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1. General introduction 

 

Nowadays, a great variety of substances described as hormones is known and can 

be defined in a number of ways, according to origin, functionality, chemical 

structure,… Following the classical approach, hormones are defined as chemical 

substances secreted into the bloodstream by endocrinal glands to fulfill their 

messenger function and trigger the demanded response in the targeted tissue.  

Considering that not all hormones are produced by the body itself, but can be 

administered as well, distinction is made between endogenous and exogenous 

hormones. Endogenous hormones are assimilated by the body itself, whereas 

exogenous hormones enter the organism from outside. 

Exogenous substances with hormonal activity can either be xenobiotic substances, 

which do not naturally occur in the organism itself, or homologues of endogenous 

hormones.  

The best way to categorize hormones is by chemical structure and functionality. 

Distinction is made between amine-derived substances with hormonal activity 

(examples are β-agonists, thyroid hormones), peptide hormones (examples are 

insulin, growth hormone) and steroid hormones. Since the latter are the main subject 

of this thesis, further discussion will be limited to these compounds.  

 

1.1. Definitions of steroid hormones 

 

1.1.1 Steroid nomenclature 

Steroids are characterized by a skeleton of perhydrocyclopentanophenanthrene, also 

referred to as sterane.1 It is a cyclic structure consisting of three fused cyclohexane 

rings (ring A, B and C) and one cyclopentane ring (ring D), shown in figure 1.1 with 

position numbering, containing 17 carbon atoms in total. By addition of double bonds, 

bond scissions, ring expansions or contractions in the skeleton, and/or by the 

addition of different functional groups to this core structure, a wide variety of 

compounds can be obtained, for which a specialized nomenclature is used.2 The 

objective of this paragraph is to provide the basic rules of this nomenclature, required 

to interpret correctly various terms in this thesis.  
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Figure 1.1:  Structure of perhydrocyclopentanophenanthrene, including position and ring notations 

 

When steroids are pictured as projections onto the plane of the paper, atoms or 

groups oriented downwards are noted as α, whereas substituents emerging from the 

plane are noted as β-oriented, indicated with a dashed or solid wedge, respectively. 

For substituents with an unknown orientation, or for mixtures of stereoisomers, a 

wavy line is used.2 The sterane core possesses six asymmetric carbon atoms. The 

usual orientation at the bridgeheads is 8β, 9α, 10β, 13β and 14α, and therefore does 

not need to be specified in the names or figures unless it is different. The core 

structure with this configuration, and without alkyl groups at position 10, 13 and 17 is 

referred to as gonane. When a methyl group is present in position 13, the 18-carbon 

structure is referred to as estrane, and with methyl groups in position 10 and 13, it is 

called androstane, containing 19 carbon atoms. By addition of alkyl substituents in 

position 17 of the androstane nucleus, a number of additional hydrocarbon 

backbones can be obtained, also bearing specific stem names, of which the 21-

carbon pregnane nucleus, and the 27-carbon cholestane nucleus need to be 

mentioned. The side chains in position 17 are in β-orientation, unless stated 

otherwise.2 All these structures and the stem names are included in figure 1.2.  

The configuration at bridgehead 5 needs to be specified if known, by addition of 5α or 

5β in front of the stem name. When the orientation is not known, the notation ξ is 

used.2,3  

Unsaturation of the steroid nucleus is indicated by changing –an(e) to –en(e), -

adien(e), -yn(e),... anticipated by the position of the unsaturation(s).2 Substituents of 

the steroid nucleus are noted with prefixes or suffixes, accompanied by the position 

and orientation. Alcohol groups are indicated as suffixes or prefixes to the stem 

name, -ol or hydroxy-, respectively. When multiple alcohol groups are present, this 

becomes –diol, -triol,... or dihydroxy-, trihydroxy-,... The same rules apply to ketones, 

where the prefix oxo- and the suffix –one are used. When both alcohol and ketone 



Chapter I 

3 
 

groups are present, ketones take priority as suffixes.2,3 Alkyl substituents, on the 

other hand, can only be described using the appropriate prefix (methyl-, ethyl-,...).2 

When both a substituent and a side chain are present at position 17, the α-orientation 

of the substituent does not need to be noted.  

 
 

Gonane Estrane 

  

Androstane Pregnane 

 

Cholestane 

Figure 1.2:  Structure of the different steroid nuclei and their stem names. Position numbering is only 

provided for cholestane. 

 

Finally, beside the rules provided by the official International Union of Pure and 

Applied Chemistry (IUPAC) discussed above, a set of trivial names is often used to 

describe a number of important steroids and improve readability of a text. Some of 

these trivial names are IUPAC-approved, other are commonly used in the field. If 

these trivial names are used as a basis for naming derivatives or stereoisomers, the 

HH

H

HH

H
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derived trivial name must make the nature of the modification completely clear.2,3 To 

illustrate the system of nomenclature, all steroids of importance for this manuscript 

are presented in table 1.1, including their full systematic name, structure and possible 

trivial name.  

 

Table 1.1:  Names, structure and used abbreviation of the steroids of importance for this manuscript 

Trivial names 

IUPAC name 

Used abbreviation 

Structure 

Trivial names 

IUPAC name 

Used abbreviation 

Structure 

5-Androstene-3β,17α-diol 

Androst-5-en-3β,17α-diol 

AEdiol 
 

5β-Pregnane-3β,20β-diol 

BBB-PD 

 

5α-Pregnane-3α,20α-diol 

AAA-PD 

 

5β-Pregnanedione 

5β-Pregnane-3,20-dione 

B-PDione 

 

5α-Pregnane-3β,20α-diol 

ABA-PD 

 

((17)β-)Estradiol 

Estr-1,3,5-trien-3,17β-diol 

βE2 
 

5α-Pregnane-3α,20β-diol 

AAB-PD 

 

(17)α-Estradiol 

Estr-1,3,5-trien-3,17α-diol 

αE2 

  

5α-Pregnane-3β,20β-diol 

ABB-PD 

 

((17)β-)Testosterone 

17β-Hydroxyandrost-4-en-3-one 

βT 
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5α-Pregnanedione 

5α-Pregnane-3,20-dione 

A-PDione 

  

(17)α-Testosterone; 

Epitestosterone 

17α-hydroxyandrost-4-en-3-one 

αT 

 
 

Pregnanediol 

5β-Pregnane-3α,20α-diol 

BAA-PD 

 

Dehydroepiandrosterone 

3β-Hydroxyandrost-5-en-17-one 

DHEA 
HO

O

 

5β-Pregnane-3β,20α-diol 

BBA-PD 

 

Etiocholanolone 

3α-Hydroxy-5β-androstan-17-one 

Etio 

 

5β-Pregnane-3α,20β-diol 

BAB-PD 

 

Progesterone 

Pregn-4-en-3,20-dione 

PG 

 

 

 

1.1.2 Classification and functionality of endogenous steroid hormones 

Steroids encompass a large number of compounds, classified in different groups with 

varying functionality. Next to their endogenous functionality, a number of steroid 

hormones are well known for their growth promoting capabilities in farm animals, 

which will be discussed in the following paragraph. 

 

Sex steroid hormones, or gonadal steroids, play an important role in the regulation of 

behavior, morphogenesis and functional differentiation of the reproductive system in 

vertebrates, and are divided into three subgroups.4,5    

The first group are the male sex steroids, or androgens. Endogenous androgens are 

characterized by a 19-carbon, androstane steroid nucleus, with hydroxyl or carbonyl 

groups at position 3 and 17. They are primarily produced in the Leydig cells in the 

testes, and to a lesser extent in the ovary and the adrenal cortex, and are 
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responsible for the development of both primary and secondary sex characteristics of 

male animals.4,6 Besides their androgenic effects, they are also wellknown for their 

anabolic qualities. Used as growth promoters, they achieve body weight gain by 

increased feed conversion and nitrogen retention in animals, resulting in increased 

protein deposition at the expense of body fat.6 Although the balance between 

androgenic and anabolic characteristics is highly variable in different androgens, they 

always possess both properties, and therefore are often referred to as anabolic-

androgenic steroids (AAS).5 Testosterone is the most common example of 

endogenous androgens. 

The second group are the female sex steroids, or estrogens. Endogenous estrogens 

are characterized by a 18-carbon, estrane steroid nucleus, in which the A-ring is 

converted to a phenol structure, and with an additional hydroxyl or carbonyl group at 

position 17.6,7 They are produced in the ovaries and placenta in females, and in the 

testes in males. They are responsible for the development of primary and secondary 

female sex characteristics.4,6 In ruminants, an increased overall nitrogen retention 

and utilization, improved growth rate and lean tissue accretion are obtained under the 

influence of estrogens. However, in many other mammalian species, amongst which 

humans, growth is inhibited by female sex steroids.6 Estradiol is the best known 

example of endogenous estrogens. 

The third group are the progestagens, also referred to as gestagens or hormones of 

pregnancy. Endogenous progestagens have a 21-carbon, pregnane skeleton, and 

are synthesized in the corpus luteum, the placenta and the adrenal cortex.4,6 

Progestagens are essential for the uterine development necessary for implantation, 

blastocyst development, and maintenance of the fetus and of uterine tone during 

pregnancy.8 Although they posses anabolic qualities as well, these are less 

pronounced than for the androgens or estrogens, and progestagens are known to 

increase body fat deposition.6 Progesterone is the most common endogenous 

progestagen.  

The growth promoting results obtained through administration of synthetic analogues 

of endogenous sex steroid hormones are variable, dependent upon the 

characteristics of the animal.6 The effects are most pronounced in ruminants, as 

opposed to pigs and poultry, where much more variable results were obtained. Also 

sex and age of the animal is of importance: androgens will be more effective when 

administered to heifers or steers as opposed to bulls, whereas estrogens generally 
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work better in the latter, and treatment of veal calves at a too early age can be 

detrimental for later growth.  

Also, the nature of the treatment is a determining factor. The administered 

substances have an optimal dosage, below which the effects will be negliable, and 

above which they do not bring additional gain or might even be harmful.6 

Furthermore, combinations of two or more anabolic agents are often used. In this 

way, undesirable side effects of one agent can be mitigated by another, and a 

synergistic effect on growth or daily gain can be observed. Therefore, estradiol and 

testosterone are usually combined for the treatment of heifers, whereas a 

combination of estradiol and progesterone is more common for the treatment of 

steers, bulls and calves.6,9-14 Because endogenous steroids are rapidly metabolized, 

they are usually administered in an esterified form. In the systemic circulation, the 

esters are hydrolyzed by blood esterases, resulting in a sustained release.15 In 

countries where regulated use of synthetic analogues of endogenous sex steroid 

hormones for growth promoting purposes is permitted, treatment is usually done by 

implantation into the ear of the animal.9,11 The implantation allows a more gradual 

release of the steroids into the bloodstream, prolonging the effects over time. 

Additionally, by removing the ear after slaughter, a source of high residual 

contamination is easily avoided, as opposed to injection sites when the animals are 

treated intramuscularly.  

 

Although the focus of this study is on sex steroid hormones, a second important 

group of steroid hormones, corticosteroids, needs to be mentioned. Similar to 

progestagens, they have a pregnane nucleus. Additionally, they are characterized by 

a hydroxyl or carbonyl group at position 11, a carbonyl group at position 3 and 

position 20 and a hydroxyl group at position 21.16 Most endogenous corticosteroids 

have a double bond between carbon 4 and 5. Corticosteroids are divided into two 

groups: glucocorticoids, for example cortisol, carry a hydroxyl group at position 17, 

whereas mineralocorticoids, for example aldosterone, do not. Both examples are 

shown in figure 1.3. In the body, mineralocorticoids play an important role in the 

regulation of electrolyte and water metabolism, whereas glucocorticoids are involved 

in gluconeogenesis, glycogen deposition and protein metabolism. Additionally, 

glucocorticoids exhibit a powerful anti-inflammatory activity, leading to its widespread 

medical and veterinary use.5  
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Originally, a negative correlation between corticosteroids and growth has been 

reported in cattle and sheep, causing fat deposition and reduced protein content.6 

However, administered in combination with β-agonists or anabolic steroids, positive 

growth promoting abilities were observed due to synergetic effects. Additionally, 

treatments with low concentrations of corticosteroids were reported to improve feed 

intake, increase weight gain and reduce feed conversion ratio.16-18 

 

O

HO

OH
O

OH

 

 

 

 

Figure 1.3:  Structure of the glucocorticoid cortisol (11β,17,21-trihydroxypregn-4-en-3,20-dione) (left)  

and the mineralocorticoid aldosterone (11β,21-dihydroxypregn-4-en-3,18,20-trione) (right) 

 

1.2. Legal framework 

 

As a precautionary measure to protect consumers’ health, the use of hormonal 

substances as growth promoters has been prohibited in the European Union (EU) 

since 1988.19 Despite international pressure from countries in which restricted use of 

certain hormonal growth promoters is permitted, the EU maintained its decision 

based on risk evaluations,20,21 resulting in the currently active legislative triptych.22-24   

 

With regard to synthetic analogues of naturally occurring sex steroid hormones, their 

use is restricted as laid down in article 3a of Council directive 96/22/EC, amended 

twice,20-21 prohibiting the administration of substances having an estrogenic, 

androgenic or gestagenic action to farm or aquaculture animals.22 Exception is made 

for therapeutic veterinary use, which is strictly regulated in veterinary law. 

A second Council directive, 96/23/EC, lays down the ground rules for inspection of 

unwanted residues of substances in living animals or products thereof.23 Sex steroid 

hormones are included in annex I of this directive as substances having anabolic 

effect and unauthorized substances, group A3: steroids. The member states are 
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responsible for the implementation of these guidelines into annual national residue 

plans.  

Finally, Commission decision 2002/657/EC specifies the analytical criteria required 

for the implementation of the national residue plans.24 Group A substances can be 

monitored with qualitative methods, since no maximum residue limits (MRLs) have 

been set. Authorized confirmation methods for this group require a liquid or gas 

chromatographic separation (LC or GC), combined with mass spectrometric or infra-

red spectrometric detection (MS or IR). The identification criteria are based upon the 

comparison between the sample and a calibration standard, an external standard 

included in the same measurement series. Regarding the chromatographic 

separation, the relative retention time needs to correspond within an interval of ± 

0.5% for GC, and ± 2.5% for LC. Mass spectrometric identification is based upon the 

correspondence of the relative ion intensities, for which a specific point system is 

used based upon the exact application. For a successful identification of a group A 

substance, four identification points need to be earned.  

 

With exception of Italy and the Netherlands, which regard them as group A, most 

member states classify corticosteroids as group B substances, or veterinary drugs, 

within the subgroup 2f: other pharmacologically active substances (including 

unlicensed substances which could be used for veterinary purposes). For these 

substances, a wider range of authorized confirmation methods is described, and 

when mass spectrometry is used, three earned identification points is sufficient.24 For 

the licensed corticosteroids, prednisolone, methylprednisolone and dexamethasone, 

MRLs are also defined in various matrices.25,26 

 

In the Belgian national legislation, restrictions on the use of hormonal substances, 

and the consequences of illegal use, are laid down in the law of 15 July 1985.27 Sex 

steroid hormones are comprised under article 3§2, prohibiting the prescription and 

administration of substances with estrogenic, androgenic or gestagenic action to farm 

or aquaculture animals, with exception of legitimate veterinary treatment; the same 

prohibition is in force for corticosteroids, included in substances with hormonal action, 

described in article 3§3. The law is accompanied by a series of executive decisions 

(royal and ministerial decrees), assigning the competent authority for inspection and 
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designating suitable laboratories for the required analyses, amongst other practical 

aspects.28  

 

When evaluating the current legislation, an obvious void becomes apparent with 

regard to the inspection on illegal use of synthetic analogues of endogenous steroid 

hormones. Since the concentrations of these substances are highly variable 

according to species, sex, age and physiological state of the animal, no decision 

level for their concentration in matrices from animal origin have been set.16,25 Since 

the official analytical methods are based upon identification using MS or IR detection, 

and because these substances can also occur in the animals naturally, it is 

impossible to draw conclusions regarding abuse based on these results.16 As advised 

by the European Union Reference Laboratory (EURL), analytical approaches based 

on gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC-

C-IRMS) can be used as a confirmation method to elucidate the origin of steroid 

hormones in samples from animal origin,29 which will be discussed in detail in the 

following chapters. However, these techniques are not included into Commission 

decision 2002/657/EC. It has been underlined that this decision requires an update to 

allow a harmonized approach for IRMS-based methods, amongst other reasons.30  

 

1.3. Screening strategies for endogenous sex steroid abuse 

 

The preferred analytical methods for the detection of abuse of hormonal substances 

in cattle have changed regularly throughout the years, mainly as a consequence of 

instrumental improvements and availability, combined with evolutions in sample 

preparation. At the early stage in the 1960s and 70s, thin layer chromatography 

(TLC) was the standard method for the detection of group A substances. During the 

1980s and 1990s, immunoassay techniques, such as radioimmunoassay (RIA) and 

enzyme-linked immunosorbent assay (ELISA), became popular and offered the 

means for control on a larger scale, but were later on largely replaced by the more 

definitive mass spectrometric-based techniques. Indeed, with the instruments 

becoming more robust and affordable, a shift towards GC-MS methods occurred 

during the 1980s. By the end of the 90s, LC-MS based methods became common 

good, evolving into ultra performance liquid chromatography (UPLC) more recently, 

used for screening methods including a large number of compounds. However, for 
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the confirmatory analysis after a non-compliant screening result for steroid hormones, 

GC-MS methods are still commonly applied.17 Whereas a shift back towards GC-MS 

is observed in the field of human anti-doping, this trend is not visible for the detection 

of hormone abuse in cattle yet. As stated in the previous paragraph, traditional mass 

spectrometry does not allow differentiation between endogenous sex steroids and 

synthetic analogues thereof. However, it can still be a valuable tool to screen for 

suspicious samples.  

 

1.3.1. Steroid concentrations 

Establishing threshold concentration values for endogenous sex steroids in matrices 

of animal origin is a three phase process. First, results must be obtained from a non-

treated population. Second, a statistical analysis of these ‘normal’ concentrations is 

required to propose a level above which the concentration of the substance can be 

considered as ‘abnormal’. Finally, samples from treated animals are required to 

evaluate the determined threshold. The greatest difficulties in this process lie within 

the fact that a large control population is required to provide statistically significant 

results, and that an acceptable balance is required between false positive and false 

negative outcomes.29 In the past, recommended threshold concentrations have been 

formulated by the Community Reference Laboratory (CRL) regarding 17β-

testosterone in serum samples, and 17β-estradiol in serum and muscle samples, as 

described in table 1.2.31  

 

Table 1.2: Recommended concentrations for non-compliance by the CRL 

Substances Matrix 
Recommended 

concentration 

17β-Testosterone Serum 

Male < 6 months: 10 ppb 

Male 6 - 18months: 30 ppb 

Female < 18 months: 0.5 ppb 

17β-Estradiol 
Serum 0.1 ppb 

Muscle 1 ppb 

 

Although large scale population studies resulted in suggested thresholds levels for a 

number of endogenous steroids in bovine urine,32,33 it became clear that the 

discriminating power of single steroid concentrations is limited. In sports doping 
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control, the relationship between the levels of multiple steroids, or steroid profiling, is 

used as a screening strategy for anabolic abuse, which started with the ratio of 

testosterone over epitestosterone (T/E), and eventually evolved into ‘the athlete 

biological passport’, a personalized set of biomarker levels obtained through 

longitudinal study of the individual athlete.34 Unfortunately, a personalized approach 

such as ‘the animal biological passport’ is impossible due to the magnitude of the 

livestock population and the limited lifespan of the animals, and also the T/E ratio 

was proven to be an inadequate marker in bovines.35 However, steroid profiling 

based measurements of multiple end products of the bovine phase II metabolism, 

which will be discussed in chapter 2, proved to be a promising approach for future 

application.36-38 Steroid profiling is not exclusive to urine analysis: different matrices 

can be evaluated using GC-MS and LC-MS. This can be helpful in analysis where no 

urine is available, for example imported meat from countries allowing the use of 

natural steroids.39 

 

Finally, metabolomic approaches to steroid urine profiling have been described.40-42 

This emerging field of ‘omics’ research focuses on large scale and high-throughput 

measurements, in an untargeted mode, of small molecules in biological matrices.  

Traditionally, nuclear magnetic resonance (NMR) spectrometry was the technique of 

preference for this type of research, but due to recent technological advances, high 

resolution mass spectrometry (HRMS) is rapidly gaining in popularity because of its 

sensitivity and capability in structural elucidation.43 In the presented studies, urine 

samples from untreated and bovines treated with synthetic analogues of endogenous 

steroids, are analyzed with GC-MS,40  or LC-HRMS,41,42 after a minimal sample 

preparation. Afterwards, the generated urine profiles are statistically analyzed to 

reveal significant differences between the control group and the treated group. The 

presented methods allowed the successful differentiation between both groups, and 

can therefore be used as adequate screening techniques by themselves. Moreover, 

a large number of potential biomarkers, most likely steroid metabolites based on their 

mass spectra, were present. After identification, these might be implemented for 

steroid profiling purposes.40-42   

 

 

 



Chapter I 

13 
 

1.3.2. Indirect screening approaches 

The above described metabolomic approach is by nature untargeted, and therefore 

not necessarily linked to steroid concentrations. Although originally mostly applied for 

medicinal and pharmaceutical research, metabolomic research has been frequently 

adopted for the investigation of steroid hormone abuse over the past decade, using 

either NMR spectrometry,44 or HRMS, for the untargeted analysis of urine,41-45 and 

serum samples.46 Additionally, holistic approaches to screen for steroid abuse are 

not limited to the metabolome, but have been extended to the proteome and 

transcriptome as well.47-50 For the first, protein fingerprinting from liver and plasma 

samples was accomplished by combining two dimensional electrophoresis (2-DE) 

protein separation with mass spectroscopic and western blotting detection, and 

allowed to effectively differentiate between treated and untreated bovines.47,48 For the 

second, untargeted gene expression analysis was performed using either 

complement DNA (cDNA) bioarray or RNA-sequencing techniques on various bovine 

tissue samples.49,50 Besides successful differentiation between treated and untreated 

animals, the studies revealed over expressed genes which are not unique to bovines, 

indicating applicability of the technique for other species and sports doping control.   

 

From the above, it is clear that administration of steroid hormones affects the levels 

of a large variety of non-steroidal molecules inside the treated animal significantly. 

These indirect biomarkers can be used to construct high-throughput analytical 

strategies, which are more suitable for screening large numbers of samples as 

opposed to the discussed untargeted approaches. For this reason, research on 

indirect biomarker approaches of all kinds (immunological parameters, blood 

chemistry parameters, peptides, proteins,…) to screen for steroid abuse gained a lot 

of interest over the past years, most of which was blood sample based.43,51-55 

However, it became clear that indirect biomarker screening faces similar challenges 

as steroid based screening: multi-biomarker profiling is required because of the 

limited discriminating power of a single compound threshold, and extended data from 

a control population and animals treated with various combinations of prohibited 

substances are needed to provide sufficiently validated methods capable of detecting 

varying hormonal abuse.43 Therefore, the bridge between controlled experiments and 

application into the field remains largely uncrossed.  
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Finally, one of the oldest screening methods for hormone abuse is histological 

survey. It has been reported that administration of steroid hormones can induce 

macroscopic and microscopic changes in specific organs, mainly in genital tract 

organs and sex accessory glands, but also in the thymus, thyroid and liver.15,56,57 

Although it is hard to convert histological observations into a practical screening tool, 

this knowledge can be useful for official veterinarians performing control upon 

slaughter when selecting samples.     

 

1.4. Outline of the current study 

 

As described, a lot of interesting different approaches remain to be further explored 

to construct screening methods to detect abuse of synthetic analogues of 

endogenous steroid hormones in cattle. However, without adequate confirmatory 

techniques, screening methods serve no purpose. As for these confirmation 

methods, far less optional routes are available. Almost two decades ago, the capacity 

of GC-C-IRMS to differentiate between treated and untreated animals was illustrated. 

Steroid preparations were shown to have different 13C/12C ratios than steroids 

produced by the animals. Therefore, the correct measurement of this carbon isotope 

ratio of steroids in urine samples, using IRMS, allows to elucidate their endogenous 

or exogenous origin. However, its application into the field for real life control 

purposes remained extremely limited. The general aim of the current research was to 

provide fully validated IRMS-based methods for the detection of abuse of synthetic 

analogues of endogenous sex steroids, which could be implemented as such for 

official control purposes. This was accomplished in a four step approach. 

 

First, an extensive literature research was performed, which is presented in chapter 

II. In this review, all relevant theoretical principles are provided, required to 

understand why it is possible to detect abuse of synthetic analogues of endogenous 

steroids based on 13C/12C ratio measurements, and which factors will influence the 

outcome of such an analysis. Afterwards, the required instrumental setup and 

necessary sample preparation techniques are discussed. Also, an overview of every 

published method regarding this application is provided. Finally, the link is made to 

doping control, where this type of analysis is more commonly applied, which proved 

to be a valuable source of information.  
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Second, based on the acquired knowledge from literature, a confirmation method to 

detect abuse of synthetic analogues of endogenous estrogens in cattle using gas 

chromatography coupled to both mass spectrometry and combustion-isotope ratio 

mass spectrometry in parallel (abbreviated as GC-(MS/C-IRMS) in this document) 

was developed, which is described in chapter III. Special attention was given to the 

method validation, and to the impact of the parallel coupled MS in the setup, which 

had not previously been described for the analysis of steroid hormones.  

 

Third, the developed method was extended to include the detection of abuse of 

synthetic analogues of androgens, as described in chapter IV. After thorough 

validation, the detection method was tested on two bovines treated with esters of 

17β-estradiol and 17β-testosterone. Finally, the detailed information from this 

administration study allowed a direct comparison with alternative confirmatory 

approaches.  

 

Fourth, the method was adapted for the detection of synthetic analogues of the third 

group of sex steroid hormones, progestagens, which is described in chapter V. After 

selection of suitable target analytes for this analysis, a number of slightly different 

analytical approaches were evaluated against each other. The most promising 

approach was validated and successfully tried on samples from bovines treated with 

progesterone.  

 

Finally, chapter VI provides the general discussion of the accomplishments, the 

global conclusions and suggestions for future research. 
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2. Use of isotope ratio mass spectrometry to differentiate 

between endogenous and synthetic homologues in 

cattle: a review 

 

Adapted from Janssens G.; Courtheyn D.; Mangelinckx S.; Prévost S.; Bichon E.; 

Monteau F.; De Poorter G.; De Kimpe N.; Le Bizec B. Anal. Chim. Acta 2013, 772, 1-

15. 

 

2.1. Abstract 

 

Although substantial technical advances have been achieved during the past 

decades to extend and facilitate the analysis of growth promoters in cattle, the 

detection of abuse of synthetic analogs of naturally occurring hormones has 

remained a challenging issue. When it became clear that the exogenous origin of 

steroid hormones could be traced based on the 13C/12C isotope ratio of the 

substances, GC-C-IRMS has been successfully implemented to this aim since the 

end of the past century. However, due to the costly character of the instrumental 

setup, the susceptibility of the equipment to break-down and the complex and time 

consuming sample preparation, this method is up until now only applied by a limited 

number of laboratories. In this review, the general principles as well as the practical 

application of GC-C-IRMS to differentiate between endogenous steroids and 

exogenously synthesized homologous compounds in cattle will be discussed in 

detail, and will be placed next to other existing and to be developed methods based 

on isotope ratio mass spectrometry. Finally, the link will be made with the field of 

sports doping, where GC-C-IRMS has been established within the World Anti-Doping 

Agency (WADA) approved methods as the official technique to differentiate between 

exogenous and endogenous steroids over the past few years.   
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2.2. Introduction 

 

Since the 1930s, the positive effects of testosterone on muscle building have been 

well-known. Throughout the years, growth-promoting qualities of a great variety of 

hormonal compounds were discovered. Anabolic steroids were introduced into the 

world of sports during the 1940s and 1950s, which led to widespread abuse by the 

time detection methods became more available in the early 1970s.58,59 By that time, 

the use of steroid hormones and thyreostatics had become common practice in stock 

farming.60 However, it became clear that next to the beneficial effects of steroid 

hormones, a great number of adverse effects could be attributed to these 

substances, in particular disruption of the reproductive system.61,62 In 1981, the 

European Commission issued a first directive prohibiting the use of a number of 

hormonal substances, namely stilbenes (e.g. diethylstilbestrol (DES)) and 

thyreostatics, in stock farming.63 After careful consideration, the European 

Commission later expanded its decision, resulting in the current legislation which 

bans the use of all hormonal substances for growth promoting reasons.21,22 As other 

countries (e.g. USA, Canada, New-Zealand, Australia), allow the use of synthetic 

forms of six natural steroid hormones (estradiol, progesterone, testosterone, 

melengestrol acetate, trenbolone acetate and zeranol) as growth promoters, the use 

of these substances is fiercely controversial.  

Over the past decade, great advances have been achieved in residue detection with 

gas and liquid chromatography coupled to mass spectrometry, which allows the 

accurate and simultaneous detection of small quantities of a large number of 

prohibited substances in different matrices of animal origin.64,65 But the discordance 

between the decreasing number of positive results in samples of animal origin and 

the analysis of confiscated illegal preparations containing synthetic homologous 

compounds of natural steroid hormones reveals the shortcomings of the used 

analytical techniques when it comes to the detection of abuse of this type of 

substances.16 More specifically, the classical mass spectrometric techniques are 

unable to make the distinction between endogenous (produced by the animal itself) 

and exogenous (administered) or synthetic forms of natural steroid hormones.  

It was clarified during the 1990s that a differentiation between endogenous natural 

anabolic steroids and exogenous homologues could be made by measurement of 
13C/12C isotope ratios of these substances, both in humans and bovines.66,67 At this 
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point, gas chromatography linked to combustion-isotope ratio mass spectrometry 

(GC-C-IRMS) emerged as a promising technique to demonstrate the abuse of 

exogenous homologues of natural steroid hormones in cattle.  

The objective of this review is threefold. First, the underlying principles of the isotopic 

difference between endogenous and exogenous steroids will be explained, and how 

this can result in an applicable parameter. Next, the practical implementation of    

GC-C-IRMS as an analytical technique will be reviewed, focusing on the sample 

preparation, which is the bottleneck of GC-C-IRMS analysis. Finally, the use of     

GC-C-IRMS to differentiate between exogenous and endogenous steroids in cattle 

will be positioned in the broader picture of analysis of natural steroid hormones, 

linking it to other techniques and the other field of application, which is sports doping 

control.  

 

2.3. Underlying principles of ∆13C values 

 

To understand the difference between endogenous and exogenous homologues or 

synthetic forms of natural steroids, the difference between steroids biosynthesized in 

the animal or synthesized in laboratory/industrial conditions needs to be clarified. 

Since androgens and estrogens are the steroid hormones most commonly used as 

growth promoters, the synthesis of these compounds will be explained, given its 

relevance for IRMS.  

 

2.3.1. Bovine steroid biosynthesis 

In mammals, all steroid hormones are derived from cholesterol. Cholesterol can be 

taken up from the feed directly, or can be biosynthesized from acetyl co-enzyme A. 

By a multi-step pathway, cholesterol is converted into steroid hormones, amongst 

which androgens and estrogens, as displayed in scheme 2.1. All reactions involved in 

the biosynthesis of steroid hormones are enzyme-regulated and most of them are 

reversible. The enzymes are listed in table 2.1. The first reaction in steroid anabolism 

is the cleavage of the side chain from cholesterol, thus forming pregnenolone.  

During androgen biosynthesis, two pathways can be followed, starting from 

pregnenolone. They are referred to as the 4-ene and the 5-ene pathway. In the 4-ene 

pathway, the intermediates are characterized by a double bond between the carbons 
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at position 4 and 5, whereas the 5-ene pathway intermediates have a double bond 

between the carbons at position 5 and 6.  

In meat producing animals, 5-ene precursors of testosterone are more likely to be 

found than 4-ene precursors, with an exception for cervid species.68  
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Scheme 2.1: Representation of the biosynthetic pathways of endogenous steroids in bovines.36,68,69 

The dotted arrow indicates a multistep reaction involving different enzymes. Enzymes are printed in 

italic, the abbreviations are explained in table 2.1  

 

In the body, the adrenal cortex produces large amounts of dehydroepiandrosterone 

(DHEA). This excess DHEA is conjugated to a sulphate group, forming 

dehydroepiandrosterone sulphate (DHEA-S). The sulpho-conjugated form of DHEA is 

significantly less bioactive and so, DHEA-S can be considered as the body’s steroid 

reserve. When unconjugated, DHEA is transformed into the more active 4-
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androstenedione, which could in turn lead to the formation of testosterone after 

reduction of the 17-keto group.70,71 Estrogens are the products of the aromatization of 

androgens. One important route of estrogen production is the transformation of 

androstenedione (AED) into estrone (E1) and by further reduction of the 17-keto 

group to 17β-estradiol which is amongst the most bioactive compounds of the C18-

group. 

 

Table 2.1: Overview of the enzymes regulating the steroid pathways70 

Abbreviation Enzyme 

20,22-D 20,22-Desmolase 

17α-OH 17α-Hydroxylase 

3β-HSD 3β-Hydroxysteroid dehydrogenase,∆5,4 isomerase 

17,20-L C17,20-Lyase 

17β-HSD 17β-Hydroxysteroid dehydrogenase 

17α-HSD 17α-Hydroxysteroid dehydrogenase 

3α -HSD 3α-Hydroxysteroid dehydrogenase 

Aro Aromatase 

5β-Red 5β-Reductase 
5α-Red 5α-Reductase 
21-OH 21-Hydroxylase 

11β-OH 11β-Hydroxylase 
11β-HSD 11β-Hydroxysteroid dehydrogenase 

 

For most of them, steroid hormones circulate in the blood stream under their free 

form, with the exception of estrone sulphate and the above mentioned DHEA 

sulphate. High levels of steroids (after an administration for instance) suppress the 

release of the corresponding releasing hormone (e.g. GnRH), providing negative-

feedback control of hormone levels. The levels of the different steroid hormones in 

serum and plasma are highly dependent upon the age and gender of the animals. In 

plasma from untreated bulls, measured concentrations of 17β-testosterone ranging 

from below the detection limit up to almost 6 ng mL-1 were reported,72 whereas the 

level was approximately tenfold lower in mature females.68 The reported 17β-

estradiol levels are significantly lower, ranging from below the detection limit up to 

approximately 50 pg mL-1 in plasma from untreated bulls, and peaking at 

approximately 80 pg mL-1 in serum of untreated heifers.73 In younger animals (< six 
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months), the presence of steroids is generally lower, resulting in different compliance 

thresholds for the presence of 17β-testosterone and 17β-estradiol in serum, as 

suggested by the Community Reference Laboratory, given in table 1.2.  

It was reported that plasma levels of estrogens and gestagens are highly variable in 

heifers throughout the estrus cycle.74,75 Progesterone concentrations raised gradually 

up to approximately 10 ng mL-1 as the corpus luteum developed, whereas the 

concentration of 17β-estradiol was more variable, peaking approximately one day 

before estrus. 17β-Testosterone concentrations appeared to be unchanged during 

the estrus cycle.76  

After further metabolisation, steroid metabolites are excreted in urine mainly 

conjugated. This results in the presence of both sulpho- and glucuro-conjugated 

phase II steroid metabolites in urine and feces. The latter glucuro-conjugated steroids 

are the products of conjugation to glucuronic acid. Average concentrations of 17β-

testosterone and 17β-estradiol of 3.5 ng mL-1 and 0.21 ng mL-1, respectively, were 

reported in urine of male animals. For female animals, this was 0.58 ng mL-1 and 

0.63 ng mL-1, respectively.37 Concentrations in younger animals (< seven months) 

were significantly lower.77 However, the 17β-form of steroid hormones is usually 

metabolized to less active 17α-isomers, which will therefore be more abundant in 

urine. Indeed, in the same study, the reported average concentrations of 17α-

testosterone were 8.13 ng mL-1 and 14.30 ng mL-1, and of 17α-estradiol  79.07 ng 

mL-1 and 5.54 ng mL-1, for heifers and bulls, respectively. However, average 

concentrations of 17α-estradiol, reported from a population study in the United 

Kingdom, were tenfold lower.32 

Regarding progesterone, most of the measured urine samples were below the 

detection limit for both male and female animals.77  

Although the biosynthesis of the more active steroid hormones is similar in all 

mammalian species, important differences in the catabolic end products of the steroid 

metabolism between species are known.68 Also between bovines and humans, the 

steroid profile found in urine differs significantly. This results in a number of 

characteristic changes in steroid analysis of bovine urine compared  to human urine, 

which will be discussed later in the text.  
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2.3.2. Semisynthesis of steroid hormones 

Pharmaceutical companies mostly use semisynthetic methods for steroids, starting 

from sterols present in plant material, also called phytosterols. Soy is most frequently 

used as source of plant sterols, next to Dioscorea species, succulent plants also 

known as yams.78,79 Commonly used phytosterols are stigmasterol and diosgenin, 

originating from soy and succulent plants, respectively.80 Through a one step 

microbial degradation, androsta-1,4-diene-3,17-dione (ADD) is formed from soy 

sterols, from which conversion to other steroid hormones is possible.81 Semisynthetic 

methods are the most profitable and by far the most commonly used, as the source 

material is available in large quantities and the production process is fairly easy. 

However, semisynthesis is not the only available process for the production of steroid 

preparations. Total synthesis of steroids will be discussed in section 2.4.2.   

 

2.3.3. Origin of isotopic difference, C3 and C4 plants 

13C/12C Ratios of exogenous steroid hormones are significantly different from those of 

endogenous steroids. The reason for this difference lies within the origin of the 

molecule. As discussed above, steroid hormone preparations are produced from 

phytosterols available from plant material. Plants use atmospheric carbon under the 

form of carbon dioxide (CO2) for the biosynthesis of their compounds, amongst which 

the plant sterols. The integration of CO2 is achieved through photosynthesis. There 

exist three types of photosynthetic pathways. 

 

C3 Plants incorporate CO2 by using a natural process which is named the Calvin 

cycle. In this pathway, CO2 is incorporated by being attached onto a five carbon 

counting sugar molecule which is subsequently split, leading to the formation of 

intermediates composed of three carbon atoms. This cycle is regulated by a number 

of enzymes. The enzyme ribulose-1,5-diphosphate carboxylase is responsible for the 

fixation of CO2. Since this enzyme has a greater binding capacity for 12CO2 over 
13CO2, it discriminates against incorporation of the heavy carbon isotope. This way, 

plant material of C3 plants becomes enriched in 12C. Typical C3 plants are wheat and 

soy.  

The incorporation of CO2 by C4 plants is done by a process called the Hatch-Slack-

cycle. In this pathway, CO2 is attached to phosphoenolpyruvate leading to 

intermediates composed of four carbon atoms. The enzyme responsible for the 



Chapter II 

24 
 

fixation of CO2 is phosphoenolpyruvate carboxylase, which incorporates 13CO2 and 
12CO2 without substantial preference. The actual substrate for the enzyme is not CO2, 

but hydrogen carbonate (HCO3
-) formed through dissolution of CO2 in a slightly basic 

medium. Thus, in this pathway, the incorporation of CO2 is mainly limited by its 

diffusion into the leaf and its dissolution in water. This process has a far less 

pronounced effect on the 13C/12C ratio compared to the pathway involving ribulose-

1,5-diphosphate carboxylase. This results in a lower discrimination against the heavy 

carbon isotope, leading to organic compounds with a higher 13C/12C ratio in 

comparison to C3 plants. Maize is a typical C4 plant. 

A third type of plants uses the Crassulacean Acid Metabolism (CAM). This 

mechanism uses a combination of both the Calvin- and the Hatch-Slack-cycle, 

resulting in plant material with a 13C/12C ratio which is usually, but not always, higher 

than those of C3 plants. The pineapple is a typical CAM plant.82  

 

The plants which are used for the production of exogenous steroid hormones are 

typically C3 plants, while food and feed, out of which endogenous steroids are 

produced, typically are composed of a mixture of C3 and C4 plants. Since the 

exogenous steroids are formed out of a single carbon source, being a C3 plant, it can 

be understood that the exogenous steroids will be more enriched in 12C than 

endogenous steroids.83,84 

 

After administration of exogenously produced gonadic steroids, the measured 13C/12C 

isotope ratio of the corresponding steroid metabolites will be the consequence of the 
13C/12C values of both the endogenously produced and the administered steroids, 

which is represented in scheme 2.2. As mentioned before, the intake of exogenous 

steroids has a negative effect on the endogenous steroid production. Since the 

exogenously produced steroids are enriched in 12C, compared to endogenously 

produced homologous compounds, and because of hindered endogenous 

production, the measured 13C/12C ratio will be significantly lower in case of 

administration of exogenous steroids compared to when no steroids were 

administered and the 13C/12C isotope ratio of the metabolite is solely dependent upon 

the endogenous production. This forms the basic principle to differentiate between 

endogenous steroids and exogenously synthesized homologous compounds using 

IRMS. However, despite the negative feedback mechanism, significant endogenous 
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production can still occur after administration. The higher the endogenous production 

of the steroid hormone, the less pronounced the effect of the administration will be on 

the measured 13C/12C isotope ratio. This process, also referred to as endogenous 

dilution, can be a seriously limiting factor for the detectability of treatment with 

synthetic homologues of endogenous steroids. 

  

 

Scheme 2.2: Representation of the observed carbon isotope ratios and the relation to endogenous 

steroids and exogenous homologues. AS stands for “Amount of the steroid”  

 

2.3.4. δ13C values 

2.3.4.1. Definition 

The 13C/12C (= R) isotope ratios are expressed in regard to a reference standard as 

δ13C values per mille, according to the following formula: 

 

δ13C[‰] = (((13C/12C)sample – (13C/12C)std)/
 (13C/12C)std)   x 103 = ((Rsample – Rstd)/Rstd) x 103 

 

The reference standard for carbon is a calcium carbonate,85 also referred to as Pee 

Dee Belemnite (PDB). The PDB formations are skeletal remains of mollusks that are 
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deposited in South Carolina (USA), and that have an R value or Rref of 

0.011237199.86 Since stocks of PDB are not available anymore, a new standard, 

called Vienna Pee Dee Belemnite (VPDB), was suggested, having a δ13C value of 

+1.95‰ relative to PDB.82 In the meantime VPDB is generally accepted as a 

standard, and as such, the currently used formula expressing δ13C values in promille 

with respect to VPDB becomes: 

δ13CVPDB = ((Rsample - RVPDB)/RVPDB)) x 103 = (RSample/RVPDB – 1) x 103 

 

2.3.4.2. Factors influencing exogenous δ13C values 

The possible methodologies to differentiate between endogenous natural steroids 

and exogenously synthesized preparations of homologous compounds are based on 

the source material of the preparations, a single C3 plant source, which results in 

substances relatively enriched in 12C in comparison to their endogenously produced 

counterparts. This hypothesis is supported by results of analysis of preparations and 

bulk materials in which δ13C values ranging from -25.9 ‰ down to -32.8 ‰ were 

measured.67,87 However, in a more recent study on testosterone products, 9% of the 

analysed preparations possessed δ13C values smaller than -25.9 ‰, which are within 

the endogenous range.88 All of these samples were illegal steroid preparations, 

confiscated in 2009 at border-level seizures. These results suggest that another 

source material for the production of steroid preparations might be available.  

Although, at the moment, semisynthesis from plant material is the production method 

of choice, it is not the only possibility. In 1959, the total enantioselective synthesis of 

steroids was first brought to industrial production. The reaction of 6-methoxy-1-

tetralone with vinylmagnesium bromide and 2-methylcyclopentane-1,3-dione to form 

an intermediate with a sterane core formed the basic structure of all steroid 

molecules, which eventually led to the production of estrone.89 The reaction was 

referred to as the Torgov reaction, after its discoverer. The Torgov reaction was 

responsible for large-scale industrial production of steroid hormones in the USSR. 

and Germany, and still provides the foundation of the reaction currently used for the 

production of pharmaceutical steroid hormones at factories of Schering in Berlin.90  

Unfortunately, no information on the carbon isotopic content of these substances is 

available to our knowledge, but this process might be responsible for the deviating 

δ13C value of -22.7 ‰ measured in an old preparation of boldenone.91 
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Therefore, continuous attention must be paid to the influence of production methods 

on carbon isotope ratios of preparations. Rapidly evolving knowledge on the 

biosynthesis of cholesterols and other sterols in prokaryotic and eukaryotic 

organisms might lead to the availability of new sources for steroid hormones.92  

 

2.3.4.3. Factors influencing endogenous δ13C values 

When evaluating the δ13C values of endogenous steroid hormones in different 

animals and humans, significant individual differences are observed. Factors known 

to cause these differences are described below.  

The most important cause, both for humans and bovines,84,93,94 is the diet, in 

correspondence with the principle “you are what you eat”. The larger the portion of C4 

plants in the diet, the more the endogenous steroids will be enriched in 13C. Both 

studies on bovines provided δ13C values of the urinary steroids within a range of         

-19‰ to -23‰ in case of a C4 plant diet, and -24‰ to -32‰ in case of a C3 plant diet. 

For humans, regional differences in δ13C values are observed as well, but these can 

be explained by the corresponding differences in diet.95,96 Logically, the range of the 

δ13C values of the endogenous steroids in case of a C3 plant diet, and of the steroidal 

preparations is largely the same. This poses a critical problem, since it makes 

distinction between endogenous steroids and administered synthetic homologues 

extremely difficult.  

Neither the breed of animal, nor the age, was found to have an influence on the 

endogenous δ13C values. However, it was noticed that the age does play a role in the 

detection of steroid abuse. Younger animals have a lower endogenous production of 

steroid hormones than older ones. When preparations are administered, the 

measured δ13C values are determined by both the δ13C values of the exogenous and 

endogenous steroids and in relation to the amount in which they are present. Thus, 

when the endogenous production is low, exogenous steroids make up a larger 

portion of the total steroid content, and their influence on the measured δ13C values 

will be more pronounced. This facilitates detection of abuse.94 

In humans, a difference in δ13C values between males and females in an 

experimental group was observed, with the steroid hormones in females being more 

enriched in 12C. This was probably caused by the extended use of oral 

contraceptives, which are in fact exogenous steroid hormones, in the females 

subgroup.95  
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Since a number of bacteria are capable of the bioconversion of sterols and steroids,97 

concerns have been raised about phytosterols, present in animal feed, which could 

be converted into steroids in the intestinal track. The direct absorption of these 

steroids might have a direct influence on the measured δ13C values.86,91 However, 

until now there is no evidence of such an event altering the measured values. 

Additionally, microbial contamination after sampling can impact the measured δ13C 

values, which is discussed in detail in paragraph 2.4.2.1. 

 

2.3.5. Endogenous reference compounds and ∆13C values 

Due to the mentioned variability in individual δ13C values, it is hard to set a threshold 

δ13C value for the differentiation between endogenous steroids and synthetic 

derivatives. This problem is solved by measuring δ13C values of both metabolites and 

precursors of steroid hormones in urine. The δ13C values of the chosen precursor 

molecules should not be influenced by the administered exogenous compound. 

These components are called Endogenous Reference Compounds (ERCs). In 

theory, the δ13C value of the ERC is not significantly different from the δ13C value of 

endogenous steroids.98 The difference between the δ13C values of the ERC and the 

metabolite is defined as the ∆13C value. The ∆13C value is an unambiguous 

parameter for the presence of exogenous steroids. When no steroids are 

administered, δ13C values of metabolites and precursors will be close to each other, 

which results in a low ∆13C value. When synthetic steroid hormones are 

administered, ∆13C values will be higher. This difference is represented in figure 2.1. 

In the past, for sports doping control, a value of more than 3‰ was considered as the 

demonstration of the presence of exogenous steroids.99 For cattle, however, an 

official ∆13C threshold value has not been designated. Still, research data suggests 

that the 3‰ threshold value could also be implemented for bovine urine 

samples.100,101 ∆13C values of an untreated reference population do not exceed a 

value of 2‰, and measured ∆13C values of positive samples significantly exceed 

values of 10‰. However, it needs to be noted that a universal 3‰ compliance 

threshold is no longer applied by the WADA. More details on recent changes in the 

WADA technical documents are provided in paragraph 2.4.3. 
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Figure 2.1: Visualization of ∆13C value and the effect of (a) non-administration, (b) administration of 

exogenous steroid hormones. ERC stands for Endogenous Reference Compound, M for metabolite  

 

Sufficient knowledge of the metabolic pathways of steroid hormones, described in 

section 2.3.1, is necessary for the adequate selection of ERCs, as well as the 

information on their natural abundance. DHEA and androst-5-ene-3β,17α-diol are 

tested and approved as ERCs for the detection of estradiol and testosterone abuse in 

cattle. The most often used testosterone metabolites in bovine species are 

etiocholanolone, epitestosterone and 5α-androstane-3β,17α-diol.100 17α-Estradiol is 

the target metabolite for 17β-estradiol (and esters) administration.101   

Even though there is no direct evidence, it is suspected that DHEA might be used as 

a growth promoter in cattle.102 In this case, an additional ERC to the detection of 

DHEA abuse has to be selected. Because a number of steps in the steroid pathways 

are hypothetical and not always fully understood,103 it is important to verify always 

adequacy of an ERC – metabolite combination with analytical data of an 

administration study.  

One method on human urine was published in literature, in which no ERC was 

used.104 The aim was to simplify the analysis to provide a rapid screening method, in 

which δ13C values of approximately -28‰ and lower are considered suspicious.  

 

After the residues of the administered compounds are excreted from the body, or in 

case of significant endogenous dilution, as discussed in paragraph 2.3.3, the 

detection of the administration will no longer be possible. The detectability, as well as 

the time frame for detection, are largely dependent upon the exact nature and 

quantity of the administered substance, as well as the method of administration. Data 

on this subject in bovines are relatively scarce. However, the detectability of a single 

intramuscular administration of 250 mg of testosterone enanthate was evaluated.67 

By means of the simultaneous analysis of two different testosterone metabolites, 

epitestosterone and etiocholanolone, the administration could be detected up to three 
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weeks after injection. Treatment of bovines with a single intramuscular injection of 

estradial valerate, dosed at 0.05 mg/kg, was detectable up to two weeks after 

administration.101 However, information is lacking in this study to further evaluate in 

detail the evolution of the ∆13C values in time, and no urine samples taken later than 

two weeks after administration were  analysed.  

 

Finally, it needs to be stressed that, although exceeding a ∆13C based threshold is an 

unambiguous confirmation of non-compliance, this is not necessarily true the other 

way around. As the portion of C4 plant material in the feed decreases, the δ13C value 

of the ERCs decreases as well. When C4 plant material is completely removed from 

the feeding regime, the δ13C values of both the ERCs and metabolites will be close 

together even in case of treatment, thus severely compromising the discriminating 

power of the method and enlarging the possibility of false negative results. 

 

2.4. Analytical implementation of GC-C-IRMS for the differentiation 

between endogenous steroid hormones and synthetic 

homologues 

 

Although the theory is straightforward, the practical application of carbon isotope 

measurement of steroids in bovine urine is a demanding task. In this chapter, first the 

instrumental setup for carbon isotope ratio measurement will be presented. Next, 

sample preparation, which is the main bottleneck of the analysis, will be discussed. 

Finally, a number of quality control measures will be listed. 

 

2.4.1. IRMS setup for measurement of steroid hormones, GC-C-IRMS 

In the instrumental development, two major breakthroughs were necessary to provide 

a system allowing the carbon isotopic measurement of steroids in samples. The first 

was the direct coupling of a gas chromatograph (GC) to a combustion furnace.105,106 

The second was the development of a multicollector detection system, allowing the 

simultaneous detection of the same compound bearing different isotopes. The 

coupling of a multicollector isotope ratio mass spectrometer (IRMS) to a GC via an 

online combustion system allowed the continuous measurement of carbon isotope 
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ratios, which was first accomplished by Barrie et al. using a dual collector type 

IRMS.107  

 

After preparation, the sample first enters this system by injection onto the GC. The 

function of the GC is to obtain separation of analytes from each other and from matrix 

impurities. The analytes need to be free from any co-elutions, since they can alter the 

δ13C values. Next, the output of the GC is directly linked to a combustion oven, since 

the IRMS measures the isotopic content in the form of CO2 gas. In the combustion 

oven, the steroids are converted to CO2 and H2O. It is essential that all of the analyte 

is converted and sent to the IRMS, as incomplete combustion can result in incorrect 

measurements. To ensure complete combustion, the reaction is performed at very 

high temperatures, near 1000°C. Then, the combustion oven is linked to a water trap, 

to ensure that only carbon dioxide continues to the IRMS. When water enters the 

IRMS, it could result in the formation of HCO2
+ by protonation of carbon dioxide, and 

thus interfere with the isotopic measurement. This water trap can be a membrane 

based filter with a Nafion membrane or a cryogenic trap.70 After the water trap, the 

CO2 gas is directed to the IRMS through the gas inlet, into the ion source. In the ion 

source, CO2
+● ions are generated in a high vacuum by the impact of electrons. 

Finally, these ions are transmitted to the detector.  

The IRMS of nowadays is a magnetic sector instrument, which contains three 

Faraday cups as detector. This will allow the simultaneous measurements of three 

types of CO2
+● ions, with m/z 44, 45 and 46. There is only one type of ion present 

with m/z 44, 12C16O2
+●. Corresponding to m/z 45, three different ion isotopomers will 

be collected: 13C16O16O+●, 12C17O16O+● and 12C16O17O+●. In the third Faraday cup, five 

isotopomers with m/z 46 will be collected: 12C18O16O+●, 12C16O18O+●, 12C17O17O+●, 
13C17O16O+● and 13C16O17O+●. According to the relative abundance, the 17O 

isotopomers at m/z 46 are considered negligible. Thus, the signal at the Faraday cup 

for m/z 46 measures 12C18O16O+● and 12C16O18O+●. Next, the 18O abundance, 

determined from the ratio of m/z 46/44, combined with an assumed relationship 

between the 17O and 18O isotopic abundances, allows to calculate the contribution of 
12C17O16O+● and 12C16O17O+● to the signal at m/z 45.98 This procedure is referred to 

as the 17O correction. The first to apply an 17O correction was Craig, using the 

following formula for the relation between the quantities of the different oxygen 

isomers: 17O/16O = K(18O/16O)a with a = 0.516, and K = 0.0099235.108 Nowadays, 
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alternative 17O corrections are available, leading to slightly different results over a 

range of less than 0.1‰.109   

 

Since the steroids are completely converted into CO2 and H2O during combustion, 

GC-C-IRMS provides no information on the identity of the measured compound. 

Therefore, an additional GC-MS analysis is in order. However, it has been argued 

that this is an insufficient measure to assure identification of the combusted 

compound.110 A setup has been developed, in which the sample is split after GC and 

send to MS and C-IRMS simultaneously, which allows identification of the analyte 

and measurement of its δ13C values at the same time (figure 2.2).111,112 There is 

currently no official abbreviation to describe this setup, and therefore, an unofficial 

abbreviation, GC-(MS/C-IRMS), will be used in this document to describe this 

coupling.  

 

 

Figure 2.2: Schematic picture of GC-(MS/C-IRMS) instrumental setup (©Thermo Fisher Scientific) 

 

2.4.2. Sample preparation 

Nowadays, the greatest difficulty in isotope analysis is to obtain purified samples with 

few interferences. The analyte peaks in GC should be free of any co-elution.  

In this chapter, the different techniques used in the cleanup procedure prior to      

GC-C-IRMS will be overviewed and discussed. Next, the published strategies 

employed for the analysis of bovine urine will be presented.  
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2.4.2.1. Evaluation of employed preparation techniques 

A number of analytical techniques are used in every method for steroid sample 

preparation prior to GC-C-IRMS. These techniques are in analogy with the methods 

used in sample preparation for regular GC-MS. However, it is of utmost importance 

that the δ13C values of the analytes are not influenced by a natural phenomenon due 

to the mode of sample preparation,  which can sometimes lead to kinetic or isotopic 

fractionation.   

 

Samples 

The first part of every analysis is sampling. Low concentration of target analytes in 

urine and successive purification steps require large sample volumes, sized up to 50 

mL. Only one method using another matrix, namely bile, is described in the 

literature.113  

Proper storage of urine samples is required. When urine samples are not stored 

properly, chemical, enzymatic and microbial degradations take place. In human urine, 

it has been observed that microbial contamination will induce hydrolysis of 

glucuronide and sulphate conjugates, followed by modifications of the steroid 

structure by oxidoreduction.114,115 It has been proved that long term improper storage 

of human urine samples led to changing δ13C values.116 To this aim, samples were 

stored at room temperature for several weeks. Then, the samples were inoculated 

with old urine samples which already showed severe symptoms of degradation. Prior 

to analysis, the samples were once again stored at elevated temperatures for a 

week. Afterwards, significant changes in δ13C values were observed. These changes 

were mainly noticed in free and sulphoconjugated steroids. Therefore, it is advised to 

use  glucuroconjugated steroids for isotopic measurement when samples show signs 

of degradation.116 The reasons for the fractionation could not be identified, and since 

proper storage is a key issue, further study on this topic is needed. Cooled storage of 

the urine samples was adviced, however, more detailed information on optimal 

preservation of the samples was not reported.  

 

Hydrolysis 

Only a small fraction of the steroids is eliminated unconjugated in urine. The majority 

is either glucuroconjugated or sulphoconjugated  and requires deconjugation during 

the analysis.  
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Deconjugation of the glucuroconjugates can be done enzymatically, and is often 

performed using β-glucuronidase from E. coli in a phosphate buffer, maintaining a 

stable pH. Enzymes from Helix pomatia,67,117 and Abalone entrails,94 can be used as 

well to perform this hydrolysis, but this can degrade to some extent the steroid, 

leading to a different structure.  Results with a higher reproducibility are observed 

with E. coli glucuronidase.118 Also, the use of β-glucuronidase from P. canaliculata 

was reported for the hydrolysis of steroids in horse urine.119  

Glucuronidase from Helix pomatia is also capable of hydrolysing sulphoconjugated 

steroids. However, this capacity is limited and most frequently, a chemical approach 

is used to this aim. The cleavage of the sulphate by chemical solvolysis is usually 

obtained by the addition of concentrated sulphuric acid in ethyl acetate, both for 

bovine and human samples.84,101,120 No isotope fractionation during hydrolysis has 

been reported so far. 

Contrary to the described sample preparation of bovine urine for GC-C-IRMS, solid 

phase extraction is performed prior to hydrolysis in a significant number of methods 

reported for the preparation of human urine.118,121-127 This is a common practice for 

the sample preparation prior to regular GC-MS analysis, since matrix interferences 

might limit the activity of the used enzymes. A partial deconjugation may lead to an 

underestimation of the concentration of the steroids, which can lead to quantification 

errors.128 The 13C/12C value may be affected as well.  

 

Solid phase extraction (SPE) 

Often, a combination of SPEs is used during sample preparation. Most frequently, 

C18 columns are utilised, sometimes in combination with silica columns. Use of an 

OASIS HLB stationary phase has been reported as well.129 An advantage of SPE is 

its practical applicability in every laboratory since it requires limited space, no 

additional equipment and is easy to handle. Although no influence on δ13C values by 

SPE treatment has been reported for steroids,130 fractionation has been reported for 

other applications.131,132 For the treatment of human urine, C18 columns are used as 

well, with only a few publications employing another stationary phase, namely 

Sephadex LH20.126,133 

Next to the use of SPE to eliminate matrix impurities, it has been used as a tool to 

split the steroids in human urine by gradual elution from the SPE column.80,121 The 
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separation of analytes into different subsamples can facilitate the GC procedure 

before IRMS measurement.  

 

Liquid-liquid extraction (LLE) 

Liquid-liquid extraction (LLE) is commonly performed to extract the steroids from an 

aqueous solution. The use of successive LLEs under different pH conditions has 

been reported as a means to separate androgens from estrogens.100,101 Because of 

their phenolic steroid structure, estrogens are deprotonated at a high pH and reside 

as soluble phenolate in the aqueous phase, allowing the selective extraction of 

unconjugated androgens using an organic extraction solvent. After extraction, the pH 

of the aqueous phase  is adjusted, allowing the extraction of unconjugated estrogens.  

 

    

 

Figure 2.3:  Graphic representation of the distribution of  δ13C values of steroids in a HPLC-peak. On 

the left side, the distribution of DHEA and 17α-estradiol on a N(CH3)2 stationary phase are displayed; 

on the right side, the distribution of DHEA-acetate and 17α-estradiol acetate on a C18 stationary phase 

are displayed101 
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High Performance Liquid Chromatography (HPLC) 

When available, high performance liquid chromatography or HPLC is the sample 

preparation method of preference. It allows specific separation of analytes by 

selection of a target fractionation window. Generally, reversed phase HPLC with a 

C18 column is employed, but use of straight phase HPLC with an aminopropyl 

column,67 and a 3-(dimethylamino)propyl column has been reported as well.100,101,129  

However, there is a downside to the application of semi-preparative HPLC since it 

has been demonstrated that it could lead to isotopic fractionation.134,135 The heavier 

isotopomers display a different retention behaviour on column than the lighter 

isotopomers, resulting in varying elution times in accordance with the 13C/12C ratio of 

the molecules. This is illustrated in figure 2.3. Thus, when an analyte is only partially 

collected due to a too narrow fractionating window, isotopic fractionation occurs. 

Therefore, the retention times have to be verified with each HPLC injection series by 

standard injection of the target analytes.101 Additionally, the retention times can be 

evaluated in every sample by the addition of an internal standard, as described in the 

following chapters. For the observed difference in behavior of DHEA and 17α-

estradiol on the N(CH3)2 stationary phase, visible in figure 2.3, there is currently no 

explanation. 

 

Immunoaffinity chromatography (IAC) 

Immunochemical methods are frequently utilised in sample preparation for steroid 

analysis other than GC-C-IRMS.85,133,136,137 In immunoaffinity chromatography (IAC), 

antibodies are immobilized on a stationary phase and target analytes are retained on 

column by specific antibody recognition. It was hoped that due to its great analyte 

specificity, a one step IAC cleanup method would replace existing multi step cleanup 

procedures prior to GC-C-IRMS, thus significantly simplifying the analysis. The 

applicability was investigated in both animal bile samples and human urine 

samples.113,138 An IAC cleanup proved to be insufficient for the bile samples, with too 

many impurities still present during GC. Even though no isotopic fractionation was 

observed in the human urine samples, LC sample preparation was preferred over 

IAC because with LC, multiple analytes can be separated at the same time, in 

contrast to IAC where a different stationary phase is required for the specific isolation 

of each analyte.  
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Derivatization  

Steroids are usually derivatized prior to GC-analysis. During this process, hydroxyl 

groups are esterified to decrease the polarity of the molecule and increase the 

volatility. Derivatization significantly improves the peak shape during GC separation. 

In contrast to regular GC-MS analysis,139,140 the number of derivatization options is 

limited in combination with GC-C-IRMS for several reasons.  

 

First of all, the number of carbon atoms added to the molecule by derivatization 

needs to be minimized, since they affect the isotopic measurement. At the moment, 

acetylation is the derivatization method of preference, adding an acetyl group to each 

derivatization site of the steroid (hydroxyl functions). Commonly,100,101 acetylation is 

performed by the addition of pyridine and acetic anhydride, but a number of 

publications reported acetylation without pyridine.67,84 

The influence of the acetate moieties on the measured δ13C value of the acetylated 

steroids is corrected as follows: 

 

DOH = DOAc + 2m (DOAc − DAc)/n 

 

DOH is the δ13C value of the underivatized steroids, DOAc is the δ13C value of the 

acetylated steroids, DAc is the δ13C value of the acetylating reagent, n the number of 

carbon atoms in a molecule and m is the number of hydroxyl groups to be 

acetylated.120,121,123,130 To facilitate the calculation of ∆13C values, it is advised to 

compare precursors and metabolites with an equal number of carbon atoms and 

derivatization sites, which eliminates the need for this correction. 

 

The use of O-trimethylsilylation to replace acetylation was investigated. The 

advantage of trimethylsilylation over acetylation is an even better behavior of the 

compounds in GC, and a more controllable derivatization reaction. The disadvantage 

is the addition of three carbon atoms per derivatization site, thus affecting the isotopic 

measurement more than acetylation.117 It has also been reported that silicon deposits 

originating from the silylation reagent might deactivate the combustion oven.141  

Derivatization reagents containing fluorine atoms are unsuited for use in combination 

with C-IRMS, since fluorides released upon combustion might compromise the 

efficiency of the combustion furnace as well.122,142 
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In some methods used on human urine, steroids are analyzed without 

derivatization,143,144 but generally, the chromatographic behaviour of steroids 

containing more than one hydroxyl group is insufficient to meet the chromatographic 

criteria required for IRMS analysis.  

 

The use of hydropyrolysis - pyrolysis at elevated temperatures in the presence of 

hydrogen gas and a platinum or molybdenum catalyst - before GC-C-IRMS 

measurement has been suggested.139 During hydropyrolysis, all functional groups 

are stripped from the steroid, but the carbon skeleton is left intact. This technique 

would eliminate the need for derivatization and its associated problems. 

Hydropyrolysis on steroids has been studied, but no easily applicable method is 

currently available.145,146 Still, hydropyrolysis might be a useful technique for future 

application.  

 

The effects of an adaptation of the GC-C-IRMS system, replacing the traditional back 

flush system after GC by a precolumn solvent removal, has been investigated. Such 

a system would improve chromatography drastically, eliminating the need to 

derivatize the steroids.147   

 

Gas Chromatography coupled to Mass Spectrometry (GC-MS) 

Analysis using GC-MS needs to be performed before GC-C-IRMS analysis for three 

reasons.  

First of all, it is used for the identification of the compounds. As mentioned before, 

GC-C-IRMS only provides information on the isotope ratio of the measured 

compound. The identification is done according to the legal criteria.24 Therefore, an 

internal standard is added before injection to assess the relative retention times of 

the analytes. Suggested internal standards are 19-nortestosterone and 

ethynyltestosterone in bovine urine,67,117 and 5α-androstane-3β-ol in human urine.125 

Secondly, the quality of the prepared sample is observed. It needs to be ensured that 

the peaks are free of any impurity or co-elution before GC-C-IRMS measurement. 

The mass spectrum of the analytes is compared to a standard solution and/or a 

spiked extracted aqueous sample, injected in the same series.67,82,84  
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Finally, GC-MS is used to determine the concentration of the targeted steroid 

precursors and metabolites. The concentration is estimated by comparison with an 

internal standard.67 An estimation of the concentration is required to either 

concentrate or dilute the sample to match the IRMS linear range operational area of 

the employed IRMS device.  

 

For these reasons, it is understandable that the GC parameters, as well as the used 

column, of the GC-MS measurement need to be identical to those used in the       

GC-C-IRMS system. As for the performance of the GC-analysis, there are a few 

precautions in regard to regular steroid GC-MS analysis. 

As mentioned above, baseline separation of the analytes is the objective of the GC 

step. This is the determining factor when setting the GC oven temperature program 

and deciding the dimensions of the column. Temperature gradient or carrier gas flow 

rate do not attribute to isotopic fractionation effects.148  

When measuring analytes with a low concentration, the impact of column bleeding on 

the δ13C values may become significant and the automatic correction performed by 

the IRMS’s software may become inadequate. Therefore, not all columns are suitable 

for GC-C-IRMS analysis and the use of columns with low-bleed specification is 

advised. 

Split injection has to be avoided as differences in boiling point might induce isotopic 

fractionation.82 Also, the splitless time needs to be evaluated for each analyte and 

deactivation of the liner is essential to prevent memory effects.94 The number of 

publications in which programmed temperature vaporizer (PTV) large volume 

injection is used is limited, but isotopic fractionation caused by large volume injection 

has not been reported so far.84,113 Use of PTV injection might hold some advantages. 

The fact that the solvent is not brought onto the column improves the 

chromatography, which reduces the need for derivatization.113 Also, the injection of 

larger volumes allows the reduction of the required sample volume.84  

 

With all the above kept in mind, it needs to be said that GC in itself does influence the 
13C/12C ratio in a very specific way. It is observed that 13C containing molecules 

migrate slightly more rapidly than U-12C species on the GC-column.149 This effect is 

known as the chromatographic isotope effect, which is caused by interactions 

between solute and stationary phase, dominated by van der Waals dispersion 
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forces.150 Therefore, different 13C/12C ratios will be measured at the beginning and at 

the end of the peak. Thus, a correct and complete integration over the peak in its 

entirety is essential for correct IRMS measurements. In order to achieve this, the 

peak needs to be perfectly baseline separated first. It has to be noted that when 

baseline separation is only just reached in GC-MS, this might not be sufficient for 

IRMS. In GC-C-IRMS, the sample passes through a number of capillaries and the 

combustion furnace after being eluted from GC. This causes band broadening which 

may cause barely separated peaks to remerge.  Second, since the peak at m/z 45 

appears slightly before the one at m/z 44, both signals need to be integrated 

separately. Third, in combination with defining the peak, the background needs to be 

defined in a consequent way, so that all measurements can be corrected accordingly. 

Finally, it is of utmost importance that the peak integration is performed in a 

consequent and identical way for every analyte measured in a sample. Since δ13C 

values of different ERCs and metabolites are compared, inconsistent measurements 

of an ERC and a metabolite might have a serious influence on the calculated ∆13C 

value. Therefore, the use of software is preferred over manual peak integrations, 

since this eliminates a human bias factor.110,151  

 

2.4.2.2. Integrated analytical sample preparation strategies for the differentiation 

between endogenous steroids and synthetic homologues in bovine 

urine 

Now that the different steps of sample preparation prior to GC-C-IRMS have been 

presented, the art is to combine the right elements into an efficient and effective 

analytical strategy. In the following part, a brief summary of the different published 

analytical methods for the differentiation between endogenous steroids and synthetic 

homologues in bovine urine is given. An overview providing more detail on the 

methods is represented in table 2.2. 

The first analytical procedure for the differentiation between endogenous steroids 

and synthetic homologues in bovine urine was published in 1998 by Ferchaud et 

al.,67 and consisted of an enzymatic hydrolysis, two SPEs, two subsequent liquid-

liquid extractions (LLEs) and one HPLC cleanup. A different derivatization method 

was used for the GC-MS analysis and the GC-C-IRMS analysis. The measured 

analytes were DHEA as ERC, and etiocholanolone and epitestosterone as 

metabolites of testosterone. In the following two publications, the method was fine 
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tuned with a number of minor adaptations. The hydrolysis method was adapted,94 

and subsequently, a new derivatization method was introduced, using N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA)/NH4I/dithiothreitol (DTT)/CH3CN for both 

GC-MS and GC-C-IRMS.117 In this report, the use of androst-5-ene-3β,17α-diol as an 

additional ERC and epiandrosterone and 5α-androstane-3β,17α-diol as additional 

metabolites of testosterone was suggested.  

Another method, published by Balizs et al., contains a significant number of 

differences.84 In a first step, glucuronides were hydrolyzed with β-glucuronidase from 

E. coli. Afterwards, sulphuric acid and ethyl acetate were used to deconjugate the 

sulphated compounds. Additionally, a combination of two semi-preparative HPLC 

fractionations was introduced. Finally, DHEA, epitestosterone, 17β-testosterone and 

etiocholanolone were measured. 

In 2005, a method for the detection of the administration of exogenous estrogens 

was presented,101 containing a complex and very thorough analytical strategy making 

use of multiple LLEs, SPEs and HPLC purifications. After hydrolysis using β-

glucuronidase from E. coli and a SPE with a C18 cartridge, the sample was divided 

into three fractions using two successive LLEs. In an alkaline environment, the 

deconjugated androgens reside in the organic phase, being extracted as “fraction A”. 

“Fraction E” containing the estrogens was isolated at a lower pH. The sulphated 

compounds remain in the aqueous phase, called the sulphate fraction or “fraction S”. 

Afterwards, each of the fractions was further purified separately. Another novelty in 

this procedure was the use of an additional HPLC fractionation after the derivatization 

of the steroids when the GC-MS analysis pointed out that co-elution of the target 

peaks was still occurring or when a sufficient level of purity was not reached. 

Androst-5-ene-3β,17α-diol served as the endogenous reference compound (ERC), 

while 17α-estradiol was the measured analyte for estrogen administration.  

Later, additional measurement of 5α-androstane-3β,17α-diol and etiocholanolone as 

testosterone metabolites in the same method resulted in a complete strategy to 

detect both androgen and estrogen abuse in cattle.100   

Finally, it has to be mentioned that, even though corticosteroids have only received 

little attention in regard to IRMS-analysis, a method to detect administration of 

glucocorticoids in cattle has been developed,129 with DHEA as ERC and cortisol as 

metabolite.  
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Table 2.2:  Overview of the main characteristics of the different sample preparation methods for the differentiation between endogenous and exogenous 

steroids in bovine urine, in chronological order according to the date of publication 

reference 
sample 

volume 
hydrolysis  

solid phase 

extraction (SPE) 

liquid-liquid 

extraction (LLE) 

high performance liquid 

chromatography (HPLC) 
derivatization  sample preparation, sequence of preparative techniques in the described method 

[67] 50 mL 
Helix pomatia 

juice 

1: C18 stationary 

phase 
two subsequent 

LLEs with a sodium 

hydroxide solution 

aminopropyl stationary phase 

(for GC-MS): MSTFA-TMIS 

Hydrolysis - SPE1 - LLE - SPE2 - HPLC - Derivatization 
2: silica stationary 

phase 

(for GC-C-IRMS): acetic 

anhydride 

[94] 50 mL Abalone entrails 

1: C18 stationary 

phase 
two subsequent LLE 

with a sodium 

hydroxide solution 

aminopropyl stationary phase 

(for GC-MS): MSTFA-TMIS 

Hydrolysis - SPE1 - LLE - SPE2 - HPLC - Derivatization 
2: silica stationary 

phase 

(for GC-C-IRMS): acetic 

anhydride 

[117] 50 mL 
Helix pomatia 

juice 

1: C18 stationary 

phase 
two subsequent LLE 

with a sodium 

hydroxide solution 

aminopropyl stationary phase 
MSTFA/NH4I/DTT/CH3CN 

(1000/5/0.25/100, v/w/w/v) 
Hydrolysis  - SPE1 - LLE - SPE2 - HPLC - Derivatization 

2: silica stationary 

phase 

[84] 20 mL 

1: β-

glucuronidase E. 

coli C18 stationary phase   

1: C18 stationary phase 

acetic anhydride Hydrolysis1 - SPE – Hydrolysis2 - HPLC1 - HPLC2 - Derivatization 

2: sulphuric acid 

and ethyl acetate 

2: C18 stationary phase (different 

gradient mobile phase) 

[101] 20 mL 

1: β-

glucuronidase E. 

coli 

1: C18 stationary 

phase 

two subsequent LLE 

resulting in three 

fractions (fraction A, 

fraction E and 

fraction S) 

1: 3-(dimethylamino)propyl 

stationary phase 
pyridine and acetic anhydride Hydrolysis1 - SPE1 - LLE 

fraction A and E: SPE2 - HPLC1 - Derivatization - HPLC2 

2: sulphuric acid 

and ethyl acetate 

2: silica stationary 

phase 
2: C18 stationary phase fraction S: Hydrolysis2 - SPE1 - SPE2 - HPLC1 - Derivatization - HPLC2 

[100] 20 mL 

1: β-

glucuronidase E. 

coli 

1: C18 stationary 

phase 

two subsequent LLE 

resulting in three 

fractions (fraction A, 

fraction E and 

fraction S) 

1: 3-(dimethylamino)propyl 

stationary phase 
pyridine and acetic anhydride Hydrolysis1 - SPE1 - LLE 

fraction A and E: SPE2 - HPLC1 - Derivatization - HPLC2 

2: sulphuric acid 

and ethyl acetate 

2: silica stationary 

phase 
2: C18 stationary phase fraction S: SPE1 - Hydrolysis2 - SPE2 - HPLC1 - Derivatization - HPLC2 

[129] 

1: 20 mL  
1: Helix pomatia 

juice 
1: OASIS 

two subsequent LLE 

resulting in three 

fractions (fraction A, 

fraction E and 

fraction S). Only 

fraction S is 

analysed further  

1: 3-(dimethylamino)propyl 

stationary phase 

1: oxidation with potassium 

dichromate and acetonitrile 
1: Hydrolysis1 - SPE1 - Derivatization1 - HPLC2 

2: 20 mL   

2: β-

glucuronidase E. 

coli 

2: C18 stationary 

phase 
2: C18 stationary phase 2: pyridine and acetic anhydride 2: Hydrolysis2 - SPE2 - LLE - SPE2 - Hydrolysis3 - SPE3 - HPLC1 – Derivatization2 - HPLC2 

3: sulphuric acid 

and ethyl acetate 

3: silica stationary 

phase 
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2.4.3. Control measures 

As the performance criteria of GC-C-IRMS analysis are not uniformly dictated, and 

because of the complexity of the sample preparation methods, a number of 

measures, which are not necessary for validation of GC-MS methods, are in order to 

verify the functionality of the method and to assure the correctness of the results.30 It 

is not within the objective of this review to provide detailed information and guidelines 

on the validation of GC-C-IRMS methods, because different approaches to this issue 

are possible. However, in the following chapter a number of issues will be addressed 

which should be integrated in every validation or quality control system regarding 

steroid analysis using GC-C-IRMS. In the past few years, the WADA revised their 

guidelines with regard to doping control analyses using GC-C-IRMS.152,153 As 

discussed in paragraph 2.5.2, there are many similarities between the use of IRMS 

for doping control in athletes and for growth promoter control in cattle, and therefore, 

these documents are a very valuable source of information when designing quality 

control and validation procedures for this application.  

 

Instrumental performance 

The IRMS instrument measures the δ13C values by comparison to the reference CO2 

gas, present in the system. In order to obtain correct values, this reference gas needs 

to be calibrated. This was usually performed using a certified alkane mixture.80,121 

Nowadays, however, it is advised to perform calibration using certified material that 

resembles the target analytes as much as possible.82 Since steroids behave rather 

differently during gas chromatography than alkanes, this might lead to an erroneous 

calibration.129 Additionally, in the most recent version of the WADA technical 

document, in force since the beginning of 2016, it is recommended to use a mixture 

of steroids covering the range of δ13C values normally found in urine samples.153 

Prior to analysis, a number of measures to ensure an adequate operation status of 

the IRMS system are required. Stability of the instrument is checked by introducing a 

number of CO2 pulses of equal quantity and verifying if the measured deviation of 

δ13C values is within range.   

The IRMS instrument has a linear range of measurement which is defined by the 

manufacturer. For a classical type instrument, δ13C value measurements with signal 

intensities between 1 and 10 nA at m/z 44 are considered reliable,112,154,155 or values 
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above 0.8 mV depending on the type of instrument.156 Before every injection series, 

the linear performance of the IRMS apparatus is verified by introducing a series of 

CO2 pulses with rising intensities. The correlation coefficient of the measured 

concentrations is the indication for the linearity.121,129 

The system needs to be checked for leaks. This can be accomplished by performing 

a scan to detect background gases, for example m/z 40 for argon or m/z 18 for 

water.82 It needs to be added that an unexplained drift in δ13C values over a longer 

period of time has been reported.157 

 

Compound specific linear range and limit of quantification 

It has been reported that GC-C-IRMS linearity is compound-dependent, meaning that 

for each substance, correct measurements can only be obtained within a limited and 

specific concentration range. Therefore, it is advisable to verify the range for each 

analyte by a series of standard injections at various concentrations.154,156 As a 

criterion, the most recent WADA guidelines state that the measured δ13C values may 

not deviate more than 0.5‰ of the mean value within the linear range.153  

In relation to this, the same document describes that the limit of quantification (LOQ), 

described as the lowest concentration in urine which still provides a measurable 

signal in the linear range with a standard deviation (SD) smaller than 1‰, needs to 

be determined for all measured analytes.  

 

Measurement uncertainty 

Since 2014, the WADA guidelines dictate that the estimated combined standard 

measurement uncertainty must be below 1‰ for every analyte, but it does not 

describe in detail how this should be calculated. Next to the within lab reproducibility, 

the method and system bias are the most important factors contributing to the 

measurement uncertainty. The method bias, or the isotopic fractionation caused by 

the sample preparation, is usually evaluated by comparing the δ13C values of steroid 

standards of the target analytes and extracted spiked aqueous samples. In case of 

absence of isotopic fractionation, the values need to be the same within a statistical 

variation.82 The system or calibration bias, also referred to as trueness, is evaluated 

through the difference between the measured and certified values of steroid 

standards with known and traceable δ13CVPDB values. Ideally, both method and 
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system bias can be evaluated simultaneously, through the measurement of urine 

samples containing steroids with known δ13CVPDB values.  

 

Compliance criteria (threshold ∆13C values) 

In recent years, the WADA abandoned a universal 3‰ criterion for all ERC-

metabolite couples to declare a sample non-compliant, and moved to a more specific 

set of non-compliance criteria, as illustrated in table 2.3. Since no official criteria are 

currently available for the evaluation of bovine urine samples, threshold ∆13C values 

for every ERC-metabolite couple need to be determined during the method 

validation. To this aim, a sufficient amount of samples from a non-treated control 

population need to be analyzed. The compliance threshold can be calculated as the 

mean ∆13C value plus three times the standard deviation (µ + 3 x SD).152 Whereas 

the 2014 WADA guidelines included a control population based threshold value as an 

additional non-compliance criterion, this was changed to a laboratory performance 

criterion in the new version.  

 

Table 2.3: IRMS thresholds according to WADA requirements 2016153
  

 ∆
13

CERC-Metabolite 

Metabolite: βT αT Androsterone Etio 5α-androstane-3α,17β-diol 

and/or 

5β-androstane-3α,17β-diol 

Boldenone 

(metabolites) 

and 

formestane 

Case 1 >3‰    >3‰ (either diol)  

Case 2     >3‰ (both diols)  

Case 3  >4‰     

Case 4   >3‰    

Case 5    >4‰   

Case 6   2-3‰  >3‰ (either diol)  

Case 7    3-4‰ >3‰ (either diol)  

Case 8     >4‰ and δ≤-27‰ (first diol)  

Case 9      >4‰ 

 

Routine control measures 

A number of measures were already mentioned above, such as injection of standard 

solutions to verify peak purity and the use of internal standards to assess stability. 

Additionally, it is suggested to inject a solvent blank in the beginning of a sequence, 

to check absence of contamination. The injection of an extracted water-blank sample 
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is suggested to help identifying the presence of impurities. Finally, it is advised to 

include positive and negative control samples to verify the aptitude of the method.82 

 

2.5. Detection of abuse of synthetic homologues of endogenous 

steroids, the greater picture 

 

Research into methods for the differentiation between endogenous steroids and 

synthetic homologues stretches beyond the carbon isotope ratio analysis of bovine 

urine. The aim of this chapter is to briefly present other applications, allowing 

positioning of the information into a broader frame. First, other isotope based 

techniques to differentiate between endogenous steroids and exogenous 

homologues in cattle will be described. Second, the detection of abuse of synthetic 

forms of endogenous steroids in men will be presented by highlighting the similarities 

and differences between sports doping control and detection of growth promoter 

abuse, both using GC-C-IRMS.  

 

2.5.1. Other isotope ratio mass spectrometric methods for the 

differentiation between endogenous steroids and synthetic 

homologues  

Next to carbon isotope ratio measurement, GC coupled to IRMS can also be used to 

determine the deuterium/hydrogen (D/H) ratio of steroids. During the development of 

a setup to perform this analysis, a number of problems were encountered. The 

quantitative conversion of the analytes to hydrogen gas (H2) proved to be difficult, but 

was eventually resolved by the use of high-temperature conversion (TC), during 

which the analytes are pyrolysed at temperatures of approximately 1400°C. Also, the 

low abundance of deuterium in combination with the presence of helium (He) as the 

carrier gas made precise measurements of the ions with an m/z ratio of 3 nearly 

impossible. This problem was resolved by augmenting the analyte concentration and 

by adding lenses in the detector to filter out He.158  

Although gas chromatography-high-temperature conversion-isotope ratio mass 

spectrometry (GC-TC-IRMS) has not yet been used to detect D/H ratios of steroids in 

bovine urine, a method has already been developed for the measurement of human 

urine samples.159 A number of significant differences between D/H and 13C/12C ratios 
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need to be kept in mind. First of all, the carbon isotope ratio of endogenous steroids 

depends on the diet, whereas the D/H ratio is largely influenced by the drinking 

water. Also, constant conditions of sample preparation are important, since hydrogen 

atoms of hydroxyl groups can equilibrate with the ambient atmosphere. It has been 

suggested that D/H ratio measurement might provide a powerful tool to be used 

together with 13C/12C ratio measurement, especially in cases where the ∆13C value is 

near the threshold value. Due to the large relative mass difference between D and H 

in comparison with 13C and 12C, more pronounced isotopic effects are expected, 

which could result in significant δD signatures.88,159 Piper et al. calculated the first 

reference-population based threshold values and were able to successfully 

differentiate between compliant and non-compliant samples, even in a case where 

this was not possible based on the δ13C values.160 

 

Although GC-C-IRMS is the most widespread method for carbon isotope 

measurement, it is not the only option available. Initially, the coupling of LC to IRMS 

proved to be more difficult than that of GC to IRMS. However, an interface to achieve 

this coupling, based on a wet chemical oxidation of organic compounds to CO2, has 

been commercially available since 2004. But still, LC-IRMS encountered a number of 

limitations, which hindered the practical application. The main restriction is the 

impossibility to apply organic mobile phases. These mobile phases contribute to the 

formation of CO2, detected simultaneously with the analytes. Using pure water as the 

mobile phase, the required baseline separation of analytes was difficult to achieve. 

This problem was recently overcome by the development of temperature-

programmed high-performance liquid chromatography.161 Using temperature 

gradients and HPLC at elevated temperatures, analyte separation can be 

significantly improved. Since the isotopic accuracy of temperature-programmed 

HPLC-IRMS seems to be less affected by errors compared to GC-C-IRMS,162 this 

technique could be promising for the future carbon isotope measurement of steroids. 

 

Finally, multidimensional gas chromatography coupled to combustion isotope ratio 

mass spectrometry (MDGC-C-IRMS) for the detection of exogenous steroids in urine 

has been suggested. The use of multiple GC columns in series greatly improves the 

separation capacity, therefore eliminating the need for an extended sample 
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preparation. To this aim, a prototype instrumental setup was designed to perform 

comprehensive two-dimensional gas chromatography combustion isotope ratio mass 

spectrometry (GCxGC-C-IRMS).163 For the coupling of the two GC columns, a 

longitudinally modulated cryogenic system (LMCS) was used. This allows the 

components eluting from the first column to be cryogenically trapped and 

continuously transferred as a narrow band onto the second column in two to ten 

seconds intervals, resulting in a secondary chromatogram every two to ten seconds. 

However, extensive adaptations to the combustion reactor, back flush system, water 

trap and capillaries were required in order  to minimize peak broadening and make 

the setup functional. Also, no software for the interpretation of steroid peaks which 

were sliced by the LMCS was available and needed to be written.164 Still, promising 

results were obtained by testing the setup with steroid standards. Afterwards, the 

system was further refined, and human urine samples were successfully analyzed 

using a sample preparation method from which HPLC purification could be 

eliminated. Still, due to the complex nature of the setup and its lacking commercial 

availability, GCxGC-C-IRMS is not easily applicable.   

 

2.5.2. Differentiation between endogenous steroids and synthetic 

derivatives in men 

Synthetic forms of endogenous steroids are not only abused as growth promoters in 

cattle, but as horseracing and sports doping agent as well. In the field of sports 

doping, GC-C-IRMS is also used as the preferred method for the unambiguous 

differentiation between endogenous anabolic steroids and synthetic homologues. 

Since the same doping regulations are applied worldwide, and since the World Anti-

Doping Agency (WADA) recently obliged all of its laboratories to be able to perform 

GC-C-IRMS analysis, this application is more investigated and documented than the 

growth promoter abuse, which is mainly a European issue. Because of the large 

similarities between both applications, this research contains a valuable source of 

information when designing new strategies for cleaning up bovine urine samples, as 

illustrated upon discussing sample preparation techniques.  

However, awareness of the differences is in order. While DHEA is considered an 

ERC in bovine urine, its abuse as doping product is known and as such it is not 

suited as a reference. For doping control, 17α-testosterone, pregnanediol, 11β-
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hydroxyandrosterone, 5α-androst-16-en-3β-ol and 11-ketoetiocholanolone are 

commonly utilized as the ERCs, androsterone, etiocholanolone, 5α-androstane-

3α,17β-diol and 5β-androstane-3α,17β-diol function as metabolites.123,130 This shows 

that even though the steroid metabolism is similar in all mammalian species, 

important differences between humans and bovines need to be kept in mind, 

especially when it comes to metabolites of testosterone. Since there is no abuse of 

estrogens as doping, its metabolites are not analyzed. 

Furthermore, bovine urine is considered a more difficult matrix than human urine, and 

therefore demands more extensive sample preparation,84 although the amount of 

urine available is usually higher than in human sports doping testing. 

 

Since doping control research has greatly expanded during recent years, it holds a 

number of applications not yet available to routine growth promoter control.  

While WADA provides a clear list of criteria with regard to GC-C-IRMS analysis and 

results, these are completely lacking in current European legislation, causing 

unclarity and legal disputes.30  

While rapid screening criteria for suspicious bovine urine samples are still being 

investigated, steroid profiling in athletes is far more developed and actively 

applied.165,166 In the past, samples with a ratio of testosterone over epitestosterone 

(T/E) larger than 4 were considered atypical,99 and threshold values for DHEA, 

testosterone and epitestosterone were set as well. More recent, ‘the athlete biological 

passport’, a personalized set of biomarker levels obtained through longitudinal study 

of the individual athlete, was developed to identify atypical samples.34 

The availability of adequate reference material facilitates method development and 

interlaboratory comparison of results.167 In the field of sports doping, reference 

standards are now available,168 and a protocol for calibration of the reference gas is 

present.169 Next to that, matrix-based reference material is being evaluated at the 

moment.170 Currently, the number of laboratories performing routine GC-C-IRMS 

analysis on bovine urine is very limited, but as the number might increase in the 

future, such developments will be required.   
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2.6. Conclusions 

 

Gas chromatography coupled to combustion-isotope ratio mass spectrometry offers a 

unique method for the unambiguous differentiation between natural hormones and 

homologous synthetic compounds in cattle. The advantage of being able to detect 

exogenous steroids in an undisputable way gravely outweighs the difficulties of the 

complex sample preparation methods. Still, extensive study will be required in 

facilitating the implementation and broadening the application of this technique.  

Recent evolutions in high throughput sample preparation methods, such as solid 

phase micro extraction (SPME), supported and immobilized liquid extraction and 

robotic liquid handlers, can provide powerful means to simplify and speed up the 

analysis, which remains up until now laborious and time consuming.  

Next to evolutions in sample preparation, technical improvements in IRMS 

technology holds promises for future applications. Enhancement of the sensitivity of 

carbon isotopic measurement would greatly improve the detection of steroid abuse 

and could allow smaller sample volumes. Also, recent developments in liquid 

chromatography coupled to isotope ratio mass spectrometry (LC-IRMS) could 

provide new strategies for the future. Finally, the use of hydrogen IRMS for the 

differentiation between endogenous steroids and exogenous homologues shows 

promising first results, although further elaboration is required.   

It can be hoped that the increased attention and recent evolutions concerning       

GC-C-IRMS in doping control will boost the development in the field of growth 

promoter detection. 

It is clear, however, that parallel to the further development of GC-C-IRMS as a 

highly specialized confirmation method, the development of targeted steroid profiling 

to provide applicable screening strategies is necessary in order to isolate suspicious 

samples for isotope ratio analysis.   
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3. Application of gas chromatography-(mass 

spectrometry/combustion-isotope ratio mass 

spectrometry) (GC-(MS/C-IRMS)) to detect the abuse of 

17β-estradiol in cattle 

 

Adapted from Janssens G.; Mangelinckx S.; Courtheyn D.; Prévost S.; De Poorter G.; 

De Kimpe N.; Le Bizec B. J. Agric. Food Chem. 2013, 61, 7242-7249. 

 

3.1. Abstract 

 

Although the ability to differentiate between endogenous steroids and synthetic 

homologues based on their 13C/12C isotopic ratio has been known for over a decade, 

this technique has been scarcely implemented for food safety purposes. In this study, 

a method was developed using gas chromatography-(mass 

spectrometry/combustion-isotope ratio mass spectrometry) (GC-(MS/C-IRMS)) to 

demonstrate the abuse of 17β-estradiol in cattle, by comparison of the 13C/12C ratios 

of the main metabolite 17α-estradiol and an endogenous reference compound 

(ERC), 5-androstene-3β,17α-diol, in bovine urine. The intermediate precision was 

determined as 0.46‰ and 0.26‰ for 5-androstene-3β,17α-diol and 17α-estradiol, 

respectively. To the best of our knowledge, this is the first reported use of             

GC-(MS/C-IRMS) for the analysis of steroid compounds for food safety issues.  

 

3.2. Introduction 

 

The influence of steroid hormones on muscle/meat building has been known for over 

70 years, which led to widespread use in both sports and stock farming, respectively. 

While their immediate effect on animals from the farmer's point of view is clear, risk 

assessment was subjected to debates because of divergent opinions at the 

international levels, e.g. Codex Committee on Residue of Veterinary Drugs in Foods 

(CCRVDF) and Scientific Committee on Veterinary Measures relating to Public 

Health (SCVPH). Whereas hormones are licensed in various countries worldwide, 

they are banned for use as growth promoters in the European Union since 1988.19 As 

a result, monitoring the abuse of steroid hormones in large scale surveillance 
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programs for food safety reasons is mandatory for all member states.23 When looking 

at the results of these monitoring plans from 2000 up to 2010,171 an annual average 

of approximately 8% of the non-compliances for steroids (group A3) are attributable 

to 17β-estradiol.  However, these monitoring programs are still based on the classical 

approach using either GC-MS or LC-MS, which are unable to provide unambiguous 

results when it comes to the detection of synthetic analogues of naturally occurring 

steroid hormones in urine. In case of estradiol, a population study on the presence of 

natural steroids in bovine urine in the UK showed that when setting a concentration 

threshold value for 17α-estradiol in bovine urine to indicate 17β-estradiol abuse, a 

confirmatory analysis is required since there is an overlap in the concentration of 

17α-estradiol between treated and non-treated animals.32 Since it became clear 

during the late 1990s that a distinction could be made between endogenous steroids 

and exogenous homologues based on their carbon isotopic composition (13C/12C) – 

reported as δ13C values (‰) – analyses using gas chromatography-combustion-

isotope ratio mass spectrometry (GC-C-IRMS) have been adopted in the field of 

sports doping control and food safety.67,84,94,100,101,113,117,129,130,172 Exogenous steroids 

which are synthesized from plant material are enriched in 12C compared to 

endogenously produced steroids because the source material originates from plant 

species which are naturally low in 13C content. The δ13C values of exogenous 

steroids are usually lower than -30‰, whereas δ13C values of endogenous steroids 

reflect the diet and are usually above -28‰. Because of the individual variability of 

the δ13C values, mostly caused by differences in diet, both precursors, also called 

endogenous reference compounds (ERCs), and metabolites of the targeted steroid 

hormone are measured. Only the δ13C values of the metabolites are influenced by 

the administration of the exogenous steroid and therefore, the difference between the 

δ13C value of the ERC and the metabolite, expressed as ∆13C (‰), provides proof of 

administration. Still, in the field of food safety, the use of GC-C-IRMS to differentiate 

between endogenous steroid hormones and synthetic homologues in cattle has only 

been applied scarcely until now172, and the number of published methods is slowly 

growing. 67,84,94,100,101,113,117,129 

 

 



Chapter III 

53 

 

 

In this chapter, a method for the detection of 17β-estradiol administration to cattle is 

presented using gas chromatography-(mass spectrometry/combustion-isotope ratio 

mass spectrometry) (GC-(MS/C-IRMS)) for the measurement of 5-androstene-

3β,17α-diol as ERC and 17α-estradiol as metabolite in urine. Sample preparation 

was based on the previously published method,101 with minor adaptations to adjust to 

the current laboratory situation and to allow further automation. 

 

3.3. Material and methods 

 

3.3.1. Urine samples 

Non-compliant samples 

One male and one female bovine, aged between 18 and 24 months and weighing 

approximately 400 kg, were treated with a single intramuscular injection containing 1 

mg/kg body weight testosterone (administered as 1.194 mg/kg testosterone 

propionate) and 0.2 mg/kg body weight estradiol (administered as 0.276 mg/kg 17β-

estradiol-3-benzoate). Urine samples were collected before and during the first 27 

days after administration and stored frozen at -21°C. Afterwards, the samples were 

stored at -85°C until assay. 

 

Compliant samples 

Twenty-nine urine samples of pregnant cows were collected at different farms to be 

used as reference population samples. The samples were stored at -85°C until 

assay. 

 

Spiked samples 

Routine samples in which no 17α-estradiol could be detected and with 

concentrations of 5-androstene-3β,17α-diol below 5 ppb, were used for the 

preparation of samples spiked with 17α-estradiol and 5-androstene-3β,17α-diol, to be 

used for validation and quality control.  

 

3.3.2. Reagents and chemicals  

All reagents and solvents were of analytical grade and were provided by Sigma-

Aldrich (Bornem, Belgium). The solvents for liquid chromatography were of LC- and 
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HPLC-grade from Biosolve (Valkenswaard, the Netherlands).  17β-Testosterone 

acetate was supplied by Sigma-Aldrich (Bornem, Belgium). Other steroids were 

obtained from Steraloids (Wilton, NY, USA). SPE C18 cartridges were obtained from 

Achrom (Zulte, Belgium). β-Glucuronidase was from Escherichia coli from Roche 

Diagnostics GmbH (Mannheim, Germany). Pyridine and acetic anhydride used in 

derivatization reactions were from Sigma-Aldrich (Bornem, Belgium).  

 

3.3.3. Instrumentation 

HPLC-UV 

During sample preparation, two subsequent HPLC purifications were performed. The 

first system used was a Waters Alliance 2690 equipped with a UV-detector (diode 

array detector, DAD), operated between 205 and 235 nm, and an automated fraction 

collector. The system was set up with a C18 functionalized precolumn (Grace Alltima 

C18; 7.5 mm x 3 mm; 5 µm) and a C18 functionalized column (Grace Alltima C18; 250 

mm x 3 mm; 5 µm). An isocratic method was used with a rinsing phase at the end of 

the run. A mobile phase made of H2O/MeOH (95/5; v/v) (solvent A) and MeOH 

(solvent B) was used, held at a constant composition (A:B; v/v) of 37:63. The flow 

rate was set at 0.6 mL/min, column temperature at 40°C and the injected volume was 

100 µL. The second Waters Alliance 2690 system was equipped with two diol 

functionalized columns (LiChrospher Diol; 250 mm x 4 mm; 5 µm) in series. An 

isocratic method was used with a mobile phase of isooctane/isopropanol (85/15; v/v) 

and a rinsing phase at the end of the run. The flow rate was set at 1 mL/min, column 

temperature at 40°C and the injected volume was 100 µL. 

 

GC-(MS/C-IRMS) 

The samples were analyzed with a Thermo Trace GC Ultra gas chromatograph, 

equipped with a RXI 5 SIL MS column (Restek – 30 m; 0.25 mm ID; 0.25 µm df) and 

a Thermo Scientific TriPlus autosampler. After GC, the sample was split by means of 

a T-piece, which was coupled to a Thermo DSQ II single quadrupole mass 

spectrometer at one end, and to a Thermo MAT 253 isotope ratio mass 

spectrometer, via the Thermo Scientific GC Isolink, at the other end.  Gas flows were 

regulated using the Thermo Scientific Conflo IV interface. Eight µL was injected at 20 

µL/sec into the injector in programmed temperature vaporizer mode. The initial 
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injector temperature was 100°C, which was held for 0.05 min with a vent flow of 20 

mL/min. The temperature was raised at 8°C/min and held at 280°C for 2 min during 

sample transfer on column. The initial GC oven temperature was 110°C, which was 

held for 1.5 min. The temperature was then raised to 280°C at 8°C/min and held for 2 

min. Finally, the temperature was raised to 320°C at 50°C/min and held for 3 

minutes. The carrier gas was helium at a constant flow rate of 1.5 mL/min. The 

temperature of the transfer line was set at 300°C. The steroids were detected on MS 

using full scan mode (m/z 50 to 400). The combustion furnace was set at 950°C and 

was oxidized prior to each series of analyses for 1h. The combustion gases were 

passed through a Nafion membrane filter for water removal. After ionization, the ions 

with m/z 44, 45 and 46 were magnetically separated and simultaneously measured in 

three Faraday collectors. The CO2 reference gas was calibrated with a mixture of 

steroids with certified and traceable δ13CVPDB values, measured with an elemental 

analyzer (5-androstene-3β,17α-diol monoacetate (-27.0‰), β-testosterone acetate (-

30.5‰) and dehydroepiandrosterone (DHEA) acetate (-32.1‰)). Carbon isotope 

ratios of the compounds were expressed relative to Vienna Pee Dee Belemnite 

(VPDB). The shift of the δ13CVPDB value due to the formation of acetates is corrected 

as follows: 

DOH = DOAc + 2m (DOAc − DAc)/n 

DOH is the δ13CVPDB value of the underivatized steroids, DOAc the δ13CVPDB value of the 

acetylated steroids, DAc the δ13CVPDB value of the acetylating reagent, n the number 

of carbon atoms in a molecule and m is the number of hydroxyl groups to be 

acetylated100.  

 

3.3.4. Sample preparation 

A schematic overview of the analytical strategy is presented in scheme 3.1. The urine 

samples were centrifuged (15 min, 3113 g) prior to analysis, to avoid obstruction of 

the solid phase extraction (SPE) cartridges in a later stage. To 10 mL of the 

centrifuged urine sample, 3 mL phosphate buffer 0.8 M (pH 6.8) and 50 µL 

glucuronidase from E. coli were added. Hydrolysis was performed for 15h at 37°C. 

Then, the sample was brought onto a C18 SPE column, which was first conditioned 

with 6 mL of methanol and 6 mL of H2O. The column was subsequently washed with 

6 mL H2O and 5 mL H2O/acetonitrile (ACN) (80/20; v/v), and eluted using 8 mL 
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H2O/ACN (10/90; v/v). The eluted sample was evaporated to approximately 300 µL 

under a nitrogen stream at 40°C, and 0.5 mL of 1 M sodium hydroxide was added. 

Next, a liquid-liquid extraction (LLE) was performed using 4 mL of n-pentane/diethyl 

ether (92.5/7.5; v/v). The organic layer was kept and labeled “fraction A”, containing 

androgenic steroids, amongst which the targeted ERC 5-androstene-3β,17α-diol. 

Next, the pH of the aqueous layer was adjusted using glacial acetic acid and a 

second liquid-liquid extraction using 4 mL of n-pentane/diethyl ether (92.5/7.5; v/v) 

was performed. The organic layer was kept and labeled “fraction E”, containing 

estrogenic steroids, amongst which the target metabolite 17α-estradiol. Both fractions 

were evaporated under a nitrogen stream at 37°C after the addition of 100 µL of 

glycerol solution (10% in methanol) to serve as a keeper solution, and mixed with 70 

µL of water and 40 µL of fluoxymesterone in methanol (50 ng/µL) as internal 

standard. Prior to injection onto the first HPLC-system, the fractionation windows for 

the ERC and metabolite were determined through the threefold injection of a 

standard solution containing fluoxymesterone, 17α-estradiol, 5-androstene-3β,17α-

diol and 17β-testosterone. The collected fractions “A” and “E”, containing 5-

androstene-3β,17α-diol and 17α-estradiol, respectively, were evaporated under a 

nitrogen stream at 37°C and dissolved in 120 µL of isopropanol/isooctane (10/90; 

v/v). An aliquot of 20 µL of a medroxyprogesterone standard solution (100 ng/µL) 

was added as internal standard, used for both verification of the retention time and 

estimation of the analyte concentration during the second HPLC purification. The 

samples were injected after calculating the fractionation windows with the threefold 

injection of a standard solution containing medroxyprogesterone, 17α-estradiol, 5-

androstene-3β,17α-diol and 17β-testosterone. The collected fractions were 

evaporated to dryness under a nitrogen stream at 40°C and 25 µL of both acetic 

anhydride and pyridine were added. The derivatization was done overnight at room 

temperature in a closed vial. Afterwards, the sample was evaporated to dryness 

under a gentle nitrogen stream at 40°C and the residue was dissolved in the 

appropriate volume of isooctane to provide measurement within the linear range of 

the IRMS apparatus. Finally, after the addition of noretiocholanolone acetate (4 

ng/µL) as external standard, the two fractions were injected onto GC-(MS/C-IRMS) 

for further characterization of δ13CVPDB of 5-androstene-3β,17α-diol diacetate and 

17α-estradiol diacetate.  
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Scheme 3.1. Analytical strategy for the extraction and purification of 17α-estradiol and the 

endogenous reference compound 5-androstene-3β,17α-diol. LLE stands for liquid-liquid extraction 

 

3.4. Results and discussion 

 

3.4.1. Sample preparation and analysis 

The presented sample preparation method is based on the previously published 

method by Buisson et al.,101 with a number of adaptations to speed up the process or 

to allow further automation in the future. First, only 5-androstene-3β,17α-diol was 
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measured as ERC. By not measuring dehydroepiandrosterone (DHEA), the necessity 

for the time consuming analysis of the sulphoconjugated steroids was eliminated.  

Second, one SPE purification step and the two preparative HPLC steps were 

replaced by just two subsequent HPLC purifications prior to derivatization. Because 

the use of a 3-(dimethylamino)propyl-functionalized silica gel column resulted in 

unstable retention times – after a sudden shift, the retention times of the analytes 

differed significantly – a diol functionalized stationary phase was selected for the 

second HPLC purification. Even though a cleanup procedure without the straight 

phase HPLC purification provided accurate results, the addition of the second HPLC 

preparation step was preferred to further reduce the risk of impurities coeluting with 

the analytes. The additional effect of this HPLC step on the sample cleanup is 

illustrated in figure 3.1.  

 

Figure 3.1. MS chromatograms of the androgen fraction of a urine sample of a pregnant cow after the 

complete sample preparation procedure (above) and after sample preparation without straight phase 

HPLC purification (below), showing the internal standard noretiocholanolone acetate (NEC) and 5-

androstene-3β,17α-diol (AEdiol). The data were produced in full scan mode (m/z 50 – 400). 

AEdiol 

AEdiol 

NEC 

NEC 
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Figure 3.2. IRMS chromatograms (m/z = 44) of a positive bovine urine sample, showing the internal 

standard noretiocholanolone acetate (NEC), the metabolite 17α-estradiol diacetate (αE2) (above) and 

the ERC 5-androstene-3β,17α-diol (AEdiol) (below).  

 

Third, by replacing the previously used splitless injection by programmed 

temperature vaporization (PTV)-injection, the required sample volume was 

successfully reduced from 20 mL to 10 mL.  Finally, the separate GC-MS analysis, 

which was until now required prior to each GC-C-IRMS analysis of steroids, could be 

eliminated. By estimating the concentration of the analytes by means of UV-detection 

during the final HPLC step, the dilution factor of the sample could be successfully 

determined to obtain measurements well within the linear working range of the C-

AEdiol 

NEC 

NEC 

αE2 
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IRMS-apparatus. Additionally, by means of the parallel coupled MS in the             

GC-(MS/C-IRMS) setup, the analytes could be successfully identified and controlled 

for purity simultaneous with the isotope ratio measurement, thus avoiding possible 

criticism on GC-C-IRMS that identification is not done during the same injection as 

isotope ratio measurement.110 The resulting IRMS chromatograms of a urine sample 

of a treated animal after sample preparation are shown in figure 3.2. The rectangular 

peaks at the beginning and end of the chromatogram are pulses of the used CO2 

reference gas. The fifth CO2 pulse is used by the software for the normalization of the 

measurements. The resulting chromatograms are clean and the analyte peaks are 

baseline separated and free of any coelutions, demonstrating the performance of the 

purification method. However, due to the necessary extensive sample preparation, 

the yield of the analytes is highly variable. The recovery of the sample preparation 

was calculated under reproducibility conditions at different concentrations, and 

ranged from 40% to 80% for 5-androstene-3β,17α-diol and from 40% to 76% for 17α-

estradiol.  

 

3.4.2. Method validation 

GC-C-IRMS has been accepted as the confirmation method for the differentiation 

between endogenous steroid hormones and synthetic homologues. Still, official 

guidelines for the validation of IRMS analysis are currently lacking. However, the 

sample cleanup procedures remain complex, with many different purification steps 

involved. Since every cleanup step introduces a risk on isotopic fractionation, the 

robustness assessment was mandatory.   

 

Linear working range 

The range in which the isotope ratio mass spectrometer produces accurate 

measurements of δ13CVPDB values was determined by a series of injections of 17α–

estradiol diacetate and 5-androstene-3β,17α-diol diacetate in increasing amounts, 

from 2.5 ng up to 80 ng on column, in sixfold at each level. To determine the linear 

range, a combination of three criteria was applied. First, the standard deviation (SD) 

of the repeated injection at each individual concentration level needs to be smaller 

than 0.5‰. Second, the difference between the lowest and highest measured 
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δ13CVPDB value needs to be smaller than 1.25‰. Third, the standard deviation over 

the entire range must be below 0.75‰ as well.  

The injections of 5 ng, corresponding with peak intensities just below 500 mV, clearly 

show deviating δ13CVPDB values and a larger spreading of the results, hence the lower 

limit of the linear range lies between 500 mV and 1000 mV, corresponding with 

approximately 7 ng of the steroids on column. For the injection of 80 ng of 5-

androstene-3β,17α-diol diacetate, lower δ13CVPDB values are observed, which might 

be due to peak fronting. The injection of 2.5 ng did not yield measurable results. 

Using the mentioned criteria, the compound specific linearity ranged from 

approximately 7 ng to 60 ng on column for AEdiol, and 7 ng to 80 ng on column for 

αE2, as can be seen in figure 3.3. The measured standard deviation within the linear 

domain were 0.23‰ and 0.13‰ for 5-androstene-3β,17α-diol diacetate and 17α–

estradiol diacetate, respectively. 

 

Intermediate precision or within lab reproducibility 

To determine the intermediate precision, a blank urine sample was spiked with 5-

androstene-3β,17α-diol and 17α-estradiol at 200 µg L-1. The sample was divided into 

12 subsamples which were analyzed by three different operators on three different 

dates, over a time span of two months. The first series consisted of 6 subsamples, 

the second series of 2 subsamples and the third series of 4 subsamples. The results 

are presented in table 3.1. The sample standard deviation (S.D.) (n=12) of the 

δ13CVPDB were 0.46‰ and 0.26‰ for 5-androstene-3β,17α-diol and 17α–estradiol, 

respectively. Standard deviations beneath 0.5‰ are considered acceptable.117,123,172  

 

Isotope fractionation or method bias 

The δ13CVPDB values after sample preparation of six water samples spiked at 200 µg 

L-1 with 5-androstene-3β,17α-diol and 17α–estradiol were compared with those of 

four standard injections, not subjected to sample preparation, to assess the isotope 

fractionation occurring during sample preparation. The mean difference between the 

δ13CVPDB values was 0.33‰ for 5-androstene-3β,17α-diol and 0.04‰ for 17α–

estradiol. In comparison with results from the literature for a similar experiment with 

other steroids,84 these differences are significantly lower than previously reported 
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values, leading to the conclusion that the isotope fractionation – if any – is 

acceptable.  

 

 

 

Figure 3.3. δ13CVPDB values (expressed in ‰) of 17α-estradiol diacetate (αE2) (lower) and 5-

androstene-3β,17α-diol diacetate (AEdiol) (upper) and the corresponding peak intensities (expressed 

in mV) for the injected amounts of 5 ng, 10 ng, 15 ng, 20 ng, 32 ng, 50 ng and 80 ng on column (six 

injections for each amount). Vertical error bars represent the SD (‰), horizontal error bars represent 

the range (mV). 
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Table 3.2. Intermediate precision of the δ13CVPDB values (expressed in ‰, not corrected for the acetate 

moiety) of a spiked urine sample [200 ppb of 17α-estradiol (αE2) and 5-androstene-3β,17α-diol 

(AEdiol)], analyzed on three different days. 

 δ
13

CVPDB  AEdiol (mean ± S.D.)(‰) δ
13

CVPDB  αE2 (mean ± S.D.)(‰) 

Series 1 (n=6) -32.86 ± 0.27 -31.53 ± 0.15 

Series 2 (n=2) -33.16 ± 0.01 -32.02 ± 0.24 

Series 3 (n=4) -33.75 ± 0.18 -31.92 ± 0.07 

Mean (n=12) -33.26 -31.82 

S.D. (n=12) 0.46 0.26 

 

Trueness or system bias 

The trueness, or system bias, was evaluated by the injection of standards of 

dehydroepiandrosterone acetate (-31.9‰) and 17β-testosterone acetate (-30.3‰) 

with traceable and certified δ13CVPDB values, obtained through EA-IRMS analysis by 

an accredited laboratory. These standards were included into six separate series of 

measurement, and allowed to evaluate the system bias. The mean difference 

between the certified and the measured δ13CVPDB values was 0.88‰ and 0.25‰ for 

dehydroepiandrosterone acetate and 17β-testosterone acetate, respectively, 

resulting in an average system bias of 0.57‰.  

 

Specificity  

Ten reference standards, ten spiked water samples, sixteen spiked urine samples 

and fifteen urine samples collected from pregnant cows were analyzed according to 

the described method. For all samples, the identification of 5-androstene-3β,17α-diol 

and 17α–estradiol was done according to the legal criteria,24 by comparison of 

retention time and the abundance of six fragment ion ratios of the analytes with those 

of a standard injected in the same series. This way, the four identification points 

required to identify Group A substances using mass spectrometry, as described in 

paragraph 1.2, are obtained. The typical MS-spectra of 5-androstene-3β,17α-diol and 
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17α–estradiol are depicted in figure 3.4. For all the samples, the analytes could be 

correctly identified and no impurities or coelutions were observed.  

Complementary, the MS-data were evaluated using AMDIS-software. This program 

employs specific algorithms on the MS-data to detect interfering peaks hidden 

beneath others.  Additionally, AMDIS compared the MS-data of the analytes with that 

of a standard injection in the same series, to provide a “Net Match”-factor and a 

“Purity”-factor for all the samples. The objective was to study if these “factors” could 

be used as a criterion for the evaluation of both the identity and the purity of the 

analytes. In the AMDIS-data, the “Net Match”-factor ranged from 92 to 100 and the 

“Purity”-factor from 88 to 97. For future analysis, the use of fragment ion abundance 

ratios will only be required if the “Net Match”-factor is below a threshold value of 92 

and if the “Purity”-factor is below a threshold value of 88.  
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Figure 3.4. MS-spectra of 17α-estradiol diacetate (αE2) (above) and 5-androstene-3β,17α-diol 

(AEdiol) (below). Fragmentation was done by electron ionization with an ion source temperature of 

250°C. The data were produced in full scan mode (m/z 50 – 400). 

 
Non-compliant threshold value 

In the past, for doping control purposes, the World Anti Doping Agency (WADA) used 

a threshold value of ∆13C >3‰ for non-compliant samples, but moved recently to a 

more detailed decision system, for specific ERC-metabolite couples, as discussed in 

chapter 2. However, 17α-estradiol is not of interest for anti-doping analyses, and for 

bovine samples, no official compliance criteria currently exist. To determine a suited 

threshold value for this specific application, ∆13CVPDB values were determined in a 

compliant control population of 29 pregnant cows. Pregnant cows’ urine is preferred 

in this case, since the concentrations of 17α–estradiol in regular samples are often 

AEdiol 

αE2 
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too low for reliable measurement with C-IRMS. The data obtained from the samples 

of the compliant control population allowed to calculate a ∆13CVPDB threshold of 

2.32‰ as the mean value plus three times the standard deviation (µ + 3 x SD). To 

add an additional safety margin, the applied threshold value above which samples 

are evaluated as non-compliant, was set at 3‰.  

To verify the adequacy of the developed method and the determined threshold value, 

six urine samples collected from treated animals were analyzed according to the 

described procedure. The resulting δ13CVPDB values are presented in table 3.2. All 

∆13C values are above 14‰, clearly illustrating the potential of the method to detect 

positive samples, as well as the validity of the used threshold value.  

 

Table 3.3. δ13CVPDB values (expressed in ‰) of 17α-estradiol and 5-androstene-3β,17α-diol in six non-

compliant urine samples of bovines treated with 17β-estradiol. 

Sample N° δ
13

CVPDB  AEdiol (‰) δ
13

CVPDB  αE2 (‰) ∆
13

CVPDB  (AEdiol- αE2) (‰) 

1 -15.57 -30.23 14.66 

2 -15.64 -30.15 14.51 

3 -15.26 -29.99 14.73 

4 -15.45 -30.24 14.79 

5 -15.17 -30.11 14.94 

6 -15.38 -30.08 14.70 

 

3.4.3. MS detector influence on isotope ratio measurement 

To evaluate the influence of the parallel coupled MS on the isotope ratio mass 

spectrometers’ measurements, the experiment performed to determine the linear 

range, as described above, was repeated twice, once after uncoupling the mass 

spectrometer and again after recoupling. The results for 17α–estradiol diacetate and 

5-androstene-3β,17α-diol diacetate of the three carbon isotope ratio measurement 

series are presented in figure 3.5. No differences in δ13CVPDB values between the 

three series, other than those caused by natural spreading of the results, could be 

observed. The repeatability of the standard injections at different concentrations 

without and with the MS coupled in the setup revealed neither significant differences 

in precision nor accuracy. 
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Figure 3.5. δ13CVPDB values (expressed in ‰) of 17α-estradiol diacetate (αE2) (lower) and 5-

androstene-3β,17α-diol diacetate (AEdiol) (upper) and the corresponding amounts (expressed in ng) 

for the injected amounts of 5 ng, 10 ng, 15 ng, 20 ng, 32 ng, 50 ng and 80 ng on column (mean values 

of six injections for each amount). Series 1 and series 3 were performed with a GC-(MS/C-IRMS) 

setup, series 2 with a GC-C-IRMS setup.  

 

Since the same sample amount is split between the MS and the IRMS in the         

GC-(MS/C-IRMS) setup, the measured peak intensities for the GC-C-IRMS setup 

generally were slightly higher. However, the difference is limited and causes no 



Chapter III 

68 

 

 

significant disadvantages within the regular  range of the measurements, between 10 

ng and 40 ng on column, as illustrated in figure 3.6. 

 

 

 

Figure 3.6. Average peak intensities (expressed in mV) and the corresponding amounts on column 

(expressed in ng) of 17α-estradiol diacetate (lower) (on the right) and 5-androstene-3β,17α-diol 

diacetate (AEdiol) (upper). Series 1 and series 3 were performed with a GC-(MS/C-IRMS) setup, 

series 2 with a GC-C-IRMS setup.  
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3.5. Conclusions 

 

GC-(MS/C-IRMS) offers a powerful tool for the detection of steroid abuse. It is clear, 

however, that the described procedure needs to be extended in the future to include 

a number of additional metabolites and ERCs to allow simultaneous detection of 

abuse of a broader range of steroids. Still, analysis with GC-(MS/C-IRMS) is 

relatively complex, the sensibility of the apparatus is limited and the sample 

preparation remains laborious and time consuming, making the application for routine 

analyses limited to experienced laboratories. Therefore, adequate screening 

procedures need to be worked out to complement the C-IRMS confirmatory analyses. 

Publications on using profiles of direct metabolites of steroids for screening of steroid 

abuse indicate that applicable strategies will be available soon,36,174,175 and  research 

into the use of indirect biomarkers holds interesting promises for future 

application.40,42,46,174-178 GC-MS and LC-MS analyses based on both targeted and 

untargeted profiling would provide rapid and powerful screening  methods, to be used 

in combination with GC-(MS/C-IRMS) confirmation methods. 
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4. Simultaneous detection of androgen and estrogen 

abuse in bovines by gas chromatography-(mass 

spectrometry/combustion-isotope ratio mass 

spectrometry) (GC-(MS/C-IRMS)) evaluated against 

alternative methods 

 

Adapted from Janssens G.; Mangelinckx S.; Courtheyn D.; De Kimpe N.; Matthijs B.; 

Le Bizec B. J. Agric. Food Chem. 2015, 63, 7574-7581. 

 

4.1. Abstract 

 

The administration of synthetic homologues of naturally occurring steroids can be 

demonstrated by measuring 13C/12C isotopic ratios of their urinary metabolites. Gas 

chromatography-(mass spectrometry/combustion-isotope ratio mass spectrometry) 

(GC-(MS/C-IRMS)) was used in this study to appraise in a global approach isotopic 

deviations of two 17β-testosterone metabolites (17α-testosterone and 

etiocholanolone) and one 17β-estradiol metabolite (17α-estradiol) together with those 

of 5-androstene-3β,17α-diol as endogenous reference compound (ERC). 

Intermediate precisions of 0.35‰, 1.05‰, 0.35‰ and 0.21‰, respectively, were 

observed (n=8). To assess the performance of the analytical method, a bull and a 

heifer were treated with 17β-testosterone propionate and 17β-estradiol-3-benzoate. 

The method permitted the demonstration of 17β-estradiol treatment up to 24 days. 

For 17β-testosterone treatment, the detection windows were 3 days and 24 days for 

the bull and the heifer, respectively. The potential of GC-(MS/C-IRMS) to 

demonstrate natural steroid abuse for urinary steroids was eventually compared to 

those of mass spectrometry (LC-MS/MS) when measuring intact steroid esters in 

blood and hair. 

 

4.2. Introduction 

 

The positive effects of steroids on weight gain and feed conversion are well known 

since the middle of the past century, after which they were readily used in stock 
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farming for fattening purposes and in sports for muscle building. Eventually, the use 

of these substances was restricted, and until today, remains prohibited as a growth 

promoter in the European Union.22 Therefore, the abuse of steroid hormones is 

monitored in mandatory surveillance programs for food safety in all the EU member 

states.23 For the official control laboratories, analytical guidelines and performance 

criteria are available, demanding that a positive screening result is followed by a 

confirmatory analysis using gas or liquid chromatography coupled to mass 

spectrometry (GC-MS or LC-MS).24 However, using GC or LC-MS, the distinction 

between endogenous steroids, produced by the animals themselves, or synthetic 

homologues derived from them, which can be administered, is commonly difficult 

because they will be detected as structurally identical compounds. Also, an 

unambiguous assessment of the origin of the urinary metabolites based on their 

concentrations is hard to accomplish because of the large variations between 

individual animals.16 Gas chromatography-combustion-isotope ratio mass 

spectrometry (GC-C-IRMS) was developed in the late 90’s to offer an alternative to 

historical quantitative approaches.64,67,101 Very recently, the European Union 

Reference Laboratory (EURL) advised to make use of GC-C-IRMS to demonstrate 

the origin of steroids in urine samples.29  

Steroid preparations are usually synthesized from phytosterols originating from plant 

sources which are relatively enriched in 12C, with carbon isotope ratios, expressed 

relative to Vienna Pee Dee Belemnite (VPDB) as δ13CVPDB values, usually lower than 

-30‰. In comparison, endogenously produced steroids have a 13C/12C ratio which 

reflects that of the mixture of plant materials in the feed, with δ13CVPDB values usually 

above -28‰. Because of the fact that it is difficult to set non-compliance δ13CVPDB 

threshold values due to large individual differences between animals, both 

endogenous reference compounds (ERCs) and metabolites of the targeted steroid 

hormones are measured. Since the ERC is not impacted by the steroid treatment, a 

substantial δ13C difference between ERC and metabolite may be observed for a 

certain period of time post administration. The ∆13CVPDB (‰) is the cornerstone of the 

abuse demonstration. While this technique is nowadays mandatory for accredited 

WADA laboratories,130,153 it is applied in the food safety arena to a minor extent.172 

The first aim of the presented research was to develop a common analytical 

backbone able to provide carbon isotopic measurements for main metabolites of 17β-
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testosterone (βT), namely etiocholanolone (Etio) and 17α-testosterone (αT), and of 

17β-estradiol (βE2), namely 17α-estradiol (αE2), thus allowing the simultaneous 

detection of abuse of synthetic homologues of androgenic and estrogenic steroid 

hormones. The second aim was to apply the validated method for an experimental 

study involving treatment of a bull and a heifer, determining the detection window 

capability of the analytical approach and allowing a direct comparison with other 

strategies including the monitoring of steroid esters in blood.  

 

4.3. Material and methods 

 

4.3.1. Chemicals  

All reagents and solvents were of analytical grade and were provided by Sigma-

Aldrich (Bornem, Belgium). The solvents for liquid chromatography were of LC- and 

HPLC-grade from Biosolve (Valkenswaard, the Netherlands).  17β-Testosterone 

acetate was supplied by Sigma-Aldrich (Bornem, Belgium). Other steroids were 

obtained from Steraloids (Wilton, NY, USA). SPE C18 cartridges were provided by 

Achrom (Zulte, Belgium). Escherichia coli β-glucuronidase was from Roche 

Diagnostics GmbH (Mannheim, Germany). Dry pyridine and acetic anhydride were 

from Sigma-Aldrich (Bornem, Belgium).  

 

4.3.2. Sample description 

Animal experiment 

One male and one female bovine (Belgian white-and-red breed), aged 22 and 19 

months and weighing 310 kg and 269 kg, respectively, were used for an 

administration study. After arrival at the farm until the end of the experiment, they 

were fed with a typical feed concentrate (2.0 kg daily), which contained mainly C3 

plant material with added vitamins and minerals, and had access to dried grass, 

chopped corn and water ad libitum. It needs to be noted that the amount of chopped 

corn, consumed by the animals, was significantly larger than that of the feed 

concentrate and the dried grass. After 21 days, they were treated with a single 

intramuscular injection into the dorsal neck muscles, containing 1 mg kg-1 bw 

testosterone (administered as 1.194 mg kg-1 17β-testosterone propionate (βTP)) and 

0.2 mg kg-1 bw estradiol (administered as 0.276 mg kg-1 17β-estradiol-3-benzoate 



Chapter IV 

74 

 

 

(βE2B)) as an oil based preparation. Urine samples were collected before and during 

the first 27 days after administration, and stored frozen at -21 °C. When all the 

samples were collected, they were stored at -85 °C in a monitored temperature 

environment until assay. 

The animal experiment was performed at the Faculty of Veterinary Medicine of  

Ghent University (B), in line with the guidelines of the ethical committee, with 

approval code EC2011/163.  

 

Compliant samples 

Eleven urine samples of non-treated pregnant cows were collected at different farms. 

Additionally, twelve urine samples from animals, a priori non-treated according to 

routine analyses, were added to obtain a sufficiently large reference population. The 

samples were stored at -85 °C in a monitored temperature environment until assay. 

 

Spiked samples 

A urine sample which contained low concentrations of AEdiol (12.4 µg L-1), Etio (3.5 

µg L-1), αE2 (not present) and αT (0.45 µg L-1), was spiked with these substances at 

100 µg L-1 and divided into eight subsamples to be used during the method 

validation.  

 

4.3.3. GC-(MS/C-IRMS) sample preparation and analysis 

To provide adequate GC-(MS/C-IRMS) data, an extensive sample preparation is 

necessary to definitely avoid signal interferences that may generate inaccuracy in the 
13C/12C measurement. After hydrolysis for 15 h with β-glucuronidase at 37 °C and pH 

6.8, the urine samples, with a volume of 10 mL, are brought onto a C18 solid phase 

extraction (SPE) column, conditioned with 6 mL of methanol and 6 mL of H2O. Next, 

the column was washed with 6 mL H2O and 5 mL H2O/acetonitrile (ACN) (80/20; v/v), 

and finally the sample was eluted with 8 mL H2O/ACN (10/90; v/v). Then, two 

subsequent liquid-liquid extractions (LLEs) with 4 mL n-pentane/diethyl ether 

(92.5:7.5; v/v) at different pH (pH 14 and pH 5.2) are performed to separate 

estrogenic and androgenic steroids. The extracts are further purified using a reversed 

phase HPLC-fractionation followed by a normal phase for particular fractions 

containing target compounds. The four obtained fractions containing the isolated 
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targeted analytes (αE2, AEdiol, Etio and αT) are eventually acetylated overnight at 

room temperature with pyridine and acetic anhydride before separate injection into 

the GC-(MS/C-IRMS), with noretiocholanolone being added as internal standard. 

Details of the sample preparation procedure and instrumental setup are described in 

a previous published work.179 However, a limited number of adjustments, described 

below, have been introduced in the original analytical backbone to include a wider 

range of steroid metabolites, including those of 17β-testosterone.  

 

Sample preparation   

The volume of the glycerol solution, used as a keeper after the LLE steps, was 

reduced from 100 µL to 30 µL. Medroxyprogesterone replaced fluoxymesterone as 

the internal standard in the estrogen fraction during reversed phase HPLC. Finally, 

progesterone was used as internal standard during the normal phase HPLC step 

instead of medroxyprogesterone. Because of the weak UV-detector response for 

Etio, a progesterone standard was used instead to determine the adequate 

fractionation windows during the HPLC steps.  

 

HPLC-UV 

For the reversed phase HPLC, the C18 functionalized pre-column and analytical 

column were replaced by a Kinetex (Security Guard Ultra C18 for 2.1 mm ID) and a 

Kinetex C18 column (XB-C18; 250 mm x 4.6 mm; 5 µm), respectively. The 

chromatographic conditions were slightly altered: column temperature was changed 

from 40 °C to 50 °C, flow rate from 0.6 mL min-1 to 0.8 mL min-1 and mobile phase 

composition from 37:63 to 35:65 (A:B; v/v), with H2O/MeOH (95:5; v/v) as solvent A 

and MeOH as solvent B. 

The normal phase HPLC-setup, using two diol functionalized columns in series 

(LiChrospher Diol; 250 mm × 4 mm; 5 µm) and a constant mobile phase of 

isooctane/isopropanol (85:15; v/v), was left unchanged.  

 

GC-(MS/C-IRMS) 

The T-pieces, used to split the sample after the GC-column to the mass spectrometer 

and isotope ratio mass spectrometer for simultaneous detection, were replaced by 

SilFlows (TM SGE Analytical Science). The RXI 5 SIL MS column (Restek −30 m; 0.25 
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mm i.d.; 0.25 µm df) GC-column was replaced by an Optima 17MS column (Machery 

Nagel – 30 m; 0.25 mm i.d.; 0.25 µm df). The injection and GC program were 

adapted accordingly. The initial injector temperature was set at 100 °C, which was 

held for 0.10 min with a vent flow of 20 mL min-1. The temperature was raised at 8 

°C min-1 and held at 320 °C for 2 min during sample transfer on column. The initial 

GC oven temperature was 110 °C, which was held for 1.5 min. The temperature was 

then subsequently raised to 220 °C at 30 °C min-1, to 270 °C at 6 °C min-1 and to 300 

°C at 2 °C min-1. Finally, the temperature was raised to 330 °C at 50 °C min-1 and 

held for 3 min. The carrier gas was helium at a constant flow rate of 1.2 mL min-1. 

The injection volume of 8 µL was left unchanged.  

 

4.3.4. LC-MS/MS sample preparation and analysis 

LC-MS/MS analysis 

The quantitative analyses performed in this study were carried out on a Thermo 

Accela HPLC system coupled to a Thermo TSQ Quantum Ultra triple quadrupole 

mass spectrometer.  

The LC was equipped with a C18 column (Kinetex C18; 2.1 mm x 150 mm; 1.7 µm) at 

a temperature of 70 °C. Solvent A was prepared by adding 400 µL of acetic acid to 

1600 g of MeOH. For the preparation of solvent B, 1600 g of H2O was mixed with 320 

g of MeOH and 400 µL of acetic acid. Initially, the mobile phase composition was set 

at 35:65 (A:B; v/v). Between 1 and 4 min, the composition was linearly increased to 

50:50 (A:B; v/v). During the following minute, the composition changed to 75:25 (A:B; 

v/v). After a final rapid increase in 10 s, the mobile phase was held at 95:5 (A:B; v/v). 

The triple quadrupole was operated in the electrospray ionization mode, and the 

signals were recorded in the selected reaction monitoring mode (SRM). 

Prior to sample analysis, a solvent blank and two standard solutions containing 20 

ng mL-1 of the analytes (αE2, αT, AEdiol and Etio) in H2O/MeOH (56:44; v/v) were 

injected, all with added internal standard (1 ng mL-1 of 17β-testosterone-d2 (Ds at 

position 16) and 40 ng mL-1 of 17β-estradiol-d3 (Ds at position 16 and 17). This 

protocol was performed in order to calculate the one-point calibration curve covering 

0 to 40 ng mL-1. 
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Sample preparation 

The sample preparation protocol used for this analysis, was very similar to the 

protocol used prior to GC-(MS/C-IRMS) described above, but adapted to a sample 

volume of 5 mL and omitting a number of steps. Since there was no need to isolate 

the different analytes for quantification, the alkaline LLE and the two HPLC-

purifications were unnecessary. Also, there was no need to derivatize the 

compounds. Thus, the sample preparation consists of a hydrolysis with β-

glucuronidase, followed by one SPE and one LLE purification step. Finally, the 

extract was reconstituted in 125 µL of MeOH/H2O (80:20; v/v) of which 10 µL was 

injected into the LC-MS/MS. Samples were spiked at 2 ng mL-1 with 17β-

testosterone-d2 and at 80 ng mL-1 with 17β-estradiol-d3 to serve as internal standard 

for the quantification of the androgens and estrogens, respectively.  

 

4.3.5. Analysis of the preparation  

The administered βE2B and βTP were dissolved separately in methanol to prepare 

standard solutions of 10 ng µL-1. Next, 100 µL of each solution were hydrolyzed using 

2 mL of 1 M NaOH in MeOH. After 15 min at 65 °C, 8 mL of 2 M formic acid in H2O 

were added to stop the hydrolysis. Then, the samples were brought onto a SPE C18 

column, washed with 6 mL of H2O and eluted two times with 4 mL of MeOH. The 

eluate was evaporated to dryness under a nitrogen stream at 37 °C and reconstituted 

into 40 µL of MeOH and 70 µL of H2O. Afterwards, a reversed phase HPLC 

fractionation and an acetylation step were performed identical to those used during 

the preparation of the urine samples. Finally, the samples were reconstituted into 80 

µL of isooctane and analyzed with GC-(MS/C-IRMS). 

 

4.4. Results and discussion 

 

4.4.1. Analytical strategies used 

GC-(MS/C-IRMS) method 

The primary objective of the current research was to develop a method allowing the 

detection of βT abuse. Based on the literature,35,67,100 Etio and αT were retained as 

diagnostic markers of βT administration. During the two HPLC steps, separate 

fractions for both metabolites were successfully collected, resulting in very pure 

extracts suitable for IRMS analysis, as illustrated in figure 4.1.  
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Finally, in combination with the already included fractions from a previous study,179 

the method allows for the simultaneous detection of estrogen and androgen abuse, 

with αE2 as metabolite of βE2 and AEdiol as endogenous reference compound 

(ERC) for both βE2 and βT. The extraction yield for αT and Etio was between 36 and 

69%, and between 31 and 71%, respectively, which is very similar to the yield of 

AEdiol and αE2, previously published.179  

 

 

Figure 4.1. IRMS chromatograms (m/z = 44) of a compliant bovine urine sample, showing the internal 

standard noretiocholanolone acetate (NEC), 17α-testosterone (αT) (above) and etiocholanolone (Etio) 

(below). 
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HPLC-MS/MS method 

While performing the analysis for the routine detection of estrogen abuse in 2013, it 

became clear that the majority of the received urine samples did not contain a 

sufficient quantity of αE2 to provide an IRMS measurement within the linear range. 

This is in line with findings from the literature, placing an average concentration of 

αE2 at around 6000 pg mL-1 for heifers, and less than 500 pg mL-1 for bulls.32,73 

Therefore, a quantitative screening method with a similar but severely simplified 

sample preparation was initially developed to assess which samples contained more 

than 20 ng mL-1, necessary to provide IRMS-analysis within the linear range, filtering 

out large numbers of samples and avoiding unnecessary work.   

Afterwards, when including the testosterone metabolites into the method, the 

quantitative screening gained a second functionality. Because of the low UV-

absorption of Etio, it was not possible to determine the adequate dilution of this 

fraction for IRMS analysis based on the UV-detection during the straight phase HPLC 

fractionation, as it is done for the other analytes. However, it was possible to 

determine the dilution and provide measurement within the linear range based on the 

LC-MS/MS output.  

Finally, it must be pointed out that, although this method provides accurate and 

reproducible results in the lower concentration range, a linear calibration curve only 

provided a perfect match (R2 > 0.99) up to 50 ng mL-1. Concentrations between 50 

and 100 ng mL-1, mentioned with regard to the animal experiment, should be 

considered as an approximation, whereas even higher concentrations must be 

interpreted as “elevated”. Still, these data were found valuable to include.  

 

Hydrolysis of the steroid preparations 

The existence of steroid preparations having δ13CVPDB values similar to endogenous 

steroids has recently been reported for sports doping products.88,180-182 To assure 

that the δ13CVPDB values of the preparations used during the animal experiment were 

not within the endogenous range, the preparations were analyzed prior to treatment. 

An alkaline hydrolysis protocol for preparations, based on present experience at the 

laboratory and similar to published methods,180,182 was used. To confirm complete 

hydrolysis of the preparations and avoid any potential influence on the δ13CVPDB 

values, the absence of intact steroid esters was verified by UV-detection during the 
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HPLC-separation. The measured δ13CVPDB values, corrected for the acetate moieties, 

after hydrolysis were -32.13‰ and -31.70‰ for βE2 and βT, respectively, which is 

significantly different from endogenous values and should allow the detection of the 

administration.  

 

4.4.2. Method validation 

The method validation was performed similar to the previous study,179 as described in 

chapter III, and the most important results are summarized in table 4.1 and figure 4.2.  

 

Table 4.1. Summary of the method validation results of 5-androstene-3β,17α-diol (AEdiol), 17α-

estradiol (αE2), 17α-testosterone (αT) and etiocholanolone (Etio) 

Validation parameter 
AEdiol 

(ERC) 
αE2 αT Etio 

AMDIS ‘Net Match’ factor (specificity) 94 90 94 99 

AMDIS ‘Purity’ factor 91 88 81 87 

Linear range (ng of analyte on column) (min – max) 7.5 - 50 15 - 80 10 - 80 10 - 80 

Intermediate precision (‰) (sample standard deviation (n=8)) 0.21 0.35 0.35 1.05 

Mean difference between spiked water samples and 

standards (method bias) (‰) (n=8)  
0.18 0.66 0.33 0.05 

Trueness (average system bias) (‰) 0.57 0.57 0.57 0.57 

Combined measurement uncertainty (%) 0.70 0.99 0.80 1.23 

 

The validation results for AEdiol and αE2 were comparable to those obtained during 

the previous study, and for αT, similar results were obtained. For Etio, however, two 

results stand out. First, the intermediate precision was noticeably higher than for the 

other compounds. Still, similar and even higher values have been considered 

acceptable both in published methods for sports doping control,123,125 and lifestock 

control,84,113 although reported for other steroids or matrices. For the determination of 

the intermediate precision during the initial validation, the eight spiked urine 

subsamples were analyzed two by two in four separate measurement series, 

performed by three different analysts over a time span of three months. To 

reevaluate the result for Etio afterwards, the measurements of the compliant control 
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sample for routine analyses, analyzed in 14 different measurement series over a time 

span of eight months, were assessed. The calculated intermediate precision based 

on these data (n=14) was 0.76‰, which is significantly better. 

Second, the non-compliance ∆13CVPDB threshold value, based on 21 measurements 

from untreated cows, executed in five series of measurement over a time span of four 

months, and calculated as the mean value plus three times the standard deviation (µ 

+ 3 x SD), as described in chapter III, was 3.47‰. This is above the 3‰ threshold 

value applied for doping control in the past, as is displayed in figure 4.2. Remarkably, 

similar observations have been made with regard to sports doping control, where a 

number of reference population studies indicated that a 3‰ threshold is too low in 

certain cases.123,125 Because of these observations, the new guidelines of the World 

Anti Doping Agency (WADA) describe a more detailed list of compliance criteria, with 

different combinations of threshold values for specific ERC-metabolite combinations 

including an elevated threshold for the metabolite Etio. Additionally, each laboratory 

for sports doping control must perform a reference population study to determine if 

their performance is good enough to apply these criteria.153 The presented findings 

suggest similar precaution must be used for the analysis of bovine urine. Therefore, 

the applied threshold for routine analysis was fixed at 3‰ for the couples αE2-AEdiol 

and αT-AEdiol, and at 4‰ for Etio-AEdiol.  
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Figure 4.2. ∆13CVPDB values (expressed in ‰) of 17α-estradiol (αE2) (upper), 17α-testosterone (αT) 

(middle) and etiocholanolone (Etio) (lower), with 5-androstene-3β,17α-diol (AEdiol) as endogenous 

reference compound, from a compliant control population 
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Specificity of the method was verified according to legal criteria,24 identical as 

described in paragraph 3.4.2, and the absence of impurities and coelutions was 

verified by inspection of the MS data. Additionally, AMDIS, specialized software to 

evaluate peak purity and identification of the analyte peaks, was used for this 

purpose.   

No calculations of measurement uncertainty could be found in publications regarding 

the use of GC-C-IRMS to detect steroid abuse in cattle. Although information on this 

subject is scarce in publications regarding sports doping control as well, the work of 

Polet et al. pays detailed attention to the subject.183 One of the suggested 

approaches is to estimate the combined measurement uncertainty as the square root 

of the sum of the squares of the different uncertainty components attributing to the 

measurement uncertainty, according to the following formula:  

 

√u(calibration bias)2 + u(reference value)2 + u(method precision)2 

 

This approach was used to estimate the combined measurement uncertainty for each 

analyte, of which the results are included in table 4.1. U(calibration bias) corresponds 

with the measured system bias, as calculated in chapter III, and u(method precision) 

corresponds with the intermediate precision, both also included in table 4.1. 

U(reference value) is the SD on the certified steroids used to perform the calibration, 

specified as 0.3‰ by the supplier on the certificate. Finally, since the method bias 

also contributes to the measurement uncertainty, it was included in the calculation as 

well.  

 

4.4.3. Results of the animal experiment 

An administration study was required to assess the potential of the developed 

method to detect steroid abuse in cattle, and to adequately evaluate the 

pharmacokinetics and the detection window after administration. Trying to observe 

gender differences, a male and female animal were treated. Prior to treatment, the 

diet of both animals was kept constant for three weeks, to assure stable δ13CVPDB 

values for the ERC during the experiment. Finally, the animals were treated with 400 

mg of βT and 80 mg of βE2, injected as a propionate and benzoate ester, 
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respectively. While a typical approved dosage in the USA, administered by implant, is 

20-45 mg per animal for βE2, and 140-200 mg for βT,11 laboratory experience with 

the analysis of injection sites indicated dosages sometimes up to several hundred mg 

more. The selected treatment holds the middle ground between both scenarios. As 

other studies reported detection windows up to three weeks, as discussed in chapter 

II, samples were collected until 27 days after administration to be able to provide 

detailed pharmacokinetic data on the treatment.  

Of course, the low number of treated animals is a seriously limiting factor. It is 

impossible to draw final conclusions regarding the influence of gender, based on 

measurements of only one male and one female animal. The same can be said 

regarding the determined detection windows: a much larger number of treated 

animals, and a variation of different treatments, are required to obtain statistically 

relevant data. Therefore, these results should be regarded as preliminary. However, 

they did allow to take an interesting glance at the examined parameters, and add 

important additional information on a subject for which only a limited number of 

animal studies have been published so far.   

 

Effect of the treatment on measured δ13CVPDB values 

The δ13CVPDB values of the four measured analytes in the urine samples after 

treatment are displayed in figure 4.3.  

The measured δ13CVPDB values of AEdiol remain stable after treatment at -15.49 ± 

0.49‰ and -14.80 ± 0.57‰ in the male and female, respectively, confirming the 

functionality as a reference compound for both androgens and estrogens, as already 

described elsewhere.100,101 This enriched level for endogenous values fits well with 

the reported measurements from cattle fed with a diet containing a high percentage 

of maize.100,101 As expected, the results suggest that gender does not influence the 

endogenous 13C/12C ratio of the ERC significantly.  

Already the first day after treatment, the δ13CVPDB of the metabolites of both βE2 and 

βT approached their lowest values, contrary to previous testosterone administration 

studies, in which a more gradual decline over a time span of several days was 

described.67,94,117 This difference can be contributed to the currently used 

preparation, 17β-testosterone propionate, which is known to have a more rapid and 

shorter lasting effect because of the short carbon chain length of the ester, as 
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opposed to 17β-testosterone enanthate, although influence of other factors such as 

age, weight or type of feed of the animals cannot be excluded.  

 

 

 

Figure 4.3. δ13CVPDB values (expressed in ‰) of 5-androstene-3β,17α-diol (AEdiol), 17α-estradiol 

(αE2), 17α-testosterone (αT) and etiocholanolone (Etio) in the urine samples from a bull (upper) and a 

heifer (lower) after treatment with 17β-testosterone propionate and 17β-estradiol benzoate. 

 

The δ13CVPDB values of αE2 remain stable after injection, at -30.13 ± 0.24‰ and         

-29.90 ± 0.70‰ for the male and female, respectively. The small difference in value 

between the used preparation and the urine samples indicate a very low endogenous 
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production of estrogens and therefore, the treatment remained visible until the end of 

the experiment, 27 days after administration. 

However, regarding the androgen metabolites, differences between both animals are 

more pronounced. The difference between the injected testosterone δ13CVPDB value 

and the more depleted δ13CVPDB value in the various female urine samples is close to 

zero for both Etio and αT. It would indicate that the contribution of the endogenous 

steroids in the female is insignificant versus the concentration of exogenous residues. 

For the male, the relative concentration contribution of the endogenous steroids is 

rather high as attested by the difference observed between δ13CVPDB values of the 

injected testosterone and the most depleted level of Etio found in the urine samples 

after treatment (6‰). 

As a consequence, while βTP treatment could be proven up to 24 days after injection 

in the female, this was limited to three days for the male. The very small detection 

window for 17β-testosterone treatment forms a serious limitation when applying it to 

detect such abuse for official control purposes. However, since βE2 was proven to be 

a more powerful growth promoter in male animals than βT, both substances can be 

expected to be administered together to enhance the effects.184 Still, the detection of 

βE2 administration has its boundaries as well. While endogenous dilution determines 

the detection window for the androgens, it is limited for the estrogens by their 

abundance in the urine samples (figure 4.4). While the results 27 days after 

administrations still indicate the administration in both animals, the measurements 

are just below the linear range of the IRMS and would have been discarded during 

routine analysis.  

When evaluating the results for both testosterone metabolites, the carbon enrichment 

was prolonged in Etio, compared to αT for which the 13C/12C ratio returned to the 

endogenous value within two days after treatment in the bull, making it a less suitable 

metabolite in male animals.100 In the heifer, however, the ∆13CVPDB value for αT 

remained above the threshold for up to 17 days, thus proving its usefulness.  
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Figure 4.4. Concentrations (expressed in ng mL-1), measured with LC-MS/MS, of 5-androstene-

3β,17α-diol (AEdiol), 17α-estradiol (αE2), 17α-testosterone (αT) and etiocholanolone (Etio) in the urine 

samples from a bull (upper) and a heifer (lower) after treatment with 17β-testosterone propionate and 

17β-estradiol benzoate. 

 

Effect of the feeding on measured δ13CVPDB values 

After the animals were obtained, their feeding regime was kept constant during the 

entire experiment. The treatment was only performed after 21 days, to assure that 

the measurements of the ERC after treatment were stable and reflected the current 

diet. Urine samples were collected during this adaptation period as well, of which the 

results are displayed in figure 4.5. In the samples from the bull, an upward trend in 

measured δ13CVPDB values is visible, which corresponds with the described effect of 

an enlarged portion of maize in the feed.84,94 The values of both the ERC and the 
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metabolites shift simultaneously, with the ∆13CVPDB values never exceeding 0.89‰. 

However, this trend is not very pronounced, since apparently the previous diet 

already contained a significant portion of C4 plant material, and for the heifer, this 

trend was only visible for AEdiol. Unfortunately, the four target analytes could not be 

measured simultaneously in any of the samples before treatment, and for αE2, none 

of the samples contained a sufficient amount to provide an adequate result. 

It is clear that the feeding regime in this experiment created an ideal situation for the 

treatment to be detectable. As discussed in chapter II, as the portion of C4 plant 

material in the feed decreases, the δ13CVPDB values of the ERC, AEdiol in this case, 

will decrease as well. Eventually, the difference in δ13CVPDB values between AEdiol 

and the administered substances will become so small, that it will no longer be 

possible to establish the treatment through the measured ∆13CVPDB values. 

 

 

Figure 4.5. δ13CVPDB values (expressed in ‰) of 5-androstene-3β,17α-diol (AEdiol), 17α-testosterone 

(αT) and etiocholanolone (Etio) in the urine samples from a bull (left) and a heifer (right) after changing 

the feed composition. 
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Comparison to other detection methods  

As an alternative to the analysis of urine samples with IRMS, abuse of synthetic 

homologues of naturally occurring steroid hormones in cattle can also be proven by 

detection of the intact steroid esters, used for the treatment, in hair or blood samples, 

using other mass spectrometric techniques.185 During the administration study, serum 

samples were collected at different times from both animals for the detection and 

quantification of βTP and βE2B using ultra high performance liquid chromatography-

tandem mass spectrometry. The used method, as well as the obtained results from 

these and other treated animals, were discussed by Kaabia et al.186 The amount of 

βE2B in the serum samples increases rapidly already one day after injection, and 

only starts decreasing between 9 and 13 days after injection in both animals. A good 

correspondence can be observed between the kinetic curve of βE2B in serum and 

the concentration of αE2 in the urine samples of both animals (figure 4.6). βE2B 

remained detectible up to 17 days after administration. Unfortunately, no βTP was 

detected in the samples from the bull. However, in samples from three other heifers 

which received a similar treatment, βTP remained detectable up to 2 days, indicating 

a high esterase activity. 

Thus, the detection window for the administration of both substances was wider when 

using the GC-(MS/C-IRMS) approach, while the difference between both analyses 

was most pronounced when looking at testosterone abuse in the heifer, which could 

be detected up to 17 days longer compared to the analysis of the serum samples. 

However, it is expected that the IRMS detection windows will become narrower as 

the relative portion of C3 plant material in the feed increases, whereas a dietary 

change would not affect the presence of the administered steroid esters in serum. 

Also, the analytical method for the analysis of the plasma samples is significantly less 

complex and time consuming than the sample preparation prior to IRMS analysis.  
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Figure 4.6. Concentrations of 17β-estradiol benzoate (βE2B) in plasma (expressed in pg mL-1) and 

17α-estradiol (αE2) in urine (expressed in ng mL-1) from a bull (upper) and a heifer (lower) after 

treatment with 17β-testosterone propionate and 17β-estradiol-3-benzoate. Adapted from Kaabia et 

al.186 

 

As mentioned above, a third way to undisputedly demonstrate the abuse of synthetic 

homologues of naturally occurring steroid hormones, is by detection of the intact 

steroid esters in hair. Unfortunately, no hair samples were analyzed during the 

current study. However, detection methods using GC-MS/MS and LC-MS/MS, and 

results from administration studies with esters of βT and βE2 are available.185,187-189  
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Regarding a single intramuscular βE2B administration, detection windows from two 

weeks up to 70 days have been reported.185,187 Regarding βTP, no data could be 

produced on the successful detection of its incorporation into bovine hair after 

treatment, although this could have been due to the low dosage used in the study.189 

Nevertheless, in studies using other esters of testosterone, detection windows similar 

to those reported above for βE2B were observed, up to 70 days after treatment.185,189 

Even though this method offers great perspectives due to its large detection 

windows, the result is highly variable and influenced by additional factors such as 

pigmentation of the hair and sampling distance from the injection site. It is clear that 

GC-(MS/C-IRMS) is an excellent technique for the detection of abuse of homologues 

of naturally occurring steroids, and that the method presented is well functioning. 

However, the inclusion of additional ERCs would provide an even more powerful 

result, and since different steroids are often abused together, the addition of 

metabolites of other substances to the analysis would broaden the scope and 

detection possibilities. Still, as illustrated by this study, the technique is limited by 

both the abundance of steroids in urine samples and the required complex sample 

preparation. Therefore, this technique is complementary to the detection of steroid 

esters in blood, for which a far less laborious and time consuming sample preparation 

can be used, and in hair, which could offer a larger timeframe for detection. 
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5. The use of gas chromatography-(mass 

spectrometry/combustion-isotope ratio mass 

spectrometry) (GC-(MS/C-IRMS)) to demonstrate 

progesterone treatment in bovines 

 

Adapted from Janssens G.; Mangelinckx S.; Courtheyn D.; De Kimpe N.; Matthijs B.; 

Le Bizec B. 2015, submitted to J. Chromatogr. A. 

 

5.1. Abstract 

 

Currently, no analytical method is available to demonstrate progesterone 

administration in biological samples collected from rearing animals, and therefore, 

tracking the abuse of this popular growth promoter is arduous. In this study, a method 

is presented to reveal progesterone (PG) treatment on the basis of carbon isotope 

measurement of 5β-pregnane-3α,20α-diol (BAA-PD), a major PG metabolite 

excreted in bovine urine, by gas chromatography-(mass spectrometry/combustion-

isotope ratio mass spectrometry) (GC-(MS/C-IRMS)). 5-Androstene-3β,17α-diol 

(AEdiol) is used as endogenous reference compound. Intermediate precisions (n=11) 

of 0.56‰ and 0.68‰ have been determined for AEdiol and BAA-PD, respectively. 

The analytical method was used for the very first time to successfully differentiate 

urine samples collected from treated and untreated animals. Unexpectedly, 

characterization of urine samples collected from animals treated with 17β-

testosterone and 17β-estradiol indicated that the 13C/12C ratio of BAA-PD was 

affected by the treatment.   

 

5.2. Introduction 

 

As a measure to meet consumer’s demands, the use of hormonal substances as 

growth promoter in stock farming is prohibited within the European Union.22 Abuse of 

these substances is actively monitored,23 for which specific analytical guidelines are 

in place.24 While these surveillance programs are adequate for the detection of 

xenobiotic residues, they fall short when it comes to tracing administration of  sexual 
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hormones in cattle. For the latter, two main analytical options are currently 

implemented by European Member States. First, residues of the administered steroid 

esters, which are considered xenobiotic, can be detected in blood, hair and injection 

sites for a certain period of time after administration using GC-MS or LC-MS based 

methods.185-190 Second, because the 13C/12C isotope ratio, expressed relative to 

Vienna Pee Dee Belemnite (VPDB) as δ13CVPDB values, of steroid preparations is 

usually different from that of endogenously produced steroids, abuse can be detected 

in bovine urine samples using gas chromatography coupled to combustion-isotope 

ratio mass spectrometry (GC-C-IRMS). Because it is difficult to set threshold values 

which indicate the treatment, at least two analytes are measured with IRMS: an 

endogenous reference compound (ERC), of which the δ13CVPDB value is not affected 

by the steroid treatment, and a metabolite of the administered substance. When the 

difference between the δ13CVPDB values of the ERC and the metabolite, the ∆13CVPDB 

value, exceeds a threshold determined through the statistical evaluation of results of 

samples from a compliant population, the treatment is analytically and 

administratively demonstrated.67,100,101,172,179,191 

Progesterone, however, remains largely overlooked by current analytical methods, 

despite indications of its abuse through results from material samples and 

preparations.9,192 In 15% of the preparations, confiscated by the Belgian authorities at 

farms from 2010 until 2015 and found positive for hormonal substances, 

progesterone was found. In veterinary practice, progestagens are commonly used for 

reproductive performance in cows, regulating estrus and thus facilitating insemination 

at the farm. In itself, progesterone is a less potent growth promoter than androgens 

or estrogens, but still, in heifers, it can be used to eliminate heat to obtain better 

growth and improved feed conversion.10 But more importantly, because of its anti-

estrogenic activity, it is often administered together with estradiol, canceling out some 

of the unwanted side-effects from the latter.10 In the USA, where regulated 

administration of certain growth promoters is permitted, both substances are 

combined in implants at 10 mg estradiol and 100 mg progesterone for calves, and 

twice this dosage for steers and bulls,193 providing good growth promoting    

results.12-14  

The aim of this study is to provide an original analytical method for the unambiguous 

demonstration of progesterone abuse in samples from animal origin. A                  
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GC-(MS/C-IRMS) approach was developed on bovine urine according to a three-

stage process. Suitable candidate target analytes were investigated; an overview is 

given in table 5.1 together with their chemical structures and abbreviations. 

Afterwards, two analytical protocols were designed and evaluated against each 

other. Eventually, the capacity of the most efficient protocol was validated before use 

on incurred urine samples collected from treated and untreated cattle.   

 

Table 5.1. Overview of the steroids of interest in this chapter, the used abbreviations and the 
structures. 

Structure 

Name 

Abbreviation 

Structure 

Name 

Abbreviation 

Structure 

Name 

Abbreviation 

Structure 

Name 

Abbreviation 

5-Androstene-3β,17α-diol 

AEdiol 

 

H

OH

HO

5α-Pregnane-3α,20β-diol 

AAB-PD 

 

H

OH

HO

5β-Pregnane-3α,20α-diol 

BAA-PD 

 

H

OH

HO

5β-Pregnane-3β,20β-diol 

BBB-PD 

 

H

OH

HO

5α-Pregnane-3α,20α-diol 

AAA-PD 

 

H

OH

HO

5α-Pregnane-3β,20β-diol 

ABB-PD 

 

H

OH

HO

5β-Pregnane-3β,20α-diol 

BBA-PD 

 

5β-Pregnane-3,20-dione 

B-PDione 

 

H

OH

HO

5α-Pregnane-3β,20α-diol 

ABA-PD 

5α-Pregnane-3,20-dione 

A-PDione 

5β-Pregnane-3α,20β-diol 

BAB-PD 

Progesterone 

PG 



Chapter V 

96 

 

 

5.3. Material and methods 

 

5.3.1. Reagents and chemicals  

All reagents and solvents were of analytical grade and were supplied by Sigma-

Aldrich (Bornem, Belgium). Liquid chromatography solvents were of LC- and HPLC-

grade from Biosolve (Valkenswaard, the Netherlands). 17β-Testosterone acetate was 

obtained from Sigma-Aldrich (Bornem, Belgium). Other used steroids were 

purchased from Steraloids (Wilton, NY, USA). SPE C18 cartridges were from Achrom 

(Zulte, Belgium). Escherichia coli K12 β-glucuronidase was provided by Roche 

Diagnostics GmbH (Mannheim, Germany). Dry pyridine and acetic anhydride were 

obtained from Sigma-Aldrich (Bornem, Belgium).  

 

5.3.2. Samples 

Non-compliant samples 

To provide non-compliant samples, three female bovines were treated with 

progesterone (PG) at the Centre d’Economie Rurale (CER groupe) (Marloie, 

Belgium). The approval code from the ethical commission for the experiment was 

CE/Santé/ET/004. Cow A and B were of the Holstein breed, aged four years and 

weighing 565 kg and 529 kg, respectively. They received daily 2 kg of a typical 

feeding concentrate (corn (18.5%), dried sugar beet pulp (11.6%), soy meal (9.3%), 

palm-kernel expeller (9.2%), wheat meal (8.3%), colza meal (8.3%), alfalfa (7.6%), 

spelt wheat (7.0%), gluten feed from corn (5.0%), sunflower meal (4.0%), gluten feed 

from wheat (3.0%), barley (2.5%), vinasse (2.3%), calcium carbonate (1.6%), 

molashine (1.0%), sodium chloride (0.6%), premix (0.3%)), and had access to hay 

and water at libitum. The animals were treated with two injections, with a 24 h 

interval, into the dorsal neck muscle, containing 200 mg PG in an ethanol based 

preparation. Urine samples were collected at time intervals of 12 h, starting at the 

time of the first administration until 24 h after the last. The samples were stored at -

85°C in a monitored temperature environment until assay. 

Cow C, of the Belgian blue mixed breed, aged six years and weighing 624 kg, was 

kept on a stable feeding regime, consisting of dried grass and chopped corn, for two 

weeks before treatment. The animal received three injections into the dorsal neck 

muscle, with a 24 h interval, containing 1 g PG as an ethanol based preparation. 
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Urine samples were collected at the time of the treatments and 12 h thereafter. 

Afterwards, samples were collected daily until 1 week after the first treatment. The 

samples were stored at -85°C in a monitored temperature environment until assay. 

 

Compliant samples 

Eighteen urine samples from non-treated pregnant cows were collected at different 

farms. Additionally, 14 urine samples from animals, demonstrated as non-treated 

according to official routine analysis, were included to increase the individual number 

of the reference population (i.e. compliant). The samples were stored at -85°C in a 

monitored temperature environment until assay. 

 

Spiked samples 

A urine sample containing low concentrations of 5-androstene-3β,17α-diol (AEdiol) 

(2.7 µg L-1) and exempt from 5β-pregnane-3α,20α-diol (BAA-PD), was spiked with 

these substances at 100 µg L-1, and divided into 11 subsamples, respectively, to be 

further used during the method validation.  

 

Samples from cattle treated with testosterone and estradiol 

Additionally, urine samples from a bull and heifer treated with a single intramuscular 

injection of 17β-testosterone propionate and 17β-estradiol benzoate, presented and 

discussed in a previous publication,191 were also used for this study.  

 

5.3.3. Instrumentation 

HPLC-UV 

Two different HPLC setups were used during sample preparation. Reversed phase 

HPLC was performed on a Waters Alliance 2690 system, coupled to a UV-detector 

(diode array detector, DAD) measuring from 205 to 235 nm, and subsequently to an 

automated fraction collector. The system was equipped with a precolumn (Kinetex 

Security Guard Ultra C18 for 2.1 mm ID) and a C18 functionalized analytical column 

(Kinetex XB-C18; 250 mm x 4.6 mm; 5 µm), held at 50°C. An HPLC method was 
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developed on the basis of a mobile phase composition (A:B; v/v) of 35:65, with 

H2O/MeOH (95/5; v/v) as solvent A and MeOH as solvent B. After elution of the 

analytes, the mobile phase composition (A:B; v/v) was changed to 0:100 as a rinsing 

phase at the end of the run. A constant flow rate of 0.8 mL min-1 and an injection 

volume of 100 µL were used.  

For normal phase HPLC, another Waters Alliance 2690 system, set up with UV 

detector, fraction collector and two diol functionalized columns (LiChrospher Diol; 250 

mm x 4 mm; 5 µm) in series, was used. A constant mobile phase composition of 

isooctane/isopropanol (85/15; v/v) was preferred for method A and B, but for fraction 

PDC in method C, as described under 5.3.4, a constant composition of 

isooctane/isopropanol (95/5; v/v) was used, both with a rinsing phase at the end of 

the run. A flow rate of 1 mL min-1, a column temperature of 40°C and an injected 

volume of 100 µL were selected. 

 

GC-(MS/C-IRMS) 

For GC-(MS/C-IRMS) analyses, a Thermo Trace GC Ultra gas chromatograph, 

equipped with a Thermo Scientific Triplus autosampler, was connected to both a 

Thermo DSQ II single quadrupole mass spectrometer and a Thermo MAT 253 

isotope ratio mass spectrometer, via the Thermo Scientific GC Isolink. To achieve the 

parallel coupling of the two detectors, the signal was split after GC using two SilFlows 

(TM SGE Analytical Science). The system was equipped with an Optima 17MS 

column (Machery Nagel – 30 m; 0.25 mm i.d.; 0.25 µm df) and gas flows were 

controlled using the Thermo Scientific Conflo IV interface. Helium was used as carrier 

gas at a flow rate of 1.2 mL min-1. After injection of 8 µL, at 20 µL s-1, the injector 

temperature was held at 100°C for 0.10 min, with a vent flow operating at 20 mL min-

1. Then, the temperature was increased at 8°C min-1 up to 320°C and held 2 min. The 

GC oven was held at its initial temperature of 110°C for 1.5 min. Next, the 

temperature was raised to 220°C at 30°C min-1, to 270°C at 6°C min-1, to 300°C at 

2°C min-1 and finally to 330°C at 50°C min-1, which was held for 3 min. The transfer 

line temperature was set at 300°C. Approximately 5% of the GC eluate was 

transmitted to a quadrupole mass analyzer for characterization; the steroid signals 

were acquired in the MS full scan mode (m/z 50 to 400) after electron ionization (70 
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EV). The main split fraction was carried out to a combustion furnace, perfectly 

conditioned (1 h of oxidation before use) and maintained at 950°C. Next, by passing 

through a Nafion membrane, water was removed from the gaseous eluate. Electron 

ionization was used to convert carbon dioxide (CO2) into the corresponding ionized 

species characterized by an odd number of electrons (CO2+
●). Finally, isotopomer’s 

species at m/z 44, 45 and 46 were simultaneously measured in separated Faraday 

cups. From these data, δ13CVPDB values of the analytes were calculated after 

calibration of the CO2 reference gas, which was executed by injection of 17β-

testosterone acetate and dehydroepiandrosterone (DHEA) acetate with known and 

certified δ13CVPDB values. When steroids were measured after acetylation, the shift of 

the δ13CVPDB value, caused by the acetate moieties, was corrected using the formula  

DOH = DOAc + 2m (DOAc − DAc)/n,  

in which DOH is the δ13CVPDB value of the underivatized steroid, DOAc the δ13CVPDB 

value of the acetylated steroids, DAc the δ13CVPDB value of the acetic anhydride used 

for the derivatisation, n the number of carbon atoms in the molecule and m the 

number of hydroxyl groups which were acetylated. 67,100,101,172,179,191 

 

5.3.4. Sample preparation 

In this study, three different sample preparation procedures were used, method A, 

method B and method C, of which an overview is given in scheme 5.1. However, the 

analytical protocol prior to the preparative HPLC steps is identical for all three.  

 

First, the urine samples were centrifuged (15 min, 3113 g) to avoid obstruction of the 

SPE cartridges later on. Ten milliliters of the sample were hydrolyzed at 37°C, after 

addition of 50 µL glucuronidase from E. coli and 3 mL phosphate buffer 0.8 M to 

maintain a pH of 6.8. After 15 h, the sample was loaded onto a C18 SPE column, 

which was previously successively conditioned by 6 mL of MeOH and 6 mL of H2O. 

After stationary phase washing with 6 mL of H2O and 5 mL of H2O/acetonitrile (ACN) 

(80/20; v/v), target analytes were eluted with 8 mL of H2O/ACN (5/95; v/v). Next, the 

eluted sample was evaporated to approximately 300 µL under a nitrogen stream at 

45°C, before adding 0.5 mL of 1 M sodium hydroxide. Then, a liquid-liquid extraction 

(LLE) was performed using two times 4 mL of n-pentane/diethyl ether (92.5/7.5; v/v). 



Chapter V 

100 

 

 

 

Scheme 5.1. Analytical protocol of the sample preparation for the three used methods, A, B and C. 

Content of the fractions (PDA1; PDA2; PDB1; PDB2; PDB3; PDC; A) is defined in table 5.2 and table 

5.3. LLE stands for liquid-liquid extraction. 

Afterwards, 30 µL of a glycerol solution (10% in methanol) was added to the 

combined organic layers to serve as a keeper. The sample was evaporated at 37°C 

under a nitrogen stream, and reconstituted into 80 µL of H2O and 40 µL of 

fluoxymesterone in methanol (50 ng/µL), used as internal standard specifically during 

the reversed phase chromatography step.  

The collecting windows for targeted analytes on the reversed phase HPLC system 

were first determined through three successive injections of a standard solution 

containing fluoxymesterone, AEdiol, PG and testosterone propionate. The collected 

fractions for all three methods are defined in table 5.2. 

 

 

Urine sample 

Hydrolysis: glucuronidase (E. coli) 

LLE NaOH/n-pentane + diethyl ether (pH 14) 

SPE C18 

HPLC C18 

HPLC diol HPLC diol HPLC diol 

HPLC diol Acetylation Acetylation Acetylation 

Oxidation 

GC-(MS/C-IRMS) GC-(MS/C-IRMS) GC-(MS/C-IRMS) 

PDA1 PDA2 

PDB1 PDB2 PDB3 

PDB1 PDB2 PDB3 

PDC 

A 

A 

Centrifugate 

N2 

N2 

N2 

N2 

N2 

N2 
N2 

N2 

N2 

N2 

N2 N2 N2 

N2 N2 N2 N2 

N2 N2 N2 N2 

N2 

N2 N2 

N2 N2 
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Table 5.2. Description of the collected fractions using reversed phase HPLC. 

Method A 

Fraction 
start time – end time 

(min) 
Collected analytes 

PDA1 14.30 – 18.00 ABA-PD; BBA-PD 

PDA2 23.00 – 28.30 AAA-PD; AAB-PD; ABB-PD; BAA-PD; BAB-PD; BBB-PD 

Method B and C 

A 9.61 – 11.44 AEdiol 

PDB1 15.30 – 18.00 BBA-PD 

PDB2 23.30 – 26.30 BAA-PD; BBB-PD 

PDB3 26.31 – 28.30 BAB-PD 

 

For method A and B, 20 µL of a PG standard solution in ethanol (10 ng/µL) was 

added to serve as internal standard during the normal phase HPLC purification. Next, 

the fractions were evaporated to dryness under a nitrogen stream at 37°C and 

dissolved in 120 µL of isooctane/isopropanol (90:10; v/v) before injection in the 

second HPLC system, after calculation of the fractionation windows by a threefold 

standard injection containing PG and AEdiol. The fractions, collected during the 

normal phase HPLC purification as described in table 5.3, were evaporated to 

dryness under a nitrogen stream at 37°C, and 25 µL of both acetic anhydride and 

pyridine were added. After acetylation overnight at room temperature, the fractions 

were again evaporated to dryness under a nitrogen stream at 37°C. Finally, the 

fractions were dissolved in 30 µL of isooctane, containing 19-noretiocholanolone-3-

acetate (4 ng/µL) as internal standard, before injection onto the GC-(MS/C-IRMS). 

 

While method A and B only differ in the fractions collected during the HPLC steps, 

method C employs a different strategy. Fractions PDB1, PDB2 and PDB3, collected 

during reversed phase chromatography, were recombined and evaporated to dryness 

at 45°C under a nitrogen stream. The residue was dissolved in 50 µL of acetonitrile, 

and 50 µL of the oxidizing reagent, K2Cr2O7 dissolved at 50 g/L in H2O/H2SO4 (90:10; 

v/v), was added. After 30 min at 37°C, the oxidation was stopped by adding 900 µL of 

aqueous Na2CO3, at a concentration of 11 g/L. Then, the analytes were extracted 

using 1.5 mL of isooctane. 
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The extract was further washed with 250 µL of H2O and after centrifugation for 3 min 

at 2300 g, the organic layer was isolated. For the normal phase HPLC purification, 20 

µL of a PG standard solution in methanol (10 ng/µL) was added to the sample extract 

as the internal standard, before evaporation to dryness under a nitrogen stream at 

37°C. After being dissolved in 120 µL of isooctane/isopropanol (95:5; v/v), the extract 

was injected onto the second HPLC system, loaded with a diol-functionalized column. 

The fraction labeled “PDC”, containing 5β-pregnanedione (B-PDione), was collected 

as specified in table 5.3. Finally, this oxidized fraction was evaporated to dryness 

under a nitrogen stream at 40°C and dissolved in 30 µL of isooctane, containing 

noretiocholanolone acetate (4 ng/µL) as internal standard, before injection onto    

GC-(MS/C-IRMS).  

Fraction “A”, containing AEdiol, was treated as described in method B.  

 

Table 5.3. Description of the collected fractions using normal phase HPLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method A 

Fraction start time – end time (min) Collected analytes 

PDA1 9.15 – 12.30 ABA-PD; BBA-PD 

PDA2 8.65 – 13.30 

AAA-PD; AAB-PD; ABB-

PD; BAA-PD; BAB-PD; 

BBB-PD 

Method B 

A 11.78 – 13.75 AEdiol 

PDB1 9.15 – 11.80 BBA-PD 

PDB2 11.15 – 13.30 BAA-PD 

PDB3 9.65 – 12.80 BAB-PD 

Method C 

A 11.78 – 13.75 AEdiol 

PDC 8.15 – 10.80 B-PDione 
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5.4. Results and discussion 

 

5.4.1. Selection of suitable reference compounds and metabolites 

Because the use of IRMS to demonstrate PG treatment in cattle has not yet been 

described, the first step in the current study was the selection of suitable ERCs and 

metabolites. For the demonstration of abuse of estrogens and androgens in bovines, 

both dehydroepiandrosterone (DHEA) and 5-androstene-3β,17α-diol (AEdiol) have 

been reported as suitable ERCs.100,101,179,191 Because DHEA is mainly present in 

urine as a sulpho-conjugate, AEdiol was retained in this study to avoid additional 

cleanup steps. Unfortunately, very limited information was available regarding the 

abundance of urinary PG metabolites in bovines, and post-administration data are 

nonexistent.32,194 Because pregnanediol glucuronide was reported to be present in 

bovine urine as an early pregnancy indicator,195 and since 5β-pregnane-3α,20α-diol 

(BAA-PD) is known to be a major PG metabolite in human urine, used for doping 

control purposes since 1999,118 and currently the mandatory ERC by the World Anti-

Doping Agency,152 pregnanediols (PDs) were selected as candidate target 

metabolites.  

 

First, endogenous occurrence of the eight PD isomers in urine samples from non-

treated animals, 11 pregnant cows, which are expected to have a more active PG 

metabolism because of its functionality as a pregnancy regulating hormone,195 and 

14 non-pregnant cows, was assessed using method A described under 5.3.4. 

Although fraction PDA2, of which a chromatogram is shown in figure 5.1, contained 

too many impurities to determine adequate δ13CVPDB values, the comparison of the 

intensities of the different PDs was possible, and the results are visualized in figure 

5.2.  
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Figure 5.1. IRMS chromatogram (m/z = 44) of fraction PDA2 from a compliant urine sample (left), with 

a close up of the part containing the six pregnanediols (AAA-, BAA-, AAB-, ABB-, BAB- and BBB-PD) 

(right).  

 

  

Figure 5.2. Overview of the abundances of the 8 different PD isomers in 25 urine samples from non-

treated cows (left), and the difference between samples from pregnant and non-pregnant animals 

(right).  

 

These indicate that overall, in the endogenous profile, the 5β-PDs are of larger 

importance than the less abundant 5α-isomers. More specifically, BAA-PD was the 

most abundant PD-isomer, followed by BAB-, BBA- and ABB-PD, which was later on 

confirmed by the analysis of the urine samples before and after treatment of cow A, B 

and C (figure 5.3).  
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Figure 5.3. Overview of the abundance of the 8 different pregnanediol isomers in urine samples from 

cow A (upper), B (middle) and C (lower), before and after treatment with progesterone.  

However, even though all results point towards the same main metabolites, 

significant differences between the animals were observed. Although the signal 
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intensities of the four most abundant PDs clearly increase in samples from cow B 

after treatment, they are still only present at a low level, most certainly when 

compared to cow A, in which only ABB-PD remains low in abundance. As for cow C, 

while being treated with a five times higher dose of PG than the other two animals, 

the PD-levels remain below those of cow A, with exception of ABB-PD. Finally, it 

needs to be added that the presence of progesterone in the samples from the treated 

animals was assessed as well, using the LC-MS/MS method described in a previous 

publication.191 The concentrations were comparable with those described for routine 

samples from bovines, not exceeding 4 µg L-1 except for two samples.77 In urine 

samples from cow C, elevated progesterone concentrations of 16 and 10.5 µg L-1 

were measured 12 hours after the first treatment and 72 hours after the third 

treatment, respectively. Still, this indicated that the progesterone level in urine from 

treated animals is generally too low to provide accurate IRMS-measurements.  

 

5.4.2. Development and evaluation of two analytical strategies 

Method B: measuring 1 ERC and 3 metabolites after acetylation 

Most published analytical methods for the detection of steroid abuse with IRMS 

combine hydrolysis, solid phase extraction (SPE), liquid-liquid extraction (LLE), 

preparative HPLC and acetylation steps in their sample preparation protocol.130,172 

For the development of method B, as described under 2.4, a similar analytical 

strategy was adopted for the measurement of AEdiol as ERC, and BAA-, BBA- and 

BAB-PD as metabolites of PG. A cleanup procedure for AEdiol was already 

developed,191 and the described protocol prior to the HPLC steps, as well as the 

acetylation procedure, proved to be equally suitable for the PDs. To avoid losses 

during the LLE, the extraction volume of pentane/diethyl ether was raised from one 

time to two times 4 mL.  

For the HPLC purification steps of the PDs, the fractionation windows were 

established by separate injections of the three PD standards, collecting fractions at 

regular intervals and evaluating their presence in those fractions using GC-MS. 

Although all analytes could be collected in separate fractions during reversed phase 

HPLC, the extracts contained too much co-extracted interferences to be interpretable 

by GC-(MS/C-IRMS). An additional normal phase HPLC purification of the separate 

fractions was used to overcome this problem, and allowed the successful 
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measurement of the δ13CVPDB values of all four targeted analytes after acetylation, as 

illustrated in figure 5.4.  

 

 

Figure 5.4. IRMS chromatograms (m/z = 44) of a compliant urine sample, showing the fraction 

containing BBA-PD (upper left), BAA-PD (upper right) and BAB-PD (lower left) obtained using method 

B, and the fraction containing B-PDione (lower right) obtained after oxidation of the PDs using method 

C. 

 

Method C: measuring one ERC and the oxidation product of four metabolites 

In an attempt to provide a simplified analytical strategy, an oxidation procedure was 

developed. The oxidation of the targeted analytes holds two important advantages. 

First, the oxidized steroids do not require a derivatization prior to GC-(MS/C-IRMS) 

analysis, and therefore eliminate the necessary correction of the δ13CVPDB values. 

Second, the eight PD-isomers are converted to two oxidation products, 5α- and 5β-

pregnane-3,20-dione (A- and B-PDione, respectively), thus reducing the number of 

analytes to be investigated.  

BBA-PD 

BAA-PD 

BAB-PD 

B-PDione 
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Since oxidation with K2Cr2O7 proved to be effective for the analysis of corticosteroids 

with GC-C-IRMS,129,196 the application of a similar procedure was considered 

relevant. The time optimum, at the given temperature and reagent concentration, was 

based upon the observations done on AAA-, BAA-, ABA- and BBA-PD. The oxidation 

was conducted at 2, 5, 10, 15, 20, 40 and 60 min whereas duration of the reaction 

was assessed from 5 min to 120 min. An optimum was found at 30 min; the absence 

of underivatized PDs was checked. An additional cleanup step relying on a normal 

phase HPLC separation was set up to isolate B-PDione. An illustration of an IRMS 

chromatogram is shown in figure 5.4. 

Unexpectedly, the protocol was not suitable for the oxidation of AEdiol. The oxidation 

of the hydroxyl group at position 17 occurred very rapidly, and was almost complete 

after two minutes. However, an oxidation of the hydroxyl group at position 3 was not 

observed. Therefore, a sample preparation procedure for AEdiol identical to method 

B, using an acetylation, was preferred.  

To compare the performance of both methods, six samples, three being collected 

from untreated bovines and three from a progesterone treated cow, were analyzed 

using both method B and C. The results, represented in figure 5.5, clearly indicate 

that both methods are capable of distinguishing between compliant (samples 1-3) 

and non-compliant samples (samples 4-6): for the non-compliant samples, the 

difference between the δ13CVPDB value of AEdiol (ERC) and that of the metabolites 

clearly exceeds the compliance threshold of 3‰ (described in 3.4.1., and validated 

for the application of progesterone under 5.4.4.). But more importantly, the δ13CVPDB 

values obtained with both methods are highly similar. Remarkably, even though four 

PDs contribute to the formation of B-PDione, its signal intensity was lower than that 

of BAA-PD in four of the six samples, and never significantly higher.  
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Figure 5.5. δ13CVPDB values of urine samples from untreated (sample 1-3) and treated (sample 4-6) 

cows, analyzed with both method B (AEdiol, BAA-, BBA- and BAB-PD) and method C (B-PDione). 

Measurements below the limit of quantification are not shown. 

 

5.4.3. Method validation 

Because BAA-PD was the PD-isomer giving the most intense IRMS signal in all the 

samples, and because the oxidation procedure eventually provided no added value, 

it was decided to validate the method based on the measurement of AEdiol as ERC 

and BAA-PD as metabolite, derived from method B.   

The intermediate precision was determined by the measurement of the 11 

subsamples of the spiked urine sample, distributed into 7 series of analysis, 

performed by three different operators over a time span of five months. The sample 

standard deviation (sd) (n=11) of the δ13CVPDB values were 0.56‰ and 0.68‰ for 

AEdiol and BAA-PD, respectively, which is acceptable and similar to published 

results for other steroids.117,179,191 

To verify the absence of isotope fractionation during sample preparation, a water 

sample spiked at 100 µg L-1 with both AEdiol and BAA-PD, was included into the 7 

series of analysis mentioned above. In each series, the difference between the 

δ13CVPDB values of the water sample and those of a standard injection was 

calculated. The mean of this difference was 0.20‰ and 0.27‰ for AEdiol and BAA-

PD, respectively, indicating that the δ13CVPDB values are not altered in a significant 

way by the sample preparation.84,179,191 
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For all the spiked samples mentioned above, as well as for all the urine samples 

described under 5.3.2, the identification of AEdiol and BAA-PD was done according 

to internationally recognized analytical criteria,24 by comparison of the abundance of 

six fragment ion ratios of the analytes with those of a reference standard injected in 

the same series, identically as discussed in paragraph 3.4.2. Identification of target 

analytes in every sample was checked, while verification of the absence of coeluting 

impurities permitted to document the method specificity. This was also verified using 

AMDIS®, a software application which compares the generated mass spectra from 

the samples to those of injected standards. It allows the automatic evaluation of the 

compound identity as well as peak purity. Based on the gathered data, the AMDIS® 

“Net Match” and “Purity” threshold values were set at 94 and 91, respectively, the 

lowest obtained values for both analytes, which still corresponded with manually 

verified correct mass spectra.  

To determine the linear range of the IRMS for the analytes, standards were injected 

in sixfold at different concentrations, from 2.5 up to 80 ng on column. The same 

criteria as described in chapter III were used to determine the linear range. For 

AEdiol, the linear range was between 750 and 5500 mV, corresponding with 7 ng 

and 50 ng on column, respectively.179,191 For BAA-PD, the measured δ13CVPDB values 

were very stable, with a standard deviation of 0.21‰, from approximately 12.5 ng up 

to 80 ng on column, corresponding to signals from 500 up to 4000 mV (m/z=44), 

which is similar to previously reported values for androgens and estrogens.179,191  

Finally, the extraction yield of the method is highly comparable with that of the 

androgens and estrogens, discussed in paragraph 3.4.1 and 4.4.1, also 

corresponding with an LOQ of 20 ng mL-1. 

 

5.4.4. Results from treated and untreated cattle 

Results from a compliant control population 

29 samples from non-treated cows were successfully analyzed using the validated 

method, of which the results are depicted in figure 5.6. From these results, the 

threshold ∆13CVPDB value for compliancy for the ERC - metabolite couple AEdiol - 

BAA-PD was calculated, as the mean value plus three times the standard 

deviation.152 The obtained value was 2.90‰, and therefore, a value of 3‰ could be 

suggested as a threshold for the presented method. Finally, the low mean ∆13CVPDB 
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value of 0.24‰ indicates that the additional carbon atoms, at position 20 and 21 of 

the progestagens, originate from a source with the same  13C/12C ratio when 

compared to androgens or estrogens.  

 

 

Figure 5.6. ∆
13CVPDB values of urine samples issued from a compliant control population, with AEdiol 

as ERC and BAA-PD as metabolite of PG. The red line marks the compliance threshold (mean + 3 x 

SD). 

 

Results from progesterone treated animals 

The urine samples from the three cows treated with progesterone were analyzed, 

and the obtained results are summarized in figure 5.7 and 5.8.  
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Figure 5.7. ∆
13CVPDB values of urine samples from 3 cows, treated with PG at day 0 and 1 for cow A 

and B, and at day 0, 1 and 2 for cow C, with AEdiol as ERC and BAA-PD as metabolite. 

Measurements below the limit of quantification are not shown.  

 

The method developed allowed confirmation of the treatment of all three animals, 

based on the threshold determined from the compliant control population. However, 

for cow A, this was only possible after the second intramuscular injection. This can be 

explained by the higher presence of PDs in this animal before the treatment, as 

illustrated in figure 5.3, causing a significant endogenous dilution of the measured 

BAA-PD 12 hours after the first treatment. Remarkably, 24 hours after the first 

treatment, all pregnanediols were below the limit of quantification, being the lowest 

concentration still providing a sufficient IRMS signal intensity (20 µg L-1), in the same 

animal. As for cow C, even though injected with a higher dose of PG, the BAA-PD 

level only allowed IRMS-measurement and distinction from the control population 

after 24 h, while for cow B, this was already possible after 12 h. The  difference 

between the treated animals and the control population remained observable  until 

the end of the experiment for the three animals. BAB-PD generally provided fewer 

measurements within the linear range. However, when it was present in a sufficient 

amount, the ∆13CVPDB values were larger than for BAA-PD, except in samples from 

cow A, in which ∆13CVPDB (AEdiol - BAB-PD) remained below 3‰.  
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Figure 5.8. δ13CVPDB values for AEdiol (blue), BAB-PD (green) and BAA-PD (red) of urine samples 

from cow A (upper), cow B (middle) and cow C (lower), intramuscularly injected with PG. 

Measurements below the limit of quantification are not shown. 
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It was expected that the elevated dose of PG, in combination with the inclusion of 

corn into the feeding regime, would result into higher ∆13CVPDB values for the samples 

from cow C, when compared to the samples from the other two animals.101 However, 

with the highest measurements of 6.89‰ and 5.78‰ for cow B and C, respectively, 

this was not the case. This observation suggests the presence of a significant 

endogenous production of PD by cow C, because the diet did have the expected 

impact on the δ13CVPDB values of the ERC, which augmented from -27,79‰ up to       

-19,93‰, as can be seen in figure 5.8. The average δ13CVPDB values for AEdiol, from 

T0 until the end of the experiment, were -26.71‰ and -25.69‰ for cow A and cow B, 

respectively, representative for a feeding regime very low in C4 plant material 

content,84 while for cow C, this was -20.91‰. Even though the last sample was taken 

3 weeks after the feed change, the data suggest that a steady state has not yet been 

reached at the end of the experiment, which is in line with previous findings, 

indicating adjustment periods close to 30 days.84,94 More remarkable is the observed 

difference between AEdiol and BAA-PD in response to the feeding change. While the 

values for AEdiol changed gradually over the total time, as previously reported for 

androgenic compounds,84,94,191 rising 8.84‰ in total, they already augmented 5.74‰ 

within the first 3 days for BAA-PD, resulting in a significant offset up to 5.04‰ 

between AEdiol and BAA-PD before the treatment. This offset could also explain the 

large impact of the endogenous dilution observed through the relatively small 

∆13CVPDB values obtained after the treatment. A similar impact of a dietary change on 

BAA-PD in humans has not been reported, although the experimental setup would 

not have allowed to reveal such an effect since the dietary change was less radical, 

and time intervals between samples were much larger.96 It is clear that this 

observation is a cause for concern if changing from a C4 to a C3 plant material based 

feeding regime would be applied by the farmer. If a sudden feeding regime change of 

that nature has an impact of the same proportion on the δ13CVPDB values of the PDs, 

the calculated threshold ∆13CVPDB value would be succeeded, and this would result in 

a false non-compliant result. It is clear that this scenario needs to be further 

investigated by additional animal experiments.  

Eventually, to assess whether the PG administration influences the δ13CVPDB values 

of other steroidal compounds, i.e. to assess the specificity of the analytical method, 

the samples collected after treatment were also analyzed with the previously 
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published method for the detection of androgen and estrogen abuse.191 As expected, 

all the results for the androgens were compliant, with a largest observed ∆13CVPDB 

value of 1.38‰ for the ERC – metabolite couple AEdiol – etiocholanolone, which is 

similar to findings reported for an administration experiment in humans.197 

Unfortunately, the level of 17α-estradiol was too low to provide accurate IRMS-

measurements.  

 

Impact of a testosterone/estradiol treatment on BAA-PD  

BAA-PD is the ERC of preference for human doping control,152 and the results from 

the compliant control population indicate that it might be able to fulfill a similar 

function in cattle, when no PG was administered. Therefore, 9 urine samples from a 

bull and 11 from a heifer treated with a single intramuscular injection containing 17β-

testosterone propionate and 17β-estradiol benzoate, from the animal experiment 

which was discussed in detail in chapter IV, were analyzed using method B, 

consisting of the measurement of AEdiol, BAA-, BAB- and BBA-PD after acetylation, 

and the data was combined with that obtained during the previous study. Using BAA-

PD as ERC, the 17β-estradiol treatment was successfully confirmed in both animals. 

However, for the 17β-testosterone treatment, this was not the case: the treatment 

could only be demonstrated in the heifer, and the detection windows were 

significantly smaller (up to 11 and 19 days using 17α-testosterone and 

etiocholanolone, respectively). This indicates that BAA-PD would not be a suitable 

ERC to be used in bovine urine.  

When looking at the ∆13CVPDB values of all the metabolites together, using AEdiol as 

the ERC, as illustrated in figure 5.9, it becomes clear that the δ13CVPDB values of 

BAA-PD are significantly affected by the 17β-testosterone/estradiol treatment, even 

up to the point where the compliance threshold of 3‰ for PG treatment is crossed, 

which would indicate a PG-treatment. In the bull, the impact of the treatment on the 

δ13CVPDB values is even more significant than for the androgen metabolites. These 

findings were highly unexpected.  
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Figure 5.9. ∆
13CVPDB values for 17α-testosterone (aT), 17α-estradiol (aE2) and etiocholanolone (Etio), 

and BAA-PD, with AEdiol as ERC, in urine samples from a bull (lower) and a heifer (upper), treated 

with a single intramuscular injection of 17β-testosterone propionate and 17β-estradiol benzoate.  

 

At the moment there is no explanation for this observation, and further study is 

required to evaluate the specific role of 17β-testosterone and 17β-estradiol in this 

process, and if these results can be repeated in a new administration study. 

Therefore, even though the presented method was used to adequately illustrate 

abuse of PG in cattle, it is advised to include additional analytes into the analytical 

strategy and create a clearer image regarding possible treatments.  

 

 

 



Chapter V 

117 

 

 

5.5. Conclusions 

 

The ability of GC-(MS/C-IRMS) to differentiate between urine samples from bovines 

treated intramuscularly with progesterone and a compliant control group has been 

demonstrated. Through analysis of urine samples from pregnant cows, and verified 

by results from treated animals, the 5β-pregnane-3,20-diols were selected as 

promising target metabolites of progesterone. Although 5β-pregnane-3,20-dione, 

obtained from urine samples as the single oxidation product of the four 5β-pregnane-

3,20-diols using K2Cr2O7, could be successfully measured using GC-(MS/C-IRMS), it 

was evaluated that there was not enough gained advantage over a strategy using 

acetylation. Eventually, a method retaining only the most abundant pregnanediol, 5β-

pregnane-3α,20α-diol, as progesterone metabolite, and 5-androstene-3β,17α-diol as 

endogenous reference compound, was successfully validated. The developed 

sample preparation was a multistep process, consisting of a hydrolysis, SPE, LLE 

and two HPLC purification steps before acetylation. Although the treatment could be 

demonstrated in three progesterone treated cows, with ∆13CVPDB values up to 6.89‰, 

the changes in level of the pregnanediols, in response to the treatment, were highly 

variable between the animals. As a result, the treatment was traceable in a first 

animal already 12 h after a first administration, whereas in a second this was only 

after 24 h, and in a third, the treatment was only detected after the second 

progesterone injection.   

However, the impact of a sudden shift in the diet, and of the combined 17β-

testosterone/estradiol treatment are a serious cause for concern, and must be 

studied further through additional animal experiments. It is clear that the presented 

method, as such, is not adequate to be used for official food safety analyses at the 

moment, since it would be impossible to conclude if a non-compliant result would be 

due to a shift in feeding regime or another treatment. However, a deviating result is 

most certainly atypical, and the integration of BAA-PD into existing methods for the 

detection of abuse of androgens and estrogens could provide valuable additional 

information.  
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6. General discussion and future perspectives 

 

6.1. Analytical strategy and used sample preparation techniques 

 

As indicated in chapter I, the primary objective of this research was to develop an 

analytical method for the detection of abuse of synthetic analogues of endogenous 

sex steroids in cattle using IRMS, starting from knowledge gathered from literature. 

As thoroughly discussed in chapter II, published methods employ an extensive 

combination of multiple hydrolysis, SPE and LLE steps, followed by normal phase 

HPLC fractionation and acetylation. Then, if GC-MS analysis indicates impurities 

coeluting with the targeted analytes, an additional reversed phase HPLC purification 

is performed before GC-C-IRMS analysis.100,101,172 Attempting to provide a method 

more suitable for routine analyses, a number of adaptations were done to the existing 

protocol, as discussed in chapter III.179  

First, the analysis of the sulphate fraction was not included in the current approach. 

Although at the loss of DHEA as an additional ERC, the gained simplification of the 

method was significant. Second, through the use of PTV-injection, the sample 

volume was successfully reduced to half, greatly facilitating the work when dealing 

with a large number of samples. Third, by coupling a mass spectrometer in parallel to 

the C-IRMS, separate GC-MS analyses were successfully eliminated from the 

analytical protocol. However, due to this omission, the HPLC-purification steps 

needed to be revised. Because of the fact that the identification and purity evaluation 

are performed simultaneously with the 13C/12C measurement, and because all 

fractions originating from the same sample are preferably measured as subsequent 

injections to reduce variability on the calculated ∆13CVPDB values, an additional HPLC-

fractionation step after a first GC-(MS/C-IRMS) analysis is not optimal. It was 

originally hoped that one C18 HPLC purification step would be sufficient, as this was 

described in most analytical methods for routine sports doping control published in 

the meantime.130,183,198-200 Unfortunately, the extracts obtained in this way for αT and 

AEdiol were insufficiently pure, and it was decided to replace one of the SPE steps 

with an additional HPLC purification using a diol functionalized column for all fractions 

to assure unhindered IRMS measurements. This strategy proved to be successful, 

since no coelutions or impurities have been encountered during the analyses until 
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now. Additionally, the parallel coupled MS proved to be a valuable diagnostic tool 

upon system failure, allowing to faster pinpoint the exact problem within the setup. 

Furthermore, the use of an HPLC-based sample preparation strategy has proven its 

benefits throughout this research. Due to its flexible nature, it provides a relatively 

open platform, which allows the inclusion of additional steroid analytes through 

adjustments in mobile phase composition and fractionation windows. This allowed to 

start off with a method for the detection of estrogen abuse (chapter III), and gradually 

extent the palette of analytes to include the detection of androgen (chapter IV) and 

progestagen (chapter V) abuse.  

 

However, even though the presented method provided a number of optimizations 

compared to previously published ones, the resulting protocol is still extensive and 

time consuming, resulting in a relatively low sample throughput and a relatively high 

detection limit (20 ppb). Therefore, a number of suggestions are in order for future 

ameliorations and explorations in sample preparation, some of which more readily 

applicable than others.  

First of all, analysis of the estrogen fraction of urine samples from the animals treated 

with βE2, described in chapter IV, with and without the normal phase HPLC 

purification, provided highly comparable results for αE2, suggesting that the second 

HPLC preparation step can be omitted from the method for this particular fraction.  

Second, the full power of the PTV-injection has not yet been harvested. Due to the 

long run time of the GC-(MS/C-IRMS) measurement series, usually performed over 

the weekend, the minimal volume of the final extracts was limited to 30 µL to avoid 

evaporation of the samples at the end of the run, resulting in failed injections. Using a 

new type of GC-vials, with a narrow cone shaped interior, the sample volume could 

be drastically reduced. Of course, amplification of matrix noise is to be expected. 

However, preliminary results indicated that the extracts are sufficiently pure to allow 

the sample volume to be reduced to 12 µL without substantial hindrance of 

background noise, resulting in more than doubled sensitivity.  

Finally, the use of selective sorbents could provide the means to shorten the sample 

preparation strategy. Recently, Doué et al. described that the use of supercritical fluid 

chromatography (SFC) with a molecularly imprinted polymer (MIP) stationary phase 

allowed to reduce their sample preparation protocol prior to GC-C-IRMS analysis, for 
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the detection of abuse of synthetic analogues of endogenous steroids in bovines, 

with three steps.201 Although early studies favored the use of preparative HPLC over 

immunoaffinity chromatography (IAC) because of its flexibility,113,138,155 this selective 

antibody-based sorbent could serve a similar purpose, and is already successfully 

applied as a sample preparation tool for exogenous steroid analyses of urine and 

fecal samples for almost two decades.85,202,203  

 

6.2. A method for official food safety analyses 

 

6.2.1. Method validation 

An important objective of this study was to provide an analytical method to be used 

for official food safety inspections. In Belgium,204 as in most countries worldwide, this 

requires the analysis to be performed under ISO 17025:2005 accreditation, the 

international standard laying down the general requirements for the competence of 

testing and calibration laboratories.205 An important requirement is that a thorough 

and well documented validation study needs to demonstrate the method’s potential of 

providing reliable results.  

 

The performed validation of the developed GC-(MS/C-IRMS) methods was extensive, 

and consisted of at least ten parts. Criteria for each of the parts were established in 

advance, based on information found in the literature and specifications provided by 

the system manufacturer.  

The stability and linearity of the ion source of the IRMS apparatus was established 

using CO2 pulses giving identical and different peak heights, respectively.   

Intermediate precision was assessed through the repeated analysis of a spiked urine 

sample under reproducibility conditions. The absence of isotope fractionation caused 

by the sample preparation, or the sample preparation induced bias, was verified by 

comparing the results of spiked aqueous samples with those of the pure standards 

used for the spiking. The trueness, or system bias, was evaluated through the 

measurement of steroid standards with known and certified δ13CVPDB values. The 

combination of these three parameters provides the necessary information on the 

accuracy of the method. The resulting estimated combined measurement uncertainty 

for AEdiol, αE2, αT and Etio were 0.70‰, 0.99‰, 0.80‰ and 1.24‰, respectively.  
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The specificity of the method was verified by the evaluation of the mass spectra 

according to the legal criteria, for every sample analyzed during method validation.24 

Additionally, peak purity was assessed by manual control of the mass spectra 

throughout the whole of the analyte peak. Additionally, the use of AMDIS, specialized 

software applying specific algorithms to evaluate analyte purity and identity was 

validated.  

The linear range of the GC-(MS/C-IRMS) system, or the intensity interval in which the 

instrument provides accurate results, was determined for each analyte specifically 

through repeated standard injections at different concentrations.  

A threshold ∆13CVPDB value was determined for each ERC-metabolite pair through the 

analysis of urine samples from a compliant control population. Finally, the aptitude of 

the method and the adequacy of the determined threshold were verified through the 

analysis of samples from treated animals.  

All the required information could be gathered through four to five analytical series, 

containing approximately ten samples each. The validation was successfully 

performed for the estrogen, androgen and progestagen method, and details on the 

execution and results are unraveled in the previous three chapters.  

 

However, three important shortcomings need to be highlighted. First of all, the level 

of the spiked urine samples to determine the within lab reproducibility must be 

revised. Since results are expected to be more variable at the lower end of the linear 

range, the reproducibility should be determined using urine samples with steroid 

concentrations at the level of the LOQ.  

Second, the procedure to determine the system bias could be seriously improved by 

using standards of all the analytes targeted in the method, with traceable and 

certified δ13CVPDB values obtained through EA-IRMS. This would allow to calculate a 

measurement uncertainty which is more specific for the individual components, and 

therefore, together with the above mentioned adaptation to the determination of the 

within lab reproducibility, would result in a calculated measurement uncertainty closer 

to reality. 

Third, by using a calibration standard mixture with more steroids, of which the  

δ13CVPDB values are spread across the entire range of interest, from approximately -

14‰ down to -32‰, the calibration can be significantly improved, and the calibration 
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bias would be more evenly spread across the entire range, whereas now, the higher 

δ13CVPDB values are expected to be more biased.  

 

It is clear that the validation procedure is difficult and cumbersome for multiple 

reasons, which all could be remedied to a certain extent.  

The first difficulty lies within the large number of parameters to be validated. 

However, if adequate reference material were available, under the form of non-

compliant urine samples with known δ13CVPDB values, reproducibility, method bias 

and system bias could be evaluated together through repeated analysis of this 

material. This would allow to replace the combined analyses of spiked urine samples, 

spiked aqueous samples, certified standard injections and non-compliant samples. 

Together with the data from a compliant control population, and the determination of 

the linear range, this would provide a complete method validation. 

The second difficulty lies within the unclarity regarding the method validation: which 

parameters should be validated, how should this be done and which criteria need to 

be applied? Official guidelines should be made available, including these three 

aspects, to harmonize the validation approach.  

For doping control, both aspects are covered by the WADA, which provides reference 

materials to the official doping laboratories, and which lays down technical 

requirements for official analyses. With regard to GC-C-IRMS method validation, the 

currently active WADA technical document indicates the necessity of determining the 

linear range for each analyte, the analysis of samples from a compliant population to 

verify the threshold values, and the determination of the combined standard 

measurement uncertainty, which needs to be below 1‰.152 The new technical 

document, which will be in force starting January 2016, will add verification of the 

linearity of the ion source with CO2 pulses to the validation requirements, and will 

provide practical guidelines on how to test and evaluate the linear range per 

analyte.153 

 

In 2014, the EURL published a reflection paper on natural growth promoting 

substances, encouraging official control laboratories to implement GC-C-IRMS 

analyses,29 and is currently working on the development of GC-C-IRMS methods 

itself. It can be hoped that the EURL can fulfill a similar role for growth promoter 
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control as the WADA for doping control, providing clear guidance and useful 

reference materials, which could eventually evolve into inclusion of GC-C-IRMS 

analysis guidelines in official legislation, the need for which has already been 

discussed in literature.30  
 

6.2.2. Quality control 

As a second important requirement to obtain ISO 17025:2005 accreditation, a 

thorough and well documented quality control system needs to be put in place to 

allow continuous verification of the reliability of the analytical results in time. The 

quality control procedure, employed for all analyses until now, is described below.  

First of all, a number of samples are added to every analytical series. A urine sample 

from a treated animal functions as a positive control sample. When no samples from 

treated animals are available, a urine sample spiked with all the measured 

metabolites, but not with the ERC, can be used to replace it. Also, a urine sample 

from the control population is added as a negative control sample. Additionally, two 

spiked aqueous samples, are included. The first, spiked at 100 µg L-1 is used to verify 

the absence of isotope fractionation during sample preparation. This sample was also 

spiked with 17β-testosterone glucuronide to evaluate the activity of the used 

glucuronidase. The second, spiked at the LOQ, 20 µg L-1, is used to verify the 

efficiency of the sample extraction. Finally, a blank aqueous sample is added to 

assess possible contamination of the samples during analysis. 

Prior to analysis with GC-(MS/C-IRMS), the functionality of the system is evaluated in 

a three stage process. First, absence of leaks in the system is verified by performing 

a background scan. Second, linearity and stability of the ion source are evaluated 

through pulses with the CO2 reference gas. Finally, a steroid standard is injected to 

evaluate the functionality of the complete setup.  

When all controls are satisfactory, the analytical series can be started. Next to all the 

separate fractions obtained from the official and control samples at the end of the 

preparation, a number of additional controls are injected. At the beginning of every 

series, six standard injections are included to assure stability of the system before 

measurement of the samples. Next, a solvent blank is injected to evaluate system 

contamination. Certified steroid standards were included to verify the absence of a 

system bias. Standards of all measured analytes were included as well for a twofold 
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purpose: verification of peak identity and purity, and evaluation of sample preparation 

induced bias by comparison with the spiked aqueous samples.  

Processing the GC-(MS/C-IRMS) results from the obtained fractions, after sample 

purification, comprises four steps. First, the peak purity check and the analyte 

identification are done through evaluation of the obtained mass spectra. Next, it 

needs to be verified if the intensity of the obtained IRMS peak is within the linear 

range. Finally, the measured δ13CVPDB value needs to be corrected for the acetate 

moiety, as discussed in the previous chapters.  

Besides the controls performed for each analytical series, the calibration of the used 

CO2 reference gas using certified steroid standards with known and traceable 

δ13CVPDB values, needs to be performed periodically.  

 

The extensive validation and quality control procedures, covering all aspects also 

included in the WADA doping control prescriptions,153 resulted in a positive 

accreditation audit, and the method for the detection of estrogen and androgen 

abuse have been performed for official control purposes since 2013 and 2014, 

respectively. However, it became clear that the elaborate quality control resulted in 

large injection series, and time consuming processing of results. The validation of the 

AMDIS software to assess peak purity and analyte identification, as discussed in the 

previous paragraph, proved to be a very helpful automation tool for the processing of 

large numbers of samples. Still, a number of additional suggestions can be made to 

streamline the quality control process. 

First, the certified steroid standards, included in every analytical series, revealed that 

the calibration of the CO2 reference gas remains stable over large periods of time, 

with the measured δ13CVPDB values not deviating more than 0.6‰ from the certified 

value. This corresponds with observations from routine doping analyses,183 and 

indicates that calibration of the reference gas only needs to be performed and 

checked periodically, in accordance with the WADA guidelines. Additionally, the 

WADA indicates that the linearity check of the ion source is only required periodically 

as well.152  

Second, it became clear that, when the same compliant or non-compliant control 

sample is used over large periods of time, the control charts of these samples were 

sufficient to indicate isotope fractionation during sample preparation. Hence, the 
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aqueous sample spiked at 100 µg L-1, included to identify this process specifically, 

could be omitted from the procedure. Moreover, these control charts proved to be a 

valuable source of additional information to the method validation. For all measured 

androgens, AEdiol, αT and Etio, the calculated standard deviations obtained from 14 

measurements, of both the compliant, illustrated in figure 6.1, and non-compliant 

control sample, over a time span of approximately nine months, were close to 0.8‰. 

This value can be considered a more realistic approximation for the reproducibility of 

the method than the results obtained during the method validation, which are 

discussed in chapter III and IV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter VI 

127 

 

 

 

Figure 6.1: Control charts of the compliant control sample, containing the measurements of 

etiocholanolone (Etio) (upper), 5-androstene-3β,17α-diol (AEdiol) (middle) and 17α-testosterone (αT) 

(lower). The black line indicates the average, the orange lines indicate the first action level (average ± 

2 x standard deviation) and the red lines indicate the second action level (average ± 3 x standard 

deviation). 
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Third, through evaluation over time of the six standard injections, performed at the 

beginning of each injection series to stabilize the system, it is concluded that already 

after three injections, accurate and stable values were obtained.  

Fourth, contamination caused by both the sample preparation and the                   

GC-(MS/C-IRMS) can be simultaneously assessed through one injection by 

combining all the fractions from the blank water sample, and eliminating the solvent 

blank. Of course, when a contamination is observed, it will not be possible to locate 

the source instantaneously, and additional research will be in order. However, 

through the past three years of official control analyses, contamination has not been 

observed. 

Finally, the analytical procedure prescribes that when a sample is found to be non-

compliant, this result needs to be confirmed with a second analysis as a 

precautionary matter. It can be proposed that, since the first analysis fulfills a 

screening function, the compliant control sample is only included during the 

confirmation analysis.  

 

6.2.3. Screening strategies 

Since GC-(MS/C-IRMS) analysis remains laborious and time consuming, a screening 

strategy needs to be in place to select suspicious samples. The original approach 

was that the samples were selected by the National Investigation Unit (NIU), the 

inspection unit of the Federal Agency for the Safety of the Food Chain (FASFC) 

specialized in investigation of hormone abuse in cattle in Belgium, based upon the 

weight of the animals and other information (prior convictions, police information,…). 

Additionally, all samples were screened using LC-MS/MS prior to GC-(MS/C-IRMS) 

analysis, to determine if the targeted analytes were present above 20 µg L-1, the 

lowest level which still provided a sufficient amount of CO2, after combustion, to 

provide an accurate IRMS measurement, or the limit of quantification (LOQ). This 

screening method, described in chapter IV, was officially included in the analytical 

strategy and performed under accreditation.  

For αE2, this concentration-based screening proved to be sufficient, allowing sifting 

out 96% of the official samples provided in 2013 and 2014. The applied strategy 

related closely to the one given by Scarth et al., suggesting GC-C-IRMS analysis 

after two out of two samples were found above 5 µg L-1 and 10 µg L-1 for steers and 
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heifers, respectively.32 Following the same strategy for the androgens, 65% of the 

samples was eventually analyzed with GC-(MS/C-IRMS), all giving compliant results.  

 

Regarding IRMS analysis for the detection of abuse of synthetic analogues of 

endogenous androgens, the above clearly illustrates that research into an adequate 

and more selective screening technique is of high importance. In chapter I, it was 

discussed that a lot of screening approaches are under investigation, with the current 

attention shifting towards multiple indirect biomarker measurement in various types of 

matrices.43 However, because of the grave consequences of a non-compliant result 

for the farmer, a direct confirmatory analysis will remain mandatory.29 As discussed in 

chapter IV, alternative confirmation methods are currently limited to analysis of intact 

steroid esters in hair or plasma, of which the MS detection is a direct proof of 

administration and therefore require no additional screening approaches. Therefore, 

a urine-based screening method, including the quantification of the targeted steroids 

besides an additional, more selective criterion, would be the ideal and directly 

applicable approach at the moment, worthy of immediate research. Additionally, a 

powerful screening strategy prior to IRMS analysis significantly reinforces the 

reliability of a non-compliant result. This is now the fact in anti-doping analyses, 

where a combined atypical result from the biological passport together with a non-

compliant IRMS result provides a very strong statistical result.  

 

6.2.4. Endogenous versus exogenous δ13CVPDB values 

Of the 365 official urine samples, analyzed under accreditation since the beginning of 

2013 for the detection of abuse of synthetic analogues of endogenous androgens 

and/or estrogens, none were found to be non-compliant. The ideal hypothesis to 

explain this observation would be that none of the sampled animals had been treated 

with these substances. However, since preparations containing esters of βT and βE2 

were still confiscated by the Belgian authorities during the past years, this is not 

necessarily true. The described developed analytical strategy has a number of critical 

weaknesses, which could very well be the cause of this.   

First of all, the detection window for GC-(MS/C-IRMS), especially with regard to 

androgen abuse in male animals, is very small, as discussed in chapter IV. Moreover, 

when an even smaller dosage is used, it is expected that the detection window will be 
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smaller as well. It could be possible that samples were not taken within the suitable 

timeframe after treatment. For this reason, the competent authorities have been 

informed that sampling of live animals at the farm is preferred over sampling at the 

slaughterhouse for this particular analysis.  

Another explanation could be that the diet of the animals influences the outcome of 

the IRMS analyses. It has been suggested that GC-C-IRMS would be an unsuitable 

technique to demonstrate illegal treatment in cows from the United Kingdom, 

because the use of corn in the feeding regime is rather uncommon there. As 

discussed before, low quantities of C4 plants in the feeding regime greatly reduce the 

difference in δ13CVPDB values between endogenously produced steroids and steroid 

preparations, which severely compromises a successful detection of abuse.113 

However, when evaluating the obtained δ13CVPDB measurements for AEdiol from the 

official control samples, depicted in figure 6.2, ranging from -14.12‰ to -25.97‰ 

around an average of -19.73‰, this does not seem to be the case.   

 

 

Figure 6.2: Distribution of the δ13CVPDB values of 5-androstene-3β,17α-diol (AEdiol), measured in 

official control samples from Belgian cows. 

 

The other way around, the existence has been reported of preparations of synthetic 

analogues of endogenous anabolic steroids, observed through the analyses of 

confiscated doping products, having δ13CVPDB within this range.88,180-182 Although it 

was only the case in a minority of the analyzed samples, these unusual 13C/12C ratios 
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are a serious cause for concern, and were also observed in the BAA-PD standard, 

used at the laboratory.  

 

Unfortunately, the preparations containing synthetic analogues of endogenous sex 

steroids, confiscated at Belgian farms between 2011 and 2015, were unavailable for 

analysis due to legal confiscation. Therefore, it is advised that, once they are 

released from legal custody, analysis of these preparations would be the subject of 

future research. As for the limited amount of available preparations, confiscated in 

2011, all had δ13CVPDB values below -28‰. 

 

6.3. Results from the animal experiments 

 

When developing an IRMS-based method to demonstrate treatment of bovines with 

synthetic analogues of endogenous steroids, analyses of real non-compliant samples 

is a crucial step, since it is the only way to confirm whether the designed strategy is 

successful. Since non-compliant reference material, being urine samples from treated 

animals, is not readily available, an administration experiment is indispensable. 

However, animal experiments are very costly, mainly due to feed consumption, man-

hours for collecting samples and destructions of the animals afterwards. This also 

explains why carbon isotopic data from animal experiments in literature are 

scarce,67,84,94,100,101,113 rendering additional administration results into a valuable 

asset for the community. Even though using young calves could be a way to lower 

the costs and increase the number of tested animals, older animals were preferred in 

this research since veal farming is not of equal importance and magnitude in 

Belgium. 

However, it is understandable that it is not possible to obtain statistically significant 

conclusions from the limited number of treated animals used in the current study. 

Therefore, conclusions drawn from the animal experiments should be regarded as 

preliminary, but certainly not invaluable.  

 

The first animal experiment was primarily set up to assess the method’s potential to 

demonstrate treatment of bovines with βT and βE2, injected intramuscularly as a 

propionate and benzoate ester, respectively. From a zoological point of view, animals 



Chapter VI 

132 

 

 

of different sex would receive different concentrations of the steroids, as male 

animals respond better to female sex steroid treatment and vice versa. However, 

treating a bull and a heifer identically, and varying the amount of maize present in the 

feed, allowed to take a glance at the influence of gender and diet on the δ13CVPDB 

values of targeted ERC and metabolites as well. Finally, the analysis of the large 

number of urine samples collected up to four weeks after treatment provided more 

detailed pharmacokinetic data than available from previous studies, and allowed to 

accurately determine the detection window of the GC-(MS/C-IRMS) method for the 

treatment.  

The results, discussed in detail in chapter IV, confirmed the earlier described impact 

of a feeding regime, mainly consisting of maize, on the endogenous androgens,84,94 

whose δ13CVPDB augmented to almost -13‰. The pharmacokinetics revealed a 

substantially narrower detection window for testosterone treatment in the male animal 

(three days) compared to the female (24 days), due to a larger endogenous 

androgen production. The detection window for estradiol treatment (24 days), on the 

other hand, was not limited by endogenous dilution in both animals, but by the 

current LOQ of the method.   

 

However, the influence of the nature of the treatment was not included in the 

described experiment, and provides an interesting topic for future research. By 

treating animals of the same age and gender with a different dose and/or by varying 

the type of ester side-chain used for the steroid preparation, interesting insights on 

the impact on the detection window can be obtained.  

 

The primary objective of the second animal experiment was to evaluate if the 

combination of AEdiol and BAA-PD would provide a suitable ERC – metabolite pair to 

confirm PG treatment in bovines. Therefore, three heifers were treated with multiple 

intramuscular injections of PG, with a 24 h interval, and urine samples were collected 

before, during and after treatment. Additionally, the third animal was treated with a 

five times higher dose than the other two, and also the feeding regime of this animal 

was changed to include more maize, as the influence of these factors on the level 

and δ13CVPDB values of PDs in urine had not been studied previously. Unfortunately, 
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no male animals were available for the experiment, which should be included in 

future studies.  

The results of this experiment, discussed in detail in chapter V, revealed a 

significantly varying response to the treatment between the animals. In the first 

animal treated with the lower dose, the ∆13CVPDB value only became sufficiently high 

12 h after the second injection, whereas the treatment could already be elucidated 12 

h after the first injection in the second animal. As for the third animal, treated with a 

higher dose, the treatment could only be detected 24 h after the first injection, since 

the level of BAA-PD was below the LOQ in the sample taken 12 h after this 

treatment. Furthermore, the change from a C3 to a C4 plant based feeding regime, 

revealed an abrupt augmentation of δ13CVPDB values of BAA-PD, whereas this 

change was more gradual for AEdiol.  

 

This last observation opens important perspectives for future research. First of all, an 

additional feeding experiment is advised, in which the regime is changed in a 

different direction, from a C4 to a C3 plant based feed. If a comparable but opposite 

response to this change is observed, the created offset between the δ13CVPDB values 

of the ERC and the metabolite could result into a false positive result. It is clear that 

this study is very necessary, since it is impossible to declare a sample definitively as 

non-compliant based on the measured ∆13CVPDB  until this issue is clarified.  

Circumventing this problem would be to include a reference compound which 

responds in the same way to the feeding change as BAA-PD. When looking at 

scheme 2.1, a direct PG precursor such as pregnenolone would provide a likely 

candidate. However, the limited data available regarding the presence of 

pregnenolone in bovine urine indicate that its concentration will not be sufficient to 

make it a suitable ERC.41 17α-hydroxypregnenolone, for which no urinary 

concentration data are currently available, could provide an alternative. Therefore, 

evaluation of its abundance in routine bovine urine samples would be the first step in 

evaluating this approach.  

Another interesting approach to the detection of progesterone abuse can be 

suggested. Substantial levels of progesterone have been reported in faecal samples, 

and are used as a diagnostic marker for pregnancy in cows.206-208 It is likely that after 

administration, progesterone would be present in a sufficient amount in faecal 
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samples, to be used as target metabolite for GC-C-IRMS analysis. In combination, 

cholesterol could be suggested as an ERC candidate, since it has been reported to 

be present in bovine faeces in concentrations up to almost 7000 µg g-1,209 and has 

already successfully been used as an ERC for the detection of testosterone 

administration in bovines, using bile as matrix.113 

 

Finally, measuring the progesterone metabolites in the samples from the first animal 

experiment, revealed a highly unexpected impact of the combined βE2 and βT 

treatment on the δ13CVPDB values of BAA-PD. As discussed in chapter V, the 

difference between the ERC, AEdiol, and BAA-PD exceeded the threshold 

determined from the analysis of samples from the untreated control population. 

Therefore, although still a usable metabolite to indicate steroid abuse, BAA-PD does 

not seem to be specific for the indication of progesterone abuse. To exclude the 

option that analytical errors are responsible for this observation, some of the samples 

were reanalyzed using the oxidation protocol, discussed in chapter V, instead of the 

acetylation, and were send to other laboratories as well, which confirmed the initial 

findings. This interesting phenomenon raises multiple questions, which can only be 

answered by additional administration studies.  

First of all, it needs to be confirmed that this observation is repeatable.  

Second, it should be investigated if either the testosterone, the estradiol, or the 

combined treatment is responsible. Of course, bovine and human steroid 

metabolism, although similar, are not identical, but it needs to be noted that a similar 

observation has never been made in the context of sports doping control, where 

BAA-PD is a commonly used ERC, but where estradiol is not likely to be used as a 

doping agent.130,152 

Third, the mechanism causing this effect needs to be elucidated. Based on the 

current knowledge of the steroid metabolism, it seems unlikely that testosterone or 

estradiol themselves would be converted to pregnanediol. Using 13C-labeled 

preparations in an administration experiment should allow to clarify this.  
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6.4. Research project AFFIRMS 

 

Over time, evolutions in chromatographic and mass spectrometric techniques 

revealed the possible endogenous presence of substances which were previously 

believed to be xenobiotic, such as nortestosterone,68 and more recently prednisolone 

in cows and pigs.45,210 Elucidation of the origin using GC-C-IRMS has been 

suggested as the confirmatory technique of choice when the presence of these 

substances is detected in routine samples.29 However, when these substances are 

detected in urine samples, their concentrations are generally low, and therefore, 

IRMS based techniques have not yet been applied for this purpose.  

In the context of this problem, a joint research project, for the following four years, 

was started by the FLSFCG and the CER Groupe under the name AFFIRMS. The 

objective of the first stage of this project is to investigate the possibility of using IAC 

as a sample preparation technique prior to GC-(MS/C-IRMS) analysis, with the 

development of specific antibodies for the ERC and metabolites presented in this 

work. In the second stage, it will be assessed if IAC provides an extraction which is 

sufficient to allow GC-(MS/C-IRMS) to be used as a confirmatory analysis when 

prednisolone is detected above its maximum residue limit (MRL), being 5 µg L-1.26 
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8. Summary 

 

The positive effects of steroid hormones on growth and feed conversion are well 

known since the middle of the past century. However, as a precautionary measure, 

their use as growth promoting agents in stock farming remains prohibited in the 

European Union, and is actively monitored. Still, when it comes to synthetic 

analogues of endogenously produced steroid hormones, detection of abuse remains 

difficult. Although the capability to elucidate the origin of these compounds in urine 

samples using gas chromatography-combustion-isotope ratio mass spectrometry 

(GC-C-IRMS) has been demonstrated since the late 1990s, its application for food 

safety purposes remained rare. The aim of the current research was to provide fully 

validated IRMS-based methods for the detection of abuse of synthetic analogues of 

endogenous sex steroids, which could be implemented as such for official control 

purposes.  

 

In chapter I, an introduction to endogenous steroid hormones, with particular focus 

on the group of sex steroid hormones, is given. After providing the basic rules of 

steroid nomenclature, an overview is given of the compounds of interest in the 

present study. Next, the different types of endogenous steroid hormones are defined, 

describing their natural functionality in the body, as well as their growth promoting 

characteristics. Afterwards, information is provided on the currently active legislation, 

regulating the use of steroid hormones as growth promoters in the European Union, 

and Belgium specifically. Then, different analytical approaches to screen for abuse of 

synthetic analogues of endogenous hormones are described, ranging from steroid 

concentrations and profiling, over holistic fingerprinting techniques, to indirect 

biomarker screening. Finally, the outline of this doctoral thesis is presented.  

 

In chapter II, an extensive literature review is provided, covering all published 

aspects related to the detection of abuse of synthetic analogues of endogenous 

steroids in cattle using GC-C-IRMS. First, both the bovine steroid metabolism and the 

production process of steroid preparations are described, illustrating that the 

difference in the 13C/12C ratio of the respective source materials provides the 

theoretical basis to distinguish between endogenously and synthetically produced 
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steroids which are structurally identical. Then, the different factors influencing the 

steroids’ 13C/12C ratio, expressed as δ13CVPDB values, are discussed, illustrating the 

need to measure at least two different steroids in a urine sample: a metabolite of the 

target compound of which the δ13CVPDB value will be affected by the treatment, and 

an endogenous reference compound (ERC) of which the δ13CVPDB value will remain 

stable. The difference between both, the ∆13CVPDB value, will provide the 

unambiguous indication of the treatment. Next, the analytical application is 

thoroughly discussed, describing the functionality of the used GC-C-IRMS apparatus, 

the used sample preparation techniques and the combined analytical strategies. 

Finally, a link is provided to other IRMS-based detection techniques, and to the field 

of sports doping control, where GC-C-IRMS is more commonly applied to detect 

abuse of synthetic analogues of androgenic-anabolic steroids.  

 

In chapter III, a confirmation method to detect abuse of synthetic analogues of 

endogenous estrogens in cattle using gas chromatography coupled to both mass 

spectrometry and combustion-isotope ratio mass spectrometry in parallel             

(GC-(MS/C-IRMS)) is presented, which allowed to eliminate the need of additional 

GC-MS analyses. The sample preparation protocol consisted of a hydrolysis, a solid 

phase extraction, two liquid-liquid extractions, two HPLC fractionations and an 

acetylation, after which the δ13CVPDB values of 5-androstene-3β,17α-diol, the ERC, 

and 17α-estradiol, the metabolite, could be successfully measured. The method was 

thoroughly validated and allowed to distinguish between samples from treated and 

untreated animals. 

 

In chapter IV, the developed method was fine-tuned and extended to include the 

detection of abuse of synthetic analogues of androgens, which was possible by 

additional measurement of 17α-testosterone and etiocholanolone. After thorough 

validation, the detection method was used to analyze multiple samples from a bull 

and a heifer, treated intramuscularly with esters of 17β-estradiol and 17β-

testosterone. The results from this administration study allowed to adequately 

determine the detection windows of the method, and provided detailed 

pharmacokinetic data. Finally, the developed method was directly compared with 
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alternative confirmatory approaches, being the detection of intact steroid esters in 

hair and blood samples using other mass spectrometric techniques.  

 

In chapter V, the development of a GC-(MS/C-IRMS) method to detect progesterone 

abuse in bovines is described. First, four pregnanediol isomers were identified as 

candidate metabolites of progesterone. Next, two analytical methods were developed 

and evaluated against each other. In the first, three selected 5β-pregnane-3,20-diol 

isomers were separately measured after acetylation, whereas in the second, the four 

5β-pregnane-3,20-diols were converted to one oxidation product, 5β-pregnane-3,20-

dione before measurement. Eventually, an approach in which only 5β-pregnane-

3α,20α-diol and 5-androstene-3β,17α-diol as metabolite and ERC, respectively, were 

measured after acetylation was preferred, validated and successfully applied to 

distinguish between samples from treated and untreated animals. Finally, it was 

observed that a sudden shift in feeding regime, as well as the treatment with 17β-

estradiol and 17β-testosterone, could cause an unexpected and significant offset 

between the δ13CVPDB values of the ERC and the metabolite.  

 

In chapter VI, the results are discussed in general and a number of suggestions are 

made for future research. The combination of the developed methods allows to 

successfully detect abuse of synthetic analogues of endogenous androgen, estrogen 

and progestagen steroid hormones. However, the sample preparation protocol is still 

extensive, and perhaps the use of immunoaffinity chromatography could provide a 

solution. Also, method validation and quality control remain a cumbersome labor. 

Official guidelines and reference material for GC-C-IRMS analysis of samples from 

animal origin would provide powerful means for simplification. Finally, additional 

animal experiments are required to obtain more insight on the unexpected 

phenomena influencing the δ13CVPDB values of 5β-pregnane-3α,20α-diol. 
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9. Samenvatting 

 

De gunstige effecten van steroïdhormonen op groei en voederconversie zijn 

welbekend sinds het midden van de vorige eeuw. Toch werd uit voorzorg hun gebruik 

als groeibevorderaars voor voedselproducerende dieren verboden en actief 

nagegaan en opgevolgd binnen de Europese Unie. De detectie van misbruik van 

synthetische equivalenten van natuurlijk voorkomende steroïdhormonen blijft echter 

moeilijk. Hoewel de mogelijkheid om de oorsprong van dergelijke stoffen in urine met 

behulp van gaschromatografie gekoppeld aan verbrandings-isotoop ratio 

massaspectrometrie (GC-C-IRMS) aan te tonen reeds gekend is sinds het einde van 

de negentiger jaren, wordt deze techniek nog steeds slechts zelden gebruikt in het 

kader van voedselveiligheid. Het doel van het huidige onderzoek was om volledig 

gevalideerde IRMS-methoden voor de detectie van misbruik van synthetische 

equivalenten van natuurlijk voorkomende sekssteroïdhormonen te verschaffen, die 

als dusdanig kunnen geïmplementeerd worden in het kader van officiële controles.  

 

In hoofdstuk I wordt een inleiding gegeven rond natuurlijke steroïdhormonen, met 

verhoogde aandacht voor de groep van sekssteroïdhormonen. Nadat de basisregels 

rond naamgeving van steroïden worden verschaft, wordt er ook een overzicht 

gegeven van de verschillende componenten van specifiek belang binnen dit 

onderzoek. Vervolgens worden de verschillende types van natuurlijke 

steroïdhormonen besproken, en wordt zowel hun natuurlijke functie in het lichaam 

evenals hun werking als groeibevorderaar verduidelijkt. Nadien wordt de wetgeving 

opgesomd die het gebruik van hormonale substanties als groeibevorderaars beperkt, 

zowel op Europees als specifiek op Belgisch niveau. Daarna worden de verschillende 

pistes besproken die kunnen worden aangewend voor screeningmethoden, variërend 

van concentraties en profielen van steroïden, via holistische technieken, tot de 

screening van indirecte biomarkers. Tenslotte wordt de opbouw van de 

doctoraatsthesis voorgesteld. 

 

In hoofdstuk II wordt een uitgebreid literatuuroverzicht gegeven, dat alle 

gepubliceerde aspecten rond de detectie van misbruik van synthetische equivalenten 

van natuurlijk voorkomende steroïdhormonen in vee met behulp van GC-C-IRMS 
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omvat. Eerst worden zowel het steroïdmetabolisme van runderen als de 

productieprocessen van steroïdhormoonpreparaten uitgelegd, en wordt er 

verduidelijkt dat het verschil in het overeenkomstige bronmateriaal, en meer specifiek 

in de 13C/12C verhouding van dat bronmateriaal, de theoretische basis is die toelaat 

om een verschil waar te nemen tussen natuurlijke en synthetische steroïden die 

identiek zijn wat betreft hun chemische structuur. Vervolgns worden de verschillende 

factoren besproken die de 13C/12C verhouding van steroïden, die wordt uitgedrukt als 

δ13CVPDB waarden, beïnvloeden. Hieruit wordt duidelijk dat op zijn minst twee 

steroïden moeten gemeten worden in een urinestaal: een metaboliet van de 

toegediende stof, waarvan de δ13CVPDB waarde zal worden beïnvloed door de 

behandeling, en een endogene referentiecomponent (ERC), wiens δ13CVPDB waarde 

stabiel blijft. Het verschil tussen beiden, de ∆13CVPDB waarde, kan de behandeling 

duidelijk aantonen. Vervolgens wordt de werking van het daartoe gebruikte GC-C-

IRMS toestel toegelicht, en worden de individuele  staalvoorbereidingstechnieken 

evenals integrale staalvoorbereidingsprotocols besproken. Tenslotte wordt het 

verband met andere IRMS-gebaseerde opsporingstechnieken en met het domein 

van de humane dopingcontrole gelegd, waar GC-C-IRMS een veelgebruikte methode 

is voor het opsporen van misbruik van synthetische equivalenten van natuurlijk 

voorkomende anabole steroïden.  

 

In hoofdstuk III wordt een bevestigingsmethode voor het opsporen van misbruik van 

synthetische equivalenten van natuurlijke estrogenen met behulp van 

gaschromatografie, parallel gekoppeld aan zowel massaspectrometrie als aan 

verbrandings-isotoop ratio massaspectrometrie (GC-(MS/C-IRMS)) gepresenteerd. 

De gebruikte opstelling liet toe aanvullende GC-MS analyses te schrappen uit het 

analyseprotocol. De gebruikte staalvoorbereiding bestond uit een hydrolysestap, 

gevolgd door een vaste fase extractie, twee vloeistof-vloeistofextracties, twee HPLC 

opzuiveringen en een acetylering, waarna de δ13CVPDB waarden van 5-androsteen-

3β,17α-diol als ERC, en van 17α-estradiol als metaboliet, succesvol konden worden 

gemeten. De ontwikkelde methode werd grondig gevalideerd en liet toe om 

onderscheid te maken tussen stalen van behandelde en onbehandelde dieren.  
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In hoofdstuk IV wordt de ontwikkelde methode verder verfijnd en uitgebreid, zodat 

eveneens misbruik van synthetische equivalenten van androgenen kan worden 

opgespoord, wat mogelijk wordt door de toegevoegde meting van 17α-testosteron en 

etiocholanolon. Na uitgebreide validatie werd de methode aangewend voor de 

analyse van stalen van een stier en een koe, die intramusculair behandeld werden 

met 17β-estradiol-3-benozaat en 17β-testosteronpropionaat. De resultaten van deze 

behandelingsstudie lieten toe om het detectieluik van de methode te bepalen, en 

verschafte gedetailleerde farmacokinetische data. Tenslotte werd de ontwikkelde 

methode rechtstreeks vergeleken met alternatieve opsporingsmethoden, zijnde de 

detectie van intacte steroïdesters in haar- en bloedstalen met behulp van andere 

massaspectrometrische technieken.  

 

In hoofdstuk V wordt de ontwikkeling van een GC-(MS/C-IRMS) methode 

beschreven die toelaat misbruik van progesteron bij runderen op te sporen. Eerst 

werden vier pregnaandiol-isomeren geïdentificeerd als kandidaat metabolieten. 

Vervolgens werden twee analytische methoden ontwikkeld en met elkaar vergeleken. 

In de eerste methode werden drie geselecteerde isomeren van 5β-pregnaan-3,20-

diol apart gemeten na acetylering, terwijl in de tweede methode de vier isomeren van 

5β-pregnaan-3,20-diol eerst werden omgezet tot één oxidatieproduct, 5β-pregnaan-

3,20-dion, dat vervolgens werd geanalyseerd. Uiteindelijk werd een strategie waarbij 

enkel 5β-pregnaan-3α,20α-diol, als metaboliet, en 5-androsteen-3β,17α-diol, als 

ERC, werden gemeten na acetylering. De methode werd gevalideerd en liet toe om 

onderscheid te maken tussen stalen van behandelde en onbehandelde dieren. 

Tenslotte werd waargenomen dat een plotse verandering van voederregime, evenals 

een behandeling met 17β-estradiol en 17β-testosteron, een onverwacht en 

aanzienlijk verschil kunnen veroorzaken tussen de δ13CVPDB waarden van de ERC en 

de metaboliet.  

 

In hoofdstuk VI worden de algemene resultaten besproken en worden een aantal 

suggesties voor verder onderzoek gedaan. De combinatie van de ontwikkelde 

methoden laat toe om misbruik van synthetische equivalenten van zowel androgene, 

estrogene als gestagene steroïdhormonen op te sporen. De staalvoorbereiding blijft 

echter uitgebreid, en mogelijk kan het gebruik van immunoaffiniteitschromatografie 
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hiervoor een oplossing bieden. Validatie en kwaliteitscontrole blijven eveneens een 

omvangrijke taak. Officiële richtlijnen en referentiemateriaal voor GC-C-IRMS 

analysen van stalen van dierlijke oorsprong zouden dit aanzienlijk kunnen 

vereenvoudigen. Tenslotte wordt duidelijk gemaakt dat aanvullende dierproeven 

nodig zijn om de onverwachte vaststellingen rond de δ13CVPDB waarden van 5β-

pregnaan-3α,20α-diol te verklaren. 
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Voedselketen (FAVV), als inspecteur voor de Nationale Opsporingseenheid (NOE). 

Binnen deze fraudecel was hij hoofdzakelijk actief in de gerichte bestrijding van 

hormonenmisbruik in de vetmesting en het opsporen van onregelmatigheden in 

voedingssupplementen voor humane consumptie.  

In 2009 maakte hij de overstap naar het Directoraat-generaal van de Laboratoria van 

het FAVV, waar hij initieel werd ingezet als kwaliteitsverantwoordelijke voor het 

Federaal Laboratorium voor de Veiligheid van de Voedselketen te Tervuren (FLVVT). 

In de daaropvolgende periode was hij als coördinator chemie voornamelijk actief 

binnen het project ISORA. Dit onderzoeksproject, een actieve samenwerking tussen 

het FAVV, het ‘Laboratoire d’études des résidus et contaminants dans les aliments’ 

(LABERCA) te Nantes en de Vakgroep Duurzame Organische Chemie en 

Technologie binnen de Faculteit Bio-ingenieurswetenschappen van de Universiteit 

Gent, had als doelstelling het ontwikkelen van analysemethoden voor het opsporen 

van misbruik van natuurlijke hormonen in de vetmesting, gebruik makend van gas 

chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) binnen 

het Federaal Laboratorium voor de Veiligheid van de Voedselketen te Gentbrugge 

(FLVVG).  



Chapter X 

168 

 

 

10.2. Curriculum Vitae (Eng) 

Geert Janssens was born on the 22nd of October 1979 in Leuven (B). After 

graduating from high school at the Don Bosco-institute at Haacht (B) (Latin-Greek), 

he began the study of Bioscience Engineering at the University of Leuven in 1997. In 

2003 he obtained his degree in Bioscience Engineering (option Food chemistry) with 

honours. 

Afterwards, he commenced his career at the Sint-Albertuscollege Haasrode, as a 

secondary school chemistry and physics teacher. 

In 2004, he was recruited by the Belgian Federal Agency for the Safety of the Food 

Chain (FASFC), as an inspector for the National Investigation Unit (NIU). Within this 

fraud investigation cell, he was mainly active in the targeted investigation of hormone 

abuse in stock farming, and the tracing of irregularities regarding food supplements 

for human consumption.  

In 2009, he transferred to the Directorate-general of the Laboratories of the FASFC, 

were he was initially assigned as the quality manager of the Federal Laboratory for 

the Safety of the Food Chain at Tervuren (FLSFCT). As chemistry coordinator, he 

was mainly active within the project ISORA during the following period. This research 

project, which was a collaboration between the FASFC, the ‘Laboratoire d’études des 

résidues et contaminants dans les aliments’ (LABERCA) at Nantes (Fr) and the 

Department of Sustainable Organic Chemistry and Technology of the Faculty of 

Bioscience Engineering of Ghent University, was aimed at the development of 

analytical methods for the detection of abuse of synthetic analogues of endogenous 

hormones in stock farming, using gas chromatography-combustion-isotope ratio 

mass spectrometry, and was conducted at the Federal Laboratory for the Safety of 

the Food Chain at Gentbrugge (FLSFCG) 



Chapter X 

169 

 

 

10.3. Personalia 

 

Name:  Geert Janssens 

Date of birth:  October 22nd, 1979  

Place of birth: Leuven, Belgium 

 

10.4. Record of education 

 

2009 – 2016: PhD researcher in Bioscience Engineering, Department of 

Sustainable Organic Chemistry and Technology, Ghent 

University, Ghent, Belgium. 

Project: Stable carbon isotope analyses of natural steroid 

hormones to determine their abuse in cattle.  

Promoters: Prof. Dr. ir. Sven Mangelinckx, Prof Dr. ir. Norbert 

De Kimpe, Prof. Dr. Bruno Le Bizec 

 

1997 – 2003:  Master in Bioscience Engineering, KU Leuven, Belgium.  

   Option: Food chemistry, honours. 

Thesis: effect of the fat content of feed on the intake of 

polychlorobiphenyls (PCBs) in laying hens.  

Promoter: Prof. Dr. ir. Remi De Schrijver. 

 

1991 – 1997:  Secondary School, Don Bosco-Institute, Haacht, Belgium. 
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10.5. Professional employment 

 

2009 – present:  Coordinator chemistry, Directorate-general Laboratories, Federal 

Agency for the Safety of the Food Chain, Belgium. 

2009: Quality manager, Federal Laboratory for the Safety of the Food 

Chain Tervuren, Belgium. 

2004 – 2009: Food safety inspector, National Investigation Unit, Directorate-

general Control, Federal Agency for the Safety of the Food 

Chain, Belgium. 

2003 – 2004: Teacher, chemistry and Physics, Sint-Albertus High School, 

Haasrode, Belgium.  
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