the first inequality can fail for anisotropy pte§ whereGy > 3.,. However,
every inequality will contain a positive term i¥. So, the conditions do hold if we put more
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restrictions onf (v), i.e. by further increasing the value affor which the derivatives of
f () are nonnegative. This is a general rule: the conditions kithO put real restrictions
ong(r), butthe conditions witlk > 0 hold if the firsth derivatives off (1) are nonnegative,

for a sufficiently high value oh > [3/2— ().



Chapter 7

Ram-pressure stripping of late-type
dwarf galaxies in Fornax

In this chapter, we apply our quadratic programming alfamitto observa-
tional data; in concreto, we will seek dynamical models fgrogpulation of
dwarf galaxies in the Fornax cluster. Thus, we demonsthatethe early-type
galaxies trace very radial orbits, consistent with the lilgpsis that they origi-
nated from late-type galaxies that underwent ram-presttipping when they
passed through the intracluster gas in the central regiéowfax. The results
here presented are published in De Rijcke et al. (2010). Thntfic ratio-
nale and data preparation were worked out by S. De Rijckentbaelling and
analysis was carried out by the author.

7.1 Introduction

So far, we have used our techniques to model the structuresofétical systems. In this
chapter, we will turn our attention to observational datar#&tspecifically, we will examine
whether dynamical modelling is able to provide an explamefor the origin of the early-
type dwarf galaxy population in the Fornax cluster.

In concreto, we put to the test the hypothesis that the Fochester dwarf galaxies
are mostly a relatively recently acquired population, ofchhthe star-forming, late-type
members are converted into quiescent, early-type onesrhyprassure stripping. This
conversion would take place when a galaxy traces a suffigieadial orbit, such that it
plunges inside the inner few hundred kiloparsecs of thetetund interacts with the hot
intracluster gas. In other words, we will try to find anisgi@spherical models that are
consistent with the available morphological, positionadl kinematical data, especially
with the radially increasing late-to-early-type ratio. surns out, we are indeed able to
construct such models, although they necessarily corfséstteemely radially anisotropic
orbital distributions. In principle, this corroborategtitlea that the Fornax cluster dwarfs
are an infall population and that environmental factorshis case ram-pressure stripping,
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Figure 7.1 The Fornax clustdtlustration Credit: NASA, ESA, Z. Levay and L. Frattare
(STScl).Image Credit A. Karick and M. Gregg (LLNL/UC,D) using the Michigan Custi
Schmidt Telescope at CTIO: digital colour composite/mogaB, V and | bands.

play a prominent role in converting late-type dwarfs intdye&ype ones.

The fraction of passively evolving, i.e. red and dead, gakis a steeply rising func-
tion of local galaxy density. This is all the more true for dfgalaxies (/p = —18 mag)
(Haines et al. 2007 ; Barazza et al. 2009). Using optical intagf galaxies in 127 rich
clusters, Lu et al. (2009) conclude that the red-sequenegfda-giant ratio has increased
by a factor of~ 3 between redshifts ~ 0.2 and 0, with little evolution before that. Com-
paring the luminosity functions of X-ray clusters at redisht ~ 0.5 andz ~ 0.1, Stott
et al. (2007), on the other hand, find an increase of the rgdesee dwarf-to-giant ratio
by a factor of~ 2 over this 4 Gyr interval. Despite large cluster-to-clustariations, this
is strong evidence for a significant increase of the numbeuehched dwarf galaxies in
clusters over the last half of the Hubble time.

This is plausibly related to the accretion of galaxies ohtisters along filaments. Be-
fore entering the clusters, mutual interactions betweamgint galaxies enhance their star-
formation rates, especially in faint galaxies (Fadda 2@08 ; Porter et al. 2008). This oc-
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curs independent of the filament galaxies being group mesrrerot (although it increases
the vigour of the enhancement if they are not), indicatired gas-rich dwarfs accrete onto
clusters despite possible pre-processing in smaller g@eoups. Other tentative evidence
for the recent accretion and quenching of dwarf galaxiesesfrom stellar populations
studies of Coma cluster systems by Smith et al. (2009). Taesw®rs find the dwarfs in
the south-west region of the Coma cluster to have significarstunger mean ages than
their central counterparts, with the dwarf red sequencénhaveen established between
redshiftsz ~ 0.2 and~ 0.1.

Several mechanisms responsible for this conversion fréen fa early-type dwarfs in a
cluster environment have been put forward in the literatuiseng simulations, tidal stirring
or “harassment” has been shown to be quite effective in atingedisky dwarf irregulars
into rounder dwarf spheroidals in a Local Group environn{®fayer et al. 2001 ; Moore
etal. 1996). However, in a cluster environment, tidal hregpis probably of less importance.
The tidal radius imposed by a cluster’s tidal forces onlydmes smaller than a dwarf
galaxy’s physical size (typically of the order of a few kibnsecs) for orbital radii smaller
than a few tens of kiloparsecs. Thus, cluster potential tigating is expected to affect
only those few dwarfs that come exceedingly close to thete@tusentre. A Monte Carlo
simulation of harassment of infalling dwarf galaxies by adsaer population typical for
the Virgo cluster has shown that strong tidal encountersamgrare, involving less than
15 per cent of the infalling dwarfs (Smith et al. 2010).

As a dwarf galaxy orbits through the hot intracluster med{L®M), its gas experiences
a ram pressure, which depends on the galaxy’s orbital wglacid the ICM density, and
can be stripped away (Mori & Burkert 2000). We show below tivathe Fornax cluster
environment, ram-pressure stripping can remove the gas @narf galaxies entering in-
side the inner few hundred kiloparsecs, making this the dantimechanism that converts
late-type into early-type dwarfs (with tidal heating adutially responsible for the removal
of angular momentum).

We will investigate quantitatively if the idea that the Farncluster dwarf galaxies
have mostly been accreted in the not too distant past aneéguestly transformed from
late-type to early-type by ram-pressure stripping is caibpmwith the available morpho-
logical and kinematical data. We therefore assume thatfdyaaixies are born as late-type
systems, containing gas and hosting ongoing star formaditeit at a fluctuating star-
formation rate (Cole et al. 2007). Given the inefficiency gpsrnova feedback, they are
expected to retain at least part of their gas and, withogtraat intervention, to remain late-
types until entering the cluster (Valcke et al. 2008). Théney are stripped of their gas
and join the red sequence. In the introductory chapter, Miaetbthe two-body relaxation
time for a galaxy moving in a cluster through a background/ajalaxies as

01N
trelax = Wtcross (7.1)

with N 2> O (102) andtcross the crossing time. Clearly, the relaxation time for a dwarf
galaxy orbiting in the Fornax cluster, perturbed mainly g few tens of brightest cluster
members, is longer than the crossing time. This impliesttimdwarfs are not a relaxed
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population: if they are an infall population and entereddluster a few crossing times ago,
they must still have a highly radial orbital distribution.eW/ant to exploit this fact to test
the infall scenario.

In the next section, we give a description of how we model ffexts of ram-pressure
stripping, followed by an overview of the available morpdgical and kinematical data.
The details of the dynamical modelling of the Fornax cludigarf population are given in
Section 7.4. We end with a presentation and discussion aiehdts in Sections 7.5 and
7.6.

7.2 Ram-pressure stripping in the Fornax clus-
ter

The Fornax Cluster mass profile estimates of Paolillo et26l02) and Drinkwater et al.
(2001) can be well approximated by the sum of two NFW profites for NGC1399, the
central bright elliptical dominating the Fornax Clusterdaone for the cluster (see the left
panel of Fig. 7.2 and Table 7.4). From this, we immediatelawbthe total mass density
prot(r) and the gravitational potential(r):

Pocg Pclus
5 7.2
beg (1+xbcg)2 Lclus (1+xclus)2 ( )

S R B R

prot(r) =

Tbeg 1+ bbcg Tclus 1"’ bclus
(7.3)
with
Tocg = T/rbcga Lcius = T/rclusa (74)
bbcg - b/Tbcga bclus - b/TcluSa (75)
]\/[bcg Mclus
cg™ 5 3 clus = 5, 3 7.6
Poce 4T Cpeg rgcg per AT Ceius rflus (7.6)
G My GM.1us
wbcg = ocg ) Pelus = 713 (77)
cbcg Tbcg Cclus T'clus
bbc bclus
cg — In(1 cg) — £ “clus — In(1 clus) — . 7.8
g = (00— 7225 ) o= (N0 b) - 222 ) (79)

The massed\fycg, Mcius and the scale-lengths,cg, rcius are given in Table 7.4, and
b =50 Mpc is an arbitrary cut-off boundary such that the totabsmccumulates by =
Mycg + Mc1us ath. The parameters of these NFW profiles were chosen becausprthe
vided the best fit to the data points.
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Figure 7.2 Left panel: the cumulative total mass functiothef Fornax cluster. The mass
profile is parametrized as the sum of two NFW-models; the plaitats (squares) are taken
from Paolillo et al. (2002) and Drinkwater et al. (2001). Riganel: The ICM density,
parametrized using three profiles (see text).

Based on ROSAT HRI observations, Paolillo et al. (2002) asdved the structure
of the X-ray halo of the Fornax cluster. They showed that thesity distribution of this
intracluster medium (ICM), which is the medium strippingsdeom the dwarf galaxies
orbiting through it, can be well approximated by the sum oééhspherically symmetric

profiles,
r 2 _%Bicm,k
1+< ) ] , (7.9
Ticm, k

with the central densitigs; .y, 1., the scale-radii; ., , and the exponentB; ., ;, again listed
in Table 7.4. Using these parameter values, we reconstresiatial density profile of the
hot gas (see the right panel of Fig. 7.2).

Mori & Burkert (2000) calculated the minimum core masgit(r, vga)) @ dwarf galaxy
must have to retain its gas when subjected to a given ramypeesbeir equations (13),

3
picm(r) - Zpicm,l
k=1

. 5/2 v 5

Megi(r, vgal) ~ 2.52x 10° ( 10_611;':]1_3) (1ooog|jr|n s—l> Mo, (7.10)
based on analytical arguments, and (32), based on numsingalations. These authors
modelled dwarf galaxies as gaseous haloes embedded in @Bdeddck matter potential
and the core masa{j is the dark matter mass inside one core radisf the Burkert
potential (Burkert 1995). Both critical mass estimates @esented in the left panel of
Fig. 7.3, using (7.9) for the gas density. We show the ctiticass curves for three galaxy
velocities: 400 km s, 800 km s, and the local escape velocitysdr) = 1/2¢(r).
Clearly, both critical mass estimates give similar resutgarf galaxies on orbits that are
radial enough to bring them inside the inner few hundredpelsec of the Fornax cluster
can be stripped of their gas. In the subsequent analysis,iluese Eq. (7.10).
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Figure 7.3 Left panel: The critical masdc,; for ram-pressure stripping as a function of
clustercentric radius for the ICM density profile derivedgolillo et al. (2002) and for
three choices for the velocity of the galaxy with respecthie kKCM: vgg = 400km st
(black), vgal = 800km s (dark grey), andvgal(r) = vesdr), the escape velocity (light
grey). The full lines trace the critical mass as calculatgdviori & Burkert (2000) us-
ing analytical arguments; the dash-dotted lines trace timaemical estimate fo\/;.
Right panel: The cumulative core mass funct®(/) of the Fornax cluster dwarfs in
the luminosity interva-14 > Mp > —18 mag. We used the FCC to construct the lu-
minosity distribution and converted this into a core masgritiution using a constant
M/LB :SM@/LB)Q.

We have selected dwarf galaxies in the luminosity randd > Mp > —18 mag from
the Fornax Cluster Catalog (FCC) of Ferguson (1989) anddhasi Cluster Spectroscopic
Survey of Drinkwater et al. (2000). FCC Galaxies classifieth&” and “dS0” are assumed
to be “early-types” systems, the others end up in the “lgpetbin. Thus, this is an optical
classification, which discriminates between star-formietg-type dwarfs and quiescent
early-type ones based on the presence or absence of standpknots, Hi regions, and
optical emission lines.

For late-type dwarf galaxies in the luminosity range thatame considering, between
log(Lg) = 8 and 95 in solar units, the circular velocities vary between rdyd0 and
85 km s'! (De Rijcke et al. 2007). Using the scaling relations prouitg Burkert (1995),
this corresponds to core masses roughly in the rangd @ — 1.5 x 10'° M/, and core
radii of the ordeng ~ 1— 10 kpc. Consequently, this means that the mass-to-lightt rat
is almost constantVlo/Lp ~ 5M¢ /L. We will simply use this constant value further
on to convert between observed luminosities and core magdas allows us to derive
the cumulative functio®(/p) of the core masses of the dwarfs in the chosen luminosity
interval, shown in the right panel of Fig. 7.3.

The relation between the orbital distribution of the Forrduster dwarfs and the ob-
served late-to-early-type ratio now becomes apparent. rOorlit with pericentric dis-
tancer_, only dwarfs with a core mas&{y higher than the critical mass at pericentre
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M it (r,,vgm(r,)) retain their gas, the others are stripped and quenched. dgreemorbit
with binding energy¥, angular momentur, this implies that a fraction

fiate(E,L) =1~ @ (]\/[crit (7’— ; 'Ugal(T—))) (7.12)

of the dwarfs on it are late-types, the others are earlysypere, the corresponding peri-
centrer_ is derived from (2.30) - (2.31) angyq(r—) = L/r_. In other words, if we are able
to find a suitable DRF'(E, L) that describes the orbital distribution of the dwarf gadexi
then the corresponding subsample of late-type dwarf gedagigiven by

F(E,L)=F(E,L) fiaelE,L). (7.12)

For a very radially anisotropic orbital distribution, maatwyarfs are on plunging orbits that
bring them deep into the centre of the Fornax cluster. In¢hse, the overall late-to-early-
type ratio will be small (even at large radii because of thekbsplash effect). If, on the
other hand, the orbital distribution is more tangentialysatropic, with many dwarfs on
near-circular orbits, the overall late-to-early-typecatill be large (except in the inner few
hundred kiloparsecs where dwarfs get stripped and querarhgtbw). In the next section,
we describe how we construct dynamical models for the Fochsster dwarf population
which reproduce the observed dwarf density profile and whiske a prescribed anisotropy
profile.

7.3 The observed properties of the dwarf galax-
les

As we stated in the previous section, we have selected dvadakigs in the luminosity
range—14> Mp > —18 mag from the Fornax Cluster Catalog (FCC) of Fergusonq)L98
and the Fornax Cluster Spectroscopic Survey of Drinkwattel.g2000), and classified
them as early-type or late-type. We have rejected the dviiamis the sample that belong
to the Fornax-SW subcluster. Three dwarfs are clearly ootedeto NGC 1350, both in
position and velocity, and are removed as well. As a final khee compare the dwarfs’
projected velocities with the escape velocity (see Sedi@rfor our derivation of the es-
cape velocity) at their projected radii and remove threeengmlaxies with velocities close
to the escape velocity. This leaves us with a final kinematesple of 113 dwarf galaxies,
shown in the top left panel of Fig. 7.4.

We use the radial velocity data of Thomas et al. (2008) totroosthe velocity disper-
sion profile of the dwarf population. The yellow region in ttog right panel of Fig. 7.4
traces the velocity dispersion profile of the dwarfs, calted within a 10-galaxy running
box, and the & uncertainty around the profile.

The bottom panels of Fig. 7.4 show the projected densitie¢senfotal sample (yellow
dots, left panel) and the late-type subsample (yellow ¢lies right panel). The late-to-
early-type ratio is an increasing function of radius. Néar¢entre, the late-types make out
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Figure 7.4 Top left: our final sample of 113 early- and lateetydwarf galaxies. Top
right: the line-of-sight velocity dispersion profile of alvarfs, oi0s. The yellow area is
derived from the data, while the curves show the correspangiiofiles of our dynamical
models. The curves are colour-coded according to the maatesotropys(r) at a radius
of 200 kpc, as indicated by the legend. Bottom left: the e density of the entire
sample of Fornax dwarf galaxies (dots), with the fitted mautefiles. Bottom right: the
projected density of the late-type dwarf galaxies (tri@syl with the models calculated
from Eq. (7.19).

~ 20 % of the total population (in projection). This increages 60 % beyond a radius of
3°. The total dwarf sample density will serve as the input datafir dynamical models.

7.4 The dynamics of the Fornax cluster dwarfs

The question is then which velocity anisotropy profile gitks best approximation of
the observed late- and early-type density profiles. Givengparse dwarf sample, we
do not attempt to find the most likely DF. Instead, we consteuset of models with
anisotropy profiles of the form (7.14) for a range of value$§f5.., ra, ando (see Ta-
bles 7.1-7.3). These models explore the relevant pararsesee going from tangentially
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Figure 7.5 The spatial moments of our model&:), o,-(r), oo(r) and3(r).

anisotropic, with anisotropies as low &s= —2.0, over isotropic to radially anisotropic,
with anisotropies as high as= 0.8.

As can be seen, the projected density prdfif® of the entire sample of Fornax cluster
dwarfs can be well approximated by an exponential with aestaigth of 11° (with an
adopted distance to the Fornax cluster of 18 Mgccdrresponds to 0.31 Mpc). We use
this exponential to extract 100 data vald#®) (Q,, ) at angular radii betweenT and 10.

As in the previous chapters, we construct a library of augatedensities of the form
(4.11),

i 5i14 - Bs
" S G T )T ()
iV, T) =poi | 77— 1- | —F= — 1+—=:) , (7.13
pilinr) = po, (d)o —Eo,; Yo— Eo Ta 30 (7.13)
and corresponding DHS;(E, L) given by Eq. (4.57). Thgg ; are normalizing constants as

in (5.20). Each of these components generates a given frareter velocity anisotropy
profile

26
_ Bot B (/1) 714

B(r) 1+ (r/ra)®

with fixed valuesy, 8,0 andr,. Our library consists of components for whightakes
the values 1.6, 1.8, 2.0, 2.2, 2.5, 3.0, 3.5, 4.0, 4.5, andM™he@ parameterg ands; are set
to 0 and 1, respectively. Finally, the components have afaitent, with maximum radii
Tmaxi = w‘l(EOJ) taking the values 5, 10, 20, 50, 100, 250, 500, 1000, and 2p60Ror
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each of these library components, the projected densititteidata points are

o p r)r
Zi(Qm):Z/m %dr, m

where the angular positions on the Ry, are converted to physical units,, using the
cluster distance. The QP-algorithm then builds each DRatiiely as a sum ofV compo-
nents,

1,...,Ndata (715)

N
F(E,L)=> a;Fi(E,L), (7.16)
=1

extracted from the library, such that the quantity

2

Nya
mZ: @ (Q,,))> <(a” Zaz m) ) (7.17)

is minimized, with the conditions th&t(E,, L) > O overa grid E;, L, } in integral space.
We find that for each modely = 10 components are sufficient to provide satisfactory fits.
In total, we created 10 models with differefifr)-profiles. Their parameters and the
QP results are listed in Tables 7.1-7.3 (with thgy; in Mpc).
Once we have a model’s DF, we can calculate all observatouraitities both for the
whole dwarf population, and, using the late-type fractfpg given by Eq. (7.11), for the
early- and late-type subpopulations. The velocity momehésach model are

Ndata

B (1) = 27 / F(E,L)vZ"v2™* dv, doy, (7.18)
for the total dwarf population, and
poaS)(r) = 27 / F(E,L)vZ" v dv, duy, (7.19)

for the late-type dwarfs, Witif:(E,L) defined in Eq. (7.12). The line-of-sight velocity
distributions (or LOSVDs) are given by

FaYQ v,) // F(E,L) dzdv, dv,, (7.20)

Fl9(Q 0, // F(E,L) dzdv, dv,, (7.21)

Fee™(Q,0,) = FE)(Q,0.) - F2®(Q,v.). (7.22)

los Ios Ios
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Figure 7.6 The line-of-sight velocity distributions (LOS¥) of the early-type (left panel)
and late-type (right panel) dwarf populations inside theein350 kpc of the Fornax clus-
ter. The thick-line histograms are the LOSVDs of {fig = 0.8, 5., = 0.0)-model. The
thin-line histograms indicate thesluncertainty level. The data points are the observed
LOSVDs.

7.5 Results and discussion

In Fig. 7.4, we show the projected density profiles (bottomgbs) and the line-of-sight
velocity dispersion profiles (top right panel) of the moglelsrived from Egs. (7.18) and
(7.19), and compare them with the observed quantities. Tdoehturves are colour-coded
according to the anisotropy at a radius of 200 kpc. We alsiveltthe spatial densities and
dispersions of the whole population, displayed in Fig. 7.5.

By construction, all models reproduce the projected demsifile of the whole dwarf
population. Because of the unavoidable superpositiondiitarbits passing very closely
to the cluster centre, the most radially anisotropic molal® a central density peak inside
the inner data point (recall the central density slope -arigy inequality (An & Evans
2006); see the previous chapter).

All models that are more radially anisotropic tha200kpg ~ 0 reproduce the steep
line-of-sight velocity dispersion profile. Thus, tangatiyi anisotropic dynamical models
can be ruled out by the kinematical data alone. However, iv@lynost radially anisotropic
models succeed in sufficiently depleting the number of tgpe- dwarfs.3(200kpg needs
be as high as- 0.6 — 0.8 to reproduce, within the error bars, the late-type prejgdensity
profile. Only for these extreme radial anisotropies, the-tgpe density is low enough.

According to our assumptions, early-type dwarfs are setetd be on orbits that pass
close enough to the cluster centre for ram-pressure stigppibe effective. Therefore, we
expect them to have the peaked, broad-winged LOSVD of alladizisotropic population.
Late-types, on the other hand, are expected to be movingais avoiding the cluster cen-
tre so they should have the flat-topped LOSVD typical for aéantially anisotropic pop-
ulation. In order to test this corollary of our basic assuong, we compare the observed
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with the model LOSVDs, given by Eqs. (7.21) - (7.22). In Fig6,Ave show the inte-
grated LOSVDs of the early-type (left panel) and late-tyjight panel) dwarf populations
inside the inner 350 kpcx{ 1°) of the Fornax cluster. This is the region least influenced
by substructure and with a symmetric sampling around thsteticentre. The thick-line
histograms are the LOSVDs of tH{gp = 0.8, 3., = 0.0)-model. We first calculated the
model’s full LOSVD of the early-type dwarf galaxies within3%0 kpc aperture. Since
there are 45 early-type dwarf galaxies in our sample indidedperture, we sampled 45
velocities from this theoretical LOSVD and, as for the obedrdwarfs, made a histogram
of 10 velocity bins. This was repeated 10.000 times to craatensemble of 45-galaxy
LOSVDs. The symmetrized ensemble mean, together with éhertertainty about this
mean, is the quantity presented in the left panel of Fig. T8¢en the presence of 45
early-type dwarfs, the model predicts there should be Etigie systems inside the inner
350 kpc (the observed number is 14). The predicted and obd¢ate-type dwarf LOSVDs
are shown in the right panel. The agreement between the raadedbserved LOSVDs is
clearly very satisfactory.

7.6 Conclusions

We have tested the hypothesis that the Fornax cluster dwtaxkigs are a relatively recent
infall population in which late-type systems are conveited early-type ones, predomi-
nantly by the action of ram-pressure stripping. We haverassithat the dwarf galaxies are
born as late-type systems and are converted into earlystypleey venture close enough
to the cluster centre for the ICM ram pressure to remove tpas: With these assump-
tions, we have shown that dynamical models for the dwarf fadjmn can reproducé)
the steeply declining line-of-sight velocity dispersiaofie, (ii) the exponential projected
density profile of all dwarfs(iii) the radially increasing late-to-early-type dwarf ratingda
(iv) the central line-of-sight velocity distributioonly if the dwarf orbital distribution is
extremely radially anisotropic. Only models witt200kpg = 0.6 meet the observational
constraints.

This corroborates the idea that the Fornax cluster dwagperdominantly an infall
population and that the observed morphology-densityicglas a result of environmental
influences (predominantly ram-pressure stripping) on thefermation histories of dwarf
galaxies.

This chapter concludes our main body of work. We have deeslapdynamical mod-

elling technique to create DFs with a given four-parameddwaity anisotropy profile that
fit a set of data points. The flexibility of our anisotropiesdaat possible to apply our
method to dark matter haloes, the GDSAI, and the dwarf ggtepulation of the Fornax
cluster. In a final chapter, we will describe our work in a sfteject in which the stability

of certain Hernquist models with and without a supermadsiaek hole was investigated
by means ofV-body simulations.
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Table 7.1. Components of the 10 QP-models (part 1)

Bo=—1 Boo =—1 §=05 ra=0.01 Mpc x2,=0.003
a10,; 7250 7.98 124 —9.23 -0.35
—-0.36 077 187 673 023
Di 6.00 7.00 800 500 4.00
3.00 300 350 450 6.00
Tmaxi 0.50 100 005 025 002
0.10 005 050 025 010

Bo=0.0 Boo = —2 5=05 ra=0.01 Mpc x39=10.010
a10,; 74.10 1884 —1329 021 —1.64
0.21 016 251 -0.13 056
Di 10.00 7.00 1000 450 500
4.00 400 500 450 400
Tmaxi 1.00 050 050 025 010
0.02 200 025 002 025

Bo=0.0 o = —1 5=05 ra=0.01 Mpc X3, = 0.016
a10,; 27.68 992 4329 318 —0.01
-1.22 -1.33 -0.37 061 -0.18
Di 5.00 450 6.00 300 300
4.00 300 300 300 350
Tmaxi 0.50 025 050 025 200
0.10 010 005 100 050

Bo=0.0 Bss = 0.0 5=05 ra=0.01 Mpc X230 = 0.045
a10,; 85.62 —5393 —-1.47 6453 -0.83
-14.87 141 —10.65 359 841
Di 3.50 200 300 220 160
2.20 300 250 160 100
Tmaxi 0.50 025 005 025 005
0.50 200 010 050 025
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Table 7.2. Components of the 10 QP-models (part 2)

8o =00 oo = 0.4 5=05 ra=0.01 Mpc X2, =0.45
a10, 10000  —2.23 7.48 ~13.08 —9.95
~3953  -227 -8.33 4398 537
pi 3.00 180 160 250 220
3.00 160 160 250 400
Fmaxi 0.50 005 025 010 050
0.25 050 010 025 200

By =0.0 B =06 5=05 ra=0.01Mpc x2,=1083
a10, 17.13 6874  —1574 1131 ~1.62
1.41 004 001 001 001
pi 2.50 160 200 180 160
2.20 220 250 220 160
Fmaxi 0.50 025 010 050 050
0.50 002 100 200 200

Bo=0.4 B =0.0 5§=10 ra=0.10 Mpc X2 =1.39
a10, 10000 231 —6.99 6872 100
~3326 3164 ~0.14 1803 ~10000
pi 3.00 160 200 250 180
2.20 250 300 160 220
Fmax 0.50 025 005 050 025
0.10 025 002 050 050

Bo=06 B =0.0 §=10 ra=0.10 Mpc X2, = 1356
a10, 19.95 1860  —10.19 7.88 —457
5236  —7.79 001 109 011
pi 2.50 160 160 220 160
1.80 180 160 200 300
Fmaxi 0.50 025 005 050 050

0.25 010 200 100 002
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Table 7.3. Components of the 10 QP-models (part 3)
Bo=0.6 B =0.4 0=10 ra= 0.10 Mpc X3, = 1897
a10,; 9.60 001 87.89 —1848 001
-7.25 6.20 001 037 090
Di 2.20 300 160 160 250
1.60 160 160 250 300
Tmaxi 0.50 200 025 010 100
0.05 050 100 050 005
Bo=0.8 B =0.0 0=10 ra= 0.10 Mpc X30=1114
a10,; 3.02 721 1375 —4347 —5.30
57.99 —-9.10 —0.32 4229 2.22
Di 2.20 300 160 160 160
1.80 160 220 250 160
Tmaxi 0.50 200 025 100 050
0.25 005 001 050 100
NFW profiles
components scale-length total mass at
(kpc) 50 Mpc M)
NGC 1399 06 2x 102
Cluster 150 2101
ICM densities
central density scale-length B
(em—3) (kpc)
0.3 0.34 054
0.0025 183 41
0.00055 778 24

Table 7.4 Parameters used in the NFW profile (7.2)-(7.3) bad@M densities (7.9).
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Chapter 8

Stability of Hernquist models with
a supermassive black hole

Instead of fitting models to given data, we will now attemp tlonverse: given
a set of Hernquist models, we will extract data sets of pagjdy means of a
Monte Carlo code. We will investigate the radial-orbit stigbof these systems
using N-body simulations; in particular, we discuss the influente oentral
supermassive black hole on the stability of these systerhe.r@sults of this
chapter are found in Buyle et al. (2007). TNebody simulations were carried
out by P. Buyle, the Monte Carlo simulations and stabilitalsisis were done
by the author.

8.1 Introduction

Nowadays it is accepted that almost every galaxy hosts aatesipermassive black hole
(SBH) at its core. Since the kinematical discovery of tha #8H with the Hubble Space
Telescope (HST), extensive studies have been carried oudny groups that investigate
the demography of SBHs and the effect of the SBHs on theirenmient. The most pop-
ular discoveries are the correlations between the mase @B (M/gy) and respectively
the total blue magnitudé g of the hot stellar component in which it resides (Kormendy
& Richstone 1995), the central velocity dispersion of thedtellar component (Ferrarese
& Merritt 2000 ; Gebhardt et al. 2000), the central light centrationC'(«) or equivalent
the Sérsic index (Graham et al. 2001) and the maximum rotational velocithefgalaxy
(Ferrarese 2002 ; Baes et al. 2003; Pizzella et al. 2005 ;eBetyhl. 2006). These rela-
tions have been calibrated with the known masses of the SBttie mearest galaxies, that
mostly have been derived by means of either stellar or gasatics.

Sophisticated axisymmetric 3-integral dynamical modwds &llow a variation in mass-
to-light ratio and anisotropy as a function of radius haverbebtained by fits to the line-of-
sight velocity distributions (LOSVDSs) in the galaxies, whiwere derived primarily from
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high-resolution spectra taken with the HST

Flos(Q,v,) = / / / F(E,L) dzdv, dv,. (8.1)

The accuracy of the applied dynamical models to the obsestadlhr kinematics is still
improving steadily and is reflected on the complexity of thesD Despite this positive
progress on the dynamical front, very few anisotropic dyicairmodels of a galactic nu-
cleus have been tested for dynamical stability (FerrareBer® 2005). One of the reasons
for this is the complexity of the distribution functions, igh are mostly numerically de-
rived. Hence, to simulate these numerical DFs one normalbyaximates numerically
the solution of the Jeans equation to derive the velocitpatision profile and then uses
Gaussians to provide local velocity distributions. Howegiteis known from simulations
of galactic systems that this method causes serious nushariifacts (Kazantzidis et al.
2004).

Among the few theoretical analytical systems that conteaB#él are the ones derived
by Ciotti (1996), Baes et al. (2003) and Baes et al. (2005krelthe attention is drawn
primarily to the Hernquist model since this is the best-kn@pproximation to the Sérsic
profiles that are observed in bulges and elliptical galaeed by Stiavelli (1998) where the
distribution function of a stellar system around an SBH isvael from statistical mechanic
considerations. Ciotti (1996) initially starts with a 2rzponent system containing the
luminous and dark matter and creates both isotropic andtajsc (based on the Osipkov-
Merritt strategy, see Eq. (2.168)) systems. The dark matio (also represented by a
Hernquist model) can be transformed into a central SBH kynggthe core radius to zero.

In this chapter we present the results of a dynamical staliilvestigation of spheri-
cal systems containing an SBH, as a function of the mass dsBt¢ and the anisotropy
radius of the system. In Section 8.2 we describe a Monte Gédglarithm that we devel-
oped to generate the initial conditions for the models, tlogrewith our/N-body code and
technique for investigating the stability. We present istia 8.3 the results of a stability
investigation of a family of anisotropic Hernquist modelghsut an SBH, with different
anisotropy behaviours (Baes & Dejonghe 2002). In Sectidn& describe the Osipkov-
Merritt Hernquist models with a central SBH, introduced bgt€ (1996). We investigate
the stability of these systems in detail in Section 8.5, carmg them with the correspond-
ing models without an SBH. We perform this in a 2-parametacsgas a function of the
anisotropy radius, and the mass of the central SBHIn Section 8.6 we present our final
results and conclusions.
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8.2 Computational method

8.2.1 Definition of the Hernquist models

First we introduce some general characteristics of the tsdd@®ur dynamical study. All
systems are based on the spherical Hernquist potentiaitgdgrair (Hernquist 1990), in-
cluding a supermassive black hole in the centre. Given tlaissnprofile, we shall inves-
tigate several distribution functions (DFs) consisterthwhe density outside the centre,
and which we will refer to as the stellar component. If we dertbe total stellar mass
by Ms, we can write the total mass gt = Ms(1+ 1), where the fractional quantity
determines the SBH mags\/s. In our subsequent analysis we will work in dimensionless
unitsG = Mg = 1, so that the gravitating binding potential and the dereitygiven by

1
W)=t 6.2)

1 1

We will also express the time-steps in dMrbody code (the time between two successive
calculations) in dimensionless units of half-mass dynahtime, which is defined as the
dynamical time (Section 2.2 in Binney & Tremaine 2008) atdtedlar half-mass radius:

3T

Ty, = 8.4
h 16C7 (8.4)
where
_ 3M
F= (7’31/2). (8.5)
47r7°1/2

For a Hernquist model witlh = 0 the half-mass dynamical time and the half-mass radius
are

3/2
ﬂf:%gﬁ(1+vﬁ) : (8.6)
rij2=1+v2. (8.7)

We will also use these units for models with an SBH.

A conversion to observational units can be obtained thrabghclose similarity be-
tween the Hernquist and De Vaucouleurs profiles (Hernq@80}, withry/, ~ 1.33re,
wherer is the effective radius. Then a physical length, time andaig} are found by the
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scaling relations

F=Fyr, (8.8)
. ~3
G Ms
b | Mot (8.10)
Ty

with Ms the stellar mass)/io; the total mass and, ™= (1.33r¢)/(1+ v/2), expressed in
physical units.

Every model was simulated by means of Hjual-mass particles that all follow the
distribution function of the system and are contained withisphere of radiug, = 2000
which encloses about 99.9% of the stellar mass of the systéeperformed the simula-
tions for 50 dynamical times, and used the values of the atissc/a andb/a during this
time as (in)stability indicators (see Section 8.2.4).

8.2.2 Constructing the data sets

Since we will investigate our models by meansfbody simulations, the first objec-
tive is to obtain representative discrete data sets fronedhsidered distribution functions
F(E,L). In order to extract discrete data samples from the modedsieed to simulate

random particles uniformly in the phase-space enclosetidipFs. To this aim we used a
Monte Carlo simulator, developed by the author.

The procedure works as follows: we write each DF&s, v,., v;) and we consider a 4-
dimensional grid space wittr, v,., v,) as abscissae and the function values on the ordinate
axis. We start with a single cell in this space, extendingnfithe origin to a boundary
(v, vrb, 7 p), Wherery is chosen to be sufficiently large, andp = vy p = \/2¢(0),
and with the ordinate set at the (known or estimated) DF maxirfy,. These boundaries
(for infinite values a sufficiently large value is taken, sedter) enclose a 7-dimensional
phase-space volume

Vi= (%ﬂg) (2%) (wu§7b> fo (8.11)

In the second step we attempt to split the cell into 8 sulsoglth different ordinates
(i.e. the up to that point known function maxima in each cellherefore a co-ordinate
(rs,vr,s,07 5) iS SOUght to Serve as the common corner point in the absdissteese sub-
cells: starting in the cell centre, the total phase-spatenve of the originating sub-cells
is calculated, and through a number of iterations the cedt@éned for a better splitting
point, i.e. which minimizes this volume. In this manner, traginal cell is being split as
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Figure 8.1 Visualization of an isotropic Hernquist systeithy = 0.1 and our approxima-
tion with cells. After 8 subdivisions 991 cells were constad, with a total phase-space
volume ofVg = 1.533, while the real total stellar DF volume is 1. Thus, theorat rejected
to accepted particles is®B3 and on average 35% of all randomly chosen test particles
in the cell volume will be rejected, resulting in a highly ef@int Monte Carlo simulation.

efficiently as possible into 8 new cells, adding up to a newaltadlume

8 8

8n2

Vo= Z Vo= Z 3 (Tg;i - Tg;i)(vnb;i - Ur7a;i)(1}§“7b;i - U%a;i)fb;iv (8.12)
i=1 i=1

which is a better approximation to the real DF volume. Hece,d celli we denoted
V5, its volume, (ra;, vy aj, Ur,a;3) @nd (o, vy bii, Ur ;) its lower and upper bounds in the
abscissae, anfl,; its maximum DF value.

Next, each cell in our grid is examined according to the pdoce above and split
if it leads to a significant decrease in the total volume. Thafter the examination of
every cell, a new voluméj is obtained. This loop is repeated until afief steps the
phase-space volunié,; has converged sufficiently close to the real volume. Typicad
our simulations, the cells cover a volume that is a factortd.5 larger than the model's
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Figure 8.2 The relevant profilegr), o,.(r), or () and3(r) of the outcome of a simulation
of a Hernquist system with = 0.1 andr, = 1. The continuous lines denote the theoretical
model, the discrete data represent inulated particles, binned and with error bars.

actual phase-space volume; a further refinement is unregesice constructing more
cells would be more time-consuming than actually genegatir desired number (2p
of particles (see below). If the grid is successfully comstied, F'(r,v,.,vr) is entirely
enveloped by a set of 4-dimensional grid cells.

Now we can proceed to a classical acceptance-rejectionévioatio (MC) simulation
(in the remainder, we refer to setting up the initial coratis of a DF as a “MC simula-
tion”). To generate a data point first a valueV,, is randomly chosen between O aWigh.
We can associate this value with a unique ¢elhd an ordinatg,, for which

j—1 J
ZVM;i <V < ZVM;ia (8.13)
i=1 i=1
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Figure 8.3 (a) The initial particle positions of a Hernquisbdel with an increasing
anisotropy withg = 0.5 and X = 5. 80% of the total mass is shown in the figure. (b)
The density distribution after 10 half-mass dynamical 8mA bar is clearly visible. (c)
The axis ratioc/a plotted as a function of time. As can be seen from both theityens
distributions and the axis ratio, an elliptical bar is ceghindicating that the system is
unstable.

and
— 8r° 3 3 2 2
Vi = Z Vi + T(rb;j - Ta;j)(vr,b;j - vr,a;j)(UT,b;j - UT,a;j)fn- (8.14)
i=1

Then, in cellj the coordinatesgu <rd < rg’;j , Urag < Urn < Upbij andv%a.‘j <vZ, <
v%’b;j are randomly generated. Thus, a pdint, v, n,vr ., fn) iS uniformly chosen in
the 7-dimensional phase-space voluvig. Now, if f,, < F(ry,, v, n,vr ), the coordinate
(rn,vrn,vr ) IS accepted as a valid data point, otherwise it is rejectedthErmore, if
foyj < F(rpn,vrn,v7 5), the cell volume is accordingly increased to the new maxinson
the grid keeps being improved.

In this manner we construct a data setMdfaccepted coordinates inside the chosen
radiusry which follow the distribution. The MC simulation is regasuccessful if the
cell volumes have changed negligibly (if the relative chanfjithe total volume is smaller
than 10-3) during the MC simulation. If not, a new MC simulation wittetfinal grid (with
volumeV, 4 ) is necessary. Also, if the ratio between rejected and dedgmints is very
large, causing the MC simulation to be slow, the grid mighteht be refined further (as
aforementioned, we stop refining the grid once the cellscawelume that is a factor 1.5
to 5 larger than the model’s actual phase-space volume).

Finally, every coordinatér,,, v, »,vr ) has to be converted into a phase-space point
(Tn, Ynr Zny Vao,ms Uy ny Uz n). TS iS done by uniformly simulating the surface of a sphere
with radiusr,, (creating(z,,y»,2»)), a circle with radiusir ,, (creating(ve,»,v,,»)) and
the sign ofv,,,. The velocities can then be transformed into the apprap@atrtesian
coordinates. For isotropic functiodd E) the grid abscissae simplify to the 2-dimensional
(r,v) space, and the entire procedure is analogous.

Our method has several advantages: the construction ofl @agd the subsequent MC
simulation of points is straightforward, fast, accuratd generally applicable. This con-
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trasts with algorithms that require integrations and isi@rs of DFs, which can experi-
ence numerical problems when applied to intricate funstiokiso, no intermediate steps
are required (e.g. simulating the density first before aisgvelocities to each particle)
and once a grid is made for a model, it can be re-used to genamadrbitrary number of

particles. Moreover, since a peak can be adequately isblate cell, infinite ranges in

the coordinate space or the DF values can be approximatekdmsing appropriate large
boundary values.

As an example, we show in Fig. 8.1 the constructed cells faisatmopic Hernquist
system with a central SBH gf = 0.1 (see Section 8.4). A simulated data sample’ (10
accepted particles) for an anisotropic Hernquist systeth avcentral SBH of, = 0.1 and
an anisotropy radius of, = 1 is shown in Fig. 8.2. In all our MC simulations, we truncate
the infinite boundary radius at = 2000. For the DFs with an infinite maximum, we set
fo = 105, and for the SBH-models we set the maximum velocity at thérarily large
valuev, = 10%° (these values are in fact much larger than needed. In rgaditparticle is
ever assigned such a high DF value or initial velocity andenexaches such high velocities
during the subsequeni-body simulations). For another application of our code,Get-
Osselaer et al. (2012).

8.2.3 NN-body code

We studied the stability of our models by using/sirbody code that is based on the “self-
consistent field” method (Hernquist & Ostriker 1992). Thisthod relies on the series
expansion in a bi-orthogonal spherical basis set for baghdémsity and gravitational po-
tential

’f' 0 ¢ ZAnlm pnlm T, 0 ¢ ZAnlm pnl Y—lm (07¢)7 (815)
nlm nlm

’f‘ 0 ¢ ZAnlm nlm T, 0 ¢ ZAnlm nl lem(97¢)a (816)
nlm nlm

whereY;,, (0, ¢) are the spherical harmonics. Some freedom is considerdHifoexpan-
sion since fr; (r),dan (r)) can have different forms (e.g. Plummer model, Bessel fanst

spherical harmonic functions), however here we will userafsimilar to the Hernquist
model due to its trivial connection with our anisotropicteyss that we wish to examine:

~ Knl rl
Puilr) = a3

D, (r) = —2/7

C{#3/2)(¢), (8.17)

l
r (21+3/2)
(e L O (8.18)
whereK,,; is a normalization constan§,= (r —1)/(r + 1) andC\2 %2 (&) are Gegen-
bauer polynomials (e.g. Szegd 1939, Sommerfeld 1964). cDe#ficientsA,,;.,, can be
calculated by means of all the particles that describe thefD#ur system (see Hernquist
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& Ostriker 1992 for more details). The spherical accelerstifor each particle are found
by taking the gradient of the potential (Eq. 8.16). FinalBwnpositions and velocities
are derived with the use of an integrator which is equivalenhe standard time-centred
leapfrog (Allen & Tildesley 1992 ; Hut et al. 1995),

1

Tiv1 = 5 + Dtv; + EAtzai, (8.19)
1

Uiyl = Vi + EAt(ai +aip1). (8.20)

The indicesn, (I, m = —I..1) are indirectly an indication for the accuracy of the sintiola
for respectively radial and tangential motion, since thetednine the number of terms in
the expansion (see Section 5.2 in Hernquist & Ostriker 1892 ftatistical analysis). For
the systems without the SBH we find thatax = 4 andinax = 2 assures a total energy
conservation of better than 10~° over 50 half-mass dynamical tim&% and still allows
a low CPU time perV-body time-step (the time between two successive calomg}iof
At =Ty, /416~ 0.02. For the systems with an SBH, we usagax = 6, Imax = 2 when
1< 0.05, andhmax = 8, Imax= 4 for larger values ofi. The gravitational effect of the SBH
is added analytically by an extra radial acceleration progoal to the mass of the SBH. To
avoid numerical divergences when particles pass closet8#i, we included a softening
lengthe = 0.05. At this radius the dynamical crossing time of a partisl&;j = 0.37, and
in consequence the chosen time-step.6RGssured a energy conservation better than 1%
over 50 half-mass dynamical times.

In order to check the robustness of our results, we performwedkinds of tests. We
(i) re-ran a number of simulations with different, smaller tisteps, andii) we performed
simulations with highenmax andimax values. A detailed comparison of these extra runs
with the original simulations shows that our results andchasions do not change: the
variation of the global instability indicators, such assardtios or Z,./ K, as a function
of time are essentially the same. In a later follow-up stugyalso re-ran the simulations
with a multi-step version of th&/-body code and more particles. Again, the results were
similar, although we required more than 50 half-mass dynahtimes to obtain the same
outcome.

8.2.4 Quantifying the instabilities

When a system is unstable, it tends to create a bar featurecarnitre (see Fig. 8.3) which
roughly has an ellipsoidal shape. As noted by other authdesr{tt 1987 ; Palmer &
Papaloizou 1987), the physical cause of instability is lsintio that of the formation of
a bar in a disc (Lynden-Bell 1979), where a small perturlmatibanges the orbits with a
lower angular momentum (initially precessing ellipse$) inoxes which are aligned along
the initiated bar. A particle in a box orbit is unable to presall the way round and will
fall each time back to the bar. This effect will cause the lbantrease in both size and
strength. To measure the radial stability of the systemsteglfihe shape of an ellipsoidal
mass distribution by means of an iterative procedure (Dskii& Carlberg 1991 ; Katz
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1991; Meza & Zamorano 1997 ; Meza 2002) at every half-massuthyral time. This
detected any bar feature that is located within a certailusad he initial condition of this
method is

i A
p=pla) with a=(2°+ =+ — , (8.21)
¢° s

and withM;; =" I;? , the principal components of the inertia tenddy. < My, < M,
and the axis ratiogands equal to 1, assuming a spherical mass distribution withertamn
sphere with a given radius for which we choge=5. For all considered models this radius
encloses approximately 70% of the total mass. To achievaethenditions a transition
to the centre of mass has to be made followed by swapping thelic@te axes into the
correct order. In the next step the eigenvalues and eigtorssaf the inertia tensaf;; are
calculated, transforming it into a diagonal matrix. At thisint the new axis ratios can be
calculated

1/2 1/2
(M, b (M., _c
q_<JV[M> = andS—<Mm> = (8.22)

which in turn are used as the conditions for the next itenegtep. The iteration was stopped
as soon as both axis ratios converged to a value within agiadléshed tolerance of 16.
Thus at each half-mass dynamical time the values of thesaatids serve as measures of
the strength of the bar instability, if present. In partanulve will focus our attention on
two values ofc/a, namely at the moment when these ratios reach a minimumafhen
the instability is strongest) and at the final time 5077},.

8.3 Hernquist models without a black hole

In this section we investigate the stability of two diffetéamilies of anisotropic Hernquist
models without a central supermassive black hole. For thg/acal construction of these
models we refer to Baes & Dejonghe (2002), however we wilhpétilate the characteris-
tics of each family.

8.3.1 Family I: Decreasing anisotropy

We find Hernquist models with a decreasing anisotropy byrassyian augmented density
of the form

1 1/14_26n (1+ r)z(ﬁo_ﬁn)

pa,r) = o (1_w)1_250 1280 ) (8.23)
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with 3, = Bo— % andn a natural number. After some algebra we find the distribution
F(E,L) = =2 F(5—28,) -2 F5/2-20n+0

(B.L) = g7 (5= 26)

x>

n
k=0

<Z> (&t —ﬁo>r<§—7’“ — 2B, + o) (

\/ZE

— 206, + Bo; E) ;
with o F; a hypergeometric function, and the anisotropy
2
[7’(7") —1— UZ(T) _ ﬂ0+ﬂn'r

(o3

2r)

(8.24)
1+

(8.25)
which decreases as a function of radius. Sincefpg 0 we only find tangentially domi-
nated systems which are free of radial instabilities, wé kimarselves to the investigation of
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the casegdy = 0.5. For this valuep = 0 corresponds to a system with constant anisotropy.
We plotted the axis ratiog/a for a number of different models with differentin Fig. 8.4.
Here and in the remainder of the chapter, we define those mtukl keep the axis ratio
¢/a Z 0.95 over 50 dynamical times as being stable. The only modebibxs not satisfy
this criterion is that withn = 1, which is everywhere radially anisotropic. Fot> 2, the
models become tangentially anisotropic at larger radiiasa consequence are much more
stable. This is evident from Fig. 8.4. Itis clear that the imiam of ¢/a is reached rapidly,
whereafter the systems are in an equilibrium state, butligtetly non-spherical.

8.3.2 Family Il: Increasing anisotropy

The models of our second family are Cuddeford (1991) models Eq. (2.168)) with an
augmented density and DF of the general form

) = r =20 () (L4 Ar2) 7 with A= 3, (8.26)
L2

F(E,L) = Fo(Q)L™% with 0< Q= F~ 255 <1, (8.27)
T(l

and £/ denotes the energy, the angular momentum and the anisotropy radius. The
explicit form of f(y) for the Hernquist potential-density pair can be found in 8&e
Dejonghe (2002). As mentioned by them, the DFs can be writtextytically for the half-
integer valuegiy = 0.5,0,—0.5,—1, so we will limit ourselves to these cases. For every
value of 5y, we also computed numerically the maximum anisotropy valig(o), out-
side which the DFs become negative for some value§ a@hd L. The area of physical
systems is indicated in Fig. 8.5. Our models have the foligvfunctional form:

[ ﬁo =0.5:
Q 3Q%+)\(3Q°-5Q+2)

F(E,L)= 77 2107 (8.28)
e fp=0:
- 22
+/Q(1-2Q) (862(21__7282_?#&) ] . (8.29)
o (o=—0.5:
FE.L) = Lf(Q) (8.30)

2m3(1- Q)*V/ Q2+ A(1—-Q)?’
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Figure 8.5 The stability of the Hernquist models without adil hole and with increasing
anisotropy (see Section 8.3.2), expressed as the mininfeeadxis ratios:/a during the
simulations. The shaded area indicates the region of phlysystems, i.e. with a non-
negative distribution function.

with

f(Q) =6(14))%Q% — 2(16)2+ 261 +10)Q°
+ (7002 + 87\ + 20)Q* — 2\ (40 4 33)Q3
+ (500 +19)Q% — 16)\2Q + 2)2. (8.31)

) ﬂo =—-1:
LZ
256\/2m3(1— Q)

5

F(E,L) = - (8.32)

f_@Q) +ff/(g)}, (8.33)

arctan(



170 Chapter 8: Stability of Hernquist models with a supermassie black hole

with

f1(Q) = 15[(16) +120)Q? — (72+ 32\)Q + 15+ 16)], (8.34)

£2(Q) = 3841+ 1)?Q°
— (1984\% + 3712\ + 1728 Q°
+ (4160\> + 7008\ + 2784 Q*
— (448002 + 6192\ + 1200Q°®
+ (25600 + 2368\ 4 930)Q?
— (704) 240\ + 225)Q + 64)\°. (8.35)

For all models the anisotropy is given by the simple formula

Borg + 1
B(r) = 27 (8.36)
showing an increase in anisotropy as a function of radiuse rEsults of theV-body
investigation for all3p and\ are summarized in Fig. 8.5, where we plotted the minimal axis
ratiosc/a for the DFs in this parameter space. To derive this plot, weikited systems
with 5o = 0.5,0,—0.5,—1 and\ = 1,2,4,6,10, 16,24, all of which are physical. The case
wheresy = 0 corresponds to the traditional anisotropic Osipkov-Nigrternquist model
that has been previously investigated in a similar way by&&Zamorano (1997). These
authors state the system witha 1.1 (or A ~ 0.82) as stable. To compare our study with
theirs, we simulated this model in addition to the otheresyst. For this model we find an
axis ratioc/a ~ 0.95 after 50 dynamical times, and<2 / K ~ 2.24 during the entire run.
These values are in agreement with their results, therefengill definec/a = 0.95 as our
stability criterion.

As is to be expected, the anisotropy radiustrongly affects the formation of radial-
orbit instabilities, so that only models with a low value ofemain stable. Furthermore,
we note that all models remain in their new equilibrium stter¢ ~ 107}, as in case of
the DFs of Family I. As an example, tlhida ratio evolution for one of the systems is given
in Fig. 8.3.

8.4 Hernquist models with a supermassive black
hole

The now established presence of diverse components in &\grgaty of galaxies calls
for more advanced dynamical models. In this respect a datkemiaalo and a central
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Figure 8.6 The distribution functions defined by Ciotti (899with different anisotropy
radiir and SBH masg. The valuer, = oo corresponds with the isotropic case; foe= 0
the DFs reduce to Eq. (8.29).

supermassive black hole are important and can change teysaproperties dramatically.
However, up to now there are few known analytical systenditichude e.g. a supermassive
black hole. The only models known so far are presented irti¢i®296), Baes & Dejonghe
(2004) and Baes et al. (2005), which are all based onytheodels with special attention
to the Hernquist model and in Stiavelli (1998) where theritiation function of a stellar
system around an SBH is derived from statistical mechanisiderations.

In this section we investigate the radial stability of batbtropic and anisotropic Hern-
quist models containing a supermassive black hole, as thpsesent the closest analytical
approach to the observations. For the following sectionswilaise the representation of
Ciotti (1996); again, we are not going into great detail ia trerivation of the analytical
distribution function.

In essence the DFs are obtained from an analytical Osipkexritélinversion of the
systems governed by Eq. (8.2) and (8.3). As a consequeress, thodels can be viewed
as a extension of Eq. (8.29). Subsequently, we will refehtsé combined systems as
Osipkov-Merritt models. The DFs can be written as

(8.37)

where@ has the same definition as in Eq. (8.27). A more natural paeames defined
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through

Q:q(1+1i), 0<g<l (8.38)
—q

8.4.1 Family I: Isotropic

We find an isotropic system by letting diverge tooco. Then Eq. (8.37) simplifies to

1
FE)=F(E) =5 () 5 1FE0), 8:39)

with the argument defined ag? = 1—gq. Forﬁf(l) we refer to Ciotti (1996) as this
involves combinations of elliptic and Jacobian functiolfiese models only differ from
those of Baes et al. (2005) in the definition of the parameter

Although the systems are isotropic, their DFs have a locadimam wheny > 0 (as
shown in Fig. 8.6). Hence, the sufficient criteria of Antor(@®62) and Doremus et al.
(1973) for isotropic systems cannot be applied. Howevegunsubsequent analysis of
the systems with and without an SBH in Section 8.5, it will bewn that all models
with 75 > 1 are stable. In other words, it becomes evident that thetiaddif a central
SBH, although it changes the dynamics dramatically, doéiflaence the stability of an
isotropic system.

8.4.2 Family II: Anisotropic

In a similar way as the isotropic case the distribution fiorxctan be written as

F(Q)=Fi(Q) F:; ), (8.40)
1 A\t [4 FE(1)
=578 <E) i [Fii(l) + ?} : (8.41)

where agairﬁ;t(l) is defined in Ciotti (1996). In Fig. 8.6 we display systemdwgieveral
values ofu andr,. Notice that for small values of, the DFs have a local minimum. As a
consequence, for evepythere exists a smallest possiblg where this minimum becomes
zero; smaller values of this boundaryresult in negative DFs, thus creating unphysical
systems. Fop. = 0, the minimal anisotropy radiusig ~ 0.202; foru = 0.1 the boundary
becomes;, =~ 0.240. From the viewpoint of a stability analysis these systane the most
interesting. In the following section we will discuss theirolution in detail, comparing
them with the models without an SBH (Eq. (8.29)).
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8.5 Stability analysis of the Osipkov-Merritt mod-
els

To investigate any trend about the radial stability of theggtems, we investigate the 2-
parameter spacedu). In total, we performed 25 simulations, with = 0.25, 0.50, 0.70,
0.85, 1.00 and, = 0.01, 0.03, 0.05, 0.07, 0.10. In this way we derived a grid otigal
of the ¢/a axis ratios, shown in Fig. 8.7. As stated before, the: 0-axis corresponds
to the systems in (Eq. 8.29). The solid lines indicate theinmah values reached during
the simulation (i.e. when the instability is strongest). eTiate at which these minima
are reached strongly depends @ ranging from a few half-mass dynamical times for
highly radial models ta =~ 507}, for systems withry = 1.00. After the point of time
upon which a system obtains its minimgk the influence of the SBH causes a diminution
of the bar instability, resulting in the/a axis ratios at = 507}, shown by the dashed
lines. Thus, in each system the particles are affected byctwmteracting forces: the
(relatively fast) bar formation and the (more graduall\gtsering near the centre due to the
spherically symmetric gravitational potential of the ti&ole. The contour line/a = 0.95

is highlighted as our stability criterion.

Clearly, an SBH mass of a few percent can prevent or reducbahastabilities in
anisotropic systems. This result agrees well with similadies in disk galaxies (Norman
etal. 1996 ; Shen & Sellwood 2004 ; Athanassoula et al. 20@&piphi & Hernquist 2005).
The effect is most clearly visible for models with strong ieddanisotropies, where the
decrease of the bar strength is proportional to the SBH massther words, while more
radially anisotropic systems develop stronger bars tharensotropic models, the bars of
the former are more easily affected by a supermassive blalek fThis is to be expected,
since radial systems host more eccentric orbits, therefaree particles from the outer
regions pass near the centre where their orbits can be cGlbgréne Kepler force of the
SBH.

A full dynamical analysis would require a detailed studytud prbital distribution of
the stellar mass. However, we can gain important insiglitstire evolution of the models
by visualizing their density and velocity dispersions ie fhrincipal planes of the bars. In
order to retain a notion of radial’ and 'tangential’ motionan evolved system (resembling
a triaxial model) at a certain timewe use the method described in Section 8.2.4 to approx-
imate the mass distribution inside the radiy®f each particle by an ellipsoid. Then, the
velocity of a particle can be written into two componentgygedicular resp. parallel to its
surfacev; = v; | +v; . Subsequently, the perpendicular and parallel velocspelision
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Figure 8.7 Contour plot of the axis ratiga for the Osipkov-Merritt models as a function
of anisotropy radius and mass of the SBH. The shaded arezbedithe region of physical
systems, i.e. with a non-negative distribution functiomeolid lines indicate the mini-
mal values during the simulation, the dashed lines show tiweratios at the end of the
simulation (at = 5077,).

of them nearest neighbours around a positioare

1 & _\2
2
ol(r)=—— ; (i1 —01)", (8.42)
200\ _ 1 S —\2
O'” (’I") = Z(m— 1) Z (Ui_’” —UH) . (8.43)
i=1
In a similar manner we define
1 N
K ==Y, (8.44)
N -1

1 N
2
Kj=+ > 2, (8.45)
=1
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Figure 8.8 The spatial densigyand the velocity dispersions andoy, in the three prin-
cipal planes, of an Osipkov-Merritt Hernquist system withan SBH, and withry = 0.25.
Dynamical timeg = 0, t = 257}, andt = 5077, are displayed.

so that Z(, / K| can serve as a non-spherical extensionisf 2K r.

In Figs. 8.8-8.11 we show the evolution of 4 systems by me#ttealensityp(r) and
velocity dispersions () ando (r), in at dynamical times = 0, ¢ = 25T}, andt = 50T},.
In each principal plane the moments are calculated on a §B8@D points, with 50 nearest
neighbours around every grid position.

Fig. 8.8 displays an Osipkov-Merritt system without an SBhtl anisotropy radius
ra = 0.25. This model has a strong bar formation, resulting intoa egquilibrium state
aftert = 107}, which it retains during the rest of the run (as can be seen=a257}, and
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Figure 8.9 The spatial densityand the velocity dispersions andoy, in the three prin-
cipal planes, of an Osipkov-Merritt Hernquist system with@BH of x = 0.05, and with
ra = 0.25. Dynamical time¢ = 0, t = 25T}, andt = 5077}, are displayed.

t = 5013). This bar alters the density distribution into a roughlgxial symmetry, even

peanut-shaped in th& Z-plane where the radial instability is the most prominenhe T
tangential dispersion increases significantly. This occurs especially at the gdgbere

in contrast the radial dispersion vanishes. This can beaggudl by the mechanism of the
bar formation: particles that pass through the bar are gtdieards it, and eventually align
their orbit with the bar. Only the orbits along the principaks remain largely unaffected
by the bar due to the symmetric forces on these particlesdibrir motion remains radial.

In Fig. 8.9 a model withr, = 0.25 andp = 0.05 is shown. Again a bar is formed, but
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Figure 8.10 The spatial densifyand the velocity dispersions, andgy, in the three
principal planes, of an Osipkov-Merritt Hernquist systenthvan SBH ofy = 0.1, and
with 4 = 0.25. Dynamical timeg = 0, t = 25T}, andt = 507, are displayed.

less pronounced than in the absence of an SBH. Clearly,glth@run the bar is reduced
by the SBH, causing a gradual increase in ¢fie axis ratio (X Z-plane). More striking
however is the evolution in th& Y -plane, where the ellipticity has disappeared. Thus, the
model has become an oblate axisymmetric system. This isefleated in the dispersions:
o), again follows the bar structure, but the cross-fermvanishes as particles pass near the
SBH. Since most particles reside in th&-plane, on eccentric orbits (sinegis small),

the scattering in this plane is strongest. After 507}, we expect a further small increase
in the ¢/a axis ratio, but as the velocity dispersion becomes moredpat fewer particles
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Figure 8.11 The spatial densifyand the velocity dispersions, andoy, in the three
principal planes, of an Osipkov-Merritt Hernquist systerthvan SBH ofy = 0.05, and
with 4 = 0.50. Dynamical times = 0, t = 25T}, andt = 507}, are displayed.

from the outer regions will pass near the centre (i.e. becadteby the SBH), hence the
model will not change much further.

This can also be seen by comparing the system with0.05 to a model withy = 0.1
(Fig. 8.10). This model has essentially the same propeatighe former. The larger SBH
mass has above all influence on its efficiency, resulting asgef bar reduction.

Finally, we consider the effect of the anisotropy radius bglgsing a system with
© = 0.05 andr; = 0.5 (Fig. 8.11). Compared to Fig. 8.9, the initial bar is lessryg,
as expected. However, its structure and evolution is diffefrom the system with, =
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0.25. First,o, remains spherically distributed during the run, thus lesdtering occurs.
This implies less reduction of the bar instability. Moregwbe density does not become
symmetric around th&g-axis. In contrast, th& -axis is now the symmetry axis during the
entire run, resulting in a prolate axisymmetric systemhitst seems that models with an
SBH become oblate or prolate, depending on their velocitycropy. It would indeed be
very interesting to compare the orbital structure of bo#sthsystems in full detail.

As a final remark we note that inside a radiys = ,/1z/(1— /i) the force of the
SBH is stronger than the stellar component, so that all nsodhain spherical inside
this radius. In conclusion, systems with an SBH become axisgtric systems with a
spherically symmetric core.

8.6 Conclusions and summary

Most mass estimates of SBHs result from dynamical model#loérestellar or gas kine-
matics. The inclusion of strong radial anisotropy is coasid in these models (Binney
& Mamon 1982), yet they have never been tested for radiallgyal®Our goal was to test
the stability of systems with a central SBH and to look for émend as a function of the
mass of the SBH. We used the same method that was previotisiduiced by Meza &
Zamorano (1997) and extended it to systems with a central. §BHfirst tested the pro-
cedure on Hernquist systems (Baes & Dejonghe 2002) witho@&BH and with different
anisotropic behaviour. Our method appeared to be efficiediscriminating the stable
from the unstable systems.

Instead of focusing on complicated numerically derivedatyical models, we opted
for analytical distribution functions that take the effefta central SBH into account, in
order to be able to look for any trend. Since the isotropiaigarst models with an SBH do
not have distribution functions that are monotonicallyréasing functions of the binding
energy (Ciotti 1996 ; Baes & Dejonghe 2004) and hence thecseiffi criteria of Antonov
(1962) and Doremus et al. (1973) for isotropic systems cebb@applied, we first investi-
gated the radial stability of these systems. No effect wasddy letting the mass of the
SBH vary, giving only stable systems. However, in the caga@énisotropic systems with
an SBH we did find a dependence of the stability of the systerthemass of the SBH.
The more massive the SBH, the more stable a system becomessgrcially the more
the instability is reduced. A trend which is most obvious @émywanisotropic systems (thus
with very small anisotropy radiug). An SBH with a mass of a few percent of the entire
galaxy mass, is able to weaken the strength of the bar, whialcorrespondence with sim-
ilar studies in disk galaxies (Norman et al. 1996 ; Shen &vmild 2004 ; Athanassoula
et al. 2005; Hozumi & Hernquist 2005). Judging from Fig. 8h& stability boundary of
¢/a 2 0.95 over 50 dynamical times, shifts from~ 1.1 for y =0tor, ~ 1.0 for x = 0.1.
This corresponds to,./Kr = 2.2 for y =0 and to K ./K, = 2.0 for u = 0.1. These
values are in very good agreement with previous authors.

Remarkably, systems with an SBH but with different aniseyroadii r, evolve differ-
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ently: highly radial systems first become triaxial whereathe SBH makes them more
oblate, while less radial models tend to form first into arigyetric prolate structures, that
then become less elongated due to the influence of the SBH.

Itis also interesting to note that the central density itigtion of systems with an SBH
remains spherically symmetric during the entire simutatiat to a radius of half the effec-
tive radius. This is not the case for systems without an SBltclvbecome axisymmetric
or triaxial, depending on,. Interestingly, this includes the region that is considdoe the
Mgy — o relation, which predicts such an evolutionary link betwé®an central SBH and
the spheroid where it resides. Similarly, the central anigry parameter decreases as a
function of time at a rate proportional to the mass of the S#lit to more tangential orbits
at the centre.

Our analysis of the influence of a central SBH on the stabdftya dynamical sys-
tem supplements previous research that shows that bottatdansity cusps (Sellwood &
Evans 2001 ; Holley-Bockelmann et al. 2001) and isotropiesdTrenti & Bertin 2006)
also act as dynamical stabilizers.
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