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European food hygiene regulations (EC No. 852/2004 and EC No. 853/2004) put pressure on 

food business operators to develop and implement a food safety management system 

(FSMS) to govern food safety and to prevent foodborne outbreaks. Such a FSMS consists of 

generic Pre-Requisite Programs (PRP) and specific structured procedures based on the 

principles of Hazard Analysis and Critical Control Points (HACCP). One of the seven principles 

of the HACCP system is verifying whether the FSMS is functioning properly. One of the tools 

which can be applied by food business operators for verification is establishing a sampling 

and testing scheme. The food hygiene legislation is complemented by EC Regulation No. 

2073/2005 on microbiological criteria for foods (as amended by EC Regulation No. 

1441/2007) which gives guidance to all food businesses involved in the production and 

handling of food on the acceptability of foodstuffs and their manufacturing, handling and 

distribution processes. This guidance is provided by setting microbiological food safety and 

process hygiene criteria that need to be met in putting food stuffs on the market or in 

operating activities according to good hygienic practices.  

In addition, EC Regulation No. 882/2004 demands from the competent authorities to set up 

a Multi-Annual National Control Plan (MANCP) and an approach to be adopted to conduct 

official controls and to perform monitoring to enforce businesses’ compliance with food and 

feed law. Therefore, the overall objective of this PhD study was to gain insight in how 

microbiological analysis of foods or during food processing can be used as a performance 

indicator of adequate food safety management and compliance to relevant European 

regulations. A microbiological analysis not only deals with selection of the method of 

analysis and its performance characteristics, but also concerns the elaboration of a sampling 

plan, selection of microbial parameters and the interpretation of test results and 

subsequent related actions. As such a comprehensive approach of all relevant factors 

surrounding microbiological analysis to ensure food safety was the focus of the current PhD 

thesis.  

Overall, the presented research is divided into two objectives and seven chapters as shown 

in the overview below and Figure 0.1. A general introduction on the different aspects of 

food safety management and microbiological analysis in foods is given in CHAPTER 1. 
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The first objective is to develop a systematic approach in setting up a sampling plan and 

microbiological analysis to be fit for purpose for validation (CHAPTER 2) or verification 

(CHAPTER 3) of a FSMS. In particular, if multiple food types are handled and various food 

production processes are part of the food business’ activities. Therefore, it was decided to 

focus on food service operations (FSO) as an example. As FSO are business-to-consumer 

(B2C) operations and although being prone to official controls, they have less pressure to 

demonstrate the performance of their FSMS in place compared to the food production 

companies. The developed approach was also applied on site as a case study in a specific 

food service operation. In CHAPTER 2, a vertical microbiological assessment scheme which 

focuses on sampling throughout the processing line from raw material to finished product in 

one of the institutional kitchens of Ghent University is presented. It was the objective to 

demonstrate how microbiological analysis can be used as a tool for identification of 

bottlenecks within the operation of this food business and as a validation of the food service 

operations’ FSMS. In addition, as food service operations are confronted with a diverse 

range of raw materials and served meals, a microbiological sampling plan directed at i) 

incoming products in the framework of verification of supplier selection and ii) finished 

products (meals being served) to verify the functionality of their PRP and HACCP program in 

place is presented in CHAPTER 3. In CHAPTER 4, the FSMS of a hospital food service 

operation has been evaluated in its operation with particular focus on L. monocytogenes. 

The unique aspects of a hospital environment, such as the multitude of dietary needs and 

thus the variety of meals to be served and incoming (raw) materials to be used, challenge 

the development and implementation of appropriate control and assurance measures to 

ensure food safety. Besides, L. monocytogenes is considered a relevant microbial hazard for 

most food service operations producing and serving ready-to-eat foods to vulnerable 

people.  

The second objective is to use microbiological analysis to evaluate processing and storage 

conditions at the level of a sector. This type of information will serve both industry 

associations, individual food businesses and competent authorities to define new or 

reinforce current guidelines or control measures to be taken to ensure food safety. In 

particular for micro and small-sized enterprises there might be a lack of resources and 

knowledge to validate their operations and to comply to the complexity of food safety 
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regulations. As such it was decided to focus on the following two examples which are also 

defined as being of priority for food protection and public health by the Belgian Food Safety 

Agency and the Federal Public Service Health, Food Chain Safety and Environment who also 

partially supported and funded this research. 

In CHAPTER 5, the effectiveness of inactivation of foodborne pathogens during simulated 

pan-frying of meat and meat preparations was evaluated. The heat treatment of raw meat 

in the sector of food service operations (hotels, restaurants, catering) - as well as consumer 

domestic kitchens - is a major critical control point enabling to significant reduce numbers of 

pathogenic bacteria possibly being present in the meat. It is generally accepted that when 

meat and meat preparations (including hamburgers or any other comminuted meat) is 

subjected to a core temperature of 70 °C for 2 min or was subjected to a heat treatment 

equivalent to 2 min at 70 °C, it will accomplish a substantial inactivation (6 log reduction) of 

zoonotic pathogens and therefore renders the meat to be safe. However, it is not always 

clear which temperatures are actually reached during pan-frying of meat as applied in 

Belgian food service operations (and at home) where doneness of meat is usually defined by 

culinary preferences and visually judged. Therefore, it was decided to perform 

microbiological analysis to actually validate the current procedures in place in terms of 

pathogen reduction. 

Microbiological analysis, and in particular challenge testing, can also be used as a tool to 

establish the growth potential of L. monocytogenes. Listeriosis infections tends to increase 

again in the European Union (EU), especially in the elderly population. Soft and semi-soft 

cheeses are acknowledged at risk products for listeriosis. These types of cheeses are often 

produced as artisanal products in the short supply chain or delicatessen shops. Not only 

during production of cheeses (on the farm) but also during storage conditions of cheese 

opportunities for post-contamination with L. monocytogenes may occur. The aim of the case 

study in CHAPTER 6 was to use challenge testing to evaluate the behavior of L. 

monocytogenes on soft, semi-soft and semi-hard artisanal cheeses as a result of post-

contamination during distribution, (short) further ripening, cold display and slicing at 

delicatessen shops. This case study illustrates also the quite complexity of microbiological 

analysis to comply to the microbiological criterion defined for Listeria monocytogenes stated 

in EC Regulation No. 2073/2005. This criterion defines as end product limit “<100 CFU L. 
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monocytogenes cells per ml or per g” only when the producer can proof that L. 

monocytogenes is not able to grow further to elevated numbers in the product throughout 

the shelf life.  

In CHAPTER 7 a general discussion of the research is presented. As such the research aims to 

cover the approach to be taken for the various stakeholders in the food chain, covering 

various food supply chains and their various purposes to perform microbiological analysis. 
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Microbiological analysis of foods or food production environment plays an important role in 

the management of microbiological hygiene and safety in the food chain. Microbiological 

analysis not only deals with the selection of the method of analysis and its performance 

characteristics, but also needs to take care of the objective and the set-up of a sampling 

plan, selection of microbiological parameters and interpretation of test results. These 

aspects are reviewed in CHAPTER 1. As such a comprehensive overview of all relevant 

factors surrounding microbiological analysis to ensure food safety and hygiene is presented. 

Food service operations serve food directly to the consumer (i.e. perform business-to-

consumer (B2C) activities) and are frequently involved in reported foodborne outbreaks. 

Therefore, control of food safety and hygiene with adequate food safety management is 

especially important for these sectors. However, expertise on performing microbiological 

analysis and resources to perform those are often lacking in this part of the food chain. As 

such, CHAPTER 2, 3 and 4 focus on sampling and testing for validation and verification of 

core control measures within a Food Safety Management System (FSMS) in food service 

operations (FSO). 

CHAPTER 2 concentrated on the setting up and implementation of a vertical microbiological 

assessment scheme in one of the institutional kitchens of Ghent University to validate the 

FSMS in place. The sampling plan focuses on sampling throughout the processing line from 

raw materials to final product of 1) a high-risk sandwich production process (involving raw 

meat preparation), 2) a medium-risk hot meal production process (starting from 

undercooked raw materials), and 3) a low-risk hot meal production process (reheating in a 

bag). When three times performed, insight into the microbial contamination and the 

variability of a production process is obtained. Besides, the sampling plan was also able to 

pinpoint the bottlenecks in the FSMS. As high levels of total aerobic bacteria (> 3.9 log 

CFU/50 cm
2
) were noted occasionally on gloves of food handlers and on food contact 

surfaces, especially in highly contaminated areas (e.g. during handling of raw material, 

preparation room), core control activities such as hand hygiene of personnel and cleaning 

and disinfection were considered points of attention. 

CHAPTER 3 reveals a more horizontal approach in sampling and testing to set up an annual 

risk based sampling plan for 1) year-around monitoring and surveillance of raw materials as 
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a verification of supplier selection and 2) sampling of selected end products as an overall 

verification of the well-functioning of Pre-Requisite Programs (PRP) and Hazard Analysis and 

Critical Control Points (HACCP) implemented to serve high quality and safe foods to the 

customers at the FSO. This type of sampling plan can deduce major non-compliances and 

systematic failures in “best practices” of both suppliers and the food service operation itself. 

As FSO are confronted with a diverse range of raw materials and served meals, a 

microbiological risk categorization of food products was needed to enable a focused 

sampling plan. The implementation of the sampling plan in the institutional kitchens of 

Ghent University resulted in 123 samples of raw materials and 87 samples of meal servings 

(focused on high risk categorized food products) which were analyzed for spoilage bacteria, 

hygiene indicators and foodborne pathogens. Although sampling plans are intrinsically 

limited in assessing the quality and safety of sampled foods, it was shown to be useful to 

reveal major non-compliances and opportunities to improve the FSMS in place. Points of 

attention deduced in the case study were control of L. monocytogenes in raw meat spread 

and raw fish as well as overall microbial quality of served sandwiches and salads. 

In CHAPTER 4, it was demonstrated that the systematic risk based approach can also be 

used to evaluate the implemented control activities towards a specific pathogen, e.g. L. 

monocytogenes. This can be of interest for FSO producing and serving ready-to-eat foods for 

vulnerable people (e.g. a hospital institutional kitchen). In this case study the sampling plan 

implemented in a hospital food service operation, resulted in 49 food and 145 

environmental samples, and was accompanied with a self-assessment questionnaire. As 

such, it was demonstrated that the use of a (self-)assessment questionnaire to evaluate the 

current FSMS performance and the implementation of a risk based sampling plan to verify 

the implemented control measures toward the presence of L. monocytogenes in a hospital 

service setting, are useful tools for a food service operation to gain more insight into their 

own food management system and to adjust it.  

In addition to use microbiological analysis to verify the FSMS in place, microbiological 

analysis and more in particular challenge testing using artificially inoculated samples, were 

performed to provide an insight on the concern of microbiological safety in two sectors 

involving many small businesses operators in a B2C operation. As such, in CHAPTER 5, the 

effectiveness of heat inactivation of Campylobacter jejuni, E. coli O157:H7, Salmonella spp. 
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and L. monocytogenes was assessed using raw meat from various animal species (including 

pork, beef, lamb, chicken, turkey, horse, kangaroo and crocodile) and different types of 

meat and meat preparations (i.e. steak, hamburger and pitta meat strips) that were pan 

fried (or stir fried for the pitta meat) according to a standardized procedure as applicable in 

the sector of hotels, restaurants and catering in Belgium. It is generally accepted that when 

meat and meat preparations (including hamburgers or any other comminute meat) is 

subjected to a core temperature of 70 °C for 2 min or was subjected to a heat treatment 

equivalent to 2 min at 70 °C, it will accomplish a substantial inactivation (6 log reduction) of 

zoonotic pathogens and therefore renders the meat to be safe. However, on several 

occasions, residual survivors of the initial inoculated foodborne pathogens (4 log CFU/g) 

could be recovered either by enumeration (detection limit of 1 log CFU/g) or by the 

presence/absence testing per 25 g. Therefore, good hygiene practices at farms and 

slaughterhouses is needed to minimize pathogen contamination on the meat and the cold 

chain during further distribution and storage should be respected to prevent further 

multiplication. However, eating insufficient heat-treated meat will always pose a certain risk 

to consumers. 

CHAPTER 6 focused on microbiological analysis and challenge testing to evaluate the 

presence and growth potential of L. monocytogenes in soft, semi-soft and semi-hard 

artisanal cheeses being sold in small delicatessen shops in the region of Ghent. Small scale 

on-farm cheese producers are increasingly aware on hygiene requirements during 

production to prevent L. monocytogenes contamination, but opportunities for post-

contamination may occur also in delicatessen shops, during the sometimes short further 

ripening of cheese in the shop (at temperatures up to maximum 14°C), during storage and 

display in the refrigeration cabinet (at temperatures up to maximum 7°C), or during slicing 

when selling a piece of cheese to customers. Therefore, the growth potential of L. 

monocytogenes in three soft cheeses (one white-molded raw cow’s milk cheese, one 

pasteurized cow’s milk cheese with spicy herbs, one washed rind pasteurized cow and 

sheep’s milk cheese) and two semi-hard artisanal cheese (one smear-ripened raw cow’s milk 

cheese and one natural-ripened raw cow’s milk cheese) was evaluated by challenge testing. 

The results demonstrated that if occasional post-contamination takes place during storage 

or handling of the cheese, L. monocytogenes has the potential to grow to elevated numbers 
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throughout a reasonably expected storage period of up to 14 days notwithstanding the 

presence of high numbers of indigenous lactic acid bacteria being present in these cheese 

samples. Therefore, current storage conditions are not able to control this hazard. Besides, 

due to the obtained high variability in growth potential, the food business operator may not 

be able to demonstrate, to the satisfaction of the competent authority, that the product will 

not exceed the limit of 100 CFU/g throughout the shelf life. To ensure for the batch of these 

types of cheeses to comply to EU legislation 2073/2005, it is needed for L. monocytogenes 

to be absent in 25g of cheese using a multiple sample subunit approach (n=5) at the time of 

production.  

The knowledge acquired in the above-mentioned chapters have led to the formulation of a 

general discussion and final conclusions in CHAPTER 7, including the discussion on the 

systematic approach in elaboration of microbiological analysis for validation and verification 

of the FSMS in institutional food service operations and the use of challenge testing to 

evaluate handling conditions of at risk food products at small businesses selling to 

consumers. 
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De beheersing van de microbiologische kwaliteit en veiligheid van de voedselketen berust, 

gedeeltelijk, op de uitvoering van microbiologische analyse van levensmiddelen (en hun 

productieomgeving) tijdens of na het productieproces. Een microbiologische analyse heeft 

echter niet enkel betrekking op de selectie van de juiste analysemethode met bijhorende 

technische prestatiekenmerken, maar dient ook rekening te houden met het beoogde doel 

dat men voor ogen heeft, de geschikte uitwerking van een bemonsteringsplan, de selectie 

van aangepaste microbiologische parameters en de correcte interpretatie van de 

testresultaten in hun context. Daarom werden deze aspecten bestudeerd in HOOFDSTUK 1. 

Op deze manier wordt een overzicht bekomen van alle relevante factoren die invloed 

hebben op een microbiologische analyse om de voedselveiligheid te garanderen. 

Diensten die betrokken zijn bij maaltijdvoorzieningen, serveren maaltijden direct aan de 

consument (m.a.w. zijn betrokken in business-to-consumer (B2C) activiteiten). Omdat deze 

diensten vaak betrokken zijn in voedselgebonden uitbraken, is het belangrijk dat ze een 

goede beheersing van de voedselveiligheid op basis van de Hazard Analysis and Critical 

Control Points (HACCP) principes nastreven. Ze hebben echter vaak niet de nodige kennis 

omtrent het opzetten van bemonsteringsplannen en microbiologische analyses noch de 

(financiële) middelen om deze uit te voeren. Daarom werd er in HOOFDSTUK 2, 3 en 4 

geopteerd om een aanpak uit te werken voor microbiologische analyse ter validatie en 

verificatie van de kernactiviteiten in de beheersing van voedselveiligheid voor deze 

maaltijdvoorzieningen. 

HOOFDSTUK 2 concentreert zich daarbij op de uitwerking en toepassing van een verticaal 

microbiologisch bemonsteringsplan in één van de restaurants van de dienst 

maaltijdvoorzieningen van de Universiteit Gent. Op deze manier werd getracht hun 

beheersing van de voedselveiligheid te valideren. Het bemonsteringsplan focust op 

monsternames doorheen het productieproces van grondstoffen tot eindproduct en werd 

driemaal uitgevoerd voor een productieproces met 1) een hoog risico waarbij een belegd 

broodje met préparé werd bereid, 2) een middelmatig risico waarbij een maaltijd werd 

bereid vanuit rauwe grondstoffen en 3) een laag risico waarbij een maaltijd werd 

geregenereerd vanuit voorgegaarde grondstoffen die enkel dienden te worden opgewarmd 

in hun originele verpakking (reheating-in-bag). Op deze manier werd een inzicht verkregen 

in de microbiologische contaminatie en de variabiliteit van een productieproces. Daarnaast 



SAMENVATTING 

xxxii 

was het ook mogelijk om de knelpunten in de beheersing van de voedselveiligheid aan te 

duiden. Zo werden bijvoorbeeld regelmatig hoge aerobe kiemgetallen (> 3.9 log kve/50 cm
2
) 

aangetroffen op de handschoenen van de werknemers en de voedselcontactoppervlakten 

en dit voornamelijk in de risicozones (vb. tijdens het omgaan met grondstoffen, 

voorbereidingsstappen). Daarom verdienen de kernactiviteiten zoals handhygiëne en 

reiniging en desinfectie voldoende aandacht te krijgen. 

HOOFDSTUK 3 onthult een meer horizontale benadering voor microbiologische analyse met 

als doel een jaarlijks risico-gebaseerd bemonsteringsplan uit te werken voor 1) continue 

controle en toezicht van de microbiologische kwaliteit van de grondstoffen in het kader van 

leverancierscontrole en 2) microbiologische analyse van eindproducten ter verificatie van 

het functioneren van het geïmplementeerde basisvoorwaardenprogramma en de HACCP 

principes om zo goede kwaliteit en veiligheid van eindproducten (de geserveerde 

maaltijden) te garanderen naar de klanten toe. Er werd aangetoond dat dit type 

bemonsteringsplan in staat is om grote tekortkomingen en systematische fouten in “goede 

werkpraktijken” van zowel leveranciers als zichzelf als dienst maaltijdvoorziening op te 

sporen. Omdat maaltijdvoorzieningen gepaard gaat met een zeer gevarieerd aanbod aan 

grondstoffen en eindproducten, diende het bemonsteringsplan een risicokarakterisatie van 

de levensmiddelen op te nemen om zo een gerichte bemonstering mogelijk te maken. De 

uitvoering van dit bemonsteringsplan op één van de sites van de dienst 

maaltijdvoorzieningen van de Universiteit Gent resulteerde in 123 monsters van 

grondstoffen en 87 monsters van eindproducten of deelproducten hiervan waarbij 

geconcentreerd werd op de ‘hoog risico’ producten. Deze monsters werden vervolgens 

geanalyseerd op verschillende bederfflora, hygiëne-indicatoren en voedselgebonden 

pathogenen. Hoewel het bemonsteringsplan beperkt is in het beoordelen van de kwaliteit 

en veiligheid van voedingsmiddelen, was het toch in staat om grote tekortkomingen aan het 

licht te brengen en dus aan te duiden welke verbeteringen in de beheersing van de 

voedselveiligheid kunnen worden aangebracht. Zo werd bijvoorbeeld de aandacht gevestigd 

op het toezicht van L. monocytogenes in aangeleverde grondstoffen, maar ook op de 

algemene kwaliteit van de eigen belegde broodjes en salades. 

In HOOFDSTUK 4 werd aangetoond dat de risico gebaseerde systematische benadering ook 

gebruikt kan worden om de geïmplementeerde kern- en borgingsactiviteiten naar een 
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specifiek micro-organisme, bv. L. monocytogenes, te evalueren. Dit kan interessant zijn voor 

institutionele restaurants die maaltijden voorzien voor gevoelige bevolkingsgroepen zoals 

bijvoorbeeld een ziekenhuiskeuken. In deze gevalsstudie werd het bemonsteringsplan 

uitgevoerd in een ziekenhuis wat resulteerde in 49 voedselmonsters en 145 

omgevingsmonsters. Het bemonsteringsplan werd daarbij vergezeld van een vragenlijst voor 

zelfbeoordeling van het voedselveiligheidsbeheerssysteem. Het werd aangetoond dat op 

deze manier de vragenlijst kan dienen om het huidige beheer te evalueren en het 

bemonsteringsplan gebruikt kan worden om de kernactiviteiten te verifiëren. Zo krijgt de 

institutionele keuken inzicht of de uitvoering van kernactiviteiten met betrekking tot 

beheersing van een bepaald microbiologische risico voldoende kan geacht worden. 

Naast het uitvoeren van microbiologische analyses ter verificatie van kernactiviteiten in 

institutionele keukens, werden microbiologische analyses ook uitgevoerd om een inzicht te 

krijgen in de beheersing van de voedselveiligheid op het niveau van sectoren die vele kleine 

operatoren met B2C-activiteiten omvatten. Hiervoor werden voornamelijk challengetesten 

uitgevoerd waarbij levensmiddelen artificieel geïnoculeerd worden met het relevante micro-

organisme. Zo werd in HOOFDSTUK 5, de efficiëntie van inactivatie van Campylobacter 

jejuni, E. coli O157:H7, Salmonella spp. en L. monocytogenes nagegaan door rauw vlees van 

verschillende dierlijke oorsprong (varken, rund, lam, kip, kalkoen, paard, kangoeroe en 

krokodil) en verschillende vleessoorten en vleesbereidingen (vb. steak, hamburger, 

pittareepjes) te onderwerpen aan een bakproces (of roerbakproces in geval van 

vleesreepjes) volgens een gestandaardiseerde procedure zoals deze wordt toegepast in 

hotels, restaurants en catering in België. Het is namelijk ingeburgerd dat wanneer bij 

bereiding van vlees in de kern een temperatuur van 70°C gedurende 2 minuten wordt 

aangehouden (of een equivalent hiervoor), een 6 log reductie van pathogene cellen 

verkregen wordt waardoor het vlees veilig is voor consumptie. Er werden echter sporadisch 

pathogene bacteriën zoals L. monocytogenes gevonden via tellingen (detectielimiet van 1 

log kve/g) of detectie na aanrijking van 25g vlees, wat er op wijst dat lage aantallen 

overblijven van de initiële hoge aantallen (4 log kve/g). Daarom zijn goede hygiënepraktijken 

op de boerderij en in het slachthuis nodig om de initiële contaminatie zo laag mogelijk te 

houden. Daarnaast is het behoud van de koude keten tijdens verdere distributie en opslag 
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belangrijk om verdere uitgroei te voorkomen. Echter, het consumeren van onvoldoende 

doorbakken vlees zal altijd het nodige risico voor de consument met zich meebrengen. 

HOOFDSTUK 6 concentreert zich op microbiologische analyse en challengetesten om de 

aanwezigheid en het groeipotentieel van L. monocytogenes te evalueren in producten zoals 

zachte, halfzachte en halfharde kazen die te koop worden aangeboden in de detailhandel. 

De ambachtelijke producenten zijn zich er zeker van bewust dat strikte hygiënemaatregelen 

nodig zijn tijdens de productie van hun kazen om zo besmetting met L. monocytogenes te 

voorkomen, maar de mogelijkheid bestaat ook dat nabesmetting gebeurt in de detailhandel, 

tijdens het verdere rijpen van de kazen in de winkel (bij een maximum temperatuur van 

14°C), of tijdens de opslag en uitstalling in de toonbank (bij een maximum temperatuur van 

7°C), of tijdens het versnijden van de kaas op vraag van de consument. Daarom werd met 

behulp van challengetesten nagegaan in hoeverre L. monocytogenes kan uitgroeien door 

nabesmetting in drie ambachtelijke zachte kazen (zoals een rauwmelkse witschimmel kaas, 

een gepasteuriseerde kaas met kruidige korst en een rauwmelkse roodbacterie kaas) en 

twee ambachtelijke halfharde kazen (zoals een rauwmelkse roodbacterie kaas en een 

rauwmelkse natuurlijk gerijpte kaas). De resultaten tonen aan dat als er zich een 

nabesmetting voordoet tijdens opslag en omgang met de kaas, L. monocytogenes de kans 

heeft om uit te groeien tot hogere aantallen tijdens een aanvaardbare bewaarperiode van 

14 dagen desondanks de aanwezigheid van hoge aantallen nevenflora zoals 

melkzuurbacteriën. De huidige bewaaromstandigheden zijn dus niet (altijd) in staat om de 

groei van L. monocytogenes te beperken. Bovendien werd opgemerkt dat er een grote 

variatie is in de groeipotentieel tussen de verschillende herhalingen maar ook tussen 

verschillende productie-eenheden. Hierdoor kan een producent niet aantonen aan de 

bevoegde overheid dat het micro-organisme niet zal uitgroeien tot aantallen hoger dan 100 

kve/g tijdens zijn houdbaarheidsdatum. Dus om aan te tonen dat een batch voldoet aan 

microbiologische criteria zoals opgelegd in de verordening (EG) Nr. 2073/2005 van de 

Europese Unie, moet L. monocytogenes na productie afwezig zijn in 25g en dit in alle 

monsters zoals voorgeschreven in het bemonsteringsplan. 

De kennis die werd opgedaan in de bovengenoemde hoofdstukken heeft geleid tot het 

formuleren van enkele algemene conclusies in HOOFDSTUK 7. Daarnaast werd in dit 

hoofdstuk ook de nodige bedenkingen geformuleerd bij de verschillende stappen die nodig 
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zijn voor de uitwerking van een systematische aanpak voor het uitvoeren van 

microbiologische analyse als indicator voor de beheersing van voedselveiligheid. Tevens 

werden een aantal reflecties gemaakt bij de opzet en het gebruik van challengetesten voor 

het beoordelen van de “goede werkpraktijken” bij de bereiding en opslag van 

risicoproducten door kleine operatoren met B2C-activiteiten in de voedselketen. 
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1.1 Management of (microbiological) food safety 

Risk management of food and feed safety lies with the European Union (EU) institutions (i.e. 

European Commission, European Parliament and the Council) and is covered by food and 

feed law at Union level (Figure 1.1). 

 

Figure 1.1 Overview of EU legislation on food safety (after Dwinger R.H. and De Smet K., 2016) 

 

The management of microbiological food safety needs knowledge of the current situation 

and trends regarding the occurrence and spread of pathogens in the food chain. Therefore, 

member states of the EU are urged to collect data on the occurrence of zoonosis, zoonotic 

agents, antimicrobial resistance, animal populations and foodborne outbreaks. Monitoring 

is defined as the performance of routine microbiological analysis aimed at detecting 

microbiological contamination of food from which useful prevalence data may emerge (CEC, 

2006). In addition to monitoring, competent authorities perform also surveillance activities. 

Surveillance is defined as the performance of routine microbiological analysis aimed at 

detecting microbiological contamination of food for the purpose of applying appropriate 
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control measures (CEC, 2006). Surveillance is mostly applied to follow-up unsatisfactory 

results and to evaluate implemented control measures. Management of microbiological 

food safety requires also from competent authorities checking the compliance of food 

products (i.e. batch control) in case of suspected contaminations (e.g. border controls in 

case of import or non-satisfactory results of inspection at food business operators (FBOs) on 

functionality of self-checking systems). Although the competent authority is demanded to 

assure the food safety by means of official controls, the general food law (i.e. Regulation EC 

No. 178/2002) puts the responsibility for food safety with FBOs from farm to fork 

(Anonymous, 2002; Albersmeier et al., 2009; Maudoux et al. 2006). Thus, an organization in 

the food chain needs to demonstrate its ability to control food safety hazards in order to 

ensure that food is safe at the time of human consumption. Therefore, FBOs need to 

develop, implement and maintain a food safety management system (FSMS) which consists 

of procedures based on generic Pre-Requisite Programs (PRP) (covering ‘good practices’ 

such as cleaning and disinfection, temperature control, personal hygiene, etc.) and specific 

structured procedures based on the principles of Hazard Analysis and Critical Control Points 

(HACCP) (Anonymous, 2004b; CAC, 2003; Jacxsens et al., 2009a; Quinn & Marriott; 2002). In 

many countries, the company specific FSMS is also recalled a self-checking system due to 

the fact that the FSMS needs to be planned, executed and checked by the FBO. When non-

satisfactory results are obtained on Critical Control Points (CCPs) or internal checks, acting is 

necessary. Based on this Deming-wheel principle, the FBO has the possibility to assess the 

safety of their food products and production process in a systematic manner (Jacxsens et al., 

2009a; Luning et al., 2009).  

1.1.1 Food safety management at the level of competent authorities 

The European Food Safety Authority (EFSA) was established, following Regulation EC No. 

178/2002, to provide independent scientific advice, information and risk communication in 

the areas of food and feed safety. To assess risks and to establish baseline values related to 

zoonosis and zoonotic agents, monitoring programs are established e.g. according to 

Directive 2003/99/EC for zoonosis (Anonymous, 2003a). As such, the member states of the 

EU collect data on the occurrence of zoonosis, zoonotic agents, antimicrobial resistance, 

animal populations and foodborne outbreaks. The overall reporting at EU level on these 
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monitoring programs is managed by EFSA and is published in the annual European Union 

Summary Reports in cooperation with the European Centre for Disease Prevention and 

Control (ECDC) (http://www.efsa.europa.eu/en/panels/zoonoses). The reports illustrate the 

evolving situation in the EU and identify trends and sources for the pathogens that cause 

the most common zoonotic infections in humans. If specific needs are identified by the 

European Commission, EFSA will develop baseline surveys in the EU to estimate the 

prevalence of specific micro-organisms in certain food products in a specific time period. 

The results of such a baseline survey should help to inform on the consideration of the need 

for additional risk management strategies. Since the establishment of EFSA in 2002, eight 

surveys have been carried out in the EU 

(http://www.efsa.europa.eu/en/zoonosesscdocs/zoonosessurvey). The latest baseline 

survey estimated the EU prevalence of Listeria monocytogenes in certain ready-to-eat (RTE) 

foods at the retail level in 2010-2011 (EFSA, 2013a; EFSA, 2014a). 

In the establishment of a framework for controlling and monitoring the production, 

prevention and management of food safety, although mainly governed by EU Regulation, 

national authorities should be closely involved. As laid down in the General Food Law 

(Regulation EC No. 178/2002), competent authorities have to enforce the food law by 

monitoring and verifying that relevant requirements of the food law are fulfilled by food 

and feed business operators at all stages of production, processing and distribution. This 

food law is among others complemented by Regulation EC No. 882/2004 which defines the 

European Union countries as regards the organization of these controls, as well as the rules 

which must be respected by the national authorities responsible for carrying out these 

official controls (Anonymous, 2004a). As such, Regulation EC No. 882/2004 stipulates that 

the competent authority shall establish and implement a Multi-Annual National Control Plan 

(MANCP) based on risk analysis, especially with respect to their frequency of sampling and 

priority of food product/pathogen combination. These MANCPs will also contain procedures 

based on official sampling and testing for other pathogens and food products than zoonotic 

agents and animal food products. However, official sampling and testing is only part of the 

verification process. Compliance to the feed and food law has also to be verified by audits, 

inspections, border controls, apart from monitoring and surveillance (CEC, 2006).  
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In Belgium, the Federal Agency for the Safety of the Food Chain (FASFC) is the competent 

authority for official controls of the safety of the entire food chain, including animal health, 

plant health and animal welfare. The MANCP (http://www.afsca.be/about/mancp/) includes 

microbiological analysis of products to check their quality and safety and inspections of self-

checking systems at FBOs and products at all stages of the food chain (Maudoux et al. 2006). 

To acquire a high level of transparency, the FASFC makes the relevant information of the 

official controls available to the public. It publish every year an annual report on their 

activities and results of the controls and inspections (http://www.afsca.be/jaarverslagen/). 

In addition to official controls which are planned in the monitoring program, the FASFC also 

perform microbiological analysis initiated by other events such as the Rapid Alert System for 

Food and Feed (RASFF) notifications, consumer complaints, presumptive foodborne 

outbreaks, actions in collaboration with other national competent authorities (Maudoux et 

al. 2006). Surveillance allows to gain information when a microbiological issue is identified 

and to identify potential causes of the problem in order to find potential solutions (ICMSF, 

2011). 

1.1.2 Food safety management at the level of industry associations 

A food sector association or private organizations issuing a quality label or system certificate 

can perform or ask their members to perform microbiological analysis in the frame of 

monitoring food safety (i.e. microbiological and chemical food safety) or put forward 

specifications on hygiene and quality parameters that need to be verified on a regular basis. 

They can also monitor in the frame of evaluation of implemented interventions to improve 

the microbiological food quality or safety output (Jacxsens et al., 2010). These monitoring 

plans focus on hazards related to a food product and not to an individual FBO. This sectoral 

approach has the advantage that individual companies need to perform fewer analyses 

themselves. The efforts are in fact evenly distributed across the entire sector, with larger 

companies performing more analyses than smaller companies. In the end, more results will 

be available than if individual sampling was performed. In Belgium these sectoral sampling 

plans are often subjected to approval by the competent authority (FASFC) in order to verify 

if sampling fulfills some defined sampling and testing requirements for the results of the 

analysis to be accepted by FASFC. In the Netherlands there is an initiative called Riskplaza 
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(http://www.riskplaza.nl) which is also a collaborative effort from various sectors to share 

information about the food safety of ingredients in a common database or platform 

(accessible by members only). Besides controlling the compliance with existing 

microbiological guidelines and criteria, the obtained results of analysis can be used to collect 

baseline data. Food safety is or should not be a competitive issue between food businesses 

and monitoring of (microbiological) hazards on the level of a food sector, but helps the 

members of an industry association to control the costs of sampling and analysis in the 

framework of national or European legislation or their customers’ requests. By sharing 

information, the overall insight in a food safety issue is increased and individual companies 

can position themselves within the cluster of related companies in the same ‘business’. 

1.1.3 Food safety management at the level of individual food business operators 

As stated in the general food law, a FBO is best placed to devise a safe system for supplying 

food and ensuring that the food it supplies is safe (Anonymous, 2002). Therefore, FBOs in 

Europe are obliged to develop, implement and maintain a FSMS (Figure 1.2) to govern food 

safety and to prevent foodborne outbreaks (Anonymous, 2002; Anonymous, 2004b; CAC, 

2003). Such a FSMS includes Pre-Requisite Programs (PRPs), which are the programs related 

to hygiene and good working conditions in a food producing company (e.g. cleaning and 

disinfection, pest control, temperature control, etc.). They are tailored to the nature and 

size of a company and are often also recalled as ‘good practices’ such as ‘good hygienic 

practices’, ‘good agricultural practices’ or ‘good manufacturing practices’. Basic good 

practices are regulated by Regulation EC No. 852/2004 and 853/2004 within Europe. 

Important is that these basic (legal) requirements are translated into a company specify 

PRP, according to a plan, do, check, act principle. For instance, cleaning and disinfection 

activities are planned (e.g. frequency, when to perform, method of cleaning and 

disinfection, which chemicals will be used), executed, checked (e.g. visual check, microbial 

sampling) and act when problems are identified.  

A next level within a FSMS is Hazard Analysis and Critical Control Points (HACCP), in which 

process specific hazards needs to be controlled. Based on the hazard analysis the food 

company will identify the need for CCPs as steps in the production process where hazards 

will be prevented, eliminated or reduced to an acceptable level. Typical CCPs are e.g. 
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pasteurization, fermentation and fast cooling. For those an appropriate monitoring needs to 

be set-up within a FSMS of the company (Jacxsens et al., 2009a; Luning et al., 2009).  

 

Figure 1.2 A schematic overview of a Food Safety Management System. 

 

A FSMS or self-checking system based on PRPs and HACCP principles, is including both 

control and assurance activities (Figure 1.2). Control activities are aiming at prevention of 

contamination (e.g. cleaning and disinfection) and outgrowth (e.g. temperature control) or 

reduction (e.g. heat treatment) of a food safety hazard and are typically related to product 

and process controls (Luning et al., 2008; Jacxsens et al., 2009a). Assurance activities in a 

food safety management system have the objective to provide evidence (e.g. by sampling, 

by internal auditing) that products and processes are within set specifications.  

Good food safety management should thus be based on evidence that hazards are well 

under control and that the interplay between initial levels of organisms, reduction, 

recontamination and growth is supplying a final level or prevalence of the hazard that is 

appropriate in a food product (Zwietering et al., 2016). Therefore, validation (which is an 

assurance activity) of the control activities is needed. Validation is defined as obtaining 
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evidence that a control measure or combination of control measures, if properly 

implemented, is capable of controlling the hazard to a specified outcome (CAC, 2008). 

Within the frame of validation, microbial sampling will play a role. For example, in a heating 

step where time/temperature conditions need to be defined to eliminate pathogens, 

microbiological sampling and testing will be a tool to evaluate if the set time/temperature 

conditions are strict enough. Moreover, one of the seven principles of the HACCP system is 

verifying whether the FSMS is functioning properly. Therefore, verification of the FSMS is 

needed as well as an assurance activity. Verification is defined as the application of 

methods, procedures, tests and other evaluations, in addition to monitoring, to determine 

whether a control measure is or has been operating as intended (CAC, 2008). Thus, 

verification assess whether the system is continuing to function as intended, i.e. has the 

system or the hazards associated with the food changed so that safety cannot be ensured 

(Buchanan & Schaffner, 2015; Zwietering et al., 2016). Therefore, food safety management 

by individual FBOs involves the validation and verification of the implemented system, 

which can be performed with microbiological analysis next to other tools such as predictive 

modelling, observations, etc. In addition to microbiological analysis to validate and verify 

the FSMS, the FBO needs to check whether foods meet the various legal or customary food 

safety, food hygiene or food quality standards (i.e. batch release). This demands for batch 

control of raw material or end products are often asked in business-to-business sales. Food 

safety management involves also the investigation of complaints about food, for example 

follow-up sampling to establish if the cause of the complaint was an isolated incident or to 

support root-cause analysis, and environmental sampling to check the hygiene status of 

food processing equipment and the manufacturing environment. 

 

1.2 Microbiological analysis 

Microbiological analysis of foods or food production environment during food production, 

processing, storage and preparation is an integrated part of the management of 

microbiological safety in the food chain. However, a microbiological analysis not only deals 

with the selection of the method of analysis and its performance characteristics, but also 

concerns the set-up of a sampling plan, selection of microbiological parameters and the 
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interpretation of test results and subsequent related actions. The latter aspects are 

highlighted in this PhD thesis. 

1.2.1 Sampling: an essential tool in microbiological analysis 

In order to benefit from the sampling and testing of food products and the food production 

environment, the sampling plan, which is an essential tool in controlling quality and safety 

along the food chain, must be well-planned taking into account also the intended purpose 

of sampling. As the interpretation of microbiological analysis are strongly dependent on the 

design of the sampling plan, it is important that the appropriate sampling is used for a 

defined application, or at least the pros and cons of a selected sampling design are 

considered and known. 

1.2.1.1 Sampling for batch control 

Despite a shift from repressive quality control (i.e. end- or finished product testing) to a 

more proactive food safety management based on PRP and HACCP, batch control is still 

being used (Zwietering et al., 2016). End product testing may be an essential additional 

control measure for those (limited number) of foods where PRP and HACCP may be 

inadequate to provide consumer protection (e.g. raw materials) or when the history of a 

product is unknown (e.g. at port of entry in case of import) (ICMSF, 2011; Ross et al. 2011). 

FBOs can use batch control with hold-and-release function if there is a reason to believe 

that the process is not well under control (e.g. a CCP out of control) or to prove compliance 

of their food to microbiological criteria set in Regulation EC No. 2073/2005 (Anonymous, 

2005; Buchanan & Schaffner, 2015; Jongenburger et al., 2015; Zwietering et al., 2016). Also 

competent authorities will use batch control in the frame of checking compliance of food 

products with microbiological criteria (e.g. for acceptance at ports or other points of entry) 

(Jongenburger et al., 2015). As legal microbiological criteria allow to show acceptability of a 

food stuff to be set to the market or give guidance on acceptable functioning of the 

production process, sampling plans for batch control were defined as a consensus between 

all EU member states in order to ensure harmonized implementation. Two types of 

sampling plans, namely attributes and variables plans, can be used to support decisions on 

the acceptability of a batch of food. As attributes sampling plans need no assumptions 
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about underlying distributions of micro-organisms and because they are the simplest 

concept to control an alternative characteristic, within EU it was chosen to adopt the 

attributes sampling plans in the setting of microbiological criteria Regulation EC No. 

2073/2005 (some examples mentioned in Table 1.1). 

Table 1.1 Examples of sampling plans for batch control as adopted in Regulation EC No. 2073/2005 

(from top to bottom in increasing strictness). 

Micro-organism Food category Type N C m M 

E. coli Pre-cut fruit and vegetables 

(RTE) 
3-class  5 2 100 cfu/g 1000 cfu/g 

L. monocytogenes RTE foods unable to support 

the growth of L. 

monocytogenes, other than 

those intended for infants 

and for special medical 

purposes 

2-class  5 0 100 cfu/g - 

L. monocytogenes RTE foods intended for 

infants and RTE foods for 

special medical purposes 

2-class  10 0 Abs. in 25g - 

Enterobacteriaceae Dried infant formulae and 

dried dietary foods for 

special medical purposes 

intended for infants below 

six months of age 

2-class  10 0 Abs. in 10g - 

Enterobacter 

sakazakii 

2-class  30 0 Abs. in 10g - 

 

The sampling plans in the EC regulation defines the number of sample units to be tested (n); 

the analytical unit size; the analytical reference method; the microbiological threshold limits 

(m and M); and the maximum allowable number of sample units (c) yielding a positive test 

result, such as the presence of the organism or the number of micro-organisms above a set 

limit. A distinguishment can be made between the microbiological threshold limits m and M. 

In a two-class sampling plan good quality will be separated from non-acceptable quality or 

defective quality by determining whether the concentrations of micro-organisms are above 

(present) or below (absence) some pre-set threshold limit, denoted as the microbiological 

limit m. In a three class-class plan, this microbiological limit m will separate good quality 

from marginally acceptable quality. It is a second microbiological limit M which will separate 

unacceptable (or defective) batches from the (marginally) acceptable batches (Dahms, 

2004). Thus, the sampling procedure of these attributes sampling plans involves the 

selection of a sample with a sample size (n) from the batch, the analysis of the sample, and 

the comparison of the results to the microbiological limit(s) in order to classify a batch of 

food as (marginally) acceptable or not acceptable (ICMSF, 1986). As with sampling only a 
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very small part of the batch is analyzed, none of the sampling plans can ensure that every 

item in a batch is conform to microbiological limits as set in microbiological criteria. 

(Jongenburger et al., 2015). For any sampling plan there is probability of accepting a batch 

which may be unacceptable (consumers’ risk) or rejecting a batch which may be acceptable 

(producers’ risk) (ICMSF, 1986). 

1.2.1.2 Sampling for monitoring and surveillance 

Knowledge of the current situation and trends regarding the occurrence and spread of 

pathogens in the food chain has an important contribution to make in managing food 

safety. Acquiring this knowledge involves the gathering of information under the terms of 

monitoring and surveillance. Despite the difference in terms, similar systems of data 

collection are often used in both monitoring and surveillance. The (big) number of samples 

to be tested is statistically determined and is based on the confidence level of the 

conclusions to be made (usually set at 95%, but could also be 90 or 99%) and need to take 

into account the maximum (tolerable) fraction of the food that may have been 

contaminated or the (estimated) prevalence of a particular hazard. To improve and co-

ordinate the monitoring of zoonotic agents in the EU, some general requirements are laid 

down in Directive 2003/99/EC on the monitoring of zoonosis and zoonotic agents. These 

requirements will make it easier to compile and compare the collected data, which will also 

enable better contribution to risk assessment of zoonotic agents (Anonymous, 2003a).  

Monitoring programs in microbiological food safety allow thus to estimate the prevalence of 

a particular hazard or allow to verify if the hazard is below a defined tolerable set 

prevalence (e.g. less than 5%, less than 1% or less than 0.1%) with a set accuracy. Depending 

on the objective of the monitoring program, several statistical methods exist to calculate 

the required sample size (Evers, 2001). Some examples on approaches taken in setting up 

monitoring and surveillance studies are described in the technical specification for setting 

up EU-baseline surveys as reported by EFSA 

(http://www.efsa.europa.eu/en/zoonosesscdocs/zoonosessurvey) and by Madoux et al. 

(2006), which sets up sampling strategies in the framework of the Belgian MANCP.  
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1.2.1.3 Sampling in the framework of validation and verification of FSMS 

Management of microbiological food safety is based on a good design of processes, 

products and procedures. Therefore, microbiological analysis are needed in the framework 

of validation and verification of the implemented FSMS to provide evidence on this good 

design.  

By validation, it can be demonstrated that particular (process) control measures can 

adequately prevent, reduce, or eliminate specific hazards. Often, a FBO will perform 

sampling and testing to validate (new) intervention steps or implemented control measures 

(or considered to be implemented) in the food production process. For information on 

phenomena like reduction, survival, transfer and growth of microorganisms specific 

experiments such as challenge tests will be combined with scientific literature or predictive 

microbiology to validate initial assumptions of sufficient control. Also assumptions on initial 

levels and prevalence of microbiological contaminants in raw materials and the 

environment can be validated by collection of data based on sampling and testing. 

If control procedures are validated and operational on a continuous basis, the overall 

expected food safety and food quality to be delivered can be verified by finished product 

testing (and by collection of (molecular) epidemiological information) (Figure 1.3). This 

finished product testing reflects then the effective integration of all control and assurance 

steps in the formulation and manufacturing of the food being set to the market (Buchanan 

& Schaffner, 2015). Verification to make sure that the FSMS is working is defined as 

principle six in the harmonized HACCP principles from the Codex Alimentarius (CAC, 2003). 

This verification includes above mentioned sampling and analysis, but can be 

complemented also by chemical (e.g. water content), physical (e.g. pH, aw, temperature) or 

time measurements. The aim of this verification is to test the HACCP-system (i.e. check if the 

HACCP is followed as it is described and if it is appropriate). In addition to finished product 

testing, in-line testing may also be useful to verify that the preventive and control measures 

being designed and implemented as part of the FSMS function as intended (Buchanan & 

Schaffner, 2015; Zwietering et al., 2016). As such microbiological analysis can be used to 

verify the adequacy of performance of process controls for ensuring food safety and 
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(prolonged) shelf life and guarantee that the product and process meets set specifications 

(ICMSF, 2011).  

 

 

Figure 1.3 Overview of the relevant phenomena in food safety control, indicating the position of 

validation and verification (after Zwietering et al., 2016). 

 

Although FBOs are obliged to verify the functioning of the HACCP-system and other hygiene 

control procedures (Anonymous 2004b), they should decide themselves the necessary 

sampling and testing frequencies. Therefore, the sample size is often determined from the 

point of view of what is economically acceptable and/or requirements from customers. 

These convenience sampling plans are also known as pragmatic or empirical sampling plans 

(CAC, 2004). The number and type of samples are mostly selected intuitively, based on the 

experience and knowledge of the sites most likely to detect a failure in implementation of 

good practices (such as cleaning and disinfection or personal hygiene) and monitoring of 

CCPs. This knowledge continues to increase over time, which enables to adjust the sampling 

plan to improve it further without increasing the analytical costs unnecessarily.  
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1.2.1.3.1  Microbiological Assessment Scheme (MAS) 

Convenience sampling is often used in food industry. However, no procedure to 

systematically validate and verify the microbiological performance of a FSMS was available, 

until Jacxsens et al. (2009b) developed a Microbiological Assessment Scheme (MAS) 

procedure which enables an analysis of actual microbiological performance of a FSMS. The 

basic idea behind this protocol is that low numbers of micro-organisms and small variations 

in microbiological counts indicate an effective and well-functioning FSMS (Jacxsens et al., 

2010). Therefore, this protocol, which is not a continuous monitoring plan, but rather takes 

a structured snapshot of the status of the performance of a FSMS can aid the FBOs in their 

validation of the FSMS during its set-up and aid in their verification process of the 

functionality of the FSMS (Jacxsens et al., 2015). This type of sampling could be rather 

designated as a type of stratified convenience sampling.  

A MAS sampling plan (i) identifies critical sampling locations within the production process 

(e.g. raw materials, food contact surfaces, finished products), (ii) selects appropriate 

microbiological parameters to be analyzed, (iii) defines the sampling procedures and 

analytical methods, and (iv) helps in the interpretation of the results. The goal of a MAS 

sampling plan is to obtain insight into the maximum microbiological counts, the distribution 

of microbial contamination, i.e. where to find contamination in the production process 

(Jacxsens et al., 2009b), and into the dynamics of microbial contamination occurring as a 

result of the design and application of the control strategies in a FSMS. The obtained results 

can be evaluated in two ways. Either individual results for each analyzed parameter can be 

evaluated for each specific sampling location within the production process, or individual 

results for each analyzed parameter can also be evaluated across sampling locations within 

the production process. In this latter case, a microbiological safety level is attributed to each 

type of microbiological parameter to obtain an overall view of microbiological quality, 

hygiene, and the safety level of products and processes. Each microbiological parameter is 

given a score from 1 to 3. Level 3 is the best result (legal criteria or guidelines are met, and 

no improvements are needed); the current level of the FSMS is deemed high enough to 

cope with any hazards. Level 2 is a moderate result (obtained results exceed legal criteria or 

guidelines, and improvements are needed in a single control activity of the FSMS), and level 

1 is a poor result (obtained results exceed legal criteria or guidelines, and improvements are 
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needed in multiple control activities of the FSMS). The sum of the levels of all 

microbiological parameters results in a Microbial Safety Level Profile (MSLP) score (Figure 

1.4), which gives an indication of the actual performance level of the FSMS (Jacxsens et al, 

2009b; Sampers et al, 2010). When the MSLP score is lower than the maximum achievable 

value, then improvement of the current FSMS is possible. Examination of the details of the 

MSLP results for each microbiological parameter, observations during sampling, and 

discussion with the quality manager of the operation may provide insight into control 

activities that might be picked out for a further continuous sampling plan in verification of 

the FSMS. Such a Microbiological Assessment Scheme generating microbiological profiles 

have been used in food processing companies with a relative modest food product 

variation, as they focus on the production of a single food stuff such as poultry meat 

preparations, dairy products or pork or lamb meat preparations (Jacxsens et al. 2009; 

Sampers et al. 2010; Osés et al., 2012a and 2012b). 
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Figure 1.4 Example of a microbial safety profile. The profile is constructed by levels with      total 

mesophilic counts,     S. aureus,      Enterobacteriaceae,      E. coli,       L. monocytogenes,       

Salmonella.      indicates the remaining microbial safety level according to the maximum of 18, 

where improvement in the FSMS can be made (after Jacxsens et al., 2009). 

1.2.1.3.2 Sampling for environmental control 

Also the set-up of sampling plans in the production environment, e.g. to check cleaning and 

disinfection, is often based on expert knowledge (either in-house or from external 

consultants) and empirical knowledge based on prior test results from within the food 

business itself. Such in-house data is preferably put together in a database and subjected to 

trend observation. These environmental sampling plans are used by FBOs to assess the risk 
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of product contamination from the environment and may include both pathogen testing as 

well as hygiene indicator testing and sometimes even quality indicators such as yeasts or 

molds. Environmental sampling can include sampling of all types of food contact surfaces, 

including conveyer belts, equipment, utensils but also hands of food handlers to verify 

whether cleaning and disinfection has been executed properly or protective high care zones 

function as needed. More elaborated environmental sampling may be set up to investigate 

a source of contamination after a complaint of foodborne illness, deviating quality or non-

compliance to set specifications. Environmental sampling may in particular be helpful in 

root-cause analysis in order to implement corrective actions (ICMSF, 2002; Pappelbaum et 

al., 2008; Tompkin, 2004). As it is not intended to assess the probability that a defined batch 

of food has been contaminated, such programs are not statistically designed sampling plans. 

Contrary, environmental sampling is based on prior experience and familiarity with the 

given processing conditions. Environmental sampling plans normally involve an established, 

routine sampling plan with a defined number of samples and places. In that case, the data 

can be used to detect trends indicating a potential loss of control and to enable timely 

corrective actions (Tompkin, 2002). If a non-compliance takes place or another unforeseen 

event happens, the frequency of sampling can be increased to more intensive sampling 

(ICMSF, 2002).  

It is important in case of convenience sampling at the level of a FBO, no matter whether 

random or stratified convenience sampling was used, to be aware about the limitations and 

potential bias that might occur due to convenience sampling. This aspect should also be 

discussed in making conclusions on the absence (or presence) of biological hazards in food 

(or the food production environment) based on convenience sampling. 

1.2.2 The selection of microbiological parameters 

The specific micro-organisms that should be considered for microbiological analysis is 

dependent on the objectives of the microbiological analysis, the microbiological ecology of 

the food (or the food production environment), the stage in the food chain where the 

sample is taken and the (reasonably) foreseen conditions of further processing, storage, 

distribution and use.  
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1.2.2.1 Quality indicators 

Quality indicators that can be used to assess the overall quality of food products are total 

viable count (TVC), lactic acid bacteria (LAB), yeast and molds (Lues and Van Tonder, 2007; 

Jacxsens et al., 2003). Unsatisfactory results of these food spoilage micro-organisms 

represent, if recommended storage conditions have been respected, less qualitative 

products which may cause early spoilage and unacceptable sensorial quality, but in general 

will not cause harm to humans. However, the use of TVC as an indicator of overall quality is 

debatable for some products. It is for example clear that in fermented products, TVC will 

always be high due to presence of high levels of lactic acid bacteria (either as starter culture 

or part of the natural microbiota). Also it is not recommended to use TVC as an indicator of 

overall quality of fresh produce, because those food products often have high and variable 

microbiological contamination due to contact with the environment pre-harvest (soil, water) 

and may be prone to cross-contamination during washing and mixing (Holvoet et al., 2012; 

Olaimat and Holley, 2012; Tzschoppe et al., 2012). Because TVC is to a lesser extent related 

to sensorial quality, it is recommended to combine TVC counts always with a judgement of 

the sensorial quality. For example, deterioration of fresh produce is rather to be judged 

visually, with notable wilted or discolored leaves due to physiological processes such as 

anaerobic respiration and enzymatic browning (Caponigro et al., 2010). 

1.2.2.2 Hygiene indicators 

In addition to quality indicators, hygiene indicators (e.g. Enterobacteriaceae, E. coli, 

coliforms) are often chosen in microbiological analysis because they are relatively quick and 

simple to detect. They can be used to point out failure to comply with general 

acknowledged codes of hygiene and best practices in food production, that temperature 

abuse may have occurred and some indicator organism also provide evidence of human or 

animal fecal contamination (Bayliss et al., 2011). However, Enterobacteriaceae provide a 

good indicator of overall good manufacturing practice (GMP) on the day of production but 

not throughout the shelf life or at the end of shelf life of some (refrigerated perishable) 

products. This is due the ability of some Enterobacteriaceae to multiply in certain foods, 

even during chilled storage, which can make interpretation of results more difficult because 

the numbers present may not always reflect the initial level of contamination (Bayliss et al., 
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2011). If analysis of hygiene at the end of shelf life is still preferred, it is better to determine 

the numbers of E. coli as this species is mesophilic (i.e. no growth possible when 

temperature is <8°C). E. coli is also a good indicator of fecal contamination. In addition, high 

numbers of E. coli provide evidence of increased likelihood of finding closely ecologically 

related enteric pathogens (Bayliss and Petitt, 1997; Mossel, 1982). 

1.2.2.3 Foodborne pathogens 

When pathogenic bacteria are present in food products, they can cause foodborne diseases. 

The characteristics for growth and pathogenicity of the most important food infectants (i.e. 

L. monocytogenes, Salmonella spp., Campylobacter jejuni and E. coli O157) and food 

intoxicants (i.e. B. cereus, Cl. perfringens and S. aureus) are listed in Table 1.2. The annual 

reports of the biological monitoring unit of EFSA and ECDC 

(http://www.efsa.europa.eu/en/zoonosesscdocs/zoonosescomsumrep) give an overview of 

reported individual cases of human zoonotic diseases as well of collective foodborne 

outbreaks. The annual report provides also information about the prevalence and trends of 

zoonotic micro-organisms in a broad range of food products. Similar information at the 

national level can be found in the annual activity reports of each EU member states’ food 

safety agency. The information accessible in these reports may help in the selection of the 

relevant foodborne pathogens to be taken up for microbiological analysis for particular food 

stuffs. The latest annual report of EFSA, including data from 2009 up to end of 2013, was 

used to make an overview of the trends in reported zoonotic infections (i.e. reported 

notification rates) for both the EU and Belgium which is shown in Table 1.3 (EFSA, 2015). 

The reported collective foodborne outbreaks involving two or more persons in Belgium, as 

described in the annual activity reports of the FASFC, for the period 2009-2014 are shown in 

Table 1.4 (FAVV, 2010-2015). It can be concluded, according to these data, that 

Campylobacter infections are the most commonly reported zoonosis in the EU and Belgium, 

followed by Salmonella infections. After several years of an increasing EU trend, the human 

campylobacteriosis notification rate seems to have stabilized in the EU, however in Belgium 

there is still an increase in campylobacteriosis going on. 

 



 

 

Table 1.2. The most important food pathogens and their taxonomic situation, morphology, growth characteristics, infective dose and (known) virulence 

genes. 

 Family Morphology Growth characteristics Infective dose  

(cfu) 

Known virulence genes 

T (°C) pH Aw 

L. monocytogenes Listeriaceae 

 

G
+ 

motile rod  

 

0-45 4.4-9.4 0.92 10
3
-10

6 

 

inlA, inlB, prfA, ActA, ami, 

OpuC operon, prfA 

Salmonella spp. Enterobacteriaceae 

 

G
– 

motile rod  

 

8-45 4.4-9.0 0.95 10-10
6 

 

invA, spiA, pagC, msgA, sipB, 

prgH, spaN, orgA, sitC, sifA, 

sopB and lpfC 

Campylobacter jejuni Campylobacteraceae 

 

G
– 

 

motile spiril 

 

32-45 4.9-9.0 0.99 500 - 10
6 

 

flaA, flaB, cdtA, cdtB, cdtC, 

cdtABC, virB11, cj0588 

E. coli O157 Enterobacteriaceae 

 

G
– 

 

motile rod  

 

8-45 4.4-9.0 0.95 10-10
3 

 

fliC, stx1, stx2, eae, rfbE, hlyA 

B. cereus Bacillaceae G
+
 Spore-forming toxin 

producing rod  

4-55 4.5-9.5 0.91 > 10
5
/g 

 

ces, hblA, hblD, hblC, 

nheA,nheB, nheC, bceT, 

entFM, cytK 

Clostridium perfringens Clostridiaceae G
+
 Spore-forming toxin 

producing rod  

10-54 5.1-9.7 0.93 > 10
6
/g cpe, plc, cpb, cpb2, etx, iap, 

ibp  

S. aureus Staphylococcaceae G
+
 Toxin producing coc 6-48 4.2-9.3 0.85 > 10

5
/g 

1.0 µg (toxin) 

Sea, seb, sec, sed, see, seg, 

she, sei 

 

 



 

 

Table 1.3. Reported cases and notification rates per 100,000 of human food infections in the EU and Belgium during the period 2009–2013 (EFSA, 2015). 

  2009 2010 2011 2012 2013 

 Cases Rate Cases Rate Cases Rate Cases Rate Cases Rate 

EU  Campylobacter jejuni/coli 201711 62.80 215397 67.00 223998 69.00 214316 65.90 214779 64.80 

 Salmonella enterica. 110179 24.00 101589 22.10 96682 20.90 90883 22.10 82694 20.40 

 Yersinica enterocolitica 7578 2.46 6815 2.19 7002 2.23 6506 1.98 6471 1.92 

 E. coli O157 and non O157 3580 0.98 3656 1.00 9487 2.58 5680 1.50 6043 1.59 

 Listeria monocytogenes 1675 0.37 1663 0.37 1515 0.33 1644 0.41 1763 0.44 

Belgium* Campylobacter jejuni/coli 5697 - 6047 - 7716 - 6607 - 8148 - 

 Salmonella enterica. 3113 - 3169 - 3177 - 3101 - 2528 - 

 Yersinica enterocolitica 238 - 216 - 214 - 256 - 350 - 

 E. coli O157 and non O157 96 - 84 - 100 - 105 - 117 - 

 Listeria monocytogenes 58 - 40 0.37 70 - 83 0.75 66 0.59 

*Data based on sentinel surveillance, therefore no information on the estimated coverage was available. Thus, notification rate cannot be estimated. 

 

 

 

 

 

 



 

 

Table 1.4 Reported collective foodborne outbreaks (FTI) in Belgium during the period 2009-2014. (FAVV, 2010-2015) 

 2009 2010 2011 2012 2013 2014 
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Bacillus cereus 4 53 1 2 11 0 8 87 9 2 24 - 4 30 0 11 46 0 

Campylobacter - - - 2 4 0 5 103 1 1 2 - 9 45 11 1 2 0 

Clostridium perfringens 4 43 1 - - - - - - - - - 2 88 0 1 17 1 

Listeria monocytogenes 2 4 2 - - - 1 11 11 1 16 7 2 4 0 1 2 1 

Norovirus 7 91 0 15 429 25 2 13 0 9 98 4 1 20 5 5 275 0 

Salmonella spp. 5 31 3 4 48 14 2 7 2 5 41 3 10 33 15 5 80 5 

Shigella spp. 1 58 1 - - - 1 37 2 - - - - - - - - - 

Staphylococcus aureus 2 10 0 - - - 2 7 0 2 4 1 4 59 0 3 36 11 

E. coli O157 and non O157 - - - 2 6 3 3 8 6 5 57 23 10 41 25 1 2 1 

Co-infection* - - - 4 409 62 3 189 4 5 42 - 3 31 2 1 3 0 

Others and unknown 71 564 12 31 439 9 254 1077 22 300 1166 32 266 961 36 341 1326 45 

Total  96 854 20 60 1346 113 281 1539 57 330 1450 70 311 1312 94 370 1789 64 

*FTI with more than one causative micro-organism or type of toxin 
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Infections caused by L. monocytogenes and human pathogenic verotoxin producing E. coli 

(i.e. E. coli that carry verotoxin genes vt1 or vt2 and eae gene and are of a recognized 

pathogenic serotype) are rather limited, but these infections pose a significant risk because 

of the severity of the complications and the high mortality rate (EFSA, 2015). 

1.2.3 Interpretation of microbiological analysis: the use of microbiological criteria  

Microbiological analysis inherently contains great variability due to the heterogeneous 

distribution of micro-organisms in food products but also due to the biological character of 

the determining parameter and the performance characteristics of the microbiological 

methods. It is therefore essential to interpret the results of microbiological analysis in their 

context. As a microbiological analysis is frequently performed to reach a decision on 

compliance to set criteria or to make a judgement on food quality to share between food 

business and competent authority or from business-to-business in supplier-customer 

relationship, it is necessary to set harmonized threshold limits to differentiate acceptable 

from unacceptable products or processes. However, microbiological analysis may also be 

used to gather background information (e.g. baseline data) which does not necessarily 

involve comparison to set threshold limits.  

Microbiological limits that include analytical methods and sampling plans are defined as 

microbiological criteria (ICMSF, 2011). Therefore, if microbiological analyses are performed 

for making decisions, one can apply existing microbiological criteria. The Codex Alimentarius 

defines a microbiological criterion as a risk management metric which indicates the 

acceptability of a food, or the performance of either a process or a food safety control 

system following the outcome of sampling and testing for microorganisms, their 

toxins/metabolites or markers associated with pathogenicity or other traits at a specified 

point of the food chain (CAC, 2013b). Microbiological criteria may be established for overall 

or sanitary quality as well as safety concerns and are used in setting legal microbiological 

standards, guidelines and purchase specifications (CAC, 1997; ICMSF, 2011). These 

microbiological criteria, and in particular the stated threshold limits mentioned are 

inevitably prone to debate. Nevertheless, the setting of microbiological criteria and 
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threshold limits to distinguish between acceptable and not acceptable food stuffs (or 

processes) is necessary and can be very useful for the food industry when well applied. 

Depending on the origin of the microbiological criteria, a differentiation can be made 

between standard, guideline and specification (ICMSF, 2011). 

1.2.3.1 Microbiological standards 

A microbiological standard is defined by the International Commission on Microbiological 

Specification for Foods (ICMSF) as a microbiological criterion contained in international, 

national and regional laws and regulations (ICMSF, 2011). Examples of microbiological 

standards are the food safety criteria and process hygiene criteria laid down in Regulation 

EC No. 2073/2005 which are used to verify implementation of general and specific hygiene 

measures mentioned in Regulation EC No. 852/2004. Food safety criteria define the 

acceptability of a product or a batch of foodstuff placed on the market. Exceeding food 

safety criteria may lead to product recalls and potentially punitive actions. It should be clear 

that if a batch does not comply with the microbiological criterion, the batch should not be 

subjected to repeat testing to confirm (or reject) the prior result obtained, unless the 

criterion specifies otherwise or unless this is needed for investigational purposes. The batch 

should neither redefined by breaking the batch into sub-batches to retest each of these 

(CAC 2013b; ICMSF, 2002). Regulation (EC) No 2073/2005 also sets down process hygiene 

criteria to judge the acceptable functioning of the production process. It sets an indicative 

contamination value above which corrective actions are required in order to maintain the 

hygiene of the process in compliance with food law.  

1.2.3.2 Microbiological guidelines 

A microbiological guideline is defined by ICMSF as an internal, advisory criterion established 

by a processor, a trade association or sometimes governments (ICMSF, 2011). The term 

guidelines is often used if microbiological threshold limits are defined for particular food 

and microbiological parameter combinations but no actual sampling plan (n, c) is defined 

neither a method for analysis. Failure to meet guidelines serves as an alert to the processor. 

In case there is still an action defined when the threshold limit is exceeded, one may use the 
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term “action limit”. In Belgium, the food safety agency has defined and published on its 

website a list of action limits (http://www.favv-afsca.fgov.be/thematischepublicaties/ 

inventaris-acties.asp). These type of microbiological guidelines are also often used to 

interpret results of in-process samples from food products or production environment 

samples tested for pathogens or hygiene indicators. Often no wide-spread accepted 

microbiological guidelines to assess results of environmental sampling (in particular for 

hygiene indicators) are available. As such, convenience sampling is usually first executed to 

collect baseline data under conditions when the production facility is considered under 

control in order to set in-house threshold limits. A shortlist of a number of booklets or 

reports with microbiological criteria or guidelines are provided in Table 1.5. Results 

obtained from testing against microbiological guidelines assist in trend analysis. In that case, 

results that deviate significantly from the trend may indicate a tendency towards a situation 

which is out of control and highlights the need for attention before control is lost. 

1.2.3.3 Microbiological specifications 

A microbiological specification (i.e. purchase specification) is defined by ICMSF as an 

agreement between the vendor and the buyer of a product as a basis for sale (ICMSF, 2011). 

These specifications may include pathogens, indicator organisms or spoilage organisms and 

can be considered as “license to sell” and fit into commercial agreements. Failure of the 

vendor to meet specifications can be used a basis for product rejection, even if they are not 

hazardous or unwholesome at the time of testing. Products not complying with 

specifications should be investigated to determine the cause. It is often noticed that 

microbiological specifications set in business-to-business trade are more stringent than 

microbiological standards or action limits set by national competent authorities. In Table 1.5 

the microbiological criteria compiled by the “Federation des entreprises du commerce et de 

la distribution” in France, is an example of microbiological specifications. 



 

 

 

Table 1.5. Microbiological criteria established by processors, trade associations or governments. 

Title Compiled by Category Link 

Microorganisms in Foods 2. Sampling For Microbiological 

Analysis: Principles and Specific Applications 

International Commission on Microbiological 

Specifications for Foods. 

All types http://www.icmsf.org/pdf/icmsf2.pdf  

Microorganisms in Foods 8. Use of Data for Assessing Process 

Control and Product Acceptance 

International Commission on Microbiological 

Specifications for Foods. 

All types ISBN 978-1-4419-9373-1 

Guidelines for the Microbiological Examination of Ready-To-Eat 

Foods 

Food Standards Australia New Zealand Ready-to-eat foods http://www.foodstandards.gov.au/publications/pages/g

uidelinesformicrobi1306.aspx  

Microbiological Guidelines for Ready-to-eat Foods Hong Kong Food and Environmental Hygiene 

Department. Centre for Food Safety 

Ready-to-eat foods http://blpd.dss.go.th/micro/ready.pdf  

Guidance Note No.3: Guidelines for the Interpretation of Results 

of Microbiological Testing of Ready-to-Eat Foods Placed on the 

Market 

Food Safety Authority of Ireland Ready-to-eat foods https://www.fsai.ie/food_businesses/micro_criteria/guid

eline_micro_criteria.html  

Guidelines for Assessing the Microbiological Safety 

of Ready-to-Eat Foods Placed on the Market 

Health Protection Agency, UK Ready-to-eat foods https://www.gov.uk/government/uploads/system/uploa

ds/attachment_data/file/363146/Guidelines_for_assessi

ng_the_microbiological_safety_of_ready-to-

eat_foods_on_the_market.pdf  

Guidelines for the microbiological quality of some 

ready-to-eat foods sampled at the point of sale 

PHLS advisory committee, UK Ready-to-eat foods Commun Dis Public Health 2000; 3: 163-7  

La qualité microbiologique des aliments: Maîtrise et critères Centre national d'études et de recommandations 

sur la nutrition et l'alimentation (CNERNA)- Centre 

national de la recherche scientifique (CNRS), 

France 

All types ISBN 2-84054-040-1 

Critères microbiologiques applicables à partir de 2015 aux 

marques de distributeurs, marques premiers prix et matières 

premières dans leur conditionnement initial industriel 

Federation des entreprises du commerce et de la 

distribution en France 

All types http://www.fcd.fr/documentation/index/annee/2015/m

ois/1  

Sectorial guides and Codes of Practice Belgian Federal Agency for the Safety of the Food 

Chain 

All types http://www.afsca.be/autocontrole-

nl/sectorspecifieketools/  

Microbiologische richtwaarden en wettelijke microbiologische 

criteria 

Lab Food Microbiology and Food Preservation, 

Ghent University, Belgium 

All types ISBN 978-90-5989-385-6 

Inhoudelijke criteria bij het opstellen 

of herzien van een hygiënecode 

Voedsel en Waren Autoriteit, Netherlands Food products 

which undergo 

reduction step 

https://www.nvwa.nl/zoekresultaten?zoekterm=Inhoude

lijke+criteria+bij+het+opstellen&domein=S_nvwa_docum

enten&sort=relevance  

Microbiologische criteria, Praktijkgids Waar & Wet WFC Food Safety, Netherlands All types ISBN 978-90-12-39247-1 
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Overall in any microbiological criterion (legal standard, guideline or specification) it is 

important that they are set for these food and micro-organism combinations where i) it is 

expected to improve the degree of food safety or food quality for the consumer (and no 

other effective tools are available), ii) their application is practical, iii) the microbiological 

parameters involved are widely accepted and relevant to a particular food (and its conditions of 

production, processing, or distribution) and iv) the objective of microbiological analysis is fully 

understood and supported by the stakeholders involved (or both parties involved in the agreement 

of specifications). 

 

1.3 Microbiological Analysis for ensuring safety in the food supply chain 

Ensuring the safety of foods in the supply chain is the major objective of food safety 

management. As microbiological analysis play a major role into this, various applications 

using microbiological analysis for validation and verification of the food safety management 

system are described in the current PhD thesis. Some background on the main challenges 

and available guidelines for using microbiological analysis in ensuring safety in the food 

supply chain that will be further elaborated in the research chapters of the PhD thesis is 

highlighted below.  

1.3.1 Sampling and testing for ensuring safety in food service operations 

Food processing companies have in general a relative moderate variety of food products 

and complex production processes in their scope and worked out (extensive) environmental 

and product testing programs in the frame of verification of their FSMS, recalled as stratified 

sampling plans (Gonzàlez-Miret et al., 2001; Jacxsens et al., 2015, Luning et al., 2015; 

Osimani et al., 2013). However, the application of microbiological testing programs in food 

service operations (FSO) is rather exceptional and still lags behind (Luning et al., 2013). FSO 

are those businesses, institutions, and companies responsible for any meal prepared outside 

the home (e.g. restaurants, school and hospital cafeterias, catering operations). Many FSO 

are non-profit institutional organizations with a restricted budget allocated to sampling and 

microbiological analysis. Therefore, to verify their FSMS, food service operations rely on the 
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sampling of the competent authority, which is occasionally performed in the framework of 

official inspection and monitoring programs. Food service operations are business-to-

consumer organizations and although being prone to official controls, they receive less 

pressure from customers or buyers than food processing companies from their customers 

(often high demanding retailers) to demonstrate the performance of their FSMS. However, 

in FSO various types of often raw (at-risk) materials are used and a wide variety of final 

products are served, including hot meals, cold sandwiches, and salads. This multitude of 

products, processes and personnel involved makes it very important to have a well-

functioning FSMS to assure food safety as requested from all food business operations in 

Regulation (EC) 852/2004 on the hygiene of foodstuffs. 

The lack of good food safety management in FSO may result into microbiological 

contamination and growth due to contaminated ingredients, dirty food contact materials, 

poor personnel hygiene practices, inappropriate storage temperatures and insufficient 

cooking (Hertzman and Barrash, 2007; Jones et al., 2008a and 2008b; Käferstein, 2003). This 

may result in a foodborne outbreak (EFSA, 2015; Lianou and Sofos, 2007; Tuominen and 

Maijala, 2009). Indeed, FSO with a history of association with foodborne outbreaks or 

consumer complaints about food safety issues have significantly more frequent problems 

with personnel hygiene and inadequate raw material storage than do other kitchens 

(Tuominen and Maijala; 2009). In addition, food handlers were epidemiologically linked to 

80% of the norovirus outbreaks reported in Belgium (Baert et al., 2009) and food handlers’ 

malpractices contributed to 97% of foodborne illnesses associated with FSO (Worsfold and 

Griffith, 2003).  

The application of microbiological verification testing programs in FSO is also lagging behind 

due to important differences between the food industry and FSO at the level of organization 

(e.g. staff turnover, structure and size), technology (e.g. capacity for analysis, level of 

automation) and production (e.g. product variation, process variation) (Doménech et al., 

2011). This ensures that microbiological verification testing programs in FSO need flexibility 

in their application, which challenges the set-up and implementation of a sampling plan 

(Buchanan and Schaffner, 2015). Besides, in Belgium no guidelines for the elaboration of a 

sampling plan are taken up in the self-checking guide for the sector of food service 

operations and health care institutions (FAVV, 2006a; FAVV 2008a). Therefore, if quality 
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managers in FSO perform microbiological analysis in the framework of self-checking, they 

usually select food products and sampling frequencies on ad hoc basis (Luning et al., 2013). 

They also tend to focus on end products such as served hot meals or sandwiches. However, 

apart from end product testing, it is also interesting to obtain information on the 

microbiological quality and safety of incoming raw materials (to contribute to the 

verification of supplier selection) and/or half fabricates (to verify the well-functioning of 

adherence to procedures). These observations were the main drivers to set-up research as 

described in CHAPTER 2 and 3 of the current PhD thesis. 

1.3.2 Challenge testing for assessing the growth potential of L. monocytogenes 

Listeria monocytogenes is the main pathogen of concern in ready-to-eat foods with 

prolonged shelf life under refrigeration. It is a Gram-positive bacterium and it is in 

comparison to Gram-negative zoonotic pathogens (e.g. pathogenic E. coli, Salmonella spp., 

Campylobacter) more resistant towards unfavorable preservation factors. The pathogen is 

known to be cold tolerant, which allows it to grow (slow) under refrigeration (Table 1.2). 

Therefore, L. monocytogenes is a parameter of interest in preserved products (whether or 

not heat treated) with a long shelf in the refrigerator (e.g. smoked fish, soft and semi-soft 

cheeses, ready-to-eat meat products, etc.) and to a lesser extent, in fresh foods (vegetables/ 

meat/ fish) with a short shelf life (up to 5 days) (EFSA, 2015; Lianou and Sofos, 2007). 

Infections caused by L. monocytogenes can cause among others bacteremia, septicemia, 

meningitis, but also spontaneous abortion and neonatal infections in pregnant women. 

Luckily, listeriosis infections are rather limited, however an increasing trend of listeriosis in 

the EU over the period 2009-2013 is observed (Table 1.3)(EFSA, 2015). There is also an 

increase in reported cases of listeriosis reported in Belgium in 2014 versus the previous 

years (Institute of Public Health, Brussels, personal communication). The cause of this 

increase is at the moment not yet clear, but leads to a constant attention from the EU 

member states towards this pathogenic germ. It has been reported that a growing segment 

of the population is more susceptible to the risk of listeriosis, i.e. adult aged ≥ 65 years or 

immuno-suppressed persons such as cancer patients (Scallan et al. 2015; Goulet et al. 2012). 

Besides an increasing number of at risk products for L. monocytogenes (ready-to-eat 

products with a long shelf in the refrigerator) are being marketed and consumed, also the 
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demand for food products with less salt is increasing, which is attributed to an increasing 

awareness of the society considering nutrition and health. However, salt is an important 

factor in food preservation (reduction of aw-value) causing growth inhibition of L. 

monocytogenes. As the pathogen may occasionally be present in low levels in these type of 

refrigerated food products with extended shelf life, the FBO should be able to control and 

restrict the growth during the shelf-life (FAO/WHO, 2004). 

To ensure food safety of these at risk food products, Annex II of Regulation EC No. 

2073/2005 specifies that FBOs manufacturing these type of products should obtain 

knowledge on the growth of L. monocytogenes in the products during shelf-life under 

reasonably foreseeable storage conditions. An estimate of the growth potential of L. 

monocytogenes during storage can be based on specifications of physico-chemical 

characteristics of the product and available scientific data from literature (Anonymous, 

2005). However, the growth potential in the product is preferably assessed through 

"challenge tests" where the pathogen is artificially inoculated and monitored on the product 

in the lab by simulating the expected conditions during storage, during distribution and 

during storage at the consumer’s home. Guidelines for carrying out challenge tests are 

issued by the EU Reference Laboratory for Listeria monocytogenes (EU CRL, 2014). As 

prescribed in these EU guidelines, the growth potential can be obtained by calculating the 

difference between the median concentration of L. monocytogenes of the three replicates 

at the end of storage and the median concentration of L. monocytogenes of the three 

replicates at the start of the challenge. On the other hand, the growth potential can also be 

calculated by predictive models using a validated maximum specific growth rate. Assessing 

the growth potential in the frame of Regulation EC No. 2073/2005, allows to classify a food 

product into the category “RTE foods able to support the growth of L. monocytogenes” or 

“RTE foods unable to support the growth of L. monocytogenes”, or also allows to more 

accurately quantify the behavior of L. monocytogenes in the food product under 

consideration (EU CRL, 2014). This information is important for both the food business 

operator and the competent authority to determine which threshold limit is applicable 

(whether tolerance for L. monocytogenes up to 100 CFU/g or rather absence per 25 gram) 

when putting these RTE foods to the market under set shelf life conditions. Nevertheless the 

protocol of challenge testing is not yet a set protocol and still prone to debate (Alvarez-
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Ordonez et al., 2014). As the factors impacting on the behavior of L. monocytogenes in a 

non-standardized traditional product such as soft and semi-hard farm made cheese needs 

further study, this was the main driver to assess the behavior of  L. monocytogenes in a 

number of Belgian cheeses and at the same time scientifically assess the modalities of the 

above mentioned EU CRL challenge testing recommendations (CHAPTER 6). 

1.3.3 Inactivation studies to validate the efficacy of heat treatment of foods  

A heat treatment plays an important role in food processing and food preparation to reduce 

the number of (pathogenic) micro-organisms and ensure safety of foods. As the destruction 

of micro-organisms depends on the heating time and heating temperature, it is important 

to know the required time-temperature combination for inactivation. The traditional 

approach uses two parameters, namely the D-value and the z-value, to quantify this time-

temperature combination (Bean et al., 2012). The definition of related heat processing 

variables used in assessing the lethality of a thermal treatment is provided in Table 1.6 and 

further explained. 

Table 1.6 Definitions of related heat processing variables. 

D-value (i.e. decimal reduction time) is the time necessary at a specific 

temperature to reduce the number of organisms to 1/10 of the 

original value. It is thus the time required for a log-cycle reduction in 

the number of micro-organisms. 

z-value (i.e. thermal resistance) is a constant value and is defined as the 

number of degrees Celsius required to bring about a ten-fold change in 

the decimal reduction time (D) 

L  i.e. lethal rate, the time needed to achieve an equivalent heat 

treatment, compared to Tref at a different temperature. 

P-value (i.e. process lethality value) is a process value used to express the 

lethality  

 

The D-value is determined at a specific temperature; hence the DT notation. Although it is a 

simplification, in the scientific underpinning of heat treatments one usually estimates the 

heating time required at a certain temperature to achieve a certain number of log reduction 

by a deterministic calculation multiplying the DT-value of the target organism under 
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consideration with the number of required reductions. As L. monocytogenes is known to be 

the most heat resistant vegetative pathogen, this is usually the main target organism for 

determining whether a heat treatment is sufficient to eliminate the ‘big four’ zoonotic non-

sporeforming pathogens (Salmonella, Campylobacter jejuni/coli, pathogenic E. coli and L. 

monocytogenes). For example, L. monocytogenes has an average D70 = 0.27 min (i.e. D-value 

at 70°C). Throughout the years, it has been established that a 6 log reduction of L. 

monocytogenes has been sufficient to obtain safe foods. Thus, to obtain a 6-log reduction, a 

heating time of 1.62 min (i.e. 0.27 min * 6) at 70°C will be sufficient. However, due to strain 

variability, impact of food product composition etc., a safety margin is applied. Therefore, it 

is generally accepted that a heating time of 2 min at 70°C is sufficient to have a 6-log 

reduction of L. monocytogenes. The 2 min at 70°C has been referred to in food processing 

and preparation as a ‘safe harbor’ (ILSI, 2012). The z-value enables the calculation of the D-

value at different temperatures. For example, following the definition of a z-value and a 

z=7.5°C, 0.27 minutes at 70°C will give the same pathogen log reduction as 2.7 minutes at 

62.5°C (=70°C-7.5°C). Although, this deterministic D-/z- approach is fairly rudimentary, it is 

widely used in the food industry as a generally accepted and practical system. However, this 

D-/z- approach can only be used for isothermal heating processes. If the heating process is 

non-isothermal the inactivation can be approximated by summating the lethal rates (L) 

between the measuring intervals (Gaze, 2006). The lethal rate for every interval is calculated 

with following formula: 

 

with Tref the reference temperature (e.g. 70°C), T the measured temperature (e.g. 60°C), and 

t the heating time. As an example, if z is 7.5°C, then 1 minute at 60°C corresponds to 0.046 

min at 70°C. Thus for a non-isothermal heating process, the process lethality (P) is 

appromixated by summating the lethal rates obtained by measured successive discrete 

(usually 1°C accurate) temperatures during a set time interval (e.g. 1 sec). A P-value is 

mostly written as with Tref the reference temperature and z the z-value of the 

target organism. As such, a =2 means that the (non-isothermal) heating process 

applied was equivalent (i.e. can give the same inactivation) as an isothermal treatment of 2 

minutes at 70°C.  



CHAPTER 1 

33 

To demonstrate that a particular heating process can adequately reduce or eliminate 

specific hazards, it should not be merely calculated but preferably the estimated (and 

targeted) inactivation of e.g. 6 log reduction should also be validated by experimental 

studies. For the validation of this control measure it may be adequate to demonstrate the 

absence of the micro-organism after treatment (in a stated number of samples) or a 

particular level of reduction. However, there is a need for harmonized experimental design 

protocols for heat resistance testing and a need for a harmonized validation procedure for 

heat treatment studies (Condron et al., 2015).  

A minimum heat treatment of 2 minutes at 70°C or equivalent would be needed to provide 

a 6 log reduction to ensure safe cooking. However there is concern on the effective heat 

transfer and the Belgian culinary habit of pan-frying of meat was not found to be actually 

validated by experimental set-up or microbiological analysis of the meat before and after 

pan-frying to confirm this 6 log reduction. Therefore it was decided to validate the 

procedure of meat pan-frying in CHAPTER 5 which is assumed to be a critical control step in 

restaurants (and at home) to prevent food infections occurring from the occasional 

presence of  Salmonella, L. monocytogenes, pathogenic E. coli or Campylobacter in fresh 

meat and meat preparations. In doing this, it also contributed to the intention for setting-up 

a standardized procedure for validation of inactivation treatments in food processing and 

preparation in the food supply chain. 

 

1.4 Conclusion 

Microbiological analysis are being used by many stakeholders and may serve many 

objectives to manage the food safety and food quality along the food chain. This 

introduction illustrates that microbiological analysis not only deals with the laboratory work 

(e.g. weighing the sample, execution of the method of analysis), but also involves the need 

to think about the sampling plan, selection of relevant microbiological parameters for a food 

product and interpretation of the obtained results using appropriate threshold values. Thus 

microbiological analyses are rather complex and need expertise to gain the maximum 

outcome of the results and to contribute to good food safety management. Besides, there is 
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a need to empower micro and small-sized enterprises (e.g. FSO) in diagnosing and improving 

their FSMS themselves. However, they mostly have not the expertise on setting up sampling 

and testing schemes and may lack the resources to perform microbiological analysis. Food 

business operations that are involved in business-to-consumer activities such as FSO serve 

food directly to the consumer and were frequently involved in foodborne outbreaks. As 

such, control of food safety and food quality with adequate food safety management is 

especially important for these sectors. Therefore, convenience sampling plans are needed to 

guide those involved into business-to-consumer activities, in the validation and verification 

of their FSMS. Besides, a validation of the effectiveness of critical practices (e.g. heat 

treatment of meat, storage of cheeses) for those sectors is needed. Therefore, this PhD 

study aimed to develop a systematic approach for microbiological verification testing in 

FSMS, especially if multiple food types are handled and various processing conditions are 

part of the food business’ activities. The proposed systematic approach is based on risk 

categorization to underpin focused sampling. As such the risk-based approach consists of 

selection of critical sampling locations, sampling frequency, microbiological parameters and 

methods of analysis. In the present PhD study on the use of microbiological analysis, also 

challenge testing with artificially inoculated samples was used to provide an insight on the 

concern of microbiological safety in two sectors. 
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Abstract 

The microbiological performance of a food safety management system (FSMS) in a food 

service operation (FSO) was measured using a microbiological assessment scheme (MAS) as 

a vertical sampling plan throughout the production process, from raw materials to final 

product. The assessment scheme can give insight into the microbiological contamination 

and the variability of a production process and pinpoint bottlenecks in the FSMS. Three 

production processes were evaluated: a high-risk sandwich production process (involving a 

raw meat preparation), a medium-risk hot meal production process (starting from 

undercooked raw materials), and a low-risk hot meal production process (reheating in a 

bag). Microbiological quality parameters, hygiene indicators, and relevant pathogens (L. 

monocytogenes, Salmonella, B. cereus and E. coli O157) were in accordance with legal 

criteria and/or microbiological guidelines, suggesting that the FSMS was effective. High 

levels of total aerobic bacteria (>3.9 log CFU/50 cm
2
) were noted occasionally on gloves of 

food handlers and on food contact surfaces, especially in high contamination areas (e.g. 

during handling of raw material, preparation room). Core control activities such as hand 

hygiene of personnel and cleaning and disinfection (especially in highly contaminated areas) 

were considered points of attention. The present sampling plan was used to produce an 

overall microbiological profile (snapshot) to validate the FSMS in place. 
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2.1 Introduction 

Some individuals tend to eat out of home, often at food service operations such as 

cafeterias, canteens, fast food outlets, bars, and restaurants (Nyachuba and Donnelly, 2010; 

Vandevijvere et al., 2009). A national food consumption survey in Belgium revealed that in 

2004 more than 35% of the population consumed more than 25% of their daily energy 

intake out of the home (Lachat et al., 2010). Eating out at food service operations seems to 

be no longer reserved for special occasions. However, food service operations can be 

involved in foodborne disease outbreaks associated with a variety of pathogens, e.g. 

Salmonella, Campylobacter spp., E. coli O157, L. monocytogenes, B. cereus, Cl. perfringens, 

and S. aureus (EFSA, 2009-2010; Lianou and Sofos, 2007).  

Kitchens with a history of association with foodborne outbreaks or consumer complaints 

about food safety issues have significantly more frequent problems with personnel hygiene 

and inadequate raw material storage than do other kitchens (Tuominen and Maijala; 2009). 

Food handlers were epidemiologically linked to 80% of the norovirus outbreaks reported in 

Belgium (Baert et al., 2009). Food handlers’ malpractices contributed to 97% of foodborne 

illnesses associated with food service operations (Worsfold and Griffith, 2003). The main 

causes of microbiological contamination and growth, which occur in food service operations 

mainly because of a lack of a well-functioning food safety management sytem (FSMS), are 

contaminated ingredients, dirty food contact materials, poor personnel hygiene practices, 

inappropriate storage temperatures and insufficient cooking (Hertzman and Barrash, 2007; 

Jones et al., 2008a and 2008b; Käferstein, 2003). 

In food service operations, various types of raw (at-risk) materials are used and a wide 

variety of final products are served, including hot meals, cold sandwiches, and salads. This 

multitude of products, processes and personnel involved makes it very important to ensure 

safe food service and to have a well-functioning FSMS, as requested from all food business 

operations in Regulation (EC) 852/2004 on the hygiene of foodstuffs. The microbiological 

quality and safety of foods is largely affected by the performance of the FSMS (Jacxsens et 

al., 2009 and 2010). The application of good manufacturing practices and good hygiene 

practices as parts of a hazard analysis critical control point (HACCP) plan and the use of ISO 

(International Organization for Standardization, Geneva, Switzerland) method 9001:2008 
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can improve product quality and safety (Kokkinakis et al. 2008; Kokkinakis and Fragkiadakis, 

2007). Periodic verification of the HACCP plan is recommended.  

Adequate process controls and periodic verification are more effective than control of only 

final products (Ropkins and Beck, 2000). Swanson and Anderson (2000) stated that testing 

of final products is equivalent to finding a needle in a haystack, particularly in food service 

operations where a wide variety of final products are generated as output for the 

consumers. Moreover, sampling and microbiological analysis often are perceived as costly. A 

microbiological assessment scheme (MAS) developed by Jacxsens et al. (2009b) includes 

minimal sampling and analysis, but uses a systematic approach to assess the microbiological 

performance of a company-specific FSMS. This sampling plan, when accompanied by 

observations at the time of sampling and discussion of results with the quality manager of 

the company, provides an overview of the microbiological quality, hygiene, and safety level 

of products and processes at a food business operation. Such information may help 

managers to identify bottlenecks in the core control activities of an implemented FSMS 

(Luning et al., 2011a; Sampers et al., 2010). With this approach, samples are collected 

throughout the process from raw materials to final products at critical locations on three 

different days (in a time period of multiple weeks) and analyzed for multiple microbiological 

parameters. A microbiological profile of the production process can then be established. 

The microbiological analyses to assess the FSMS performance are aimed at obtaining 

contamination profiles, which provide insight into the maximum microbiological counts and 

the distribution of the microbiological contamination. The sample analysis is not meant to 

guarantee food safety but rather provides verification of the preventive measures taken in 

the food service operation. The principle of the MAS is that a better performing FSMS would 

be better able to realize products with lower contamination levels and less variation in 

contamination loads. MASs already have been applied in poultry meat preparation 

processing plants (Sampers et al., 2010), a pork processing company (Jacxsens et al., 2009b), 

the lamb chain (Osés et al, 2012), and various dairy and meat processing plants in Europe 

(Jacxsens et al, 2010). In the present study, a MAS was developed for a food service 

operation and was used in a vertical manner throughout the production process from raw 

materials to final products. Three different production processes in the food service 
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operation were evaluated to measure the microbiological performance of the FSMS 

implemented in this food service operation. 

 

2.2 Materials and Methods 

2.2.1 Characterization of the food service operation 

The food service operation selected for this case study comprised 8 restaurants and 11 

cafeterias at a university that were separated in different building areas in Ghent, Belgium. 

In the restaurants, hot meals, soups, sandwiches, and salads were served, whereas in the 

cafeterias no hot meals were available. In this catering establishment, 650 000 hot meals 

and 29 000 sandwiches were served each year. Each restaurant had its own regeneration 

kitchen where undercooked frozen or previously prepared foods delivered from the supplier 

as frozen (cook and freeze) or chilled (cook and chill) products were (re)heated and the 

cooking process was completed. Three main production processes were used in the food 

service operation: (i) preparation of a sandwich and/or salad (process A), (ii) production of a 

hot meal starting with unprocessed raw or undercooked frozen ingredients and preparation 

out of packaging (possibility of post-processing contamination) (process B), and (iii) 

production of a hot meal starting with cooked products in reheating bags (no post-

processing contamination can occur) (process C). The main difference between process B 

and process C was the utilization of raw material in process B with its overall higher 

microbiological load and higher risk of pathogen contamination. 

2.2.2 Microbiological Assessment Scheme 

The MAS was developed as described by Jacxsens et al. (2009b) and applied vertically 

throughout a production process. The MAS (i) identifies critical sampling locations within 

the production process, (ii) selects appropriate microbiological parameters to be analyzed, 

(iii) defines the sampling procedures and analytical methods, and (iv) helps in the 

interpretation of the results. Samples were collected at various critical locations in the 

process A, B, and C processing lines from raw materials to final products and then analyzed 
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to assess the microbiological performance of the core control activities in the implemented 

FSMS. The same samples were collected and analyzed for the same parameters during three 

visits on three days in one restaurant of the food service operation to provide information 

on the maximum load and the distribution of the microbiological load at each sampling 

location in the production process. The visits took place in March 2009, February 2010, and 

March 2010. During each visit, 33 samples were collected and analyzed. This resulted in a 

total of 99 samples throughout the survey: 36 food samples, 21 swabs for detection of L. 

monocytogenes, and 42 swabs for enumeration of hygiene indicators and determination of 

the total viable bacteria count (TVC). A total of 147 analyses of quality parameters, 216 

analyses of hygiene indicators, and 132 analyses of foodborne pathogens were performed. 

The number of samples was small, but they were collected as part of a periodical 

verification of the preventive measures implemented in the food service operation rather 

than as indicators of food safety.  

Samples were collected within the production processes on locations where loss of control 

will lead to unacceptable food safety problems due to contamination with or growth and/or 

survival of microorganisms (Jacxsens et al, 2009b). Those locations are referred to critical 

sampling locations (CSLs) and are illustrated in Figure 2.1. In this study seven CSLs were 

identified. Samples were collected from at-risk (i.e. raw) materials at point of receipt (CSL 1) 

(e.g. vegetables and frozen fish) to determine the initial contamination level of 

microorganisms and verify appropriate supplier selection. Samples from intermediate 

products (CSL 2) (i.e. after regeneration and cooling) were collected throughout the 

production line where manual operations were performed and/or physical intervention 

processes occurred to verify good hygienic practices to control microbiological growth and 

potential cross-contamination. Samples were collected from final products (CSL 3) after 

assemblage (sandwiches and salads) or at the buffet where the food was kept warm for 

prolonged periods in a hot water bath (hot meal components) to verify the final storage and 

handling conditions at the serving counter and thus maintain good microbiological quality. 

Sampling in the production environment was conducted by taking swabs of gloves and 

hands (CSL 4 and 5) of personnel that manipulated the food products (e.g. cutting 

vegetables or opening vacuum-packed bags of cooked chilled foods after final heat 

treatment) or taking swabs of food contact surfaces (CSLs 6 and 7) (e.g. chopping boards, 
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knives, and spoons) throughout the production processes. These environmental samples 

were linked to samples of intermediate or final food products (Figure 2.1).  

 

 

Figure 2.1. Schematic overview of the main production processes in a FSO. Critical sampling 

locations (CSLs) within the processes were identified: CSL 1, raw materials; CSL 2, intermediate 

materials; CSL 3, final food products; CSLs 4 and 5, gloves and/or hand of workers; CSLs 6 and 7, 

food contact surface.    Production of a sandwich (process A);       production of a hot meal 

starting with unprocessed raw or undercooked frozen ingredients (process B);   production 

of a hot meal starting with cooked products with “reheating in bag” (process C). 

 

The microbiological parameters selected for this study differed depending on the type of 

food product (Table 2.1). Parameter selection was based on European legal criteria 

(Anonymous, 2005), national action limits (FAVV, 2010a), and knowledge of the 

microbiological ecology of foods. Total aerobic bacteria, yeasts, and molds were selected as 

indicators of overall quality. Lactic acid bacteria (LAB) are taken up as an indicator of 

spoilage by gram-positive bacteria. Pseudomonas can be taken up as an indicator of spoilage 

by gram-negative bacteria, especially for meat and fish. However, it was decided not to 

analyse them as a selection has to be made and LAB are more common in use. 



 

 

Tabel 2.1. Overview of critical sampling locations (CSLs) encompassing food products and production environment with the corresponding analyzed microbiological 

parameters and legal requirements or microbiological guidelines. 

a
 CSL 1, raw materials at point of receipt; CSL 2, intermediate products; CSL 3, final products; CSLs 4 and 5, hand and gloves; CSLs 6 and 7, food contact surfaces. +, analysis was conducted for the parameter. M, 

maximum level of bacteria per test volume considered acceptable (food with values above this level in any sample are considered marginally acceptable or unacceptable); M, maximum level of bacteria per test 

volume considered marginally acceptable (food with values at or above M is unacceptable).
b
 According  to microbiological guidelines of the LFMFP-UGent (Uyttendaele et al. 2010). 

c
 According to action limits of 

the FASFC (FAVV, 2010a).
d 

According to EU regulation 2073/2005. 

 

Process A  Process B Process C 
 

All processes 

Parameter 
 

Criteria (log CFU/g) 
 

Parameter 
 

Criteria (log CFU/g) 
 

Parameter 
 

Criteria (log CFU/g) 
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b
 

(log CFU/16 cm²) 

Parameter              

                       CSL 1,2 3 
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1 2,3 
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2 3 
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Total viable 
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M= 8 

 + +  m= 5 

M= 7 

m= 3 

M= 6 

 +  m= 3 

M= 6 

 + +  Good, ≤ 1; average,   ≤ 1.8; 

bad, ≤ 2.5; intolerable: > 

2.5 

Lactic acid bacteria
b
 + +  m= 3 

M= 7 

 +   m= 2 

M= 7 

          

Yeasts
b
 + +  m= 3 
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b
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B. cereus  +  m= 3
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b
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b
 

     

Sulphite-reducing 

clostridia
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M= 5 

     

L. monocytogenes
a
 + +  Absent in 25g or 2 log 

CFU/g at end of shelf life 

 + +  Absent in 25g or 2 log 

CFU/g at end of shelf 

life 
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b
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a
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b
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b
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c
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b
 

M= 3
b
 

 + +  m= 2
b
 

M= 3
b
 

 +  + m= 2
b
 

M= 3
b
 

 + +  Absent on tested surface 
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Enterobacteriaceae, E. coli, and S. aureus were selected as hygiene indicators. The presence 

of the foodborne pathogens Salmonella, L. monocytogenes, E. coli O157:H7, B. cereus, and 

sulfite-reducing clostridia (an indicator for C. perfringens) was evaluated when appropriate 

for the food type. 

For food products, 300 g was aseptically collected with a sterile spoon or forceps and 

transferred to a sterile sampling bag. Food contact surfaces and gloves and hands were 

swabbed in a deliminated area of 50 cm
2
 using a sterile rayon swab pre-moistened in 7 ml of 

sterile peptone water (for microbiological enumeration) or 5 ml of demi-Fraser enrichment 

medium (for detection of L. monocytogenes). For knives, an area of 10 cm
2
 was swabbed 

because of the limited surface area. The food samples and the moistened swabs were 

transported in a cool box at ≤ 4°C to the laboratory. Microbiological analyses were 

performed in the laboratory within 6 h of sample collection. For enumeration, 10 g of each 

food sample was homogenized for 2 min in 90 ml of sterile peptone water. For detection of 

Salmonella and L. monocytogenes, a 25 g subsample was weighed in a stomacher bag and 

homogenized for 2 min in 225 ml of the respective (semi)selective medium, i.e. buffered 

peptone water for the detection of Salmonella and demi-Fraser for the detection of L. 

monocytogenes. Swab samples were vortexed for 10 s and incubated for detection of 

specific organisms. Tenfold serial dilutions were made in sterile peptone water for 

microbiological enumeration. For each microorganism, standardized methods (ISO) or 

alternative (rapid) methods validated according to ISO 16140:2003 were applied. The 

reference method ISO 4833:2003 (plating on plate count agar and incubating for 72 h at 

30°C) was used for the enumeration of aerobic mesophilic bacteria. ISO 15214:1998 (plating 

on MRS agar with an overlayer and incubating for 72 h at 30°C) was used for the 

enumeration of lactic acid bacteria. Yeast extract glucose chloramphenicol selective medium 

(Bio-Rad, Hercules, CA), an AFNOR (Association Française de Normalisation, Paris, France) 

validated method (NF V08-059 2002), was used for enumeration of yeasts (incubation for 72 

h at 22°C) and molds (incubation for 120 h at 22°C). Coli-ID chromogenic medium 

(bioMérieux, Marcy l’Etoile, France) (24 h of incubation at 44°C), an AFNOR validated 

method (BIO 12/5-01/99), was used for enumeration of E. coli.  
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ISO 21528-2:2004 (plating on VRBG agar with an overlayer and incubating for 24 to 48 h at 

37°C) was used for enumeration of Enterobacteriaceae. ISO 6888-1:1999/Amd 1:2003 

(plating on BP agar and incubating for 24 to 48 h at 37°C) was used for enumeration of S. 

aureus. Because low numbers were expected for S. aureus, 1 ml of inoculum was spread on 

three plates. Enumeration of B. cereus was performed with ISO 7932:2004 (plating on MYP 

agar and incubating for 24 h at 30°C). Tryptose sulfite cycloserine selective medium with an 

overlayer (24 h of incubation at 37°C), an AFNOR validated method (XP V 08-061 1996), was 

used for enumeration of sulfite-reducing anaerobic bacteria. ISO 16654:2001 (an 

immunomagnetic separation method and isolation on CT-SMAC) was used for detection of 

E. coli O157:H7. The detection of L. monocytogenes was performed using VidasLMO2 

(bioMérieux), an AFNOR validated enzyme-linked fluorescent assay (ELFA) (BIO 12/11-

03/04). When positive results were obtained, L. monocytogenes was enumerated from the 

same sample according to ISO 11290-2:1998/Amd 1:2004. Salmonella was detected using 

Vidas Easy SLM (bioMérieux), an AFNOR validated ELFA (BIO-12/16-09/05). 

2.2.3 Data analysis and interpretation: microbiological safety level profiles.  

Data were manipulated with MS Excel (Microsoft, Redmond, WA) to develop graphics and 

tables to illustrate visually the levels and distribution of microbiological contamination 

during the three sampling periods. No means, standard deviations, or statistical analyses 

were needed to evaluate the variability in this food operation service because the 

microbiological analyses for measuring the FSMS performance were designed only to obtain 

microbiological safety level profiles (MSLPs). These profiles provide insight into the 

maximum microbiological counts and the distribution of microbial contamination, i.e. where 

to find contamination in the production process (Jacxsens et al., 2009b), and into the 

dynamics of microbial contamination occurring as a result of the design and application of 

the control strategies in a FSMS. The results for each process were evaluated in two ways. 

Individual results for each analyzed parameter were evaluated for each specific sampling 

location within the production process. The results obtained at each location (e.g., CSL 1) 

were compared with defined legal criteria (Anonymous, 2005; Anonymous, 2009). In the 

absence of legal criteria, microbiological values established by the Laboratory of Food 

Microbiology and Food Preservation of the University of Ghent (LFMFP-UGent) (Uyttendaele 



MICROBIOLOGICAL PERFORMANCE OF A FSMS IN A FOOD SERVICE OPERATION 

46 

et al., 2010) or the action limits established by the FASFC version June 2010 (FAVV, 2010a) 

were used for comparison (Table 2.1). The score attribution system is summarized in Table 

2.2. When the legal requirements or the guidelines are exceeded (score 0) for a specific 

microorganism in a specific sampling location, the specific control activity in the FSMS at 

that location is not working properly. Corrective action(s) is then needed to change this non-

compliance situation and improve the current FSMS performance.  

Table 2.2. Score attribution system 
a
 

Score 

Food products  Food contact surfaces 

Legal criteria, action 

limits of FASFC 
LFMFP-UGent  LFMFP-UGent 

3 R  ≤ m 

Absent in x g
b
 

R  ≤ target  R  ≤ 10 CFU/16 cm² 

Absent on surface
c
 

2 m < R < M Target < R ≤ tolerance  10 CFU/16 cm² < R  ≤ 69 

CFU/16 cm² 

1 R  = M tolerance < R ≤ use by date or best before 

date 

 69 CFU/ 16 cm² <  R ≤ 350 

CFU/16 cm² 

0 R  > M 

Present in x g
b
 

R > use by date or best before date  R > 350 CFU/16 cm² 

Present on surface
b
 

a
 R, result in CFU per gram (food products) or CFU per 16 cm² (food contact surfaces); m, maximum level of 

bacteria per test volume considered acceptable; M, maximum level of bacteria per test volume considered 

marginally acceptable (food with values at or above M in any sample is unacceptable). 
b
 Specifically for L. monocytogenes, E. coli O157, and Salmonella. 

c
 Specifically for E. coli, L. monocytogenes, and S. aureus 

 

Individual results for each analyzed parameter also were evaluated across sampling 

locations (CSL 1 to CSL 7) within the production process. A microbiological safety level was 

attributed to each type of microbiological parameter to obtain an overall view of 

microbiological quality, hygiene, and the safety level of products and processes at the food 

service operation. Each microbiological parameter was given a score from 1 to 3. Level 3 is 

the best result (legal criteria or guidelines are met, and no improvements are needed); the 

current level of the FSMS is deemed high enough to cope with any hazards. Level 2 is a 

moderate result (bacterial values exceed legal criteria or guidelines, and improvements are 

needed in a single control activity of the FSMS), and level 1 is a poor result (bacterial values 

exceed legal criteria or guidelines, and improvements are needed in multiple control 

activities of the FSMS). The sum of the levels of all microbiological parameters results in an 

MSLP score, which gives an indication of the actual performance level of the FSMS (Jacxsens 

et al, 2009b; Sampers et al, 2010). When the MSLP score is lower than the maximum 

achievable value, then improvement of the current FSMS is possible. Examination of the 
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details of the MSLP results for each microbiological parameter, observations during 

sampling, and discussion with the quality manager of the operation may provide insight into 

the points of attention and result in useful recommendations for follow-up.  

2.2.4 Hand hygiene 

In the present case study, hand hygiene was identified as a point of attention. To evaluate 

the general hand hygiene of the food handlers, extra swab samples of gloves and hands 

were collected during a 6-month period and analyzed for TVC and the hygiene indicators E. 

coli, S. aureus and Enterobacteriaceae. A sterile rayon swab pre-moistened in 7 ml of sterile 

peptone water was used to swab a deliminated area of 50 cm
2
 and then placed aseptically 

into its tube. The swabs were stored and transported in a cool box at ≤ 4°C. Microbiological 

analyses were performed in the laboratory within 6 h of sampling. A total of 93 extra 

samples were collected from employees working at different restaurants and performing 

different activities in the food service operation. Descriptive statistical analysis of the data 

was performed with MS Excel. 

 

2.3 Results and Discussion 

The 99 samples collected during the initial three visits were analyzed for multiple 

parameters (147 analyses of quality parameters, 216 analyses of hygiene indicators, and 132 

analyses of foodborne pathogens) (Table 2.3), and a microbiological safety level was 

established for each microbiological parameter over all sampling locations within the 

production process to evaluate the current microbiological status of the FSMS (Figure 2.2). 

The overall MSLP score for process A (the production of a sandwich or salad) was 31 of a 

possible 33 (11 microbiological parameters with a maximum microbiological safety level of 

3), and for process B (production of a hot meal starting with unprocessed raw or 

undercooked frozen ingredients) the score was 32 of a possible 33. For process C 

(production of a hot meal starting with cooked products and reheating in a bag) the score 

was 23 of a possible 24. The maximum for this process was only 24 because no at-risk raw 

material was present (i.e. products were cooked in bags) and no samples of raw material 



 

 

Table 2.3. Detailed results of the microbiological assessment scheme
 a 

Process CSL Sample 

Food safety indicators (log10 CFU)  Hygiene indicators (log10 CFU)  Overall indicators (log10 CFU) 

E.coli O157 Salmonella  L. monocyt- 

ogenes 

B. cereus  SRC
b
  E. coli Enterobac- 

teriaceae 

S. aureus  TVC
c
 LAB

d
 Yeast Molds 

A 1 Raw material A A A NA NA  <1.0 NA <1.0  3.7 –4.2 2.4 –3.3 2.7 –3.5 <2.0 –2.3 

Raw material A A A NA NA  <1.0 NA <1.0  6.0 –6.3 3.1 –5.5 4.4 –4.6 2.0 –2.6 

Raw material A A A NA NA  <1.0 NA <1.0  4.2 –4.9 2.4 –2.6 3.0 –3.2 2.0 –2.9 

2 Raw material in cool bar A A A NA NA  <1.0 NA <1.0  3.8 –5.3 2.3 –3.1 3.2 –3.9 <2.0 –3.0 

Raw material in cool bar A A A NA NA  <1.0 NA <1.0  5.9 –6.9 2.9 –5.1 4.3 –4.6 <2 –2.9 

Raw material in cool bar A A A NA NA  <1.0 NA <1.0  4.3 –6.8 2.3 –3.9 3.1 –5.0 2.0 –2.7 

3 Sandwich  NA A P (<2 log CFU) <2.0 NA  <1.0 –1.0 2.5 –3.5 <1.0  4.7 –5.4 3.2 –4.7 3.3 –4.9 <2.0 –3.0 

4 Gloves  NA NA NA NA NA  A <1.0 <1.0  2.1 – 4.3 

(2/3)
e
 

NA NA NA 

5 Gloves NA NA NA NA NA  A <1.0 –2.4 <1.0  2.1 –4.3 

(2/3)
e
 

NA NA NA 

6 Gastronorm  NA NA A NA NA  A <1.0 A  <1.0 –1.9 NA NA NA 

7 Cutting board (in use) NA NA A NA NA  A <1.0 A  <1.0 –5.3 

(1/3)
e
 

NA NA NA 

Knife ( in use) NA NA A NA NA  A <1.0 A  <1,0 –5.8 

(1/3)
e
 

NA NA NA 

B 1 Raw material NA A A NA NA  <1.0 <1.0 <1.0  2.8 –4.1 <1.0 –2.7 <2.0 –2.9 <2.0 –2.0 

2 After regeneration NA A A <2.0 <1.0  <1.0 <1.0 <1.0  <1.0 –3.9 NA NA NA 

3 In buffet NA A A <2.0 <1.0  <1.0 <1.0 <1.0  <1.0 NA NA NA 

4 Gloves  NA NA NA NA NA  A <1.0 <1.0  <1.0 –2.3 NA NA NA 

5 Gloves clean NA NA NA NA NA  A <1.0 <1.0  <1.0 –1.7 NA NA NA 

Gloves  NA NA NA NA NA  A <1.0 <1.0  <1.0 –1.2 NA NA NA 

6 Gastronorm  NA NA A NA NA  A <1.0 A  <1.0 –3.9 

(1/3)
e
 

NA NA NA 

7 Spoon  NA NA A NA NA  A <1.0 A  <1.0 –1.9 NA NA NA 

C 2 After regeneration NA A A <2.0 <1.0  <1.0 <1.0 <1.0  <1.0 NA NA NA 

3  In buffet NA A A <2.0 <1.0  <1.0 <1.0 <1.0  1.0 –1.6 NA NA NA 

4 Gloves  NA NA NA NA NA  A <1.0 <1.0  2.3 –4.1 

(1/3)
e
 

NA NA NA 

5 Gloves  NA NA NA NA NA  A <1.0 <1.0  0 –1.5 NA NA NA 

6 Gastronorm  NA NA A NA NA  A <1.0 A  <1.0 NA NA NA 

7 Spoon NA NA A NA NA  A <1.0 A  <1.0 NA NA NA 
a 

Absent in 25g sample or on 50 or 10 cm²; P, present in 25g sample or on 50 or 10 cm²; NA, parameter not analyzed for this product or CSL. Results are in log CFU/g for food products and in log CFU/50 cm² for environmental samples.  

Values with < symbol are below quantification limit. 
b
 SRC, sulfite-reducing clostridia; 

c
 TVC, total viable count; 

c
 LAB, lactic acid bacteria; 

e
 Values in parentheses are the number of samples exceeding legal criteria or guidelines/number of samples tested. 
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were collected; therefore, no analyses of lactic acid bacteria, yeasts, and molds were 

conducted. For each process, the maximum MSLP score was nearly obtained (Figure 2.2), 

indicating that the current FSMS has no major flaws in its ability to produce safe and 

hygienic food products. However, continuous verification of the implemented HACCP 

system by microbiological analysis of raw materials and final products, regular supplier 

audits, and continuous training of personnel in good hygienic practices is recommended. 

Results of other studies have indicated that inherent barriers to effective implementation of 

HACCP systems exist in catering companies (Garayoa et al., 2011), and more effort should 

be made to apply HACCP principles (Marzano and Balzaretti, 2011). In a study of catering 

establishments, Marzano and Balzaretti (2011) found that a percentage of samples did not 

meet microbiological reference standards for L. monocytogenes, S. aureus, E. coli, and total 

coliforms.  

 

Figure 2.2. Microbial safety level profile for three production processes in the catering 

establishments: process A, sandwich production process; process B, production of hot meal 

starting with raw or undercooked material; process C, production of a hot meal by reheating in a 

bag. For each parameter, a microbiological safety level was determined: 1, low; 2, moderate; 3, 

high. Dashed line indicates the maximum score that could be obtained for each process. 

 

Evaluation of the details of each type of production process in the present study revealed 

no E. coli O157 or Salmonella. The results for the spore-forming pathogens B. cereus and 

sulfite-reducing clostridia were below the detection limit of the analytical method (2 log 
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CFU/g) at all sampling times. Only in the sandwich production process (process A) was L. 

monocytogenes detected in a sandwich made with a spread of raw meat prepared with 

Worcestershire sauce during the first visit (Table 2.3). The level of L. monocytogenes in this 

sample was < 2 log CFU/g and thus did not exceed the European Commission Regulation 

2073/2005 criterion for L. monocytogenes in ready-to-eat foods at the time of consumption 

(Anonymous, 2005). Upon reporting of this L. monocytogenes result to the quality manager 

of the food service operation, steps were taken by the catering establishment for follow-up 

sampling of a second batch of this sandwich spread. This second sample also was 

contaminated with L. monocytogenes, indicating that the source of L. monocytogenes was 

most likely located at the supplier (Christison et al., 2008; Martinez-Tomé et al., 2000). 

Further investigation at the supplier of the sandwich spread revealed L monocytogenes on 

the equipment in the production area. This pathogen can adhere to surfaces and form 

biofilms on various materials in food processing facilities (BCCDC, 2010). Based on this 

information, the food service operation changed to a new supplier for this type of sandwich 

spread, and no L. monocytogenes was found in this spread during the two subsequent visits. 

This example illustrates the impact of supplier selection on the performance of the FSMS. 

The number of samples analyzed for pathogen detection in the present MAS was limited. 

The objective of this sampling plan was to provide an overall microbiological profile 

(snapshot) to evaluate the current FSMS. Statistically based on-going monitoring of 

pathogens in raw materials and final products should complement the MAS as a sampling 

plan to allow verification of proper implementation of HACCP principles on a continuous 

basis. However, in particular for pathogenic organisms with low prevalence (< 1 to 5 %), 

inherent limitations in sampling schemes determine the level of detectable contamination.  

All results obtained for Enterobacteriaceae, an indicator of overall good manufacturing 

practices, and E. coli, as a fecal hygiene indicator, in each process line were satisfactory. 

Enterobacteriaceae were present in the sandwich production process at 2.5 to 3.5 log 

CFU/g. These results are within acceptable levels as defined by the action limits of the FASFC 

(Table 2.1). The presence of Enterobacteriaceae in this sandwich probably was due to the 

presence of vegetables, which generally carry high levels of Enterobacteriaceae (Lianou and 

Sofos, 2007). For the personal hygiene indicator S. aureus, no unacceptable levels were 

found. For the quality parameters of lactic acid bacteria, yeasts, and molds (Table 2.3) in 
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processes A and B, all results were within microbiological reference standards. However, 

high TVCs (> 4.3 log CFU/50 cm
2
) were found on gloves (CSLs 4 and 5) of food operators and 

on food contact surfaces (CSL 7) in process A during various visits (Table 2.3). 

Microbiological reference standards for TVCs were exceeded on gloves, which is inevitable 

in the present context because of manipulation of raw materials with high microbiological 

loads, i.e., vegetables. The TVCs of the analyzed food products (ready-to-eat sliced mixed 

lettuce, tomatoes, and cucumber) in the sandwich production process were 3.7 to 6.9 log 

CFU/g. High TVCs on gloves can be controlled by changing gloves on a regular basis to avoid 

cross-contamination (Simoes et al., 2010). TVCs for food contact surfaces, i.e. the cutting 

board and knife, also exceeded the microbiological guidelines. Further investigation 

revealed that these utensils were not replaced during the service period, a total of 4 h. 

However, Schaffner et al. (2004) found that changes in the bacterial population on a plastic 

cutting board for a 5 min interval ranged from a decrease of 4 CFU/cm
2
 to an increase of 13 

CFU/4 cm
2
. When a cutting board is used for 60 min, it usually will become contaminated 

with more than 50 CFU/4 cm
2
. As a consequence, cleaning or a change of cutting boards 

during the food service period is recommended to reduce the probability of biofilm 

formation and cross-contamination (Oliveira et al., 2010; Rayner et al., 2004; Schaffner et 

al., 2004). 

In process B (production of a hot meal starting with unprocessed raw or undercooked frozen 

ingredients), high TVCs (> 3.9 log CFU/50 cm
2
) also were found on food contact surfaces (CSL 

6), namely an inox serving tray, due to contact with raw frozen fish filets, which is a high-risk 

raw material with high microbiological loads. These results indicated that improvements in 

some of the core control activities in the FSMS of the food service operation were needed, 

e.g., cleaning and disinfection of food contact surfaces, switching gloves and washing hands 

on a regular basis, and cleaning the utensils properly during service (Shojaei et al., 2006). 

Schaffner et al. (2004) found that surfaces with high mean microbiological levels and a high 

percentage of samples with bacteria that were ‘‘too numerous to count’’ tended to be 

plastic. Doménech- Sánchez et al. (2011) found that 26.0 % (n= 4611) of the surfaces 

analyzed had microbiological levels higher than the recommended standards of < 1.3 log 

CFU/cm
2
. 
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In process C (production of a hot meal starting with cooked products and reheating in a 

bag), TVCs of 2.3 to 4.1 log CFU/50 cm
2
 were found on the gloves of a food operator (CSL 4) 

in the regeneration area. This finding was in contrast to the very low levels of bacteria on 

the gloves of a food operator on the buffet line, which were < 1.0 to 1.5 log CFU/50 cm
2
 

(Table 2.3). This difference may be due to the highly contaminated surfaces of cupboards, 

refrigerators, ovens, etc. in the regeneration room. On the buffet line, food operators serve 

customers with clean (thus less contaminated) utensils. This contrast illustrates the difficulty 

inherent in using the TVC as an indicator. For trend monitoring, appropriate guidelines for 

food contact surfaces and gloves should be developed taking into account the various 

activities that occur at different locations, direct or indirect contact with foods, and the type 

of foods handled. Because hand hygiene was identified as a point of attention, extra 

samples were collected from gloves and hands of food handlers working in different kitchen 

areas to evaluate general hand hygiene. For interpretation of the TVCs for assessing hand 

hygiene, guidelines were based on hygiene scores for surfaces after cleaning and 

disinfection in food processing companies because of a lack of guidelines specific for food 

contact surfaces in food service operations or for hand hygiene (Strohbehn et al., 2008; 

Uyttendaele et al., 2010). According to these guidelines, 43 % of the gloves and/or hand 

samples collected in the regeneration area, 57 % of samples from the (buffet) counter, 59 % 

of the samples from the sandwich bar, and 25 % of the samples from the self-service 

counter would be classified as unsatisfactory (> 3 log CFU/50 cm
2
) based on the TVCs on 

gloves and/or hands (Figure 2.3A).  

 

 

 

Figure 2.3. Distribution of bacterial contamination on hands/or gloves of all food handlers (A) and 

of food handlers performing a specific food activity (B). 

A B 
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However, the hygiene indicator E. coli was absent in all analyzed samples, and S. aureus was 

detected in only one sample. Enterobacteriaceae were detected in 18 (19 %) of the 93 

samples (Table 2.4).  

Table 2.3. Detection of hygiene indicators on hands and/or gloves of food handlers performing 

specific activities in institutional catering. 

   No. of samples positive for 
a
: 

Location 
No. of samples 

tested 
 E. coli 

a
 Enterobacteriaceae S. aureus 

b
 

Regeneration 

area 
23  0 4 1 

Counter 23  0 6 0 

Cash desk 9  0 1 0 

Sandwich bar 22  0 6 0 

Self-service 16  0 1 0 

Total 93  0 18 1 
a
 Samples were considered positive when the level of micro-organisms was at or above the detection 

limit of the method, which was 1 log CFU/50cm² for E. coli and Enterobacteriaceae and 2 log CFU/50 cm² 

for S. aureus. 

 

The results of the supplementary samples collected from hands and/or gloves of food 

handlers indicate a difference in total microbiological contamination of the hands and/or 

gloves of food handlers performing different activities (Figure 2.3B). For example, a 

significant difference (P < 0.05) in TVC on the hands and/or gloves was found between food 

handlers working at the cash desk and food handlers working at the counter, sandwich bar, 

or regeneration area. A significant difference (P < 0.05) in TVC on the hands and/or gloves 

also was found between food handlers refilling the self-service counter and food handlers 

working at the (buffet) counter or sandwich bar. No significant difference (P < 0.05) in TVC 

on the hands and/or gloves was found between food handlers working in the regeneration 

area and those working at the counter, sandwich bar, or self-service counter. No significant 

difference in TVC on the hands and/or gloves was found between food handlers working at 

the counter and those working at the sandwich bar and between food handlers working at 

the cash desk and those refilling the self-service counter. A lower level of total 

microbiological contamination (1.0 log CFU/50 cm
2
) was established for activities at the cash 

desk, and a higher level (2.0 log CFU/50 cm
2
) was established for activities at the self-service 

counter and the regeneration area. The highest microbiological contamination (3.0 log 

CFU/50 cm
2
) was noted for activities at the (buffet) counter, and the sandwich bar (Figure 2. 
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3B). Results of these supplementary samples supported the recommendation that specific 

microbiological guidelines should be formulated for hands and/or gloves for each location. 

These guidelines can be developed after establishing an overall baseline by taking daily, 

weekly, or monthly samples at each location and performing trend analysis. This analysis can 

allow identification of problem areas in the process that need more attention (Little and 

Sagoo, 2009). With these baseline results, in particular by sampling contact materials and 

hands when food handlers are using good manufacturing practices (e.g. changing gloves 

between handling raw and cooked products, hand washing according the protocol, and 

changing cutting boards during service when there is no time to clean them), a 

microbiological guideline can be set. Schaffner et al. (2004) recommended the use of 

microbiological modeling and Monte Carlo simulation as tools for evaluating cutting board 

polices and setting appropriate sanitary microbiological criteria.  

In this study of the food service operation, the period between the first and the last visit 

covered one year. During this year, a snapshot of the performance of the FSMS was taken at 

each visit, allowing validation of the preventive measures implemented in the FSMS. By 

comparing the MSLPs, which reflect performance, conclusions can be reached concerning 

decline, stabilization, or improvement in performance. During the first and last visits, the 

operation was less busy, whereas during the second visit it was very busy; however, the 

MSLPs of the processes remained stable (comparable results) across all visits (Figure 2.2), 

which is an indication of a stable and well-performing FSMS. Those kinds of results may not 

be obvious in food service establishments because of high staff turnover, laborious 

production processes, and a complex variety of (raw) material and food products (Walker et 

al., 2003). The positive assessment of the FSMS performance also was due to proper 

supplier selection and to outsourcing of basic steps of food preparation. Proper supplier 

selection (according to microbiological specifications and auditing) results in the delivery of 

high-quality food products, thus putting less pressure on the FSMS of a food service 

operation (Luning et al., 2011a). High-quality raw materials are less likely to have 

undesirably high initial contamination levels or allow growth or survival of pathogens; 

therefore, they contribute to a low-risk environment. According Luning et al. (2011b), the 

concept behind FSMS diagnosis is that companies operating in a high-risk context need an 

advanced FSMS to achieve high levels of food safety. In a moderate-risk context, an average 
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FSMS may be sufficient for adequate food safety, whereas in a low-risk context even a basic 

FSMS would be sufficient to maintain acceptable microbiological quality, hygiene, and 

safety. When the food safety services operation obtains some power in supplier 

relationships, the risks associated with inadequate raw materials may be reduced by 

evaluating the current specifications and systematically auditing the FSMS of the supplier 

(Luning et al., 2011). These steps lead to systematic quality improvement, which is beneficial 

for both consumer and supplier, because food safety will be enhanced. Therefore, to have a 

better control on food safety in a food service operation, microbiological specifications must 

be present for all incoming food products (Luning et al., 2011; Tanik, 2010). The hot meals in 

the operation in the current study were almost all produced from bagged cooked chilled 

foods that had been partially prepared by the supplier and subjected to only reheating in 

bag on the food service premises. That type of food product has already been subjected to a 

(mild) heat treatment at the supplier, which results in a less contaminated product entering 

the food service operation. Therefore, outsourcing of basic steps in food preparation means 

there will be a smaller amount of high-risk material (e.g., raw meat and poultry, raw 

vegetables) entering the food service operation, and the pressure on the FSMS of the 

operation is reduced (Luning et al., 2011). Reheating in a bag also reduces the risk for 

introduction and dispersion of microbiological contamination in the production 

environment and thus fewer critical control points in the FSMS (Luning et al., 2011; Seward, 

2000). Even with medium-risk food products, which are still raw in the center but have been 

subjected to some heat treatment (e.g. baking or frying) on the outside, there is a lower 

chance of contaminating the kitchen environment than when completely raw materials are 

processed. At the time of slaughter, the muscle tissue of a healthy animal is essentially 

sterile, but the surface of the meat becomes contaminated during slaughter and subsequent 

handling (James and Evans, 2006). The same is true for the majority of fruits and vegetables. 

If bacteria on the surface of raw foods could be eliminated, for example by a heat 

treatment, then the risk of cross-contamination during processing would be reduced (James 

and Evans, 2006). Raw vegetables are considered ready-to-eat products and have been 

subjected to an industrial washing process at the producer, which leads to a product with 

less contamination (Vandekinderen et al., 2009). 
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2.4 Conclusion 

The MAS provides information on the microbiological contamination and variability of a 

production process and allows identification of the weak points in a FSMS. In the present 

case study, core control activities in the FSMS needed attention. In particular, hand hygiene 

of personnel (e.g. effective hand washing techniques and frequency of hand washing) and 

cleaning and disinfection of processing areas, especially in highly contaminated locations, 

needed to be monitored and followed up. The TVCs in samples from food contact surfaces 

and gloves did not meet food safety standards, especially in highly contaminated areas, e.g. 

where raw material was handled. However, these TVCs were difficult to interpret because 

widely accepted specific guidelines for food contact surfaces and gloves in use do not 

presently exist. Appropriate guidelines for food contact surfaces and/or gloves are needed 

that account for the various activities that take place at different locations, the direct or 

indirect contact with foods, and the types of food being handled. These guidelines should be 

based on trend analysis of information gathered in a baseline study conducted while 

workers are following good manufacturing practices. In this study, values for all hygiene 

parameters, i.e., E. coli, Enterobacteriaceae, and S. aureus, were in compliance with legal 

criteria and/or microbiological reference standards, and pathogens were not detected at 

unacceptable levels. Therefore, the current FSMS at this institutional catering facility can be 

considered validated. However, the elaboration of a statistical annual sampling plan used 

for continuous monitoring and surveillance as well as verification of the functioning of the 

HACCP plan was recommended. 
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Abstract 

Food service operations are confronted with a diverse range of raw materials and served 

meals. The implementation of a microbiological sampling plan in the framework of 

verification of suppliers and their own production process (functionality of their prerequisite 

and HACCP program), demands selection of food products and sampling frequencies. 

However, these are often selected without a well described scientifically underpinned 

sampling plan. Therefore, an approach on how to set-up a focused sampling plan, enabled 

by a microbiological risk categorization of food products, for both incoming raw materials 

and meals served to the consumers is presented. The sampling plan was implemented as a 

case study during a one-year period in an institutional food service operation to test the 

feasibility of the chosen approach. This resulted in 123 samples of raw materials and 87 

samples of meal servings (focused on high risk categorized food products) which were 

analyzed for spoilage bacteria, hygiene indicators and foodborne pathogens. Although 

sampling plans are intrinsically limited in assessing the quality and safety of sampled foods, 

it was shown to be useful to reveal major non-compliances and opportunities to improve 

the FSMS in place. Points of attention deduced in the case study were control of L. 

monocytogenes in raw meat spread and raw fish as well as overall microbial quality of 

served sandwiches and salads. 
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3.1 Introduction 

European regulations (EC No. 852/2004 and EC No. 178/2002) and public health authorities 

put pressure on food business operators to develop and implement a food safety 

management system (FSMS) to govern food safety and to prevent foodborne outbreaks. 

Such a FSMS consists of generic prerequisite programs (PRP) and specific structured 

procedures based on the principles of Hazard Analysis and Critical Control Point (HACCP) 

(CIES, 2007; CAC, 2003; Jacxsens et al., 2009a; Quinn and Marriott, 2002). One of the seven 

principles of the HACCP system is verifying whether the FSMS is functioning properly. Such 

verification can be elaborated with a microbiological sampling plan (Anonymous, 2003, 

2005; Anonymous, 2005; Gonzales-Barron et al., 2013). However, no strict requirements 

related to the sampling plan have been set at an European level. Neither are any sampling 

guidelines for verification of the system taken up in the food service operation’s self-

checking guide at the Belgian level (FAVV, 2006a and 2008a). Therefore, quality managers in 

food service operations mostly select food products and sampling frequencies without a 

well described scientifically underpinned sampling plan. Besides, they tend to focus on end 

products such as served hot meals or sandwiches. However, apart from end product testing, 

it is also interesting to obtain information on the microbiological quality and safety of 

incoming raw materials (to contribute to the verification of supplier selection) and/or half 

fabricates (to verify the well-functioning of adherence to procedures). Ropkins and Beck 

(2000) showed in their study, in which they conducted a review of HACCP in the EU, 

America, Australia, New Zealand and developing countries, that adequate process control by 

periodic verification is more effective than control of end products only. Swanson and 

Anderson (2000) reported that testing on final products is analogous to finding a needle in a 

haystack. Well implemented testing of incoming raw materials and hygiene in the process 

flow is also important in a preventive systems’ approach and may provide more security 

than mere end product testing (ICMSF, 2002). Various authors have thus recommended 

microbiological assessment of critical control points in a FSMS (e.g. Cormier et al., 2007; 

Gonzàlez-Miret et al., 2001; Kvenberg and Schwalm, 2000; Martins and Germano, 2008; 

Ropkins and Beck, 2000; Swanson and Anderson, 2000). As such, Jacxsens et al. (2009b, 

2010), Sampers et al. (2010 and 2011) and Osés et al. (2012) previously elaborated focused 

microbiological sampling plans to validate a FSMS in the meat, poultry and dairy processing 
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industry. Their microbiological assessment scheme describes which type of samples are 

preferably taken in a production site with relative modest food product variation and takes 

a dominantly vertical process approach throughout the processing line from raw materials 

over half fabricates to end products including environmental sampling.  

These studies mainly focused on food processing industries which function in a business-to- 

business transaction of foods. Food service operations are business-to-consumer operations 

and although being prone to official controls, have less pressure from customers or buyers 

than food processing companies, to demonstrate the performance of their FSMS in place. 

We have previously elaborated the vertical microbiological assessment scheme in a food 

service operation to validate the FSMS in place (Lahou et al., 2012). However, this vertical 

microbiological assessment scheme which focuses on sampling throughout the processing 

line is rather a tool for validation and identification of bottlenecks within the operation of a 

processing company or food service operation. In addition to sampling within the processing 

line a year-around sampling plan focusing on both incoming raw materials and outcoming 

products (i.e. served meals including hot dishes, cold sandwiches and salads within a food 

service operation) is recommended to contribute to the verification of supplier selection 

and the overall functioning of the FSMS in place. However, setting up and implementing a 

sampling plan in food service operations is seen as a challenge because, apart from usually 

many staff members being involved, there are also a variety of incoming raw materials being 

handled during the meal preparation processes and a wide variety of served meals offered 

to consumers (Airey and Greaves, 2005; Griffith, 2000). Still, this latter part of the food 

chain especially needs attention because it serves food directly to the consumer. 

In addition, eating out-of-home is increasingly popular, for example 35 % of the Belgian 

population is defined as substantial out-of-home eaters, which means that they consume on 

average at least 25 % of their daily energy (e.g. a lunch meal) outside the home 

(Vandevijvere et al., 2009). As we are aware that in many food service operations, in 

particular in non-profit institutional food service operations, there is a restricted budget 

allocated to sampling and microbiological analysis, it is recommended to set up a focused 

sampling plan to gain the maximum outcome from the samples taken and attributed 

resources. Therefore, the aim of this study is to elaborate a focused sampling plan based on 

risk categorization of both incoming raw materials and meals (including hot meals, salads 
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and sandwiches) served to consumers in food service operations while taking into account 

the limitation of resources for microbiological analysis. The approach is illustrated and 

applied on an actual case study of the non-profit institutional food service operation at 

Ghent University, Belgium. 

 

3.2 Materials and methods 

3.2.1 Definition of the case study 

The food service operation selected for this case study includes eight restaurants and eleven 

cafeterias from Ghent University, separated over different locations in Ghent, Belgium. In 

this food service operation approximately 660 000 hot meals and 400 000 sandwiches are 

served each year. The HACCP system that has been implemented at this food service 

operation is consistently applied across all meals, restaurants and cafeterias. The inventory 

list of all incoming raw materials and the list of all meals scheduled to be served on various 

days at the food service operation was obtained from the quality manager of the food 

service operation. 

3.2.2 Food categorization and risk attribution 

The chosen approach to develop a focused sampling plan for verification of the FSMS in 

food service operation was first the classification of all food products on the inventory lists 

into various food categories and more specific in various food types (Table 3.1). The same 

procedure was applied on foods served to the consumer. Food categories are based upon 

the common origin. Food types are defined as a group of food products 

processed/preserved in a similar way, with similar intrinsic characteristics and a similar 

microbiological ecology. The different food types were then subjected to a risk score 

attribution system. This score system is based on the principles of risk attribution used in 

the ICMSF attributive sampling plans and the approach adopted by the Belgian Federal 

Agency for the Safety of the Food Chain (FASFC) to program analysis in the frame of 

detecting contamination (ICMSF, 2002; Maudoux et al., 2006). A similar approach for the 
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model variables was used in a qualitative risk ranking approach of the European Food Safety 

Authority (EFSA, 2012). In the presented risk attribution system three parameters are 

attributed to each food type within a food category based upon i) epidemiological 

association of the food type with reported foodborne outbreaks, ii) the reported prevalence 

of foodborne pathogens and level of hygiene indicators in the food type, and iii) the 

potential of microorganisms (pathogens but also spoilage microflora) to grow or survive 

during storage and/or further processing. For each parameter one out of four scores can be 

attributed (0, 1, 2 or 3) to the food type (Tables 3.1 and 3.2). By summation of the 

attributed score of each parameter, a minimum score of zero and a maximum score of nine 

could be obtained for each food type within a food category. It is assumed that a score zero 

up to three is a low risk food type, a score four up to six is a moderate risk and a score seven 

up to nine as a high risk food type. To collect the data for scoring the three parameters a 

literature study was carried out in the ICMSF books (ICMSF, 1986, 2002, 2005) 

complemented with the European Community summary reports on trends and sources of 

zoonoses published by the European Food Safety Authority (EFSA, 2006 and 2007). To verify 

the general situation for the regional situation, the annual reports on zoonotic agents in 

Belgium of the Federal Agency for the Safety of the Food Chain (FASFC) and the Belgian 

report on zoonoses and zoonotic agents were consulted (Dierick and Botteldoorn, 2007; 

FAVV, 2004, 2006a,b, 2007, 2008b,c, 2009a). The pathogens, Salmonella spp., Listeria 

monocytogenes, Escherichia coli O157:H7, Campylobacter jejuni/coli, Bacillus cereus and 

Clostridium perfringens (or sulphite reducing clostridia (SRC)) were considered and targeted 

for data collection. Additional, for pork meat Yersinia enterocolitica and for shellfish Vibrio 

parahaemolyticus were considered. Setting up the scoring system, including the gathering of 

all data for scoring the three parameters, was performed over a ca. one-year period with 

bimonthly discussion between the authors on the outcome of the scoring and was also 

validated with authors’ expert opinion from a track record built in education, research and 

extension services in food microbiology and food preservation. 



 

 

Table 3.1. Categorization and risk attribution of raw materials in the inventory list of the food service operation. 

Food Category Food Type Examples of food products Epidemiological association 

 

score 0 = no collective food toxi-

infections between 1998-2008 

score 1 = 1 collective food toxi-

infection between 1998-2008 

score 2 = >1 and ≤ 5 collective food 

toxi-infections between 1998-2008 

score 3 = > 5 collective food toxi-

infections between 1998-2008 

Prevalence 

 

score 0 = accidental 

prevalence (< 0.1%) 

score 1 = low prevalence 

(>0.1% and ≤1%) 

score 2 = moderate 

prevalence (>1% and ≤10%) 

score 3 = high prevalence 

(>10%) 

Possibility to grow/survive 

 

score 0 = no growth/survival 

and inactivation/inhibition 

score 1 = growth/survival and 

inactivation/inhibition 

score 2 = no growth, but 

survival possible and no 

inactivation/inhibition 

score 3 = growth/survival and 

no inactivation/inhibition 

Risk category 

 

(sum of scores) 

Milk and dairy 

products 

Heat processed (thermized/ 

pasteurized) dairy products 

Milk based desserts, ice cream, 

chocolate mousse, butter 

2 3 1 6 

Fermented or acidified dairy 

products 

Gouda cheese, Emmental cheese, 

cream cheese 

2 2 1 5 

Dried  Milk powder 2 2 1 5 

(Red) Meat and 

meat products 

Fresh/ undercooked (raw) meat Beef steak 2 3 3 8 

Heat processed meat products Cooked ham, wiener schnitzel, 

Italian schnitzel, merguez, meat 

loaf, fried beef burger  

2 2 1 5 

Fermented meat products Salami 2 2 2 6 

Poultry and poultry 

products 

Heat processed poultry products Cooked turkey/chicken breast, 

fried chicken sausage, fried 

chicken leg, turkey meat loaf 

 

3 1 1 5 

Fish and seafood 

products 

Raw (frozen) fish and seafood Pollock fillet, hake fillet, white fish 

fillet, salmon steak, tuna steak, 

cod fillet, salmon fillet, fish cubes 

2 2 3 7 

Heat processed fish and seafood oceans gold, fish sticks 1 2 1 4 

Marinated and acidified fish and 

seafood 

Marinated anchovy 1 0 2 3 

Eggs and derivates Heat-processed eggs and derivates Cooked eggs 3 0 1 4 

Vegetables and 

fruits 

Unprocessed fresh vegetables and 

fruits 

Orange, apple, banana, nectarine, 

pear 

1 2 2 5 

Pre-cut fresh vegetables and fruits 

(ready-to-eat) 

Mixed pre-cut lettuce, pre-cut 

cucumber slices, pre-cut 

tomatoes, grated carrots, grated 

red cabbage, grated white 

cabbage, pre-cut chicory    

3 1 3 7 

 

Heat processed vegetables and fruits 

(juices) 

Orange juice 0 0 0 0 

Fermented/acidified vegetables Pickles, olives 0 0 2 2 

Dried vegetable products (aw < 0.6) Seasonings, dried herbs 2 3 2 7 

Canned (ambient stable) vegetables 

and fruits 

Asparagus 1 0 0 1 

Composite foods Ready-to-cook, ready-to-reheat cauliflower in cheese sauce, 2 2 1 5 



 

 

refrigerated food products braised chicory, braised red 

cabbage, salsify in milk sauce, nasi 

goreng, lasagna, macaroni, thai 

noodles, béchamel, curry, pepper 

sauce, meat sauce, meat stew, 

babi pangang, goulash, soups, 

meatballs in tomato sauce, vol-au-

vent, fried chicken legs, fish stew, 

baked cordon blue, vegetarian 

bolognaise, quorn, mixed grill 

brochette, tika masala, … 

Ready-to-cook, ready-to-reheat 

frozen food products 

Spinach with herb cheese, sprouts 

with bacon, leek in cream sauce, 

broccoli with cream, nasi rolls, 

lasagna florentine, tortellini 

quattro formaggi, pancake rolls, 

moussaka, mashed potatoes, 

vegetarian spring rolls, swiss steak, 

tirolerschnitzel, gyros, … 

2 2 1 5 

Ready-to-eat refrigerated food 

products with substantial raw 

ingredients 

Feta salad, taboulé, Mexican salad, 

greek salad, celery salad, couscous 

salad, Bulgarian salad, beet salad 

3 2 2 7 

Ready-to-eat emulsified or non-

emulsified sauces mixed with raw 

materials 

raw meat spread 1 3 3 7 

Ready-to-eat emulsified or non-

emulsified sauces mixed with heat 

treated materials 

Egg sandwich spread, ham 

sandwich spread, tuna sandwich 

spread, chicken sandwich spread, 

fish sandwich spread, shrimp 

sandwich spread, crab sandwich 

spread, salmon sandwich spread 

2 3 1 6 

Ambient stable acid products, 

emulsified and non-emulsified 

sauces 

Ketchup, mayonnaise, vinegar, 

mustard, tartar, yoghurt vinegar, 

tabasco 

2 2 1 5 

Chocolate, bakery 

and confectionary 

products 

Dry & sugared low moisture (aw < 

0.85) 

Pre-baked and pre-packed French 

baguettes 

2 2 1 5 

Dry & sugared low moisture (aw < 

0.65) 

Chocolate paste, honey, ginger 

bread, sugar 

2 2 1 5 

Beverages Alcohol with < 10% alcohol Beer, wine 0 0 0 0 

Nonalcoholic, carbonated  Soda water 0 0 0 0 

Nonalcoholic, non-carbonated Bottled water 0 0 3 3 

 



 

 

Table 3.2. Example of the motivation of the risk characterization for food category meat and meat products. 

Food type Epidemiological  

Association 

Motivation 

score 0 = no collective food toxi- 

infections between 1998-2008 

score 1 = 1 collective food toxi- 

infection between 1998-2008 

score 2 = >1 and ≤ 5 collective food  

toxi-infections between 1998-2008 

score 3 = > 5 collective food toxi- 

infections between 1998-2008 

Prevalenc

e 

Motivation 

score 0 = accidental  

prevalence (< 0.1%) 

score 1 = low prevalence 

 (>0.1% and ≤1%) 

score 2 = moderate  

prevalence (>1% and ≤10%) 

score 3 = high prevalence 

 (>10%) 

Possibility to  

grow/survive 

Motivation 

score 0 = no growth/survival and 

inactivation/inhibition 

score 1 = growth/survival and 

inactivation/inhibition 

score 2 = no growth, but survival 

possible and no 

inactivation/inhibition 

score 3 = growth/survival and no 

inactivation/inhibition 

Risk category 

(sum of scores) 

Fresh/ 

undercooke

d (raw) meat  

2 2003: In France a total of 14 human cases Salmonella 

enterica subsp. enterica serotype Newport were 

reported. All cases reported have eaten horsemeat 

consumed as ground meat (11 cases, and consumed 

raw by at least 6 cases) or steak (3 cases). (Espié et al., 

2003) 

2005: In Belgium, contamination at a slaughterhouse 

resulted in one S. Ohio outbreak with 60 known cases. 

At the same time, an increase of S. Ohio was observed 

among results from the nationalmonitoring 

programme of pork products. PFGE typing confirmed 

the clonal relationship between the human isolates 

and those isolated from pork products. Further 

epidemiological investigations confirmed the link to 

the slaughterhouse. (EFSA, 2007) 

2008: In Switzerland, 150 cases were infected by S. 

Typhimurium. Molecular typing of clinical and food 

isolates revealed that pig meat or products thereof 

were probably responsible for the infections. About 

34% of the cases were infected with the same strain 

detected in the quality control of pork at a company, 

on a pig carcass from a slaughterhouse and in an 

imported (from Germany) spare rib sample. (EFSA, 

2010) 

3 The prevalence of Salmonella on 

bovine carcasses is between 

0,1% and 7,5% (EFSA, 2007) 

After slaughter, Campylobacter 

can be found in 19 to 70% of 

sheep carcasses, in 2 to 32% of 

bovine carcasses, in 20 to 97% of 

veal carcasses and in 20 to 60% 

of pork carcasses. (ICMSF, 2005) 

3 Listeria can grow in MAP packaged 

meat products and at a 

temperature of 4°C. Salmonella 

can grow under specified 

conditions at 10°C. (ICMSF, 2005) 

8 

Heat 

processed 

meat 

products 

2 2000: 26 cases of listeriosis were identified in France 

by the National Reference Centre for Listeria. Results 

of a case control study carried out by the Institut de 

Veille Sanitaire and district health departments 

showed that the consumption of pork tongue in jelly 

was associated with infection with the outbreak strain. 

(de Valk et al., 2000)  

2004: The United Kingdom reported a large E. coli 

O157 outbreak affecting 134 people. Cooked meat 

sandwiches from a single shop were identified as the 

source. (EFSA, 2006) 

2006: In Portugal, sandwiches with cooked meat 

2 Listeria has an average 

prevalence of 2.7% in pork meat 

and 3.5% in cooked bovine meat 

(EFSA 2007b) 

In 2007 the prevalence of Listeria 

in cooked meat is 2% (FAVV 

2008) 

1 Listeria can grow in MAP packaged 

meat products and at a 

temperature of 4°C. Salmonella 

can grow under specified 

conditions at 10°C. (ICMSF, 2005). 

However, growth is only possible 

when a post-contamination takes 

place, because a heat inactivation 

step is involved in the production 

of these food types.  

5 



 

 

served at a school picnic affected 25 people, all of 

whom were hospitalised. E. coli was laboratory 

confirmed to be the causative agent. (EFSA, 2007) 

2007: Belgium reported a S. aureus outbreak from 

frozen hamburgers at a summer camp. At least 15 

children and adults had severe symptoms of nausea, 

vomiting and diarrhoea shortly after eating lunch. The 

Dutch inspection revealed that the cooling system 

used to rapidly cool the cooked hamburgers was 

contaminated with S. aureus and may not have been 

properly cleaned. (EFSA 2009). 

2001: In Spain, 181 cases have been reported in an 

outbreak of Escherichia coli O157:H7 infection. 

Preliminary enquiries suggested that the vehicle of 

infection was sausage served by a catering company 

on 18 September 2000. The catering company supplied 

10 schools, one factory, and a home for elderly people. 

Cases arose at schools where the sausages were not 

reheated; at the remaining schools the sausages had 

been reheated. (Hernández et al., 2001) 

Fermented 

meat 

products 

2 2005: Germany reported a nation wide outbreak 

involving 487 cases of gastroenteritis due to S. 

Bovismorbificans during the winter of 2004/2005. 

Consumption of raw minced pork and short-time 

fermented raw-pork sausage were strongly associated 

with infections in a case-control study. (EFSA, 2007) 

2006: A small but severe outbreak was reported by 

Norway. The outbreak was caused by verotoxigenic E. 

coli O103:H25 involving 17 persons. The source of 

infection was laboratory confirmed to be a traditional 

Norwegian sausage (morrpoelse) made from sheep 

(EFSA, 2007) 

2007: In Germany, an increase in cases with Salmonella 

Panama infections was detected and more than 30 

young children were infected. A case-control study 

implicated consumption of short-fermented minisalami 

sticks as the likely source of infection (EFSA, 2009) 

2007: In Denmark, an outbreak with verotoxigenic 

Escherichia coli (VTEC) O26:H11 occurred with 20 

laboratory confirmed cases. The outbreak strain was 

confirmed microbiologically in both the raw meat and 

the sausages obtained from private households who 

had bought the sausage but which had not yet been 

consumed (EFSA 2009).  

2 Listeria has a prevalence of 16% 

(2000), 8,6% (2001) and 10% 

(2003) (FAVV, 2004) in dry 

sausage 

In 2006, the prevalence of dry 

sausage in Germany was 9.6% 

(EFSA 2007) 

2 E. coli O157 can survive the 

fermentation process. (ICMSF, 

2005) 

Listeria can grow in these types of 

products if the fermentation 

process fails, with normal 

fermentation Listeria can not grow 

(ICMSF, 2005) 

6 
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3.2.3 Elaboration of the sampling plan 

The risk attribution, described in the above paragraph, was used for selection of food types 

to be taken up in the sampling plan because the range of incoming (raw) materials and 

foods served in the food service operation is broad. Assumptions made in the development 

of the approach are i) the sampling plan should only focus on high risk categorized food 

types (score 7, 8 or 9), ii) for low risk food types (score 0, 1, 2 or 3) it should be sufficient to 

set microbiological specifications to the supplier and iii) for moderate risk food categories 

(score 4, 5 or 6) reports of microbiological analysis should be asked regularly from suppliers 

to verify compliance of the microbiological specifications agreed upon. To determine the 

amount of samples to be taken for each high risk food type, the following approach is 

proposed. In case of more than one food product within a food type (presence of variety) 

and/or when each year more than two suppliers can be involved in the delivery of the food 

product(s) within a food type, the approach based on binomial distribution as described by 

Evers (2001) and ICMSF (1986) is proposed. Table 3.3 lists the number of samples needed, 

to detect a positive result at an indicative level of the fraction positive samples within a 

range of 0.1 % - 10 % and a probability of 90 %, 95 % or 99 %. It is proposed to link the 

probability and the allowed fraction of positive samples to the specific risk score of the food 

type. The idea behind this approach is that when the risk of the food type to cause food 

safety problems or to be associated with unacceptable quality is lower, a smaller amount of 

samples is needed to be taken in the frame of verification (ICMSF, 1986). However, in case 

of only one food product within a food type (no variety) and if yearly no more than two 

suppliers are involved in the delivery of this food product, it is proposed to take one 

sample/month. The idea behind this approach is that those food types containing only one 

specific food product should be diminished in sample size to balance the ratio 

samples/supplier with the other food categories where multiple food products are included 

within a food type supplied by multiple suppliers. Moreover, upon discussion with the 

quality manager it was revealed that the frequency of consumption of those food types 

containing only one specific food product, is only half of the food products within the other 

food types. 
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Table 3.3. Number of samples required for a certain confidence level in order to detect a maximum 

fraction of contamination given all samples are negative (Evers, 2001; ICMSF, 1986). 

Fraction positive samples Confidence level 

(in %) 90% 95% 99% 

0.1 2 300 2 991 4 593 

0.2 1 150 1 496 2 299 

0.3 767 998 1 533 

0.4 575 748 1 149 

0.5 460 598 919 

0.6 384 499 766 

0.7 329 427 656 

0.8 288 374 574 

0.9 256 332 510 

1 230 299 459 

2 115 149 229 

3 77 99 152 

4 57 74 114 

5 46 59 91 

6 38 49 75 

7 33 42 64 

8 29 37 56 

9 25 33 50 

10 23 29 45 

 

3.2.4 Implementation of the sampling plan at the selected food service operation 

The sampling plan was implemented during a one-year period (September 2009 to October 

2010) to test the feasibility of the chosen approach. According to the above mentioned 

approach and taking into account the food service operation’s limitation of resources for 

microbiological analyses, it was decided to use for food products with risk score 7 a 

probability of 95 % and an indicative maximum set fraction of positive samples of 10 % 

which means that 29 samples have to be taken for those food types. For food products with 

a risk score 8 it is proposed to use a probability of 95 % and an indicative maximum set 

fraction of positive samples of 5 % which means that 59 samples have to be taken for those 

food types. For food products with a risk score 9 it is proposed to use a probability of 95 % 

and an indicative maximum set fraction of positive samples of 2 % which means that 149 

samples have to be taken for those food types. However, food products with a risk score 9 

were absent in the case study and therefore could not be sampled. In case of undercooked 

meat, dried vegetable products (aw < 0.6) and emulsified or non-emulsified sauces mixed 

with raw ingredients, only one food product is present within this particular food type and it 

is delivered by maximum two suppliers each year. Therefore a total of 12 samples (one 
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sample/month) for each of these food types was taken according to the assumed approach 

resulting in a maximum set fraction of positive samples of 22 % (with a probability of 95 %) 

(Table 3.4). In this case study a total of 123 samples of incoming raw materials and 87 

samples of meal servings (end products or its components) at the serving counter were 

taken and analyzed for multiple parameters (spoilage flora, hygiene indicators and 

pathogens) (Tables 3.4 and 3.5). After aseptically sampling, the food samples were 

transported in an icepack cooled, insulated cool box at ≤ 4°C to the laboratory. 

Microbiological analyses were performed in the laboratory within 6 h of sample collection. 

For enumeration, 10 g of each food sample was homogenized for 2 min in 90 ml of sterile 

peptone water. For detection of Salmonella and L. monocytogenes, a 25 g subsample was 

weighed in a stomacher bag and homogenized for 2 min in 225 ml of the respective 

(semi)selective medium, i.e. buffered peptone water for the detection of Salmonella and 

demi-Fraser for the detection of L. monocytogenes. Tenfold serial dilutions were made in 

sterile peptone water for microbial enumeration. For each parameter standardized methods 

(ISO) or alternative (rapid) methods validated according to ISO 16140:2003 were applied. A 

modified ISO 4833:2003 method (plating on PCA and 120 h incubation at 22°C) was used for 

the enumeration of aerobic psychrotrophic count; ISO 15214:1998 (plating on MRS with 

overlayer and 72 h incubation at 30°C) for the enumeration of lactic acid bacteria); YGC 

selective medium (Bio-Rad, USA) (72 h incubation at 22°C), an AFNOR validated method (n° 

NF V08-059:2002), was used for the enumeration of yeast; Coli-ID chromogenic medium 

(Biomérieux, France) (24 h incubation at 44°C) an AFNOR validated method (n° BIO 12/5 e 

01/99) for the enumeration of E. coli; ISO 21528-2:2004 (plating on VRBG with overlayer and 

24 - 48 h incubation at 37°C) for the enumeration of Enterobacteriaceae; ISO 6888-

1:1999/Amd1:2003 (plating on BP and incubation 24 - 48 h at 37°C) for the enumeration of 

Salmonella aureus. Enumeration of B. cereus was performed with ISO 7932:2004 (plating on 

MYP and 24 h incubation at 30°C). The detection of L. monocytogenes was performed using 

VidasLMO2 (Biomérieux, France), an AFNOR validated Enzyme-Linked Fluorescent assay 

(ELFA-) method (n° BIO-12/11-03/04). When positive results were obtained, enumeration of 

L. monocytogenes was performed on a sample of the positive food product according ISO 

11290-2:1998/Amd1:2004. Detection of Salmonella spp. was performed using Vidas Easy 

SLM (Biomérieux, France) also an AFNOR validated ELFA-method (n° BIO-12/16-09/05). 



 

 

Table 3.4. Overview of high risk categories of raw materials with their analysed parameters and microbiological criteria and guidelines 

 

Food Category Food Type Examples of food products Risk 

Category 

Number of  

proposed 

samples 

Number of  

analyzed 

samples 

Parameters analyzed Microbiological criteria & guidelines 

Acceptable levels at used by  

date/best before date 

(Red) Meat and 

meat products 

Fresh/undercooked (raw) meat Beef steak 8 59 12 TVC 

LAB 

Yeast 

E. coli 

Coagulase positive Staphylococci 

Salmonella spp. 

L. monocytogenes 

107 CFU/g 

107 CFU/g 

105 CFU/g 

103 CFU/g 

103 CFU/g 

Absence in 25ga 

102 CFU/ga 

Fish and seafood 

products 

Raw (frozen) fish and seafood Pollock fillet, hake fillet, white fish fillet, salmon steak, 

tuna steak, cod fillet, salmon fillet, fish cubes 

7 29 29 TVC 

LAB 

Yeast 

E. coli 

Coagulase positive Staphylococci 

Salmonella spp. 

L. monocytogenes 

107 CFU/g 

107 CFU/g 

105 CFU/g 

103 CFU/g 

103 CFU/g 

Absence in 25g 

102 CFU/ga 

Vegetables and 

fruits 

Pre-cut fresh vegetables and fruits 

(ready-to-eat) 

Mixed pre-cut lettuce, pre-cut cucumber slices, pre-cut 

tomatoes, grated carrots, grated red cabbage, grated 

white cabbage, pre-cut chicory    

7 

 

29 29 TVC 

LAB 

Yeast 

E. coli 

Coagulase positive Staphylococci 

Salmonella spp. 

L. monocytogenes 

108 CFU/g 

107 CFU/g 

105 CFU/g 

103 CFU/g 

103 CFU/g 

Absence in 25ga 

102 CFU/ga 

Dried vegetable products (aw < 0.6) Seasonings, dried herbs 7 29 12 TVC 

LAB 

Yeast 

E. coli 

Coagulase positive Staphylococci 

Salmonella spp. 

L. monocytogenes 

B. cereus 

104 CFU/g 

104 CFU/g 

103 CFU/g 

102 CFU/g 

103 CFU/g 

Absence in 25g 

102 CFU/ga 

104 CFU/g 

Composite foods Ready-to-eat refrigerated food products 

with substantial raw ingredients 

Feta salad, taboulé, Mexican salad, greek salad, celery 

salad, couscous salad, Bulgarian salad, beet salad 

7 29 29 TVC 

LAB 

Yeast 

E .coli 

Coagulase positive Staphylococci 

Salmonella spp. 

L. monocytogenes 

B. cereus 

107 CFU/g 

107 CFU/g 

105 CFU/g 

103 CFU/g 

103 CFU/g 

Absence in 25g 

102 CFU/ga 

105 CFU/g 

Ready-to-eat emulsified or non-

emulsified sauces mixed with raw 

materials 

raw meat spread 7 29 12 TVC 

LAB 

Yeast 

E. coli 

Coagulase positive Staphylococci 

Salmonella spp. 

L. monocytogenes 

107 CFU/g 

107 CFU/g 

105 CFU/g 

102 CFU/g 

103 CFU/g 

Absence in 25g 

102 CFU/ga 
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Table 3.5. Overview of high risk meal servings with their analysed parameters and microbiological 

criteria and guidelines. 

Food 

Category 

Food Type Risk 

category 

Number of  

proposed 

samples 

Number of  

analyzed  

samples 

Parameters  

analyzed 

Microbiological criteria 

& guidelines 

 Acceptable levels at 

used by date/best 

before date 

Composite  

Foods 

Salads 7 29 29 TVC 

LAB 

Yeast 

E.coli 

Coagulase positive 

Staphylococci 

Salmonella spp. 

L. monocytogenes 

10
8 

CFU/g 

10
7
 CFU/g 

10
5
 CFU/g 

10
3 

CFU/g 

10
3 

CFU/g 

 

Absence in 25g 

10
2 

CFU/g
a
 

 Sandwiches 7 29 29 TVC 

LAB 

Yeast 

E.coli 

Coagulase positive 

Staphylococci 

B. cereus 

Salmonella spp. 

L. monocytogenes 

10
8
 CFU/g 

10
7
 CFU/g 

10
5
 CFU/g 

10
3 

CFU/g 

10
3 

CFU/g 

 

10
5
 CFU/g 

Absence in 25g 

10
2 

CFU/g
a
 

 Hot meals/ 

constituents 

7 

 

29 29 TVC 

E.coli 

Enterobaccteriaceae 

Coagulase positive 

Staphylococci 

B. cereus 

Salmonella spp. 

L. monocytogenes 

10
6
 CFU/g 

10
3
 CFU/g 

10
3
 CFU/g 

10
3 

CFU/g 

 

10
5
 CFU/g 

Absence in 25g 

10
2 

CFU/g
a
 

a
 according COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs  

3.2.5 Interpretation of results and feedback on elaborated sampling plan 

Data processing was carried out with Microsoft Office Excel in order to develop graphics and 

tables to visualize the concentrations and the distribution of microbiological contamination. 

The results were compared with defined legal criteria (Anonymous, 2005, 2009). In the 

absence of legal criteria, microbiological threshold values established by the Laboratory of 

Food Microbiology and Food Preservation of Ghent (LFMFP-UGent) (Uyttendaele et al., 

2010) were used for comparison (Tables 3.4 and 3.5). When the results of the analysis 

exceed the threshold levels at end of shelf life (used by date/best before date), the results 

are indicated as unsatisfactory. After the one-year study, the results were evaluated and 

discussed with the quality manager of the food service operations and suggestions for 

further fine-tuning of the sampling plan were provided. 
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3.3 Results 

3.3.1 Food categorization and risk attribution 

Table 3.1 gives an overview of the identified food categories and food types on the 

inventory list of the food service operation and their attributed risks based on the scoring 

system. The major food categories are based upon origin/species/commodity of the food 

and encompass: milk and dairy products; (red) meat and meat products; poultry and poultry 

products; fish and seafood products; eggs and derivates; vegetables and fruits; composite 

(multi-ingredient) foods; chocolate, bakery and confectionary products; and beverages. Low 

risk food types (scores 0-3) present in the food service operation are marinated and 

acidified fish and seafood (e.g. anchovy); heat processed vegetables and fruits juices (e.g. 

orange juice); fermented/acidified vegetables (e.g. pickles); canned (ambient stable) 

vegetables and fruits (e.g. canned asparagus) and those food types belonging to the food 

category beverages (e.g. carbonated and non-carbonated bottled water). Moderate risk 

food types (scores 4-6) are heat processed (thermized/pasteurized) dairy products (e.g. milk 

based desserts); fermented or acidified dairy products (e.g. Gouda cheese); dried milk and 

dairy products (e.g. milk powder); heat processed meat products (e.g. cooked ham); 

fermented meat products (e.g. salami); heat processed poultry products (e.g. cooked turkey 

breast); heat processed fish and seafood (e.g. fish sticks); heat-processed eggs and derivates 

(e.g. cooked eggs); unprocessed fresh vegetables and fruits (e.g. oranges); ready-to-

cook/reheat refrigerated composite food products (e.g. nasi goreng); ready-to-cook/reheat 

frozen composite food products (e.g. spinach with herb cheese); emulsified or non-

emulsified sauces mixed with heat treated materials (e.g. mayonnaise based chicken 

sandwich spread); ambient stable acid products (e.g. ketchup); dry and sugared low 

moisture (aw < 0.85) chocolate, bakery and confectionary products (e.g. prebaked and pre-

packed French baguettes) and dry and sugared low moisture (aw < 0.65) chocolate, bakery 

and confectionary products (e.g. chocolate paste). High risk food types (scores 7-9) are 

undercooked meat (e.g. beef steak); raw (frozen) fish and seafood (e.g. hake fillet); pre-cut 

fresh vegetables and fruits ready-to-eat (e.g. mixed pre-cut lettuce); dried vegetable 

products (aw < 0.60) (e.g. seasonings); ready-to-eat refrigerated composite food products 

with raw ingredients (e.g. feta salad) and ready-to-eat emulsified or non-emulsified sauces 
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mixed with raw materials (e.g. raw meat spread). The high risk meal servings (or its 

components) can be categorized as salads, sandwiches and hot meals (Table 3.5) and are 

the result of the main production processes present in food service operation (Lahou et al., 

2012). 

3.3.2 Implementation of the elaborated sampling plan for verification of supplier 

selection and microbial quality and safety of end products 

3.3.2.1 Raw materials 

The concentrations and variability of the total viable count (TVC), lactic acid bacteria (LAB) 

and yeasts as well the microbiological threshold values as recommended in the guidelines of 

LFMFP-UGent (Uyttendaele et al., 2010) for the end of shelf life are shown in Figure 3.1. As 

the samples were analyzed, somewhere between production and end of shelf life, when 

they were supposed to be eaten, exceeding the threshold value of end of shelf life (i.e. 

worst case scenario) for these parameters may result in early spoilage and unacceptable 

sensorial quality, but in general will not cause harm to human health. TVC, LAB and yeasts 

relate to overall quality and unsatisfactory samples represent, if temperatures are respected 

(< 4°C), less qualitative products which may not in accordance with the specifications of the 

suppliers. The samples of the food type “pre-cut fresh vegetables and fruits (ready-to-eat)”, 

such as mixed lettuce, mixed bell peppers, red and white cabbage, are high (> 10
6
 CFU/g) in 

overall microbial contamination (TVC) and high (> 10
4
 CFU/g) in spoilage flora such as LAB 

and yeasts. However, ready-to-eat, raw, pre-cut vegetables often have high and variable 

microbial contamination due to contact with the environment pre-harvest (soil, water) or 

because they are prone to cross-contamination during washing and mixing in fresh-cut 

processing (Holvoet et al., 2012; Olaimat and Holley, 2012; Tzschoppe et al., 2012). 

Therefore, sensorial quality of fresh produce is rather linked to physiological processes such 

as anaerobic respiration or enzymatic browning and is often better assessed visual (Jacxsens 

et al., 2002). It is to a lesser extent related to levels of microbial quality indicators such as 

TVC, although yeasts and LAB are specific spoilage bacteria which can influence taste and 

odor of these products (Jacxsens et al., 2003). 
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Figure 3.1. Overview of concentrations (in log CFU/g) and variability of spoilage indicators of high risk raw materials used in food service operation. On 

the right axis the cumulative percentage is shown, while the microbiological reference value at end of shelf life is shown as a vertical line in the graph. 

N, number of samples; TVC, total viable count; LAB, lactic acid bacteria. 
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Dried vegetable products such as dried spices are high (> 10
4
 CFU/g) in TVC, but this is 

generally known. Vitullo et al. (2011) linked the presence of these high aerobic mesophilic 

bacteria to poor initial quality, cross-contamination or conditions that promote microbial 

growth. Also variety in levels of TVC of raw (frozen) fish and fresh/ undercooked meat (beef 

steak) were observed, where many samples of the meat and one sample of raw fish showed 

high counts (> 10
6
 CFU/g) of TVC. Whereas assumed that good manufacturing and hygiene 

practices during slaughter and storage/distribution would be better able to realize products 

with lower contamination levels and less variation in contamination loads, a more strict 

control and interaction with suppliers may provide improvement (Jacxsens et al., 2009a). 

Emulsified or non-emulsified sauces mixed with raw materials show higher variation of LAB 

and two samples (n= 12) showed high microbial counts (> 10
5
 CFU/g). In these food products 

LAB are the main spoilage flora (and thus coincides with TVC). Overall, high microbial counts 

(>10
5
 CFU/g) for TVC were observed for three samples (n = 12) just before use and 

consumption. Therefore no direct safety problem is assumed but no further prolonged 

storage of these products is recommended to prevent exceeding the microbiological 

threshold values and quality deviation. All results of the hygiene indicators are summarized 

in Table 3.6. The presence of enumerable E. coli was observed in 3 of the 88 samples (once 

in raw meat spread, once in lettuce and once in cucumber), although the analysis only 

indicated an estimate of mere presence of E. coli at ca. 10 CFU/g (detection limit of the 

enumeration method). S. aureus, an indicator of hygiene related to contamination of foods 

by humans, was not detected (< 10
2
 CFU/g) in any of the samples (n= 88) analyzed. Results 

of the food safety analyses are summarized in Table 3.6. Salmonella spp. (n= 112) were not 

detected. L. monocytogenes was detected in 11 of the 115 samples, in particular in (RTE) 

raw meat spread (5 of 12 samples) and raw fish (6 of 27 samples). All positive raw meat 

spread samples were below 10 CFU/g (detection limit of enumeration method) and thus 

below the maximum acceptable level of 10
2
 CFU/g at the time of consumption as stated in 

Regulation EC No. 2073/2005 for RTE foods. Raw fish samples contained low numbers of the 

pathogen (< 10 CFU/g) as well and if they were supposed to be eaten raw, they would have 

been within acceptable limits of the Regulation EC No. 2073/2005. Therefore, the presence 

of L. monocytogenes in these fish samples merely indicates that there is a “pressure” for L. 

monocytogenes contamination in this product (from fish catching or production 

environment) and indicates in this case there might be a better hygiene. 



 

 

Table 3.6. Detection and unsatisfactory results of hygiene indicators and pathogens. 

Food type Score No. of samples 

to be taken
a
 

E. coli
c
 Enterobacteriaceae

c,2
 S. aureus

d,2
 B. cereus

d
 Salmonella spp.

5
 L. monocytogenes

1
 

Fresh/undercooked (raw) meat  8 12 0/12
2
 - 0/12 - 0/12 0/12 

Ready-to-eat emulsified or non-

emulsified sauces mixed with raw 

materials 

7 12 1/12
1
 - 0/12 - 0/12 5/12 

Dried vegetable products (aw < 0.6) 7 12 0/12
1
 - 0/12 2/12

2
 0/12 0/12 

Raw (frozen) fish and seafoods 7 29 0/29
2
 - 0/29 - 0/24 6/27 

Pre-cut fresh vegetables and fruits 

(ready-to-eat) 

7 29 2/23
2
 - 0/23 - 0/23 0/23 

(Composite) ready-to-eat refrigerated 

food products substantial raw 

ingredients 

7 29 0/29
2
 - 0/29 2/6

4
 0/29 0/29 

Total raw materials 

 

  123 3/88 - 0/88 4/18 0/112 11/115 

Sandwiches 7 29 0/29
2
 - 1/29 - 0/29 1/29 

Salad bar 7 29 0/29
2
 - 0/29 0/6

4
 0/29 4/29 

Hot meals 7 29 0/29
2
 0/29 0/29 0/29

4
 0/29 0/29 

Total end products 

 

  87 0/87 0/29 1/87 0/35 0/87 5/87 

Total detected
b
   210 3/175 0/29 1/175 4/53 0/199 16/202 

Total unsatisfactory
e
   210 0/175 0/29 0/175 0/53 0/199 0/202 

a
 Samples analyzed can deviate for hygiene indicators and/or pathogens depending on the type of food product sampled. 

b
 Samples are indicated as detected when micro-organisms are present (after enrichment) or above the detection limit of the method (in case of enumeration).  

c
 Detection limit of 10 CFU/g 

d
 Detection limit of 100 CFU/g,  

e
 Samples are unsatisfactory when the results exceed following threshold values at end of shelf life  

1
 > 10

2
, 

2
 > 10

3
, 

3
 > 10

4
, 

4
 > 10

5
, or when 

5 
presence/25g. 
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However, the presence of L. monocytogenes should be avoided in incoming materials 

because this increases the pressure on the FSMS of the food service operation. For example, 

proper cleaning and disinfection procedures should be applied in the food service operation 

to control cross-contamination of L. monocytogenes. B. cereus was enumerated in 4 of 18 

samples (in particular in pasta salad, potato salad and seasonings), but only in low levels 

indicating the mere presence of the B. cereus at levels near the detection limit of the 

method (10
2 

CFU/g) and thus in compliance with good hygienic practices and far below the 

overall accepted safety level of 10
5
 CFU/g (Uyttendaele et al., 2010). Although the presence 

of low levels of L. monocytogenes and B. cereus does not immediate raise public health 

concerns and are in compliance with current national action limits or EU legislation. Still the 

mere presence of these pathogens demands continuous attention of implementation of 

adequate control measures in the processing line of the meals preparation, e.g. low 

temperatures and short storage times, are necessary to prevent the growth of these 

pathogens in those raw materials. Proper cleaning and disinfection of infrastructure, 

equipment and utensils is needed to prevent the persistence and formation of biofilms by 

these pathogens. 

3.3.2.2 Served meals 

The concentrations and variability of the quality indicators (TVC, LAB, yeasts) and the 

microbiological threshold values as recommended in the microbiological guidelines of 

LFMFP-UGent (Uyttendaele et al., 2010) are indicated in Figure 3.2. The results for the 

quality indicators of the raw materials, especially of the ready-to-eat, pre-cut vegetables are 

also reflected in the results of the spoilage indicators of the sandwiches and salad bar, 

which is mainly composed of those raw fresh-cut pre-packed vegetables. Higher TVC count 

of the vegetables leads inevitably to higher TVC count in the served meals, especially 

sandwiches and salads. Therefore, TVC is not considered a good indicator of overall quality 

and good practices during production of those served meals. For hot meals, as expected due 

to prior heat treatment, mainly TVC levels of < 10
3
 CFU/g were observed. High variability for 

LAB was observed, which is a reflection of the variable quality of the raw materials used. In 

4 of 58 sandwich and salad samples unacceptable levels (> 10
7
 CFU/g) of LAB were 
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observed. Unacceptable levels (> 10
5
 CFU/g) for yeasts were observed in 4 of 29 salad 

samples.  

TVC

LAB

Yeast
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n = 29
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Figure 3.2. Overview of concentrations (in log CFU/g) and variability of spoilage indicators of high 

risk meals produced in food service operation. On the right axis the cumulative percentage is 

shown, while the microbiological reference value at end of shelf life is shown as a vertical line in 

the graph. n, number of samples; TVC, total viable count; LAB, lactic acid bacteria. 

 

Results of the hygiene indicators and pathogens are summarized in Table 3.6. E. coli was not 

detected, meaning it was below the detection limit of the enumeration method (10 CFU/g) 

in all 87 samples. Also Enterobacteriaceae are below the detection limit of the enumeration 

method (10 CFU/g) in all 29 samples. S. aureus was enumerated in 1 of 87 samples analyzed 

(presence estimated at 10
2
 CFU/g). This indicates that there is no major problem with the 
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overall hygiene in the food service operation. As for the pathogens, L. monocytogenes could 

be detected in 5 of the 87 samples (in particular in sandwiches and salads with raw meat 

spread), but if present the maximum acceptable level of 10
2
 CFU/g at the time of 

consumption (Anonymous, 2005) was not exceeded. Upon enumeration of L. 

monocytogenes in the positive samples, none of the samples exceeded the level of 10 CFU/g 

(detection limit of the enumeration method). Contamination of L. monocytogenes, which 

seems to have taken place at the manufacturer operation, could not be reduced because no 

heating step takes place for this meal type in the food service operation. Therefore as a 

corrective action, intensification of sampling for this particular food type by supplier is 

needed and contact needs to be taken with the supplier to inquire on the performance of 

his GMP and HACCP plan to control contamination of L. monocytogenes. The low 

concentration of the pathogen in the sandwiches and salads indicates that on the occasion 

of this sampling event well controlled storage conditions are applied in the food service 

operation not enabling outgrowth to numbers above the limit of 100 CFU/g at the time of 

consumption. As well, no L. monocytogenes was detected in hot meals which indicates that 

separated storage facilities and a forward flow among raw materials and hot meals are 

present in the food service operation reducing the risk of cross-contamination. 

 

3.4 Discussion 

Categorizing all food items on the inventory list of the institutional food service operation, 

by itself, is a challenging issue. Many approaches exist to set up food categories, but the 

methodology behind them depends on the goal (EFSA, 2008, 2010; Greig and Ravel, 2009; 

Painter et al., 2009). Many of those approaches are made in the frame of consumption 

surveys and are thus mainly based upon the nutritional value and composition of foods. In 

the present study the food categorization is made to underpin the development of a 

focused microbiological sampling plan to contribute to the verification of supplier selection 

and the functioning of the prerequisite and HACCP program in an institutional food service 

operation. The chosen approach for food categorization is based upon commodity type and 

the processing and preservation method applied. This type of food categorization has 

previously been used to define food categories in ISO 16140 (the technical protocol for 
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validating alternative methods in the field of microbiological analysis of food, animal feeding 

stuffs). However, the processing method is not always taken into account. Processing 

methods are important in reducing the risk of a particular food type and therefore it is of 

interest to be taken up in the food categorization of this study. Moreover, composite foods 

are typical products used or produced in food service operations and therefore were 

assigned to an individual food category in this study. Composite foods are defined as those 

food products containing ingredients from more than one of the seventeen commodities. A 

distinction is made on the level of this category for the different food types based on ready-

to-eat and ready-to-reheat/ready-to-cook (Daelman et al., 2013). A sampling plan for either 

incoming raw materials (to contribute to the verification of supplier selection) or food 

dishes and sandwiches served to consumers (to verify hygienic practices and control 

measures to provide sensorial acceptable and safe foods) is preferably elaborated on the 

basis of a risk classification of food products. This enables to focus sampling of food 

products and to maximize information on the performance of the FSMS within the given 

limitation of resources. A scoring system was used which is based upon i) epidemiological 

association of the food type with reported foodborne outbreaks, ii) the reported prevalence 

of foodborne pathogens and level of hygiene indicators in the food type, and iii) the 

potential of microorganisms (pathogens but also spoilage microflora) to grow or survive 

during storage and/or further processing. However, as with any system used, bias can occur 

in the scoring of parameters for risk attribution e.g. due to the lack of notification, 

investigation or publication of foodborne outbreaks (Greig and Ravel, 2009; O’Brien et al., 

2006). Also bias in prevalence data may occur because of restrictions/limitations in the 

number of samples taken and thus uncertainty associated to the obtained prevalence data. 

Therefore general knowledge derived from scientific literature and some standard 

information from books was supplemented with regional data taken from the annual EU 

baseline reports and the national monitoring programs. It is recommended that risk 

attribution to the food categories and food types is revised on a regular basis and kept up to 

date with available information on the hazards in foods. For example in the present 

proposal, Norovirus and the wide group of pathogenic verotoxin producing E. coli (VTEC) 

strains have not been included as microbiological parameters. Reported outbreaks in the EU 

or Belgium with non-O157 human pathogenic VTEC strains and its association with a food 

type are scarce. Norovirus outbreaks are often linked to institutional catering and food 
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handlers being identified as the source of infections but control measures would probably 

be more set in the processing line related to training of staff members handling food to pay 

attention to good hygienic practices and in particular hand washing. In addition Norovirus 

and the wide range on human pathogenic VTEC strains were not taken up in the sampling 

plan as well because the (ISO) standard methods of analysis are only published in 2013 and 

not yet established routine methods. Both Norovirus and VTEC detection use PCR (i.e. 

Polymerase Chain Reaction) methods (ISO/TS 15216:2013 and ISO/TS 13136:2012) which 

are currently still costly in execution, performance characteristics have not been fully 

established and relevance of the outcome of these PCR methods for public health risk is still 

debated. Still in due time, when more information on epidemiological association and 

methods are getting accessible and affordable also Norovirus and human pathogenic VTEC 

might be taken up in the sampling plan. Therefore, the present risk classification of food 

types and selection of microbiological parameters is not definite, but will need updates 

when more information gets available. Adaptations to the proposal will also be needed if 

applied in a food service operation in perhaps another country as in the present study there 

was a regional focus on EU and Belgium for the scoring of epidemiological association. Upon 

implementation of the food categorization and scoring of food items on the inventory list in 

the selected food service operation, it was noticed that only a limited number of food types 

were assigned a risk score of 7 or 8 and that no food types of risk score 9 were present in 

the inventory list. After feedback with the quality manager it became clear that the food 

service operation has reoriented their business since 2000 from on-site cooking to 

regeneration of half-fabricates. Their main processes can be identified as (i) the preparation 

of a sandwich and/or salad from pre-cut ready-to use vegetables, (ii) the preparation of a 

hot meal starting from unprocessed raw or (undercooked) frozen raw materials and 

preparation out of packaging (possibility of post-processing contamination) and (iii) 

production of a hot meal starting with cooked products in reheating bags (no post-

processing contamination can occur) (Lahou et al., 2012). It was a strategic decision, partly 

as the consequence of the elaboration of the HACCP plan at that time, to reduce the risks by 

limiting the introduction of unprocessed (raw) high risk food products into the kitchen 

environment. This explains also the long list of composite foods and pre-cut fruits and 

vegetables (RTE). The limited number of class 7 and 8 risk food products which are currently 

present, are these food components for which no alternative (lower risk) product is 
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available to be taken in without affecting the sensorial characteristics. For example, fully 

processed (cooked) fish or beef steak is not available or purchased as such because it will be 

too dry to eat after a reheating step before serving. Another point of attention noted when 

discussing the sampling plan with the quality manager of the food service operation are the 

difficulties sometimes established in setting and control of specifications for the various at 

risk food categories, as was set for average and low risk food products. It was noted that 

incoming raw materials in the selected food service operation were not always directly 

supplied from manufacturers, but were bought via middlemen from wholesale business, 

which sell a wide range of food items. Therefore joint decision making on a set of 

specifications and in particular acquiring proof of compliance testing on the particular raw 

material (e.g. for at risk food categories of risk score 4 (or higher) as suggested in the 

sampling plan) was perceived to be difficult. This stresses thus the need to verify supplier 

selection and to perform analysis of the purchased raw materials, in particular for the high 

risk food categories (of risk score 7, 8 and 9) as suggested in this study, in frame of on-site 

control. The verification of suppliers’ selection can be performed by visual controls for 

quality when food products are delivered, by complaints of customers, but also by sampling 

food products and analyzing them for different microbiological parameters (the frequency 

and type of parameters analyzed depending upon the food type). Sampling is providing 

objective results and reveals some information on the quality and safety of the products 

(which cannot be visually checked) and thus contributes to the verification of supplier 

selection. Therefore, once a supplier is selected and contracted and is delivering food 

products to the food service operation they (and their goods) should be evaluated in the 

framework of the food services’ FSMS. Besides, good microbiological quality of incoming 

raw materials contribute to good microbiological quality end products when the 

prerequisite programs and HACCP system is performing well (Jacxsens et al., 2009b). This 

was noted in the outcome of the microbiological sampling of end products which was 

executed in the present study. However, as shown in this case study, it is not recommended 

to use TVC as an indicator of overall quality of incoming fresh produce. Because TVC is to a 

lesser extent related to sensorial quality, it is recommended to judge the quality of fresh 

produce visually, based on physiological processes such as anaerobic respiration and 

enzymatic browning. However, LAB and yeasts can still be assessed on fresh produce 

because these are specific spoilage bacteria which can influence the taste and odor of these 
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products. Besides, TVC is also no reliable indicator of good practices during the production 

of cold served end products, such as sandwiches and salads. However, TVC can still be useful 

to judge good practices during the production of hot meals. Although sampling plans have 

intrinsic limitations in assessing the quality and safety of the foods sampled, it was shown 

useful to reveal major non-compliances and opportunities to improve the FSMS in place. 

Points of attention deduced in the current case study were the overall microbiological 

quality of sandwiches and salads served, as well as the control of L. monocytogenes in raw 

meat spread and fish. The overall quality of sandwiches and salads is related to the quality 

of the raw materials used to prepare these. As seen in this case study, the spoilage flora 

were high in numbers on the samples of the incoming fresh produce. This resulted in 

unacceptable levels of LAB and yeast in the served sandwiches and salads. Therefore it is 

important to have a high flow-through of these raw materials, but also to import good 

quality raw materials, to avoid a diminished quality of sandwiches and salads served to the 

consumer. Besides, as noted in the results, the analyses confirmed the presence of L. 

monocytogenes in 7.9 % (n= 202) of the analyzed samples, but enumeration of samples of 

positive food products showed always levels < 10 CFU/g which is lower than the maximum 

tolerable level (10
2
 CFU/g) in the EU for RTE food products at time of consumption. 

Nevertheless under good hygienic practices one would seek to prefer absence of L. 

monocytogenes in 25 g. L. monocytogenes was present in 9.6 % (n= 115) of the analyzed raw 

materials indicating the potential introduction of the pathogen in the production 

environment which may lead to contamination of other raw materials or attachment on 

food contact surfaces. Therefore supplier control, storage conditions and cleaning and 

disinfection are important and need to be controlled to avoid the entrance of this pathogen. 

The importance of supplier control is illustrated by the results from Table 3.6. L. 

monocytogenes was present in six samples of the food samples analyzed from the category 

“raw (frozen) fish and seafoods” which are delivered by three suppliers (two bigger 

suppliers and one smaller supplier). From the six positive fish samples, four food products 

were delivered by one supplier (n= 6), the other two positive samples were delivered by the 

biggest supplier (n= 18). Therefore, if analyses reveal that four out of six (67 %) analyzed 

samples delivered by one supplier contained L. monocytogenes in 25 g, while the other 

supplier delivers two positive samples out of eighteen (11 %) food samples, it can be 

deduced that the first supplier has more problems to compliance its specifications. Thus 
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from the results it is seen that one supplier deliver more contaminated products than the 

other one. Therefore, when contracts have to be renewed, these complaints can be taken 

into account. Performing a pressure on the supplier to improve the quality of their food 

products, if not, they may lose a customer (psychological pressure) because a food service 

operation should avoid the potential introduction of the pathogen to reduce the risk on 

cross-contamination. Overall, although microbiological analyses are useful as can be 

deduced from the findings in the present case study above, microbiological sampling cannot 

assure food safety and food quality on its own, but can only be used in the evaluation 

whether a FSMS is providing the assumed control (Van Schothorst et al., 2009). The 

presented sampling plan in particular aims at process control and not immediately batch 

control. In fact, at the frequency of sampling suggested in this study the sampling of high 

risk foods (score 7) provides 95 % confidence that no more than 10 % of samples are 

unsatisfactory. With these low numbers of samples, and sampling plans only detecting gross 

errors, positive results should be seen as a very severe outcome. Satisfactory samplings 

show only that defectives are below 10 % which is, taking into account the large numbers of 

meals served per year (ca. 1 000 000) not sufficient, but then positive samples show that 

there is a serious violation against good hygienic or good manufacturing practices. So, it is 

acknowledged that this sampling plan will only pick up the major non-compliances and thus 

major (systematic) failures in the functioning of the preventive systems approach. However, 

upon discussing with the quality manager, it was established that the food service operation 

will react on each unsatisfactory sample that they detect and take corrective actions. If it is 

noticed that if a particular supplier does not respond to these complaints as a result of the 

sampling plan or when he can not comply with the imposed specifications, it can be decided 

by the food service operation to remove this supplier from the supplier list, as happened in 

the case of the raw meat spread supplier. This creates a pressure on the supplier to improve 

their FSMS, which will gradually lead to an improvement of food safety and quality of food 

products. The same reasoning can be applied to judge the results of their own produced end 

products when on-going verification with the sampling plan is performed. When a 

systematic failure is present in their food management system, an increasing number of 

unsatisfactory samples will be detected which will generate the awareness of a systematic 

failure or non-adherence to good hygienic practices which is communicated to the 

personnel and should lead to corrective actions. In addition, in our case study, the mere 
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presence of a sampling plan raised awareness and vigilance with personnel and provided 

incentives to the suppliers on the adherence to good hygienic practices and appropriate 

control measures. Moreover, Powell et al. (2011) stated that individuals who, among others, 

dedicate resources to evaluate supplier practices and focus on food safety risks within an 

organization, contribute to a good food safety culture. A food safety culture is the way in 

which an organization or group approaches food safety, in thought and in behavior, and is a 

component of a larger organizational culture (Powell et al., 2011). The implementation of a 

focused sampling plan was a starting point but needs continuation to build a track record of 

results. The sampling plan is prone to updates and modifications depending upon the 

increase in available information on hazards in foods, the changes in the type of meals 

served and suppliers, the performance of the HACCP system and the resources of the food 

service operation. With regard to the current frequency of sampling, there was a basic 

statistical input on indicative numbers to be taken of incoming raw materials and served 

meals to monitor microbiological safety and quality but further modifications on this 

elaborated sampling plan may be taken and can be adopted to be fit for purpose. In this 

case study a total of 210 samples was taken over a 10 month period (catering facility closed 

8 weeks), which corresponds to 21 samples/month including raw materials (12 samples) and 

served meals (9 samples). This number of samples was a starting point and at the time 

considered accountable within the resources of the food service operation in particular if 

knowing that the majority of food service operations perform no microbiological analysis or 

only to a very limited extent. Besides, upon continuation and with the track record of the 

obtained results, the sampling plan will and can be further tailored and be dynamic. For 

example the quality manager may have prior information available from interactions with 

the supplier or the personnel or audit reports, e.g. results of sampling and analysis of 

previous years, complaints from consumers or concerns picked up from outbreak reports in 

the media, knowledge on structural problems at some supplier or within defined steps in 

the food service operation, etc. None of the latter information was available for the current 

case study, but if present it can be used to focus and adapt the sampling plan. It is clear that 

with limited resources and a restricted number of samples for analysis the sampling plan is 

not able to guarantee food safety and quality. Limitation in resources, in particular in 

combination with a wide variety of food types typically handled in food service operation, 

will evidently restrict the statistical power of sampling, enabling only the detection of gross 
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errors in compliance to specifications or performance of the FSMS. Still, it does mean that if 

under these conditions positive (i.e. non-compliant) samples are noted, there is a situation 

out of control and an urgency to take corrective actions. However, if no sampling and 

analysis is done at all, there is no knowledge gathered on the microbiological status of either 

incoming raw materials or meals served and issues like the one of the L. monocytogenes in 

the meat spread in the present case study would go undetected. Also if no sampling and 

analysis is performed, there is no output to suppliers or staff members, involved in food 

preparation, that food safety and quality is actually controlled upon and that adherence to a 

proper functioning FSMS is of importance. Thus the aim of the elaboration of the sampling 

plan in the present study is rather a pragmatic one. Although the main goal is to detect 

major non-compliances in food safety and food quality of delivered raw materials or meals 

served, also additional benefits can be obtained. The mere implementation of the sampling 

plan and communication on this to suppliers probably provides a pressure on the supplier to 

deliver goods in accordance to set specifications. In addition, having a set of actual results 

available of taken samples and communication on this to the staff members may increase 

awareness and highlight the importance of food safety and quality within the food service 

operation management. Apart from a preventive GMP and HACCP systematic approach, the 

presence of commitment by all involved to food safety culture is still the major leads in 

providing safe and qualitative food to the consumers.  

 

3.5 Conclusion 

A proposal on microbiological risk categorization of incoming raw materials and food served 

to consumers is provided to set up a focused sampling plan in food service operations. It 

was shown upon application of the focused sampling plan at our university (non-profit) food 

service operation that the approach taken can deduce major non-compliances and 

systematic failures in “best practices” of both suppliers and the food service operation itself. 

Moreover, it may serve to build a systematic track record of the well-functioning of 

assurance activities. This is important to serve as a baseline in case of complaints or external 

audits and it will be complementary to systematic visual checks on hygiene, registration of 

times and temperatures at critical control points and training of personnel to guarantee safe 
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foods. However, the sampling plan is prone to updates and modifications depending upon 

the increase in available information on hazards in foods, changes in the type of meals 

served and suppliers, the performance of the HACCP system and resources of the food 

service operation. 
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Abstract 

The unique aspects of a hospital environment, such as the multitude of dietary needs and 

thus the variety of meals to be served and incoming (raw) materials to be used, challenge 

the development and application of appropriate control and assurance measures to 

guarantee food safety. Besides, Listeria monocytogenes is considered a risk for most food 

service operations producing and serving ready-to-eat foods. Therefore the Food Safety 

Management System (FSMS) of a hospital food service operation (FSO) has been evaluated 

toward L. monocytogenes with an extensive questionnaire in the preset of this case study. In 

addition, 49 samples of food products and 145 environmental samples were taken and 

analyzed for L. monocytogenes to verify the implemented control measures. From this case 

study, it becomes clear that incoming (raw) materials, produced final products and their 

immediate supply to patients/consumers are high risk situations. This was demonstrated by 

the presence of L. monocytogenes in six incoming (raw) materials (n= 19) and one final 

product (n= 9). These risky situations are in need to be mitigated by the implementation of 

proper control measures, e.g. intensified supplier control, low storage temperatures, 

cleaning and disinfection to control cross-contamination. However major improvements can 

be made on the hygienic design of equipment and facilities and on the level of the sampling 

design. In terms of assurance activities, such as setting up a sampling plan, only a basic level 

was obtained for the validation and verification of their FSMS. This case study illustrates 

that the combination of data from the questionnaire together with data of the sampling 

result in an overview on the performance of the current FSMS and that major non-

compliances and possibilities for improvement in the system can be defined. 
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4.1 Introduction 

The foodborne pathogen L. monocytogenes is the causative agent of listeriosis, a severe 

disease with high hospitalization rates and mortality rates ranging from 16 to 30 % (Cairns 

and Payne, 2009; Denny and McLauchin, 2008; EFSA, 2009-2012; Gandhi and Chikindas, 

2007). The FAO/WHO reported yearly incidence rates of 0.3 - 7.5 cases per million people in 

Europe (FAO/WHO, 2004). Although rates of listeriosis have remained stable, a changing 

pattern of human listeriosis can be observed in Europe (EFSA, 2009-2012; Gillespie et al., 

2006; Goulet et al. 2008). Listeriosis is now affecting the elderly (> 65 years) population 

more often and pregnant women less frequently (Metelmann et al., 2010; Muñoz et al., 

2011). It has been shown that the majority of these elderly persons are suffering from 

underlying diseases and therefore most listeriosis infections are occurring in immune-

compromised elderly persons, which form part of the hospital population (FAO/WHO, 2004; 

Gillespie et al., 2010; Muñoz et al., 2011). Moreover, such vulnerable persons are more 

likely than healthy individuals to be affected by low numbers of a pathogen and are more 

likely to suffer severe consequences of infection (Lianou and Sofos, 2007; Lund and O’Brien, 

2009). Lund and O’Brien (2009) summarize in their review foodborne L. monocytogenes 

outbreaks in health care settings between 1997 and 2008. From these data it can be 

concluded that hospitals were involved in six outbreaks of L. monocytogenes infection and 

that cases could be linked to consumption of ready-to-eat (RTE) foods. Surveillance and 

epidemiological data also revealed an association between food handling at retail and food 

service establishments and the incidence of foodborne illness (Lianou and Sofos, 2007). 

However, no studies about the prevalence of L. monocytogenes in food handling areas of 

hospital food service operations were retrieved, although data on the distribution and 

transmission of L. monocytogenes in hospital food-processing environments and retail can 

be found in literature (Hoelzer et al., 2011; Lund and O’Brien, 2009; Rodriguez et al., 2011). 

These and other studies on the potential transmission of L. monocytogenes within retail and 

food service operations revealed that the potential sources of the organism include the 

environment (utensils and equipment), food handlers and incoming raw or processed 

products that have been contaminated after a lethal treatment at the manufacturing facility 

(Lianou and Sofos, 2007; Tompkin, 2002). Besides, high prevalence data of L. 

monocytogenes in RTE products and on food contact surfaces at retail and commercial food 
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service operations can be found (Hoelzer et al., 2011; Lianou and Sofos, 2007). This 

necessitates the implementation of appropriate control and assurance measures to prevent 

foodborne outbreaks within a hospital. However, this is challenged by the unique aspects of 

retail and food service operations, such as variety of meals to be served and incoming (raw) 

materials to be used. Therefore, the purpose of this study was to evaluate the current 

implemented control and assurance activities toward L. monocytogenes within a hospital 

food service operation. This was performed using an extensive questionnaire, which can be 

used as a self-assessment tool, combined with additional samples of incoming (raw) 

materials, meal components, final products and (non-) food contact surfaces. The 

combination of the data from the questionnaire together with the data of the sampling, 

results in an overview on the efforts taken to prevent L. monocytogenes (re)contamination, 

reveals major non-compliances and defines possibilities for improvement in the FSMS. 

 

4.2 Materials and methods 

4.2.1 Characterization of the hospital food service operation 

A Belgian hospital food service operation with approximately 120 employees has been 

selected for the case study. This hospital is inspected and certified for its legally demanded 

self-checking system, based on good practices and HACCP, according to EU Regulation 

852/2004 (Anonymous, 2004) and relevant Belgian legislation (Anonymous, 2003). Meals 

are prepared and cooked in the on-site hospital kitchen and distributed directly to the 

patients under responsibility of the nursing staff or are served in the hospital canteen which 

is accessible for patients, visitors and staff. The hospital food service operation is working 

with two production lines. One production line, referred to as “hot kitchen”, is used to 

produce hot meals from raw materials, ingredients or cooked half-fabricates. Another 

production line, referred to as “cold kitchen”, is used to produce cold meals such as salads 

and sandwiches. The hot kitchen, where food handlers start with processing raw materials 

(e.g. frying of the meat, cooking of vegetables), is the most important production line 

producing approximately 1 200 hot meals/day. As soon as the food is prepared, it is kept at 

temperatures of >65°C in hot water baths until lunch time. Just before serving time all food 
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handlers are involved in composing the meal on a plate, thus with risk of post-

contamination, according to dietary needs of patients. Final composed meals are then 

collected in preheated trolleys to transport them to the patients. The cold kitchen processes 

(e.g. cutting of vegetables) and assembles raw vegetables and ready-to-eat products (e.g. 

smoked salmon) into salads or sandwiches which are mainly served in the hospital canteen. 

In total approximately 2600 meals are produced each day consisting of 600 patient 

breakfasts, 700 hot patient meals, 500 hot canteen meals, 700 patient dinners (mainly cold 

meals) and 100 cold canteen meals. 

4.2.2 (Self-)assessment questionnaire 

The objective of the questionnaire is to analyze and assess a selected number of major food 

safety management activities to get a broad and overall impression on the efforts taken to 

prevent, in this case study, L. monocytogenes (re)contamination. Therefore the context in 

which the hospital food service operates and which puts demands on the FSMS, the level of 

implemented core assurance and core control activities of the food safety management, and 

the microbiological system performance which is the output of a FSMS (Figure 4.1) were 

assessed with the (self-) assessment questionnaire which is composed of lists of indicators 

(Table 4.1) (Jacxsens et al., 2010). The (self-)assessment questionnaire was developed for 

food processing companies by Jacxsens et al. (2010) and Luning et al. (2008, 2009, 2011a) 

but have been slightly adapted for its use in (hospital) food service operations. The modified 

indicators for food service operations are indicated with an asterisk in Table 4.1. The 

situations/levels of the different indicators were assessed with an on-site visit and a 3 h 

face-to-face interview with the HACCP-coordinator of the hospital food service operation. 

4.2.2.1 Structure of (self-)assessment questionnaire 

The questionnaire is subdivided into a part with context indicators to assess the situation in 

which the hospital food service is operating, a part with activity indicators to assess the 

currently implemented core assurance and core control measures and a part with 

microbiological system performance indicators for assessing the output of the food safety 

management in place (Figure 4.1). 
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Core assurance activities
Product 
characteristics

Process
characteristics

Organizational 
characteristics

Environmental 
characteristics

Setting system requirements

Validation
Verification

Documentation and record keeping

Core control activities

Preventive measures design

Intervention processes design

Monitoring system design

Operation control design

System 

Performance

• system performance 
indicators

• sampling

CONTEXT
FOOD SAFETY MANAGEMENT SYSTEM 

ACTIVITIES
SYSTEM OUTPUT

 

Figure 4.1. Structure and relationship between the groups of the (self-)assessment 

questionnaire 

 

The context has been defined as a condition, characteristic or situation which is a given fact 

or cannot be easily changed on the short term, but which can influence the performance of 

the FSMS. Contextual factors include product, process, organizational and chain 

environmental characteristics. Core control and assurance activities form the actual FSMS 

where assurance activities such as setting system requirements, validation, verification,... 

have the aim to provide evidence and confidence to stakeholders. Control activities are 

activities that create circumstances to prevent entry and/or growth of pathogens in food 

production systems (preventive measures design), activities that inactivate or eliminate 

pathogens in order to reduce them to acceptable levels (intervention process design), 

activities that measure (critical) product or process parameters (monitoring system design) 

and activities that concerns the way the activities are operating in practice (operation 

control strategies) and have the aim of keeping product properties, production processes 

and human processes between certain acceptable tolerances. The system output was 

assessed in the questionnaire with system performance indicators to provide an indication 

of the current status of the functionality of the implemented FSMS, i.e. what is the expected 
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quality and safety of the meals produced in the hospital food service operation and how is 

their FSMS currently evaluated by third parties. 

4.2.2.2 Indicators of the (self-)assessment questionnaire 

The list of indicators used in the questionnaire is shown in Table 4.1. The questionnaire 

comprises 15 context indicators, 34 activity indicators and 7 system performance indicators. 

Each context indicator (Figure 4.2A) has a grid with descriptions of three contextual 

situations (low, moderate and high risk) to assess the risk type of the food service operation. 

A more risky context will put higher demands on the FSMS e.g. incoming (raw) materials 

with potential presence of pathogens will demand cooling conditions, more severe supplier 

selection and also a strict follow up during processing. Each activity indicator (Figure 4.2B) 

has a grid with descriptions of four different levels (not applicable, basic, generic and 

advanced) of performance where an activity level will be classified as basic when the activity 

is based on companies own information and history and when general working 

methodology is applied. A generic level is assigned when the activity is based on ‘best 

practices’ or ‘best present technology’ and is based on generic sector information. An 

advanced level will be assigned if the activity is based on scientific knowledge, adequate 

information and tailored to the specific situation of the food service operation. Each system 

performance indicator (Figure 4.2C) has a grid with descriptions of four different levels 

(absent, poor, moderate and good) of microbiological performance. The HACCP-coordinator 

had to assign for each indicator which level or situation was most representative for his food 

service operation. 

4.2.2.3 Interpretation of the (self-)assessment questionnaire 

The indicators of the assessment will create a profile of the FSMS. In case of context 

indicators, a more risky contextual situation is expected to result more easily in food safety 

problems, and therefore higher demands will be put on the FSMS. In case of activity 

indicators, a higher/more sophisticated level of control and assurance activities means that 

the food service operation has a more advanced FSMS in place, and can control their 

microbiological food safety output better. In case of the system performance indicators, a 

better system performance means that the likelihood of food safety problems is reduced. 
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A. Example of a context indicator 

In which of the following situations would you place the risk of the meals in your kitchen? 
Risk of meals 

Assumption: Meals which are susceptible to pathogen growth or toxin formation (due to the intrinsic product properties and or applied 

inactivation technique), increase the chance on lower food safety performance, and put higher demands on the FSMS by requiring 

advanced control and assurance activities. 

 

Situation 1 (low risk) Situation 2 (moderate risk) Situation 3 (high risk) 

Major meals are microbiologically 

stable (aw <0.6 or pH <4.2 or contains 

intrinsic antimicrobial agents).  A 

complete inactivation of the flora 

takes place and post-contamination is 

not likely. The meals can be served as 

bought and do not require handling 

before service. 

The meals have following characteristics: 

0.98>aw>0.6 or 4.2 <pH <6.5 or contains no 

antimicrobials). Contamination of meals is not 

likely to occur. The meals are cooked/reheated 

and then immediately served. 

 

The meals have following characteristics: aw 

>0.98 or pH 6.5-7.5 or contains no 

antimicrobials). Contamination of meals can 

occur (no inactivation of original flora or 

post-contamination). The meals are fresh-

type meals or hot-held meals. 

 

 

B. Example of an activity indicator. 

At which level would you place the method regarding the hot-holding of the meals in your kitchen? 
Hot-holding methods 

Assumption: Adequate hot holding methods better maintain strict temperature conditions to prevent growth of micro-organisms and 

pathogens, which will positively contribute to food safety. 

 

Level 0 (not applicable) Level 1 (basic) Level 2 (generic) Level 3 (advanced) 

Hot-holding of meals is not 

applied in the kitchen. 

Hot-holding method is based on 

company knowledge/ experience 

and has not been tested on 

effectiveness for 

kitchens ‘specific food production 

system. 

Hot-holding method is based on 

sector guidelines, legislative 

requirements and/ or expert 

knowledge, but has not been 

tested on effectiveness for 

kitchens’ specific food 

production system. 

Hot-holding method is based on 

legislative requirements/ 

guidance documents but 

adapted for own production 

process and tested on 

effectiveness for kitchens’ 

specific food production 

system. Actual product 

temperature is checked for 

different circumstances. 

 

C. Example of a system performance indicator 

At which level would you place the customers’ complaints regarding microbiological food safety?  
Food safety complaints 

Assumption: The presence of a good functioning system for complain registration and evaluation is an important aspect in the FSMS. Low 

number of complaints regarding microbiological food safety of final products and hygiene indicates a good system performance. When 

complaints can be dedicated to one specific aspect of the FSMS or one type of pathogen/hygiene indicator, a well performing FSMS and a 

good system performance can be expected. 

 

Level 0 (absent) Level 1 (poor) Level 2 (moderate) Level 3 (good) 

No indication of system 

performance because 

complaints are not 

registered. 

Various complaints that can be 

traced back to several problems of 

the operation of the FSMS. 

 

A limited number of complaints 

that can be traced back to one 

specific problem with the 

functioning of the FSMS 

No complaints on the 

microbiological safety of the 

meals. 

Figure 4.2. Example of an indicator for the context (A), an activity (B) and system performance (C) 

as used in the (self-) assessment questionnaire. 

4.2.3 Risk-based sampling plan 

As the goal of the sampling plan is to verify the HACCP-system (i.e. check if the HACCP is 

followed as it is described and if it is appropriate), but a multitude of products and 

processes is involved, it was decided to implement a risk-based sampling plan to focus on 

those products and locations that involve a risk towards the presence of L. monocytogenes, 
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an important hazard in hospital food service operations. As such, sampling of incoming high 

risk (raw) materials, meal components, final products and (non-) food contact surfaces was 

performed to verify supplier selection and implemented control measures toward L. 

monocytogenes. Microbiological analysis cannot assure food safety on its own, but can be 

used to evaluate whether a FSMS is providing the control it was designed to deliver. 

Sampling was executed three times in a three month period (January-March 2011). In total 

145 environmental samples and 49 food samples were analyzed. 

4.2.3.1 Identification of at risk foods and critical sampling locations 

Because the range of incoming (raw) materials in the food service operation is broad and 

not all food products are a risk in terms of presence of L. monocytogenes, an identification 

of at risk products was elaborated to select those incoming (raw) materials of interest to be 

taken up in the sampling plan. Incoming (raw) materials were therefore classified into food 

types with similar microbiological ecology toward L. monocytogenes based upon the type of 

commodity and prior processing or preservation method applied (Lahou et al.,2012). These 

food types were then screened for i) the reported epidemiological association of the food 

type with listeriosis outbreaks, ii) the reported prevalence of L. monocytogenes in the food 

types, and iii) the potential of L. monocytogenes to grow or survive during storage and/or 

further processing to identify high risk products. This screening was performed with a 

literature study carried out in ICMSF books (ICMSF, 1986, 2002, 2005) complemented with 

the Community Summary Reports on Trends and Sources of zoonoses of the European Food 

Safety Authority (EFSA, 2006, 2007, 2009, 2010, 2011, 2012). To verify the general EU 

situation for the regional situation, the Annual Reports on Zoonotic agents in Belgium of the 

Federal Agency for the Safety of the Food Chain (FASFC) and the Belgian Report on 

Zoonoses and Zoonotic agents were consulted (Dierick and Botteldoorn, 2007; Dierick, et al., 

2009; FAVV, 2004, 2006b, 2007, 2008b, 2009a,b). Critical sampling locations were identified 

by analyzing the flow chart of the production process. Possible sites of cross-contamination 

or post-contamination, such as utensils, slicing machines, hands of food handlers and plates 

were taken up in the sampling plan. Non-food contact surfaces, such as drains, ventilation, 

vans, trolleys, door handles, wheels and conveyer belts were selected on the basis of 

information from literature and reports about the distribution and transmission of L. 
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monocytogenes in food service operations and retail (Hoelzer et al., 2011; Lianou and Sofos, 

2007; Lund and O’Brien, 2009; Rodriguez et al., 2011).  

4.2.3.2 Elaboration of the risk based sampling plan 

The attribution of a risk level to the defined incoming (raw) material food types and the 

identification of critical sampling locations was the basis for selection of incoming (raw) 

materials and environmental samples to be taken up in the sampling plan. The daily menus 

of the food service operation were obtained from the HACCP coordinator a week prior to 

the visit and were screened for high risk ingredients. A total of 49 food and 145 

environmental samples were collected during three visits on three days at various critical 

sampling locations (CSL) in the process from raw material to final food product. For food 

products, 100 g was aseptically collected with a sterile spoon or forceps and transferred to a 

sterile sampling bag. Food contact surfaces, hands and gloves were swabbed in a 

deliminated area of 100 cm
2
 using a sterile Quantiswab® (Biomérieux) premoistened in 

neutralizing solution. The food samples and the moistened swabs were transported in a cool 

box at 4°C to the laboratory where microbiological analyses to detect L. monocytogenes 

were performed within 6 h of sample collection. The moistened swabs were enriched with 

225 ml demi-fraser for 24 h at 30°C, followed by transferring 0.1 ml enrichment to 10 ml 

fraser broth. After incubation for 24 h at 37°C, 0.5 ml was transferred to a VIDAS LMO2 strip 

(BioMérieux) which was analyzed for presence of L. monocytogenes (AFNOR n° BIO-12/11-

03/04). Detection of L. monocytogenes was performed on 25 g food product also according 

Vidas LMO2 (BioMérieux), an AFNOR validated enzyme linked fluorescent assay (ELFA) 

(AFNOR n° BIO-12/11-03/04). When positive results were obtained, L. monocytogenes was 

enumerated from the food sample according to ISO 11290-2:1998/Amd 1:2004 (plating on 

ALOA and incubation of 48 h at 37°C). 
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4.3 Results 

4.3.1 (Self-)assessment questionnaire 

4.3.1.1 Context factors 

Table 4.1 lists the results of the (self-)assessment questionnaire. Important contextual 

factors which influence the FSMS in this food service operation belong to product and 

production process characteristics. The high diversity of incoming (raw) materials used in 

the hospital food service operation (e.g. raw meat, raw fish, smoked fish, ready-to-eat 

vegetables and fruits, cooked meat) and the high microbial load of the products (e.g. 10
6
 

CFU/g on raw meat and poultry), which may also contain pathogens such as Salmonella spp. 

and L. monocytogenes, contribute to a high risk situation (Jacxsens et al., 2011; Luning et al., 

2011a; Uyttendaele et al. 2010). The produced meals were classified as a high risk situation 

because they are sensitive to pathogen growth as a result of the intrinsic properties of the 

products and are prone to post-contamination. The organizational characteristics, which 

give insight in the ability to prevent safety problems, and the chain environment 

characteristics, which refer to the position of the food service operation in the food chain 

and its relationship with stakeholders such as suppliers and controlling bodies, are in this 

food service operation in general at lower risk for the food safety management 

performance. However, the information system wherein information, knowledge and data 

should be systematically recorded to support decisions on food safety and quality issues was 

not accurate to take food safety control decisions and was recorded manually which results 

in a high risk situation. As a hospital food service operation is situated in the last part of the 

food supply chain and is serving meals to a “susceptible” group, it has a critical position with 

respect to reduction and/or inactivation of pathogens. Therefore the indicator “safety 

contribution in chain position” has been classified as a high risk situation. 

 

 



 

 

Table 4.1. Results of the (self-)assessment questionnaire. 

 Indicator Situation
a
 level

b
 Motivation 

Context factors Risk of raw material 

Risk of meals* 

 

Intervention steps 

 

Assortment of meals* 

 

Rate of menu changes* 

Technological staff 

Variability in workforce composition 

Operator competences 

Management commitment 

Employee involvement 

 

Formalization 

Information systems 

 

Safety contribution in chain position 

 

Power in supplier relationships 

Strictness of stakeholders requirements 

High risk 

High risk 

 

Moderate risk 

 

Moderate risk 

 

Moderate risk 

Moderate risk 

Low risk 

Low risk 

Low risk 

Low risk 

 

Low risk 

High risk 

 

High risk 

 

Low risk 

Low risk 

High diversity, main products (e.g. raw meat, fresh vegetables) may carry pathogens and have a high initial microbial load.  

Produced meals are sensitive to pathogen growth as a result of intrinsic properties of the products and are prone to post-

contamination. 

The production processes contain intervention steps (e.g. cooking) to inactivate vegetative cells, but spores can still survive 

and recontamination can still occur after the lethal ntervention step (e.g. when assembling meals). 

Only a restricted number of recipes are prepared (Max. three“hot” daily menus) which allows in-between cleaning and 

disinfection interventions  

Repeating menu cycle of 4 weeks allows less product and process modifications. 

HACCP-team of six persons is available. 

Low turnover of employees, no temporary operators.  

Chefs have professional education level in cuisine, employees attend specific food safety training on recruitment. 

Food service operation has detailed written vision statement on safety and has official quality team. 

Employees are involved in the design and modifications of the FSMS (e.g. notification of problems, ideas on improvement) 

Standard operational procedures and documentation are available for employees. 

Temperatures are recorded manually by staff, information is limited available and not accurate to take food safety control 

decisions.  

Direct serving of meals to  “susceptible” group, thus it has a critical position with respect to reduction and/or inactivation of 

pathogens to acceptable evels. 

Discussion on product specifications possible, perform audits at new suppliers. 

General legislative requirements on food safety, execute self-assessment. 

Core control activities Hygienic design of equipment and facilities 

 

Cooling facilities 

Sanitation programs 

 

Personnel hygiene requirements 

 

Raw material control 

Meal preservation* 

Defrosting methods* 

Hot-holding methods* 

Physical intervention equipment 

 

Maintenance and calibration program for equipment 

 

Effectiveness of intervention methods 

CCP analysis 

Standards and tolerances design 

Analytical methods to assess pathogens 

Measuring equipment to monitor process/product 

status 

Calibration program for measuring equipment 

Sampling design 

Basic  

 

Advanced 

Advanced 

 

Advanced 

 

Advanced 

Not applicable 

Advanced 

Advanced 

Advanced 

 

Generic 

 

Advanced 

Generic 

Advanced 

Advanced 

Generic 

 

Advanced 

Basic 

Equipment and facilities are not well designed to prevent contamination and pathogens entrance (e.g. no strict separation 

of preparation rooms). 

Presence of industrial cooling facilities adapted for food service food production which are automatically controlled (< 4°C). 

Presence of complete full-step cleaning procedure with pre-cleaning, cleaning, disinfection and in-between rinsing with 

instructions and use of specific cleaning agents. 

Specific requirements on clothing for all employees, personnel care and health and tailored facilities to support personnel 

hygiene. 

Incoming materials are systematically checked based on actual data of suppliers and quality is visually assessed at entrance. 

Meals are not stored. 

Based on legislative requirement and guidance documents, method has been tested. 

Based on legislative requirement and guidance documents, method is tested daily.  

The present intervention equipment (steam ovens, cooking pots, frying pans) are adequate for the production process 

(different programs available) and capability is tested by monitoring of core temperatures (≥ 70°C). 

Structural program is present with specific instructions about frequency and maintenance tasks but is not specifically 

designed for process. 

Intervention equipment is tested by measuring core temperatures of prepared food products.  

Based on hygiene codes for sector according to official Codex guidelines, but are not tested. 

Standards and tolerances are scientifically underpinned, comply with legislative requirements. 

Analytical methods used by lab are internationally validated and accreditated methods. 

Standard available measurement equipment complying with ISO norms, on-line/in-line measurement (e.g. probes in steam 

ovens). 

Calibration program with tasks and frequencies which are in-house documented. 

No own samples are taken, in case of new supplier samples are taken from the raw materials, once a year external control 

by government. 

 Corrective actions 

Actual availability of procedures 

Actual compliance to procedures 

Advanced 

Generic 

Generic 

Presence of complete descriptions on what to do in case product and/or process parameters exceed tolerances or limits. 

General working instructions are available on the workplace but are paper-based.  

Majority of employees are familiar with existence of procedures, tasks are executed based on habits. 



 

 

 

 

Actual hygienic performance of equipment/facilities 

 

Actual cooling capacity 

Actual hot-holding capacity* 

Actual process capability of intervention processes 

Actual performance of measuring equipment 

 

 

Advanced 

 

Advanced 

Advanced 

Advanced 

Generic 

 

 

Stable hygiene performance of equipment and facilities based on data of executed tests (two times/year external control 

with rodac and swabs, every three months ATP-measurement themselves). 

Stable performance of cooling facilities (< 4°C), temperature is automatically monitored, alarm when temperature deviates. 

Stable performance of hot-holding facilities (> 80°C), temperature is systematically monitored.  

Stable process, core temperatures of the food are measured with probes and intervention process is adjusted. 

Measuring equipment is sensitive for a few specific well known meal production changes. 

Core assurance activities Translation of stakeholder requirements  

Systematic use of feedback information to modify 

system 

Validation of preventive measures 

Validation of intervention systems 

Validation of monitoring systems 

Verification of people related performance 

Verification of equipment and methods related 

performance 

Documentation 

Record keeping system 

Generic 

Advanced 

 

Basic 

Basic 

Basic 

Basic 

Generic 

 

Generic 

Generic 

Systematic translation of stakeholder requirements into own FSMS. 

HACCP-team evaluates feedback information from validation and verification reports. 

 

Effectiveness of preventive measures is ad hoc judged by own HACCP-team. 

Effectiveness of intervention processes is ad hoc judged by own HACCP-team. 

Effectiveness of monitoring system is ad hoc judged by own HACCP-team. 

No internal audit is executed to check if the compliance to procedures are operating in practice. 

Analyzing records data loggers on a regular basis, but no confirmation by actual testing. 

 

Structured kept-to-date documentation system , but only available for authorized persons. 

Full registration of critical product and process data but only accessible for authorized persons. 

System performance output Evaluation of FSMS 

Severity of complaints 

Food safety complaints 

Hygiene complaints 

Product sampling 

Assessment criteria 

Non-conformities regarding food hygiene and 

pathogens 

Poor 

Good 

Good 

Good 

Poor 

Moderate  

Moderate  

No own evaluation of the system, rely on the yearly inspection of the national food safety agency. 

No complaints or remarks from the national food safety agency. 

No complaints concerning microbiological food safety. 

No complaints concerning microbiological hygiene indicators. 

Only ad hoc sampling of raw materials and end products. 

Use only legal criteria and requirements, no own specifications defined. 

Only a few non-conformities regarding one specific problem (e.g. hand hygiene). 

* specific indicator for food service operations 
a in case of context factors. 
b
 in case of core control activities, core assurance activities and system performance output. 
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4.3.1.2 Core control activities 

Control activities concern the ongoing process of evaluating performance of both 

technological and human processes and taking corrective actions when necessary. It is 

assumed for control activities that a better activity level is better able to keep product 

properties, production processes and human processes between certain acceptable 

tolerances (Luning et al., 2008). Core control activities are in general well implemented in 

the FSMS of the food service operation (Table 4.1). However, a basic level was assigned to 

the hygienic design of equipment and facilities, which means that equipment and facilities 

are not well designed to prevent (cross-)contamination and entrance of pathogens. More 

specific, there is no strict separation between the different preparation areas within the 

food service operation. Contamination of products or parts of the environment increases 

the risk to contaminate other products and other parts of the area. A basic level was also 

assigned to the sampling design because samples are only taken from incoming materials 

supplied by new suppliers and no information is available on the distribution of pathogens 

in the food service operation as they take no specific (environmental) samples. 

4.3.1.3 Core assurance activities 

Core assurance activities are activities that provide evidence and confidence to stakeholders 

that safety requirements will be met. It is assumed for assurance activities that a better 

activity level is better able to provide confidence that safety requirements will be met 

because better requirements are set on the system, its performance is better evaluated and 

changes are better organized (Luning et al., 2009). From Table 4.1 it can be derived that the 

core assurance activities are performing on a basic to a generic level. A basic level was 

assigned to the validation of preventive measures, intervention systems and monitoring 

systems because its effectiveness is only ad hoc judged by their own HACCP-team instead of 

being validated independently. The verification of people related performance, checking 

whether requirements on people related activities (i.e. compliance to procedures) are 

operating in practice as designed, was also assigned a basic level because no verification of 

the procedures is executed and compliance is based on checking their presence by 

dependent persons. 
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4.3.1.4 System performance indicators 

The system performance indicators provide more information about the output of the 

FSMS. It is assumed that a better level is associated with a better system performance which 

means that the likelihood of food safety problems is reduced (Jacxsens et al., 2010). As 

noticed in Table 4.1, the evaluation of FSMS is poor because the food service operation 

performs no self-evaluation of the FSMS e.g. via internal auditing. Besides it only relies on 

data from the yearly inspection of the national food safety agency to judge their FSMS. 

Product sampling is also poor because there is only ad hoc sampling of incoming (raw) 

materials in case of a new supplier and ad hoc sampling of end products on demand of third 

parties, e.g. the government. 

4.3.2  Risk based sampling plan 

The sampled high risk incoming (raw) materials for L. monocytogenes in the food service 

operation and their results are presented in Table 4.2. These raw materials were also 

sampled at critical sampling locations along their production process where, besides the 

food product, samples were taken from the direct (food contact surfaces such as utensils, 

slicers, plates) and indirect (non-food contact surfaces such as ventilations, floor drains, 

door handlers, trolleys, conveyer belts) environment. L. monocytogenes could be detected 

(in 25 g) in 3.61% of the samples (n= 194). L. monocytogenes was detected in six incoming 

(raw) material samples (n= 19), namely salt-free cooked ham, raw meat sandwich spread, 

raw salmon, smoked salmon (2x) and raw poultry meat, and in one final product (n= 9), 

namely the Ardennes egg which consist out of salt-free cooked ham, lettuce, tomatoes, 

carrots, cooked egg and mayonnaise. However, enumeration of the positive samples 

revealed that the concentration of the pathogen was < 100 CFU/g. No L. monocytogenes 

was detected in any of the 145 environmental samples. 
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Table 4.2. Overview of analysed samples and number of positive (i.e. present in 25 g but < 100 

CFU/g) L. monocytogenes samples. 

 
1

e 
visit 2

nd 
visit 3

th 
visit Total 

Raw materials  

(raw meat, raw fish, smoked fish, sandwich spread, ready-to-eat 

vegetables and fruits, cooked meat) 

3/8  1/6  2/5  6/19 

Meal components 

(fried meat, cooked fish, milkshake, sliced vegetables, tuna spread) 

0/6 0/9 0/6 0/21 

Composed meal (final product) 

(Ardennes egg, Veal stew with hot vegetables and potatoes, Meat 

escalope with hot vegetables and rice, fresh mixed fruit meal (3x), tuna 

salad, chicken salad, meat loaf with hot vegetables and potatoes, 

tomato salsa) 

1/3  0/3 0/3 1/9 

Environment     

Direct  

(food containers, utensils, slicing machine, plates, cooking kettle, food 

handlers hands) 

0/33 0/30 0/24 0/87 

Indirect  

(ventilation refrigerator, floor drains, trolley, door handle, walls, 

conveyer belt, wheels, hood, dishwasher belt, plateau) 

0/18 0/20 0/20 0/58 

Total  4/68 1/68 2/58 7/194 

 

4.4 Discussion 

The principle behind the (self-)assessment questionnaire is that a food service operation 

operating in a more vulnerable (to safety problems), uncertain (due to the lack of 

information), ambiguous (due to the lack of insight in underlying mechanisms) and 

unpredictable situation, which can be seen as a high-risk context, requires control and 

assurance activities at a more advanced level (Luning et al., 2011a). In this case study, a high 

risk context was posed by the high diversity of (raw) ingredients entering the food service 

operation. Therefore, well controlled storage conditions, proper supplier selection and a 

good follow up during further interventions processes are required to deal with this 

microbiological risk and thus higher demands are posed on the FSMS (Jacxsens et al., 2011; 

Luning et al., 2011a). A high risk context was also posed by the variability of the produced 

meals and the high risk position of the food service operation due to serving meals directly 

to the patient/consumer. These risky situations were largely compensated by the 

requirement of specific competences for employees and by low personnel turn-over and the 

absence of part-time workers, which decrease the chance of poor execution of tasks. 

However, food service operations commonly have a relatively high turn-over of personnel or 
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temporary staff, which may complicate the development of a regular training program and 

cause problems with poor handling practices, or would require stronger management to 

ensure that staff adhere to food safety controls (Jones and Angulo, 2006; Jones et al., 2008; 

Worsfold, 2001). Besides, a higher staff turnover makes it more difficult to create a food 

safety culture, which is built on a set of shared values that operators and their staff follow 

to produce and provide food in the safest manner (Powell et al, 2011). In the current food 

service operation, employees are also involved in the design and modifications of the food 

safety management (e.g. notification of problems, ideas on improvement) which results in a 

higher commitment and motivation of the staff, lowering the risk context. Besides, standard 

operational procedures and documentation (assessed by the formalization indicator) were 

present which results in the absence of higher demands on the FSMS (Luning et al., 2011). 

Moreover, the food service operation has the ability to discuss microbiological specifications 

with their suppliers and to select the supplier with the best specifications. This ability of the 

food service operation to influence the quality and handling practices of the foods before 

they enter the hospital kitchen and thereby ensuring that supplies are obtained from high-

quality suppliers and thereby reducing the likelihood of contaminated products entering the 

food service operation, contributes to a lower risk context (Jones et al., 2006; Lianou and 

Sofos, 2007). Core assurance activities were in general implemented on a basic level, which 

is often noticed in food service operations. The verification of people related performance, 

i.e. checking whether requirements on compliance to procedures are operating in practice 

as designed, is one of these activities which is executed on a basic level. This means that 

they only check if procedures are present, but no internal audits are performed to check the 

actual behavior of the food handlers and to assure that they work in compliance with 

procedures. However, researchers have suggested that the observation of food preparation 

practices and the assessment of food-handling practices of the employees through internal 

observations, external evaluations and inspections, contribute to a food safety culture 

which is one of the most effective measures to reduce rates of foodborne illness (Powell et 

al., 2011). Studies have shown that improper food handler practices (e.g. inadequate 

handwashing, wearing the same gloves for extended periods of time, handling unwrapped 

RTE meats after handling raw meats without washing hands) may result in cross-

contamination of RTE foods and account for approximately 97 % of foodborne illnesses 

(Green et al., 2006; Lianou and Sofos, 2007; Neal et al. 2012). Therefore, performing 
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observations on the behavior of food handlers and changing incorrect behavior can improve 

the level of this indicator leading to a more advanced FSMS but will also contribute to the 

developing of a food safety culture (Luning et al., 2009). Nowadays, education and training 

are the focus of many food-handling behavior interventions, however these programs are 

often inconsistent and their knowledge evaluation is a poor indicator of changes in practices 

(Powell et al., 2011). Other core assurance activities, such as validation of preventive 

measures, validation of intervention processes and validation of the monitoring system, 

which are now performed on a basic level will become more advanced if the validation is 

based on scientific evidence and if it is systematic and independently performed (Luning et 

al., 2011a). However, the validation, to assure that they work well, is currently based on 

historical knowledge judged by own people and only ad-hoc performed. Core control 

activities, on the other hand, were implemented on a more advanced level. Especially their 

activities that create circumstances to prevent growth of pathogens in food production 

systems (preventive measures design), such as the adequacy of their cooling facilities, and 

their activities that inactivate or eliminate pathogens in order to reduce them to acceptable 

levels (intervention process design), such as the effectiveness of the intervention 

equipment, are well established. However, major improvements can be made on the level 

of the hygienic design of equipment and facilities and on the level of a sampling design. The 

facilities had no strict separation of preparation rooms which may facilitate cross-

contamination because there is no forward flow with returns and crossing among raw 

materials, ready-to-eat meals and trash. The design of this food service operation was 

drawn in 1977 and it is difficult to change in the short-term. However, a shift in location of 

the food service operation took place in 2012. In this new production area, the hygienic 

design of the facility and equipment was adjusted to meet more modern standards 

regarding space efficiency, flexibility, product flow, food safety and ergonomics, which will 

improve the level of this indicator. Food service operations, however, are frequently of 

unhygienic design and crowded with staff and equipment to satisfy occasional workloads 

which makes it difficult to control basic sanitary standards resulting in an increased number 

of critical control points to prevent the risk of cross-contamination and recontamination of 

food (Panisello and Quantick, 2001). In 2008, the national agency for the safety of the food 

chain performed 12,492 inspections regarding the infrastructure, design and hygiene in food 

service operations. These inspections revealed that only 56 % of the food service operations 
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were in accordance with the criteria regarding the infrastructure, design and hygiene in food 

service operations (FAVV, 2009b). The adequacy of the sampling plan could also be 

improved to obtain a more advanced level. However, a sampling plan is not provided in the 

self-checking guide for the sector of food service operations and health care institutions 

(FAVV, 2006a, 2008a). Therefore the food service operation is not obliged to take own 

samples of final products. For these results the food service operation relies currently on 

the sampling of the national agency for the safety of the food chain which is performed in 

the frame of inspection, but this sampling is not frequently performed (once a year) and is 

rather limited. On the other hand, samples are taken from incoming (raw) materials in case 

of new suppliers to verify their specifications. Therefore, raw material control is performing 

on a more advanced level (Luning et al., 2008). Besides, selection of credible suppliers is 

based on raw material specifications and supplier audits, which reduces the likelihood of 

contaminated products entering the food service operation (Lianou and Sofos, 2007; Luning 

et al., 2008). However, testing should be used to verify that risk-reduction measures are 

working as intended and therefore a sampling plan should be designed (Dufour, 2011; 

Powell et al., 2011). This would also increase the level of the core assurance activities by 

increasing the level of the indicator “verification of equipment and methods related 

performance”. In this case-study a risk based sampling plan was developed and elaborated 

to verify the control measures toward L. monocytogenes. Samples have been taken from 

incoming (raw) materials, meal components and final products as well from the 

environment, because environmental sources may, under conditions of poor cleaning and 

sanitation, harbor pathogenic micro-organisms such as L. monocytogenes or serve as 

vehicles for cross-contamination (Lianou and Sofos, 2007). Especially, non-food contact 

surfaces, such as floor drains and cold floors, have a higher prevalence of L. monocytogenes 

in comparison with food contact surfaces such as slicers and utensils (Carpentier and Cerf, 

2011; Dimitrijevíc et al., 2011; Hoelzer et al., 2011). In this case study, the pathogen was not 

found in the environmental samples. However, a study of Hoelzer et al. (2011) revealed that 

in 58 % (n= 241) of retail deli establishments, L. monocytogenes isolates were found in the 

environment of the establishment. Therefore, cleaning and disinfection applied in this food 

service operation is efficient to prevent an accumulation of high numbers of L. 

monocytogenes in the food production environment. However, recovery rates of swabs are 

low and therefore small amounts of the pathogen may be present in the food production 
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environment but could not be detected (Hedin et al., 2010; Moore and Griffith, 2007). 

Incoming raw materials, namely raw salmon and raw poultry meat, and RTE products, such 

as smoked salmon, raw meat sandwich spread and cooked ham, have been testing positive 

(in 25 g) for the presence of L. monocytogenes. A study of Uyttendaele et al. (2009) shows 

that the prevalence of L. monocytogenes for cooked meat is approximately 1.1 % (n= 639) 

and for smoked fish is approximately 27.8% (n= 90). Van Coillie et al. (2004) detected a 

prevalence for L. monocytogenes in smoked salmon of 19 % (n= 42). This high prevalence of 

L. monocytogenes in fish products, may explain the finding of Listeria positive raw materials 

although a small number of samples has been taken. The cooked meat was salt-free 

because it was adapted to the dietary needs of the patients. However, the reduction of salt 

increases the survival of L. monocytogenes in this food product when post-contamination 

occurs (Stollewerk et al. 2012). Thus, incoming products (including the exterior of their 

packages) that have been contaminated at food processing facilities pose a risk for cross-

contamination of foods in the (hospital) food service operation when these incoming foods 

are opened and/or handled in the food service operation (Lianou and Sofos, 2007). 

Therefore higher demands, such as well controlled storage conditions, well separated 

storage facilities and a forward flow allowing no crossing among raw materials, RTE meals 

and trash, are posed on the FSMS in the food service operation. It can be noticed that the 

raw materials such as the raw salmon and the poultry meat, which were tested positive for 

L. monocytogenes, were not contaminated anymore after heat processing. L. 

monocytogenes is considered to be intolerant to the temperatures achieved during food 

processing, such as cooking and pasteurization (Kells and Gilmour, 2004). Thus, the 

intervention processes applied in the food service operation are effective to inactivate the 

initial contamination. Therefore contamination of RTE foods (including hospital meals) with 

L. monocytogenes is almost exclusively due to post-processing contamination at the 

producers company and these foods, together with non-processed foods, are therefore 

more likely to be associated with listeriosis outbreaks than others (Hoelzer et al., 2011; 

Lianou and Sofos, 2007). One hospital meal has been found positive for L. monocytogenes. 

This meal, called Ardennes egg, contained salt-free cooked ham, which was already 

contaminated as incoming RTE food product. Contamination, which had taken place at the 

manufacturer operation, could not be reduced because no heating step in the food service 

operation could be applied for this meal type. The positive incoming (raw) materials, raised 
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the awareness that cross-contamination is possible and extra attention should be paid to 

the slicing machine to cut slices from the cooked meat. The same slicing equipment is used 

for normal cooked ham and salt-free cooked ham and no cleaning and disinfection step is 

currently present between the use of these different types of cooked meat, increasing the 

risk of cross-contamination (Lianou and Sofos, 2007). It also suggests that incoming (raw) 

material control of suppliers, including the usual suppliers, should be performed on a 

regular base. From this case study it became also apparent that high-risk foods are still 

served in hospital food service operations, even though these high risk foods are not directly 

served to the patients but rather indirectly by offering them in the hospital canteen. 

However, the types of food served should be selected to minimize the risk of foodborne 

disease in patients (Lund and O’Brien, 2009; Rodriguez et al., 2011). This means that high 

risk foods should not be served in the canteen. An operator willing to take such decisions 

and providing guidelines for a menu builder to reduce the risk of L. monocytogenes, would 

also contribute to a positive food safety culture (Powell et al., 2011). No complaints 

concerning food safety or hygiene and having no non-conformities with regard to food 

hygiene and food pathogens cannot guarantee that foodborne illness will be prevented. 

Especially if the food service operation relies only on guidance or oversight by government 

or auditors to ensure consumers receive safe food products. A food service operation 

should be more proactive by evaluating their FSMS on a regular basis and performing 

product analyses, because the risk of a food service operation to cause foodborne illnesses 

is to a large extent, a consequence of its own activities (Powell et al., 2011). Therefore, 

effective food safety systems and practices need to be shared by all levels of the 

organization, not just management, and communication should be an integral part (Neal et 

al., 2012). Moreover, by analyzing the risks associated with their products and to know how 

to manage these risks, a more positive food safety culture can be established. Powell et al. 

(2011) concluded that the best food producers should go above and beyond minimal 

government and auditor standards. 
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4.5 Conclusion 

The use of a (self-)assessment questionnaire to evaluate the current FSMS performance and 

the implementation of a risk based sampling plan to verify the implemented control 

measures toward the presence of L. monocytogenes in a hospital service setting, are useful 

tools for a food service operation to gain more insight into and to adjust their own food 

management system. The risk based sampling plan helps to set priorities in selecting 

incoming materials and defining critical sampling locations to detect L. monocytogenes in 

the environment. By the application of both tools, an overview is obtained on the 

performance levels of the current implemented control and assurance activities and the 

results can be used as an internal audit to improve their system. From this case study, it 

becomes clear that incoming (raw) materials, produced final products and their immediate 

supply to patients/consumers are high risk situations. This was demonstrated by the 

presence of L. monocytogenes in incoming (raw) materials and final product. These risky 

situations are in need to be mitigated by the implementation of proper control measures, 

e.g. intensified supplier control, low storage temperatures, cleaning and disinfection to 

control cross-contamination. However, in terms of assurance activities, such as setting up a 

sampling plan, validation and verification of their FSMS, only a basic level was obtained. 

Therefore, the food service operation does not know how well they are performing and is 

not capable of self-evaluation. Besides, being more pro-active a food service operation 

should also work to a good food safety culture, with all levels of the organization involved.
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Abstract 

In order to evaluate the effect of simulated home pan frying of raw meat and meat 

preparations of different animal species on the thermal inactivation of pathogens, the heat 

resistance (D-value) of three strains of Campylobacter jejuni, Escherichia coli O157:H7, 

Salmonella spp., Listeria monocytogenes and two strains of generic E. coli was validated in 

BHI and adjusted BHI (i.e. pH 5.6 and 1.5 % NaCl) at 60°C. The D-values were obtained of the 

linear phase of the survivor curves created in GInaFiT, a freeware tool to fit models to 

experimental data. The obtained D-values corresponded to those previously published in 

literature and confirmed L. monocytogenes to be the most heat resistant pathogen among 

them. Heat treatment in adjusted BHI significantly increased heat resistance of E. coli 

O157:H7 and generic E. coli. Subsequently, the thermal inactivation of L. monocytogenes, 

Salmonella spp., C. jejuni and E. coli O157:H7 was evaluated using a standardized procedure 

simulating commonly used home pan frying of various types of meat including steaks or 

filets, hamburgers and meat strips from various animal species such as pork, beef, chicken, 

lamb and some turkey, horse, kangaroo and crocodile meat. The corresponding process 

lethality was calculated based upon measured core time/temperature profiles. It was noted 

that a core temperature of 70°C was not always achieved and, moreover, a heat treatment 

equivalent to 2 min at 70°C was also not always obtained. This was in particular noted in 

hamburgers although the meat was visually judged well done. On several occasions, residual 

survivors of the initial inoculated (4 log CFU/g) foodborne pathogens could be recovered 

either by enumeration (detection limit of 1 log CFU/g) or by the presence/absence testing 

per 25 g. Pan frying of hamburgers yielded the highest number of surviving pathogenic 

bacteria (46 %), followed by well-done filets and steaks (13 %) and meat strips (12 %). Taking 

only steaks (beef, horse, kangaroo, crocodile and turkey) into account, residual detection of 

pathogens occurred for all levels of doneness: 18 % for well-done, 71 % for medium and 

even 90 % for rare steaks. Numbers of L. monocytogenes recovered after heat treatment 

ranged from < 1 log CFU/g to 2.6 log CFU/g. Although, the prevalence of pathogens in meat 

might be low, and the numbers present in case of natural contamination are probably lower 

than the current used inoculum of 4 log CFU/g, consumers could still be exposed to 

surviving foodborne pathogens in case of these commonly used pan frying of raw meat and 

meat preparations at consumer's home. 
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5.1 Introduction 

Despite preventive measures during slaughter and good hygiene and good manufacturing 

practices during further processing, raw meat and meat preparations are still occasionally 

contaminated with pathogenic bacteria such as Listeria monocytogenes, Salmonella spp., 

Campylobacter spp. and pathogenic verotoxin-producing E. coli (VTEC) (Frank et al., 2011; 

Hendriksen et al., 2011; Kirkpatrick and Tribble, 2011; Milillo et al., 2012; Scallan et al., 

2011; Söderström et al., 2008; Taylor et al., 2012). In 2012, the Belgian government 

analyzed 2401 samples of meat and 3028 samples of meat preparations. From these 

analyses it was concluded that Campylobacter was present in 6.3 % and Salmonella in 4.1 % 

of the meat samples. Salmonella was also present in 0.5 % of the meat preparations, while 

L. monocytogenes and E. coli O157 were present in 0.2 % of meat preparations samples 

(FASFC, 2013). The presence of pathogens in (undercooked) meat can present a serious food 

safety threat and result in a food-borne outbreak (Takhar et al., 2009). European strong-

evidence food-borne outbreaks (i.e. those outbreaks where the evidence implicating a 

particular food vehicle is strong) are summarized by EFSA and ECDC in their annual EU 

summary report on zoonoses, zoonotic agents and food-borne outbreaks. In 2012, 

Salmonella spp. were the most frequently reported cause of food-borne outbreaks (28.6 %) 

in the EU, with pig meat, broiler meat, bovine meat and their derived products responsible 

for respectively 5.8 %, 3.7 % and 2.0 % of the Salmonella strong-evidence foodborne 

outbreaks. Campylobacter spp. were responsible for 9.3 % of the foodborne outbreaks in 

2012, with broiler meat and derived products as the most commonly reported cause of 

strong-evidence outbreaks (44 %). Although verotoxigenic E. coli was responsible for only 

0.8 % of the total number of reported food-borne outbreaks, the main food vehicle in 

strong-evidence outbreaks was bovine meat and products thereof (50 %), followed by pig 

meat (16.7 %) (EFSA and ECDC, 2014). The main settings where strong-evidence food-borne 

outbreaks have occurred are households/domestic kitchens of consumers (39.7 %) and 

restaurants, cafés, pubs, bar and hotels (23.9 %) (EFSA, 2014b). A large part of these food-

borne outbreaks and most of the separate cases of foodborne infections or poisonings can 

be attributed to careless actions by consumers during the preparation of the food (FASFC, 

2012; Sampers et al., 2012). In a study of Fischer et al. (2007) participants claimed to prefer 

convenience and taste over food safety and effort. Among the regular occurrence of cross-
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contamination events, another inadvertence by consumers during the preparation of food is 

undercooking (Sampers et al., 2012). The heat treatment of raw meat in consumer domestic 

kitchens or food service operations is of great importance to provide sufficient inactivation 

of possible pathogenic bacteria present (Murphy et al., 2004). However, preventing cross-

contamination and respecting the cold chain is important as well to avoid a higher initial 

load because if the initial load is too high, it might not be possible to sufficient inactivate the 

micro-organisms. It is generally accepted that when meat (including hamburgers or any 

other comminuted meat) is subjected to a core temperature of 70°C for 2 min or was 

subjected to a heat treatment equivalent to 2 min at 70°C, it will accomplish a substantial 

inactivation (6 log reduction) of pathogens and therefore renders the meat to be safe 

(ACMSF, 2007). In the case of steak or filet it is assumed that the meat is internally sterile 

and that high temperatures on the surface during pan frying are sufficient to inactivate any 

pathogens present. However, it is not always clear which temperatures are actually reached 

during home pan frying of raw meat. Although measuring the internal temperature of meat 

is a useful method to assess readiness for consumption, the use of a thermometer to assess 

the doneness of food is currently uncommon in European households (Bearth et al., 2014). 

Besides, thermal inactivation of pathogens and presence of residual survivors in meat may 

also vary depending upon the exact nutritional composition (e.g. fat content), texture (e.g. 

fiber structure) and the initial number of micro-organisms present (Jay, 2000; Tuntivanich et 

al., 2008). The effectiveness of thermal inactivation processes during home cooking 

procedures should gain more attention as 36.6 % of the total fresh meat bought on the 

Belgian market are mixed meat preparations (sausages, mixed minced meat, hamburgers) 

(VLAM, 2014). These meat preparations have more opportunities for introducing pathogens 

in the meat, but also have an increased risk to contain pathogens in the core of the food 

product because they are more extensively handled and undergo extensive manipulations. 

This increases the risk of survival and cross-contamination of pathogenic micro-organisms in 

undercooked meat (Sampers et al., 2012). Besides, Bergsma et al. (2007) and de Jong et al. 

(2012) showed in their studies unsuspected survival of pathogens during consumer style 

cooking techniques. The objective of the present study is to evaluate the effect of simulated 

home pan frying of raw meat and meat preparations of different animal species on the 

thermal inactivation of pathogens. 
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5.2 Materials and methods 

5.2.1 Selection of bacterial strains and culture conditions 

In this study, 3 strains of L. monocytogenes, Salmonella spp., Campylobacter jejuni, (nalidixic 

acid resistant) E. coli O157:H7 and 2 strains of generic E. coli were used (Table 5.1). The 

strains were obtained from the culture collection of the Laboratory of Food Microbiology 

and Food Preservation (LFMFP) of Ghent University (Ghent, Belgium) and from the culture 

collection of the Belgian Veterinary and Agrochemical Research Centre (CODA, Brussels, 

Belgium). Stock cultures of L. monocytogenes, Salmonella spp., E. coli O157:H7 and generic 

E. coli strains were kept at −75°C in Tryptone Soy Broth (TSB, Oxoid, Bastingstoke, UK), 

supplemented with 0.6 % yeast extract (YE, Oxoid) and 15 % glycerol (Prolabo, Heverlee, 

Belgium). Working stocks were stored refrigerated at 4°C on Tryptone Soy Agar (TSA, Oxoid) 

slants (supplemented with 50 μg/ml nalidixic acid for E. coli O157:H7) and were renewed 

monthly. Working cultures were activated by transferring a loop culture from slants into 10 

ml of Brain Heart Infusion broth (BHI, Oxoid) (supplemented with 50 μg/ml nalidixic acid for 

E. coli O157:H7) and incubation at 37°C for 24 h. A reference stock culture of C. jejuni strains 

was kept at −75 °C in full-horse blood (E&O Laboratories, Bonnybridge, England). A swab of 

each strain was transferred into 10 ml of selective Bolton broth (Oxoid) and incubated at 

41.5°C for 48 h under microaerobic conditions provided by Campygen packs (Oxoid) in 

closed jars. Working stocks were stored at 4°C under microaerobic conditions, and were 

renewed monthly. The working cultures were prepared by transferring 0.1 ml of each stock 

culture into 10 ml of fresh Bolton broth and incubation under microaerobic conditions at 

41.5°C for 48 h to stationary phase. Purity and verification of all the cultures concentration 

(8 – 9 log CFU/ml) were confirmed by 10-fold serial dilutions from working cultures into 

Peptone Physiological Salt solution (PPS, containing 1 g/l neutralized bacteriological peptone 

and 8.5 g/l NaCl) and spread plating 0.1 ml from selected dilutions onto duplicates of TSA 

plates. 
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Table 5.1. Bacterial strains used for thermal inactivation experiments. 

Strain Strain number Origin Comment 

Listeria monocytogenes 4b 

Listeria monocytogenes 4b 

Listeria monocytogenes 

Salmonella Derby 

Salmonella Enteritidis 

Salmonella Typhimurium 

Campylobacter jejuni 

Campylobacter jejuni 

Campylobacter jejuni 

Escherichia coli O157:H7 

Escherichia coli O157:H7 

Escherichia coli O157:H7 

Escherichia coli 

Escherichia coli 

392 

421 

491 

872 

875 

877 

595 

866 

867 

846 

847 

849 

063 

168 

Liver pate 

Human isolate 

Tuna deli-salad 

Pig  

Poultry 

Poultry 

Poultry 

Poultry 

Human faeces 

Beef carpacio 

Human faeces 

Bovine faeces 

Human faeces 

Human faeces 

 

 

 

CODA strain 2011/01431 

CODA strain 2011/00166 

CODA strain 2011/01081.9 

 

 

 

Nalidixic acid resistant strain 

Nalidixic acid resistant strain 

Nalidixic acid resistant strain 

 

 

5.2.2 Determination of D-values of bacterial strains 

5.2.2.1 Heat challenge 

A stationary phase culture of each tested bacterial strain was diluted in BHI or Bolton broth, 

in case of C. jejuni strains, to around 6 log CFU/ml. At set time points (i.e. 0, 2, 4, 6, 7, 8 and 

9 min), 1 ml of the diluted culture was used to inoculate 9 ml of pre-heated heat challenge 

medium to establish heat inactivation curves. The heat challenge medium BHI (or Bolton 

broth in case of C. jejuni strains) was dispensed in test tubes, submerged in a water bath 

(Memmert,WNB 10, Schwabach,Germany) and preheated to the target inactivation 

temperature of 60°C before being inoculated. The temperature of the medium was 

monitored using a Testo 177-T4 temperature data logger (Testo AG, Lenzkirch, Germany) in 

a test tube with non-inoculated BHI or Bolton broth throughout the duration of the heat 

treatment (i.e. 10 min). Ten minutes after the first inoculation all inoculated test tubes were 

taken together from the hot water bath and placed in an iced water bath to cool down 

before enumeration. The heat treatment was performed in triplicate for each strain. In 

addition, the heat resistance of all strains was also determined in a heat challenge medium 

(BHI or Bolton broth) adjusted towards pH 5.6 and 1.5 % NaCl (w/w); both values mimicking 

those measured in ground pork meat. Lactic acid (10 mol/l) (Roland Chemicalien, Brussels, 
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Belgium) was used to adjust the medium to pH 5.6 (after autoclaving). The added volume of 

lactic acid did not significantly affect the volume of the challenge medium. The pH and aw 

values of the adjusted broth were confirmed with a digital pH-meter (pH flash seven easy, 

Mettler-Toledo, Zaventem, Belgium) and an aw-cryometer (NAGY AWK-30, NAGY 

Messysteme, Gaufelden, Germany). 

5.2.2.2 Enumeration of surviving organisms 

The number of surviving organisms was determined by tenfold dilutions of the inoculated 

heat medium in PPS, followed by plating on appropriate selective isolation media. 

Enumeration of L. monocytogenes was performed by spread plating 0.1 ml on Agar Listeria 

Ottaviani & Agosti (ALOA) (Biolife,Milano, Italy),while Salmonella was enumerated on xylose 

lysine deoxycholate agar (XLD, Oxoid), C. jejuni on CampyFood agar (CFA, bioMérieux, Marcy 

l'Etoile, France), E. coli O157:H7 on Chromocult® Coliform Agar (Merck, Darmstadt, 

Germany) supplemented with 50 μg/ml nalidixic acid and generic E. coli on RAPID'E. coli 2 

Medium (REC, Bio-Rad, CA, USA). When increased sensitivity was required, 1.0 ml of the 

undiluted suspension was spread plated on three plates (0.3, 0.3 and 0.4 ml). Incubation 

took place for 24 h at 37°C for Salmonella, E. coli O157:H7 and generic E. coli, and 48 h at 

37°C for L. monocytogenes. The CFA plates were incubated microaerobically for 48 h at 

41.5°C. 

5.2.2.3 Data analysis 

The inactivation data were analyzed by linear and non-linear models by the software 

GInaFiT (version 1.7, under preparation) (Geeraerd et al., 2005). The goodness of fit of the 

models was assessed using the automatically reported regression coefficient (R2) and root 

mean square error (RMSE). The Akaike information criterion (AIC) was calculated to detect 

model overfitting (Akaike, 1973). The kinetic parameters and the maximum specific 

inactivation rate (kmax) were obtained from the best fitted model. The D-values (time to 

inactivate 90 % of the viable cells) was calculated as ln10/kmax for each strain. Statistical 

interpretation of differences between different organisms and broths were determined 

using one-way ANOVA (the Tukey HSD test was used as a post hoc test) with SPSS statistical 
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software (version 21.0, SPSS Inc., Chicago, USA). Differences were considered significant 

when the P-value was less than 0.05. 

5.2.3 Simulation of home pan frying of meat and meat preparations 

5.2.3.1 Description of the meat and meat preparations 

Simulation of commonly used pan frying of meat and meat preparations was performed 

using pork, chicken, beef and lamb. For each animal species, three different meat types 

were chosen, namely (i) a meat preparation based on minced meat (i.e. hamburger), (ii) 

intact fresh meat (e.g. steak or filet) and (iii) a meat preparation of intact meat (i.e. pitta 

meat being marinated meat strips). In addition, pan frying of steak was also performed on 

horse, kangaroo, crocodile and turkey to assess the effect of meat structure and origin on 

the survival of pathogenic bacteria. Realistic consumer meat portions were used, which is 

for intact fresh meat a piece of 150 g (thickness 1.5 cm), for meat preparations of intact 

meat a portion of 300 g meat strips, and for meat preparations based on minced meat a 

hamburger of 120 g (diameter 8 cm, thickness 1.5 cm). All experiments were performed in 

triplicate starting from three different batches of meat which were ordered in the butchery 

department of a local retailer. The characteristics of the selected meat and meat 

preparations are shown in Table 5.2. The pH was measured by a pH-electrode (InLab® 427, 

Mettler Toledo GmbH, Schwerzenbach, Switzerland) connected with a pH-meter 

(SevenEasy™, Mettler Toledo GmbH). The water activity (aw) was measured with an 

automated aw cryometer (AWK-20, NAGY Messysteme GmbH, Gäufelden, Germany). The 

chloride content (indicator of the NaCl content) was determined according to the Mohr 

method (ISO 9297:1989). The chloride was extracted from the meat samples by cooking the 

meat for 10 min in distilled water. The concentration of chloride ions was determined by 

means of a silver nitrate (Merck, Darmstadt, Germany) titration with a 5 % (w/v) chromate 

indicator (Merck, Darmstadt, Germany). The dry content was determined gravimetrically 

after drying an aliquot of the homogenate at 105°C. The homogenate was heated in 

aluminum dishes containing sea sand to avoid splashing. The fat content of the meat was 

assessed using the Weibull Analysis (Egan et al., 1981). 
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5.2.3.2 Assessment of the initial quality and safety of the meat and meat preparations 

The total aerobic psychrotrophic count, the number of generic E. coli and the 

presence/absence of Salmonella spp., L. monocytogenes, E. coli O157 and C. jejuni were 

assessed for the purchased meat and meat preparations. For enumeration, 10 g of each 

food sample was homogenized for 1 min in 90 ml of sterile peptone water, followed by 

tenfold serial dilutions in PPS to assess the number of micro-organisms. A modified ISO 

4833:2003 method (plating on Plate Count Agar (PCA, Oxoid) and 120 h incubation at 22 °C) 

was used for the enumeration of the total aerobic psychrotrophic count. An AFNOR 

validated method (no BRD 07/1-12/04) was used for the enumeration of generic E. coli 

(plating on RAPID'E.coli 2 (Bio-Rad) and 24 h incubation at 37°C). For detection of 

Salmonella, L. monocytogenes, E. coli O157 and C. jejuni, a 25 g subsample was weighed in a 

stomacher bag and homogenized for 2 min in 225 ml of the respective (semi)selective 

medium, i.e. buffered peptone water for the detection of Salmonella and E. coli O157, demi-

Fraser for the detection of L. monocytogenes and Bolton broth for detection of C. jejuni. The 

detection of L. monocytogenes was performed using VidasLMO2 (Biomérieux), an AFNOR 

validated Enzyme-Linked Fluorescent assay (ELFA-) method (no BIO-12/11-03/04). 

Confirmation of presumptive positive results was performed by plating out suspected 

samples on ALOA. The detection of C. jejuni was performed using CampyFood Agar 

(Biomérieux) and micro-aerophilic incubation for 24 – 48 h at 41.5°C. The detection of 

Salmonella and E. coli O157 was performed using real-time PCR according to the GeneDisc 

principle (Pall, NY, USA) which allows simultaneous detection of genes encoding Shiga toxins 

1 and 2 (stx1 and stx2), intimin (eae), the E. coli O157 antigen (rfbE), and Salmonella spp.-

specific genes. Confirmation of presumptive positive results obtained by the Genedisc for 

Salmonella and E. coli O157 was performed by plating out suspected samples on selective 

media, i.e. XLD for confirmation of Salmonella (after 24 h enrichment in RVS broth) and 

Chromocult® Coliform Agar (Merck) with 50 μg/ml nalidixic acid for confirmation of E. coli 

O157 (after concentration with Dynabeads® E. coli anti-O157 (Thermo Fisher Scientific Inc., 

MA, USA)). Further confirmation of the isolates was then performed using Crystal E/NF ID 

(BD Benelux N.V, Erembodegem, Belgium) for Salmonella and Escherichia coli O157 Latex 

Test for E. coli O157 (Thermo Fisher Scientific Inc.). 
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5.2.3.3 Inoculation of the meat and meat preparations 

The stationary phase cultures of the different strains of each microorganism were mixed in 

equal quantity to obtain a mixed culture. Each mixed culture was diluted in PPS to achieve 

an inoculation level of ca. 4 log CFU/g on the purchased meat and meat preparations. The 

inoculation procedure is based on the procedure described in the “Technical guidance 

document on shelf-life studies for Listeria monocytogenes in ready-to-eat foods” (EU CRL, 

2008). The steak or filet was inoculated at the surfaces and edges to mimic contamination 

during processing (e.g. meat cutting). The inocula were distributed across the surface using 

a sterile L-shaped plastic spreader. The purchased ground meat was inoculated in depth, 

blended and shaped into hamburgers to obtain homogeneous contaminated hamburgers. 

The meat strips were mixed with the inoculum to achieve a distribution of the micro-

organisms. All inoculated meat and meat preparations were stored for 18 h at 7 °C. The 

concentration of the micro-organisms was determined immediately after inoculation and 

after refrigerated storage using serial dilutions in PPS, followed by plating on selective 

media as described in Section 2.2.2. 

Table 5.2. Characteristics of the meat and meat preparations subjected to the treatments. 

Animal species Meat type pH aw % NaCl % dry content % fat 

Pork 

 

 

Chicken 

 

 

Beef 

 

 

Lamb 

 

 

Horse 

Kangaroo 

Crocodile 

Turkey 

Hamburger 

Filet 

Meat strips 

Hamburger 

Filet 

Meat strips 

Hamburger 

Filet 

Meat strips 

Hamburger 

Filet 

Meat strips 

Steak 

Steak 

Steak 

Steak 

5.59 

5.55 

5.93 

6.32 

6.27 

6.28 

5.72 

5.62 

5.71 

5.74 

5.93 

5.83 

5.83 

6.05 

6.63 

5.78 

0.9846 

0.9946 

0.9831 

0.9790 

0.9892 

0.9808 

0.9894 

0.9891 

0.9798 

0.9761 

0.9896 

0.9815 

0.9892 

0.9888 

0.9922 

0.9884 

1.545 

0.060 

1.265 

0.857 

0.053 

0.730 

0.227 

0.070 

1.320 

0.993 

0.053 

0.987 

0.137 

0.093 

0.057 

0.077 

35.61 

25.69 

34.47 

27.20 

24.07 

30.60 

24.01 

23.63 

29.75 

37.51 

27.43 

27.80 

25.92 

24.14 

23.94 

25.77 

8.10 

1.33 

12.07 

7.76 

1.44 

9.30 

1.14 

0.34 

4.54 

15.50 

6.2 

8.33 

2.61 

1.23 

4.25 

2.08 
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5.2.3.4  Pan-frying of the meat and meat preparations and temperature measurement 

The steaks, filets and hamburgers were heat treated for several minutes on each side, 

depending on the meat type, in a frying pan in hot butter at high temperatures in a 

standardized manner (Table 5.3) to simulate commonly used cooking practices of this type 

of meat and meat preparations in Belgium. After these cooking practices the meat and meat 

preparations were allowed to rest for 3 – 5 min on a serving plate at room temperature 

before analysis took place. As it is currently uncommon in Belgian households to use a 

thermometer to assess the doneness of food, standardization of pan frying was driven by 

operational practices of preparation (state of electrical fire and time of heating) in order to 

obtain a visually assessed level of doneness of the meat and meat preparations, rather than 

the achievement of a core temperature. The standardized heat treatments were set as 

those to be commonly used and to provide visually well-done meat as assessed by a team of 

5 lab collaborators. As steak is commonly prepared and consumed in Belgium as rare, 

medium or well-done, steaks from different animal species (such as beef, horse, kangaroo 

and crocodile) have also been subjected to milder heat treatments in a frying pan in hot 

butter using a standardized time for each side to achieve the steak to be assessed as either 

rare (2′), medium (4′) or well-done (6.5′) (Table 5.3). Stir frying was preferred for the 

marinated meat strips. During the heat treatment and the resting time on the serving plate, 

core temperature and temperatures of the sub-surfaces of the filets, steaks or hamburgers 

were monitored every 5 s in parallel on non-inoculated meat and meat preparations. To 

measure the core temperature, a wireless temperature probe (DataTrace T-logger,Mesa 

Laboratories Inc., Colorado, USA) was placed into the core of the meat. The edge 

temperatures were measured on top and on the bottom with a data logger (Testo 177-T4, 

Testo NV/SA, Ternat, Belgium). To measure the temperature during stir frying, the wireless 

temperature probe was co-stir fried with the 300 g portion of this meat preparation. 

5.2.3.5 Detection and enumeration of surviving bacteria 

After performing the pan frying or stir frying, enumeration of the residual pathogens on 

artificially contaminated meat was performed using appropriate selective media described 

in Section 5.2.2.2. For enumeration, a cross section of 10 g of each food sample was 
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Table 5.3. Standardized commonly used cooking practices for intact meat and meat preparations. 

Action Meat preparations 

of ground meat 

 Intact meat  Meat preparations 

of intact meat 

State of  

electrical fir 

 Pork,  

Beef 

Lamb,  

Chicken 

 Pork Lamb Chicken Beef,Horse,  

Turkey, 

Kangaroo, 

Crocodile 

 Pork, Chicken,  

Beef, Lamb 

(from 1 (low) 

to 7 (high) 

Preheating 

Pan 

2’ 2’  2’ 2’ 2’ 2’  2’ 7 

Melting 

butter  

2’ 2’  2’ 2’ 2’ 2’   7 

Side 1 5’ 6’  5’ 6’ 10’ 2’ or 4’  

or 6’30” 

  5 

Side 2 5’ 6’  5’ 6’ 10’ 2’ or 4’  

or 6’30” 

  5 

Stir frying         7 7 

‘: minutes “:seconds 

 

homogenized for 1 minute in 90 ml of sterile peptone water. Because low numbers were 

expected for the residual pathogens, 1 ml of the inoculum was spread on three selective 

plates (detection limit of 1 log CFU/g). Besides enumeration, the presence or absence was 

assessed using enrichment methods described in Section 5.2.3.2. Depending on the amount 

of available meat, the detection test in a cross section of 25 g of each food sample was 

performed either in singular (hamburgers), in duplicate (filets or steaks) or in triplicate 

(meat strips). 

5.2.3.6 Data analysis 

Data were analyzed using Microsoft Excel (version 2010). Means and standard deviations of 

the bacteria on the meat and meat preparations were determined over the three replicates 

(each using a different batch of meat or meat preparation). As the heating process is non-

isothermal the inactivation (i.e. process lethality P) can be approximated by summating the 

lethal rates (L) between the measuring intervals (Gaze, 2006). The lethal rate for every 

interval is calculated with following formula: 

L  

where Tt is the temperature at the core of the meat at time t, and Tref is the reference 

temperature. In this study Tref was 70°C and the z-value was 7°C as recommended for L. 
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monocytogenes (van Asselt and Zwietering, 2006). Because the lethal effect below 55°C is 

negligible, only Tt ≥ 55.0°C were used to calculate the process lethality P (Claeys et al., 

1998).  

 

5.3 Results 

5.3.1 Determination of D-values of bacterial strains 

Among the linear and non-linear inactivation models included in the GInaFiT software, the 

biphasic model (with or without shoulder) provided the best fit to data with high R2-values, 

relatively low RMSE values and smaller AIC values (data not shown). Both in normal (data 

not shown) and adjusted broth (Figure 5.1), shoulders (lag phase) were observed for L. 

monocytogenes and E. coli O157:H7. The kmax was derived from the first phase of the 

biphasic model, therefore the obtained D-value for each strain in normal and adjusted broth 

represents the first log reduction. These D-values are listed in Table 5.4. A full comparison of 

the D-values of different organisms indicated that C. jejuni was less heat resistant than other 

organisms in both challenge media. In normal broth, L. monocytogenes was the most heat 

resistant pathogen. All D-values of the organisms treated in adjusted broth were greater 

than those in normal broth. However, the difference was only significant for E. coli 0157:H7 

and generic E. coli. Average D-values of the pathogens in broth or buffers reported from the 

Combase database and literature (Clavero et al., 1994; Nguyen et al., 2006) where 

experimental conditions laid down in normal broth (pH of 7 – 7.5, aw of 0.99 – 1.00) were 

also listed and compared to the ones estimated in this study. The D-values obtained in our 

study were in the range of reported values (P < 0.05). 
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Figure 5.1 Thermal inactivation curves of foodborne pathogens at 60 oC in adjusted broth (pH 5.6 

and 1.5% NaCl). Each symbol represents an individual strain of pathogen. Solid lines are regression 

lines fitted with GInaFiT. 
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Table 5.4. Estimated D-values at 60°C in normal and adjusted broth in this study compared with D-

values reported in previous studies. 

Bacterial strain D-values from 

normal broth
a
 

(min) 

Mean D-values from published 

data (min) 

D-values from 

adjusted broth
a
 

(min) 

Salmonella 872 

875 

877 

Mean
b
 

0.59 ± 0.13 

0.64 ± 0.02 

0.62 ± 0.08 

0.61 ± 0.08 ABX 
c
 

0.75 ± 0.74 (n = 62 
d
) AX 0.72 ± 0.39 

0.95 ± 0.59 

1.42 ± 0.44 

1.03 ± 0.52 BX 

C. jejuni 595 

866 

867 

Mean
b
 

0.36 ± 0.00 

0.30 ± 0.04 

0.54 ± 0.18 

0.40 ± 0.14 AX 

0.31 ± 0.26 (n = 12) AX 0.43 ± 0.07 

0.58 ± 0.15 

0.46 ± 0.07 

0.49 ± 0.11 AX 

E. coli O157:H7 846 

847 

849 

Mean
b
 

0.73 ± 0.10 

0.88 ± 0.14 

0.89 ± 0.11 

0.84 ± 0.13 BX 

1.35 ± 0.72 (n = 37) BXY 1.66 ± 0.49 

1.06 ± 0.33 

2.17 ± 0.03 

1.63 ± 0.56 CY 

L. monocytogenes 392 

421 

491 

Mean
b
 

1.37 ± 0.46 

1.05 ± 0.10 

1.42 ± 0.40 

1.28 ± 0.36 CX 

1.74 ± 1.12 (n = 33) BX 1.26 ± 0.25 

1.07 ± 0.31 

1.90 ± 0.50 

1.41 ± 0.50
 
BCX 

E. coli 063 

168 

Mean
b
 

0.69 ± 0.07 

1.01 ± 0.13 

0.85 ± 0.20 BX 

N.D.
e
 1.26 ± 0.38 

1.47 ± 0.29 

1.37 ± 0.32 BCY 
a
 Values are expressed in mean standard deviations from three replicates. 

b 
Mean D-values of three or two strains of each organism. 

c
 Means in the same column with a different letter (A through C) are significantly different (P < 0.05). Means in 

the same row with different letters (X through Y) are significantly different (P < 0.05). 
d 

n, Number of D-values reported from ComBase database and literature . 
e

 N.D. no data.
 

5.3.2 Assessment of initial quality and safety of the meat and meat preparations 

An overview of the initial quality of the meat and meat preparations prior to the heat 

treatments is shown in Table 5.5. The meat and meat preparations had a variable 

microbiological quality, as can be deduced from the results. Pork filet, marinated pork strips, 

beef steak, marinated beef strips, crocodile and turkey steak had aerobic psychrotrophic 

counts (APC) of 3 – 4 log CFU/g, indicating that those products had a very good initial 

microbial quality. The hamburgers in general as well as the chicken filet and marinated 

chicken strips had APC of ca. 5 log CFU/g. Horse steak showed the highest APC exceeding 6 

log CFU/ g. This indicated less good initial quality, however, none of the products showed 

off-odors and they were all visually acceptable for consumption. Generic E. coli, a fecal 

hygiene indicator, was used to assess the hygienic conditions of the meat samples. The 

presence of enumerable generic E. coli (1 – 2 log CFU/g) was observed occasionally, in 

particular in all types of raw chicken meat, as well as in beef hamburgers and horse, 
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kangaroo, and turkey steak. Salmonella spp., Campylobacter spp. and E. coli O157 were not 

detected in any of the meat samples. L. monocytogenes was detected two out of three 

times in chicken and lamb burgers and was found once in a batch of marinated chicken 

strips and horse steak. The pathogen numbers were all below the level of standard 

enumeration i.e. < 1 log CFU/g, but these results show the potential presence of low 

numbers of pathogenic bacteria in raw meat and meat preparations for sale in Belgium. 

Table 5.5. Microbial quality (in log CFU/g) of the meat and meat preparations prior to heat 

treatments; 

Animal species Meat type Total aerobic psychotropic count E. coli 

Pork Hamburger 

Fillet 

Marinated strips 

4.9 ± 0.6  

3.8 ± 0.4 

4.0 ± 0.4 

< 1.0 

< 1.0 

< 1.0 
Chicken  Hamburger  

Fillet  

Marinated strips 

5.0 ± 0.2 

5.3 ± 0.6  

5.0 ± 0.4 

1.8 ± 0.8 

1.3 ± 0.3 

1.6 ± 0.6 
Beef Hamburger 

Steak 

Marinated strips 

5.5 ± 0.4  

3.4 ± 0.3  

3.8 ± 1.4  

1.4 ± 0.6 

< 1.0 

< 1.0 
Lamb Hamburger 

Fillet 

Marinated strips 

5.3 ± 0.5 

4.7 ± 0.4  

4.6 ± 0.8 

< 1.0 

< 1.0 

< 1.0 
Horse 

Kangaroo 

Crocodile 

Turkey 

Steak  

Steak  

Steak 

Steak 

6.1 

4.8 

4.2 

3.7 

1.9 

1.3 

< 1.0 

1.0 

5.3.3 Temperature profile during pan-frying of meat and meat preparations 

During pan-frying of the inoculated raw meat and meat preparations, the core temperature 

and temperatures at sub-surface were measured in parallel on non-inoculated meat and 

meat preparations. The core temperature profiles of the simulated home cooking practices 

(2-sided pan-frying or stir-frying) for the various types of animal meat species are shown in 

Figure 5.2. From these results it can be noted that core temperatures of 70°C were only 

achieved in 24 out of 36 occasions. In another 3 experiments, core temperatures of 70°C 

were only achieved after the meat was taken out of the pan and allowed to rest for 3 – 5min 

on the serving plate. In 5 out of the 12 experiments of pan-frying of hamburgers, core 

temperatures of 70°C were not achieved, even not after the 3 – 5 min resting time on the 

serving plate. During stir frying of marinated meat strips, temperatures of more than 80°C 

can be measured (Figure 5.2). However, as it was not feasible to insert the temperature 

probe in the actual small meat strips, the temperature probe was added to the frying pan 
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with the meat portion and treated as a piece of meat strip, i.e. stir fried, thus it is uncertain 

how representative this measured temperature actually is for the meat strips' surface 

temperature. Still, meat strips are small meat parts for which heat transfer and heating up 

may easily occur during heat treatment in particular if the meat is frequently stirred. The 

process lethality (L) and the equivalent time of each simulated cooking practice was 

calculated for the frying time (thus excluding the resting time on the serving plate). These 

results are summarized in Tables 5.6a and 5.6b. It should be mentioned that the calculated 

L-value was based on the temperature profile obtained during pan-frying of non-inoculated 

meat and meat preparations. For a sufficient inactivation of L. monocytogenes (6 log 

reduction) a heat treatment equivalent to 2 min at 70 °C, thus a P-value of 2, is usually 

recommended (ACMSF, 2007; ILSI, 2012; Lund, 2014). From the results it can be concluded 

that high P-values are obtained for marinated meat strips. However, for the other meat 

types the P-value may be variable even among independent repetitions of pan-frying, 

although the pan-frying process was standardized and at all times the meat was judged as 

well-done after preparation by the executing lab team members. When a sufficient 

inactivation was not obtained during the heat treatment, P-valueswere recalculated (data 

not shown) to include the temperature data of the meat on the serving plate. In 5 out of 36 

times the P-value of 2 was only achieved during the 3–5 minute time that the pan-fried 

meat was kept on a serving plate (Tables 5.6a and 5.6b). It was indeed noted that the core 

temperature of the meat still slightly increased after taking the meat out of the pan and 

putting it on the serving plate at room temperature. On a few occasions, i.e. in pan frying of 

pork filet, chicken filet, beef steak and beef and lamb hamburgers, the heat process of 70 °C 

for 2 min was not achieved throughout the experiments' time duration (thus including 3–5 

min resting time) (Table 5.6). 

 



 

 

Figure 5.2 Core temperature profiles measured on non-inoculated meat and meat preparations. The different lines are different repetitions. 

The arrow illustrates the time that the meat was taken out of the pan. 
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Table 5.6. Process lethality P calculated with a z-value of 7°C (Table A) or a z-value of 5°C (Table B) and core temperatures (≥ 55°C) measured during the 

heat treatment of the different meat and meat preparations.  

 

Animal  Meat type   Frying Repetition 1   Equivalent time
a
   Repetition 2   Equivalent time

a
   Repetition 3   Equivalent time

a
 

species     Time P-value   needed to obtain P=2   P-value   needed to obtain P=2   P-value   needed to obtain P=2 

Pork Hamburger 10' 3 547 3'55" 0.24 12'25" 10.8 5'30" 

Filet 10' 1.55 Not achieved
b
 0.65 Not achieved

b
 0.13 Not achieved

b
 

Marinated strips 7' 403 5'30" 5 954 3'50" 38 192 2'05" 

Chicken Hamburger 12' 10.9 10'50" 35.2 10'20" 17 230 8'10" 

Filet 20' 0.80 21'10" 0.21 Not achieved
b
 1.15 20'45" 

Marinated strips 7' 14 128 3'55" 13 369 3'25" 9 663 3'35" 

Beef Hamburger 10' 0.03 12'45" 0.06 Not achieved
b
 0.12 Not achieved

b
 

Steak 13' 1.16 Not achieved
b
 31.3 11'00" 28.4 9'10" 

Marinated strips 7' 17 082 3'00" 37 622 2'35" 3 785 4'00" 

Lamb Hamburger 12' 0.91 12'25" 0.03 Not achieved
b
 0.11 Not achieved

b
 

Filet 12' 12.2 6'45" 418 8'05" 2 317 6'45" 

  Marinated strips   7' 7 533   2'00"   7 711   3'15"   5 348   3'00" 

 

Animal  Meat type   Frying Repetition 1   Equivalent time
a
   Repetition 2   Equivalent time

a
   Repetition 3   Equivalent time

a
 

species     time P-value   needed to obtain P=2   P-value   needed to obtain P=2   P-value   needed to obtain P=2 

Pork Hamburger 10' 92 832 3'50" 0.11 12'40" 21.2 5'20" 

Filet 10' 1.32 Not achieved
b
 0.34 Not achieved

b
 0.05 Not achieved

b
 

Marinated strips 7' 6 875 5'20" 198 401 3'50" 1 685 937 2'00" 

Chicken Hamburger 12' 23.1 10'45" 125 10'15" 610 683 8'05" 

Filet 20' 0.52 21'20" 0.07 Not achieved
b
 0.84 20'55" 

Marinated strips 7' 597 302 3'55" 471 671 3'25" 377 241 3'35" 

Beef Hamburger 10' 0.01 13'20" 0.01 Not achieved
b
 0.03 Not achieved

b
 

Steak 13' 0.90 Not achieved
b
 118 10'50" 74.9 9'00" 

Marinated strips 7' 618 074 3'00" 1 724 591 2'25" 99 597 3'55" 

Lamb Hamburger 12' 0.82 12'25" 0.01 Not achieved
b
 0.03 Not achieved

b
 

Filet 12' 16 6'40" 3 012 8'00" 285 6'40" 

  Marinated strips   7' 236 786   1'55"   204 414   3'10"   150 769   3'00" 

‘ minutes “seconds  
a
 The safety barrier of 70°C for 2 minutes is used as this time/temperature combination is currently applied to a wide range of foods for a wide range of pathogens. The equivalent time may exceed the total heating 

time (shown in italics), however the meat was allowed to rest for 3-5 min before the temperature measurement was cancelled and analyses was performed. 
b
 The heat process of 70°C for 2 minutes is not achieved during the total heating time and resting time (max. 5 min) of the meat and meat preparations. Therefore the theoretical assumed 6 log reduction could not 

take place. 

A 

B 



CHAPTER 5 

133 

5.3.4 Detection and enumeration of surviving bacteria 

The residual recovery of the pathogenic bacteria on the inoculated meat and meat 

preparations after simulated home-cooking practices is summarized in Table 5.7. From 

these results it can be concluded that hamburgers yielded the highest quantifiable pathogen 

recovery with pork meat burgers (40 %) yielding the most, followed by lamb meat (20 %), 

beef meat (13 %) and chicken meat (0 %). Levels of L. monocytogenes on hamburgers after 

the heat treatment ranged from < 1 log CFU/g to 2.6 log CFU/g. Levels of Salmonella spp., E. 

coli O157 and Campylobacter on these hamburgers ranged from <1 log CFU/g to 1.0 log 

CFU/g. Levels of generic E. coli on hamburgers were also situated on the level of the 

detection limit, i.e. 1.0 – 1.9 log CFU/g. In addition, also in pork meat strips in 1 out of 3 

times L. monocytogenes cells could be counted (i.e. 1.0 log CFU/g) after heat treatment. All 

other meat strips samples did not show any quantifiable pathogen results. Intact meat such 

as a steak can be prepared with different graduations of pan frying: rare, medium or well-

done. Residual detection of pathogens occurred for all levels of doneness: 18 % for well-

done, 71 % for medium and even 90 % for rare steaks. As presented in Table 5.7, 

quantifiable recovery of pathogens was shown for “well-done” (i.e. 6.5 min each side) horse 

steak with levels ranging from 1.0 log CFU/g to 1.7 log CFU/g. L. monocytogenes was 

detected after enrichment on “well-done” meat 7 out of 30 times (23 %), Salmonella spp. 3 

out of 29 times (10 %), Campylobacter spp. 8 out of 30 times (26.7 %) and E. coli O157 2 out 

of 29 times (7 %). This means that in most cases a 6 log reduction was not obtained using a 

standard consumer cooking technique to obtain well-done meat. However, when compared 

with steak baked “medium” (Table 5.8) a substantial reduction in detection is obtained for 

the “well done” steaks. In the case of “medium” pan fried steaks L. monocytogenes was 

detected 28 out of 30 times (93 %), Salmonella spp. 16 out of 30 times (53 %), 

Campylobacter spp. 25 out of times (83 %) and E. coli O157 16 out of 30 times (53 %). Pan-

frying to obtain “medium” fried meat, i.e. 4 min each side, resulted into enumeration levels 

ranging from 1.4 ± 0.5 log CFU/g to 1.5 ± 0.8 log CFU/g over the different pathogens. When 

the steak was just fried on the outside (“rare”), almost all enrichments tested positive and 

quantifiable recovery ranged from 1.5 ± 0.4 log CFU/g to 2.1 ± 0.8 log CFU/g over the 

different pathogens included. These results demonstrate that a residual threat to 

consumers remains, even if the steak is pan fried “well-done”. However, all pathogens have 
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been frequently recovered at low levels (detected with enrichment methods) in the 

different types of meat and meat preparations after the simulated home-cooking practices. 

Taking all results presented in Table 5.7, L. monocytogenes was recovered by enrichment in 

25 out of 96 experiments (26 %) with the highest number of detectable results in beef 

products. Salmonella spp. was detected in 17 out of 95 experiments (18 %) with the highest 

number of detectable results in beef products. Campylobacter spp. was detected in 12 out 

of 96 experiments (13 %) and E. coli O157 in 10 out of 95 experiments (11 %). As can be 

deduced from the results in the current study with artificially inoculated meat and meat 

preparations (inoculum of 4 log CFU/g), hamburgers, which were also internally 

contaminated, yielded the highest number of surviving pathogenic bacteria (46 %), followed 

by well-done intact meat (filet and steaks) (13 %) and marinated cut meat preparations 

(meat strips) subjected to stir-frying (12 %). 

 



 

 

 

 

 

 

 

 

Table 5.7. Residual recovery of pathogenic bacteria on inoculated meat and meat preparations after simulated home-cooking practices. Results are 

presented in log CFU/g. 

 
a
 These results present the number of times enumeration was possible for the different repeats 

b
 These results present the number of times the pathogen was detected after enrichment in 25 gram food product 

c
 These results present the inactivation of “well-done” heat inactivation (6’30”) 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 5.8. Residual recovery of pathogenic bacteria on inoculated steaks (beef, horse, kangaroo, crocodile and turkey) after simulated home-cooking 

practices with different gradients of frying (i.e. rare, medium, well done). Results are presented in log CFU/g. 

 
‘ minutes 
a
 These results present the number of times enumeration was possible for the different repeats 

b
 These results present the number of times the pathogen was detected after enrichment in 25 gram food product 
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5.4 Discussion 

The study focused on the heat inactivation of pathogenic bacteria such as L. 

monocytogenes, Salmonella spp., C. jejuni and E. coli O157:H7 in artificially contaminated 

meat and meat preparations of different animal species, such as pork, beef, chicken and 

lamb, that were pan fried according to a standardized procedure to simulate commonly 

used home-cooking practices. From the obtained D-values (time needed to obtain 1 log 

reduction measured in broth at 60°C) of the bacterial strains used, it was confirmed that the 

pathogens used for the heat inactivation trials did not have unusual heat resistance. L. 

monocytogenes showed greater D-values than the other pathogens tested, which is 

consistent with previous studies that also show that Gram-positive bacteria exhibit more 

heat resistance than most non-sporeforming Gram-negative pathogens (Doyle et al., 2001). 

L. monocytogenes is therefore considered to be the most heat-resistant vegetative 

pathogenic bacterium in high water activity foods and, as such, is regarded as the target 

organism in setting performance objectives in thermal processing (ILSI, 2012). As the main 

variable for inactivation is temperature, the process lethality (P) is calculated to control if a 

sufficient inactivation is achieved. This process lethality uses a kinetic value (z-value) which 

is a measure of the relative “killing power” of the heating temperature. The determination 

of a z-value is classically performed based on survival studies in laboratory media. 

Therefore, one must be cautious when extrapolating the obtained secondary models to 

practical applications in real food products. Food properties such as fat and carbohydrate 

content also play an important role (van Asselt and Zwietering, 2006; Tamplin, 2002). As L. 

monocytogenes is mostly targeted in thermal processing, it was preferred to calculate the 

process lethality with a z-value of 7°C which is recommended for L. monocytogenes in the 

study of Van Asselt and Zwietering (2006) instead of a z-value of 5°C used for vegetative 

cells (Mossel et al., 1995). Thus, it can be seen as a worst case scenario, if the thermal 

process would be sufficient to inactivate expected levels of L. monocytogenes, it would be 

sufficient to inactivate other pathogens as well. However, calculating the process lethality 

(P) with a z-value of 7°C might give a failsafe effect if temperatures remain low during 

processing as can be deduced from Tables 5.6a and 5.6b where P -values are calculated with 

a z-value of 7°C and 5°C respectively. In the case of chicken filet a P-value of 0.80 is obtained 

using a z-value of 7°C. When the same temperature profile during cooking is used for 
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calculating the P-value with a z-value of 5°C, a P-value of 0.52 is obtained. The decreased P-

value results in an increased time (i.e. 10 s in the case of chicken filet) needed to exceed the 

“safe harbor” process criterion of 70°C for 2 min. As such, using a z-value of 7°C results in an 

overestimation of the process lethality (P) if the temperature during processing remains low 

which should be taken in mind when calculating the process lethality. The difference in P-

values among the independent repetitions may be huge although the pan-frying process 

was standardized and at all times the meat was judged as well-done after preparation. From 

the individual temperature profiles (Figure 5.2) it can be deduced that heating of meat and 

meat preparations may vary a lot. As such, a small increase or a faster increase in 

temperature resulting in a higher process lethality. Besides, the position of the temperature 

probe may influence the temperature profile and thus the process lethality as well. It is 

generally believed that when meat is heat treated to achieve the “safe harbor” process 

criterion of 70°C for 2 min (or equivalent time/temperature combination), a 6 log reduction 

of E. coli O157:H7, Salmonella spp. and L. monocytogenes in meat products is obtained and 

that the meat will be free of pathogens and thus safe to eat (ACMSF, 2007; Bunning et al., 

1990; Lund, 2014). However, the simulation of home-cooking practices showed the 

occasional presence of low numbers of L. monocytogenes, Salmonella spp., C. jejuni and E. 

coli O157:H7 in 25 g of heat treated meat. Core temperatures measured in filet, steak and 

hamburgers upon pan-frying did not necessarily achieve 70°C and a time/temperature 

combination equivalent to 2 min at 70°C (i.e. P-value of 2) was not always obtained during 

the simulated homecooking practices although the meat was visually judged as being 

cooked thoroughly. As demonstrated as well by Bergsma et al. (2007) on chicken filets and 

Van Laack et al. (1996) on beef, checking doneness of meat by means of visually inspecting 

the inside color is not a fully reliable method to verify microbiological safety of the meat. 

Therefore, thermometers are advised to be used as core temperatures assumed to be 

reached during heat inactivation processes might be overestimated and consumers may fail 

to reach the safety barrier of 2 min at 70°C during the heat treatment of meat and meat 

preparations (Bergsma et al., 2007; USDA, 2003; Whittington and Waldron, 2010). On the 

other hand, also in case the P-value of 2 was actually achieved, e.g. during preparation of 

marinated meat strips, occasional survival of pathogens was still noted. Besides, marinated 

meat strips, steaks and filets are contaminated on the outside and the inner meat is 

supposed to be sterile. Although core temperatures for steaks and filet may have failed to 



CHAPTER 5 

139 

reach 70°C, the temperature on the meat surface in contact with the frying pan reached 

easily up to 115 – 120°C. Therefore, the occasional detection of L. monocytogenes, 

Salmonella spp., C. jejuni and E. coli O157:H7 indicated that residual low numbers of the 

initial high inoculum level of 4 log CFU/g remained and thus the 6 log reduction 

performance criterion for pathogens in the meat, usually aimed for during a heat treatment 

equivalent to 70°C for 2 min, was not consistently achieved. It should be mentioned that the 

small difference in inoculation level is hampering good comparison as the more heat 

resistant L. monocytogenes has comparable recovery (absolute numbers) as E. coli O157 

despite L. monocytogenes starts with 4.3 log CFU/g and E. coli O157 only with 3.6 log CFU/g. 

However, absolute numbers are only shown to demonstrate that a 6 log reduction is not 

obtained, not to compare the reduction of the different pathogens as for this the number of 

quantifiable results is too low. Adding an MPN-method or an extra enrichment (e.g. 1 g or 

2.5 g) between the lowest enumerable level (1 log CFU/g) and the enrichment used (−1.4 log 

CFU/g) could have been useful to gain more absolute recovery numbers. In the study an 

inoculation level of approximately 4 log CFU/g was targeted, as in this case a 6 log reduction 

would result in non-detectable results after enrichment of 25 g. If a lower reduction would 

take place, detection would be possible and in worst cases (≤ 3 log reduction) enumeration 

would be possible. Therefore, the study gives an idea about the magnitude of reduction 

obtained during simulated home-cooking practices. However, it is demonstrated that the 

assumed inactivation of pathogenic bacteria in meat and meat preparations might be 

overestimated. This phenomenon was also shown by other studies (Bergsma et al., 2007; de 

Jong et al., 2012, Roccato et al., 2015). Although many data on heat resistance in buffer 

systems are available which show that heat resistance of microorganisms can vary 

depending on the species, strain and physiological state of microbiological cells, data in 

actual foods upon consumer-based cooking processes are comparatively scarce (Doyle and 

Mazzotta, 2000; Juneja et al., 2001; Lianou et al., 2006; Lianou and Koutsoumanis, 2013; 

Nguyen et al., 2006; Smelt and Brul, 2014). Thermal inactivation processes in food products 

are more complex than those in buffer systems. The heat inactivation of pathogenic bacteria 

in meat and meat preparations is also partly dependent on the exact nutritional 

composition (e.g. fat content), texture (e.g. fiber structure) and contamination profile 

(Hansen and Riemann, 1963; Jay, 2000; Juneja et al., 2001; Tuntivanich et al., 2008). 

Moreover, thermal inactivation studies in buffer systems are usually performed at an 
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isothermal condition. However, consumer style cooking techniques are normally non-

isothermal. It is known that heating rate has an effect on microbiological survival. In slow 

heating, vegetative cells can adapt to stress conditions resulting in a lower inactivation rate 

(Smelt and Brul, 2014). Also cells grown at higher temperatures or exposed to sub-lethal 

heat shock, and those growing in a minimal, or fat-rich medium, are more heat resistant 

(Juneja et al., 2001; Wiegand et al., 2009). Cells attached to meat surfaces are more heat 

resistant than those that are unattached and dispersed throughout in foods  (Juneja et al., 

2001). Also changes in composition due to heating can cause changes in the thermal 

resistance of microorganisms (Smelt and Brul, 2014). Therefore, the unexpected survival of 

pathogenic bacteria in the heat treated meat in the present study may plausibly be due to 

the heating rate, the protective effect of some ingredients/texture or adaptation to stress 

conditions. If pathogens are present in raw meat and raw meat preparations, the initial 

contamination level of pathogenic bacteria is low (< 1 – 2 log CFU/g) as they could be 

detected in 25 g but not enumerated (Duffy et al., 2010; Uyttendaele et al., 1999). 

Quantification of Salmonella spp. on poultry meat samples has been performed in different 

studies and resulted in levels from −0.52 log MPN/g up to 1.53 log MPN/g (Cook et al., 2012; 

Roccato et al., 2015) and in a contamination curve with a mean of −2.79 log MPN/filet and 

standard deviation of 2.39 log MPN/filet (Straver et al., 2007). Campylobacter quantification 

on chicken meat resulted in levels of −0.52 log MPN/g to 1 log MPN/g (Cook et al., 2012). 

Habib et al. (2008) reported an average Campylobacter concentration of 1.68 log CFU/g with 

a standard deviation of ±0.64 (n= 656). Samples of minced pork meat positive to L. 

monocytogenes showed levels of ca. 14 – 17 CFU/kg (Andritsos et al., 2013) and from −0.52 

log MPN/g up to 3 log MPN/g (Cook et al.,2012). Franco et al. (2009) showed concentrations 

of VTEC O157 ranging from < 2 to 5.78 log CFU/g in feces of sheep at slaughter illustrating 

that adult sheep represent a relevant source of environmental contamination from virulent 

VTEC O157, as well as a source of VTEC O157 contamination for food of ovine origin. 

However, in the present research study, the meat and meat preparations were challenged 

with higher numbers of pathogens (3 – 4 log CFU/g). If the cold chain is well respected (≤ 4–

7°C) throughout distribution and refrigerated storage is restricted to a few days (as is usual 

the case for fresh meat and meat preparations), it is believed that the initial low 

contamination (< 1 – 2 log CFU/g) will not grow out to high(er) numbers. Thus, if meat is 

heated thoroughly and pan-frying is restricted to a heat inactivation of only 3 – 4 log as 
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demonstrated in this study, there would be no residual surviving pathogenic cells expected. 

Indeed, this deterministic calculation shows that there is an interplay between initial 

contamination level (determined by good hygiene and practices during slaughter and 

processing), storage conditions (potentially enabling growth) and heat treatment (causing 

inactivation). All these factors together determine the actual numbers of pathogenic cells 

that consumers are exposed to upon consumption of the prepared meat. In assessing the 

actual risk for consumers in consumption of pan-fried meat the overall process will need to 

be taken into account (Cassin et al., 1998; Guillier et al., 2013; Smith et al., 2013). Overall, it 

has been shown in the present study that if the meat is insufficiently heated there might be 

a residual threat of consumer exposure to microbial hazards. As demonstrated in the study, 

hamburgers yielded most enumerable results. This result is to some extent expected as 

meat preparations of ground meat also contain pathogenic bacteria in the core of the meat. 

Besides, the food category with the highest proportion of products not complying with the 

European Union Salmonella criteria is minced meat and meat preparations (EFSA and ECDC, 

2014). Moreover, a multistate outbreak of shiga toxin-producing E. coli O157:H7 was 

recently linked to ground beef (hamburgers) (CDC, 2014). However, both meat preparations 

and well-done steaks showed 12 % survivors what makes them both of particular interest to 

verify sufficient cooking procedures. Moreover, meat preparations of ground meat are 

gaining increased popularity which can be seen in the broad variety of hamburgers, 

sausages, minced meat etc. on the Belgian market. Although, high temperatures (> 100°C) 

are reached at the surface of intact meat and the inner part is supposed to be sterile, results 

demonstrated that a residual threat to consumers remains even when steaks are assessed 

“well-done” (i.e. 6.5 min each side). However, well-done preparation of steaks produced 

significantly different pathogen reductions in comparison with steaks which were assessed 

as medium fried (i.e. 4 min each side) or assessed as rare (i.e. 2 min each side), a culinary 

practice often preferred by Belgian consumers. This study showed thus clearly the effect of 

consumer cooking practices on survival of pathogens at different levels of doneness. 

Appropriate heat treatment of fresh raw meat and meat preparations in the kitchen of the 

consumer is of importance to provide sufficient inactivation of possible present pathogenic 

bacteria. However, Fischer et al. (2007) observed that although most consumers are 

knowledgeable about heating in preventing the occurrence of foodborne illness, this 

knowledge is not necessarily translated into behavior. Most participants perceive a risk–
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benefit tradeoff in preparing meat, especially with regard to steak. In the study of Fischer et 

al. (2007) almost half of the participants downplayed the danger of bacteria for their health 

from bacteria by mentioning that some exposure to bacteria may be essential to build up 

resistance. Therefore, even if consumers are aware of a residual risk for public health due to 

occasional presence and survival of pathogens on prepared meat, behavior will not change 

easily. 

 

5.5 Conclusion 

From the current study it can be concluded that consumers can be exposed to surviving 

foodborne pathogens after commonly used pan frying of raw meat and meat preparations 

even if the meat is visually assessed as cooked thoroughly. On several occasions, residual 

survivors of the initially inoculated (4 log CFU/g) foodborne pathogens could be recovered 

either by enumeration (detection limit of 1 log CFU/g), especially in hamburgers, or by 

presence/absence testing per 25 g. Besides, core temperatures of 70°C were not always 

achieved and a heat treatment equivalent to 2 min at 70°C was not always obtained. Since 

consumer behavior is not easily changed, it is important to keep the initial contamination 

level of pathogenic bacteria low (< 1 – 2 log CFU/g) and to respect the cold chain (≤ 4 –7 °C) 

to keep the residual threat to public health as low as possible. 
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Abstract 

Small scale on-farm cheese producers are aware on hygiene requirements during 

production to prevent Listeria monocytogenes contamination, but opportunities for post-

contamination may also occur in delicatessens, during the sometimes short further cheese 

ripening (at maximum 14°C), during storage and display in the refrigeration cabinet (at 

maximum 7°C), or during slicing. The growth potential of L. monocytogenes in three soft 

cheeses (one white-molded raw cow’s milk cheese, one pasteurized cow’s milk cheese with 

spicy herbs, one washed rind pasteurized cow and sheep’s milk cheese) and two semi-hard 

cheeses (one smear-ripened raw cow’s milk cheese and one natural-ripened raw cow’s milk 

cheese) was evaluated. L. monocytogenes challenge testing was performed according to EU-

RL guidelines assessing the growth potential by challenging 3 replicates of each of 3 batches 

per type of cheese. A L. monocytogenes post-contamination was simulated by inoculation 

either on the cheese slicing surface or the cheese rind. The growth potential was established 

after 14 days storage at either 7 or 14°C. Substantial growth of L. monocytogenes (> 0.5 log 

CFU/g) was obtained in 79.2 % of all individual challenge tests (n=178) that were performed 

although huge variation in growth potential was seen among the different cheese types and 

storage conditions. The growth potential on soft cheeses stored at 7°C ranged from 1.83 to 

4.01 log units and from 3.55 to 5.46 log units upon storage at 14°C, whilst on semi-hard 

cheese, this was in general lower, and ranged from 0.08 to 1.42 log units at 7°C and from 0 

to 3.01 log units at 14°C. Overall, increased outgrowth of L. monocytogenes was noted when 

inoculation was performed on the cheese slicing surface compared to the cheese rind. Thus 

if occasional post-contamination takes place during storage or handling of the cheese, L. 

monocytogenes has the potential to grow to elevated numbers throughout a reasonably 

expected storage period of up to 14 days notwithstanding the presence of high numbers of 

indigenous lactic acid bacteria in these cheeses. Also for a defined cheese type both a 

considerable inter-batch and intra-batch variability was sometimes noted from the replicate 

testing, indicating no consistent behavior of L. monocytogenes in these fermented dairy 

products. As such it is recommended that measures are taken to prevent post-

contamination. Noting the growth potential, absence of L. monocytogenes in 25 g of cheese 

using a multiple sample subunit approach (n= 5) at the time of production is important to 

ensure compliance to EU legislation 2073/2005. 
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6.1 Introduction 

Soft and semi-hard cheeses are considered important at risk products for foodborne 

listeriosis and were identified as the vehicle for human L. monocytogenes infections in the 

EU (Fox et al., 2011; Hunt et al., 2012; Schoder et al., 2008; Magalhaes et al., 2015). In 

particular smear and mold-ripened cheeses and cheeses made from raw milk have been 

highlighted as potential risk products (Schvartzman et al., 2014; Verraes et al., 2015a). 

Cheese was involved in 5 out of 23 EU strong evidence L. monocytogenes foodborne 

outbreaks (i.e. those outbreaks where the evidence implicating a particular food vehicle is 

strong) during the period 2007-2013 (EFSA, 2009-2015). Although foodborne outbreaks 

from L. monocytogenes are not commonly, compared with those caused by other pathogens 

like Salmonella and Campylobacter, they receive considerable attention when they do occur 

because it usually involves seriously affected cases and even deaths (Todd and Notermans, 

2011; Allerberger and Wagner, 2010). One of these verified outbreaks was a multinational 

outbreak in Austria, Germany and the Czech Republic caused by consumption of ‘Quargel’, 

an acid curd cheese produced by an Austrian manufacturer, involving 34 cases with 8 deaths 

(Schoder et al., 2013). Another listeriosis outbreak occurred in Norway, involving 21 cases 

with 5 deaths and was caused by a soft cheese produced on a small dairy farm (Johnsen et 

al., 2010).  

Still, the prevalence of L. monocytogenes reported in cheese at retail and distribution is 

often low. An EFSA baseline study carried out in 2010 and 2011 on 3 393 soft and semi-soft 

cheeses at retail level (including 14% of cheeses made from raw milk) showed the EU 

prevalence of L. monocytogenes-contaminated cheese samples to be 0.5 % while the 

proportion of samples exceeding the level of 100 CFU/g at the end of shelf life was 0.06% 

(EFSA, 2013b). A low prevalence of L. monocytogenes in semi-soft cheese at retail was also 

noted in a national survey in Sweden in 2010 in which L. monocytogenes was detected in  

0.4 % of 525 cheese samples (Lambertz et al., 2012). Surveys in Italy showed prevalence of L. 

monocytogenes in cheese between 0.2 % and 6.5 % (Busani et al., 2005; Manfreda et al., 

2005; Prencipe et al., 2010) whereas surveys involving some other European countries 

found 5.5 % to 6.4 % of cheese samples positive for L. monocytogenes (Rudolf and Scherer, 

2001; Wagner et al., 2007).  
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Renewed interest in artisanal food products results in a wide range of farmhouse cheeses 

offered at the farm gate or in delicatessen and cheese shops. The lack of profound 

knowledge to assess the risks associated with their products in the short supply chain or 

small shops may present a challenge in complying with and implementing all food safety 

regulations (Verraes et al 2015b). The presence of L. monocytogenes in the farm 

environment may represent a primary source for the introduction of the pathogen into the 

food supply chain. Moreover, contaminated raw milk may represent a vehicle for 

introducing L. monocytogenes into food processing plants, where it can be established in the 

form of biofilms and, therefore, persist for prolonged periods of time. Biofilms are thus 

often responsible for the contamination of cheese in (post-)processing environments 

(Santorum et al., 2012; Di Ciccio et al., 2012). Therefore, infrastructure and design and 

appropriate hygiene and disinfection procedures are essential to prevent contamination of 

L. monocytogenes (Doménech et. al 2013; Schoder et al. 2011). Due to increased efforts on 

inspection, training and also recalls and outbreaks causing media attention, there is raised 

awareness among small scale cheese producers in EU with regard to L. monocytogenes. The 

pathogen is well recognized by all involved in cheese production and distribution to be the 

most concerning microbial hazard due to its potential impact on human health and 

business. Optimization of farm hygiene management remains an absolute prerequisite for 

the manufacture of safe foods (Schoder et al., 2011, Todd and Notermans 2011) but 

opportunities for post-contamination with L. monocytogenes may also occur during further 

distribution of cheese. During storage, display or slicing, post-contamination by L. 

monocytogenes may occur when the bacterium colonizes the environment, equipment, 

utensils and crates.  

Many artisanal soft and semi-hard cheeses are sold in delicatessen shops (Little et al., 2008). 

Some of these shops may also have a cellar or ripening room for (short) further maturation 

of some cheeses upon receipt to fulfil some consumer preferences of well-matured soft and 

semi-hard cheeses. In Belgium, temperatures in these ripening rooms of delicatessen shops 

are allowed to be up to 14°C. Temperatures in the cold display cabinets of the shops should 

be maximum 7°C, however in a survey in France (Morelli et al., 2012) it was noted that 

during the day the temperature of foodstuffs on sale in refrigerated display cabinets in 

cheese/dairy shops may occasionally rise to 14°C as well. 
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In the present study the growth potential of L. monocytogenes in three soft and semi-soft 

cheeses and two semi-hard artisanal cheese was evaluated by challenge testing. L. 

monocytogenes challenge testing was performed according to EU-RL guidelines (EU CRL, 

2014) assessing the growth potential by challenging 3 replicates of each of 3 batches per 

type of cheese. A L. monocytogenes post-contamination was simulated by inoculation either 

on the cheese slicing surface or the cheese rind surface and growth potential was 

established after 14 days storage at either 7 or 14°C.  

 

6.2 Materials and methods 

6.2.1 Survey on L. monocytogenes in artisanal cheeses from delicatessen shops 

Twelve delicatessen shops selling artisanal cheeses located in the city of Ghent, Belgium, 

were visited to collect cheese samples (n= 60). The cheese samples were sliced by the 

vendor as ca. 250 g consumer portions from a bigger piece of cheese and packed in a cheese 

paper wrap to transport to the laboratory within 1 - 2 hour of purchase (transport at 

ambient temperature). During this convenience sampling a variety of artisanal soft, semi-

soft, semi-hard and hard cheeses available for sale in these shops were collected including 

both cheese made from raw milk and pasteurized milk, some mold-ripened cheeses and 

cheeses produced either in Belgium, France or Switzerland. Cheese samples were stored in 

the laboratory at 4°C and were analyzed within 48 h. Sample units of 25 g were 

homogenized in 225 ml sterile peptone water for enumeration of L. monocytogenes, S. 

aureus, generic E. coli and lactic acid bacteria. Enumeration of L. monocytogenes was 

performed according to ISO 11290-2 using a reduced detection limit of 10 CFU/g by 

spreading 1 ml of the primary suspension on three ALOA plates (24 to 48 h incubation at 

37°C). The enumeration of S. aureus was performed according ISO 6888-1:1999/Amd 1:2003 

(24 to 48 h incubation of BP at 37°C). Enumeration of generic E. coli was performed 

according ISO 16649-2:2001 (24h incubation of RAPID’ E. coli 2 medium at 37°C). Lactic acid 

bacteria count was determined according to ISO 15214:1998 (72 h incubation of MRS at 

30°C). Detection of L. monocytogenes was performed using VidasLMO2 (bioMérieux), an 

AFNOR validated enzyme-linked fluorescent assay (ELFA) (BIO 12/11-03/04). The NaCl 
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concentration of the cheeses was determined by a titrimetric determination of Cl
-
. An 

amount of the sample (1-2 g) including a minor piece of cheese rind, was dissolved in 100 ml 

distilled water (100°C). Under constant stirring the suspension was cooled down to 50°C. 

Afterwards 2 ml K2CrO4 (5 %) was added. This solution was then titrated with AgNO3 (0.1N) 

to determine the concentration of Cl
-
 in the solution. The remaining samples were mixed 

and pH was measured with a stab electrode (SevenEasy™ pH-meter, Mettler Toledo, 

Zaventem, Belgium). From the same mixed samples, the water activity (aw) was determined 

with an aw-kryometer Typ AWK-20 (NAGY messysteme GmbH, Gaufelden, Germany). 

6.2.2 Challenge testing 

The challenge tests aim to assess the growth potential (δ) of artificially inoculated L. 

monocytogenes on cheese under given storage conditions. Challenge testing was performed 

on five different types of cheeses (obtained from a local delicatessen shop in Ghent) 

according to a protocol described in the technical guidance document on shelf-life studies 

for L. monocytogenes in ready-to-eat foods published by the EU Community Reference 

Laboratory (EU CRL, 2014). In short, three L. monocytogenes strains were grown for 24 h at 

37°C in BHI broth. A subculture was then grown at 7°C for 4 days in order to adapt the early 

stationary phase cells to the storage condition of the cheese. Either the cheese rind or the 

cheese slicing surface was inoculated with 250 µl of the mixed inoculum (ca. 10
4
 CFU/ml) to 

obtain an inoculum level of ca. 50 - 100 CFU/g. For each sampling day and storage 

temperature, three inoculated test units of 25 g and one blanc were prepared. Samples 

were kept wrapped in polyethylene stretch foil for 14 days at 7 or 14°C. Analyses were 

performed at day 0 (before and after inoculation) and at the end of the storage period (day 

14). On each day of analysis the competing microbiota (S. aureus, generic E. coli and lactic 

acid bacteria), pH, aw and the NaCl concentration were determined for the blank samples 

according the methods described in section 6.2.1. Presence/absence testing of L. 

monocytogenes in 25 g was performed before inoculation as well as for the blank samples 

using an AFNOR validated VIDAS method (Bio-12/9-07/02). Enumeration of L. 

monocytogenes in the inoculated samples was performed according to ISO 11290-2 using a 

reduced detection limit (10 CFU/g) as described in EC Regulation No. 2073/2005 

(Anonymous, 2005).  
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Thus, for each type of cheese, two types of inoculations were performed: i) at the cheese 

slicing surface bringing the L. monocytogenes in contact with the core of the cheese, ii) at 

the cheese rind bringing the L. monocytogenes in contact with surface microbiota of the 

cheese. For each type of cheese and inoculation procedure, storage was performed at both 

7° and 14°C for 14 days, and this for three batches of the same cheese with three replicates 

per batch. 

The growth potential (δ) is calculated as the difference between the median concentration 

of L. monocytogenes of the three replicates at the end of the challenge test and the median 

concentration of L. monocytogenes of the three replicates at the beginning of the challenge 

test (day 0, after inoculation) as described in the EU Community Reference Laboratory (EU 

CRL, 2014). However, to obtain a better view in the variability of the growth potential, the 

growth potential for each replicate within a batch was calculated as well by calculating the 

difference between the concentration of L. monocytogenes at the end of the test and the 

concentration at the beginning of the test. 

6.2.3 Data analysis 

All analyses were performed with SPSS Statistics version 23 at a significance level of 95 % (p 

= 0.050). Raw data were not normally distributed, so the non-parametric test Kruskal-Wallis 

was used for statistical analysis. The Bonferroni correction was applied to control the family-

wise error rate at 5 % for all multiple pairwise comparisons. 

 

6.3 Results 

6.3.1 Survey on L. monocytogenes in artisanal (semi-)soft and (semi-)hard cheeses from 

cheese shops 

The sampling in twelve cheese shops in Gent, Belgium, resulted in 32 soft/semi-soft and 28 

semi-hard/hard cheeses with an equal distribution of raw milk and pasteurized cheeses in 

each category of cheese. The “use by” or “best before date” of the cheeses was unknown as 

those were not mentioned on the sliced and paper wrapped portions. Still, the cheeses 
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were visually judged before analyses. None of the cheeses showed a deviating odor, 

undesired mold growth or traces of dehydration (i.e. cracks in cheese rind) indicating that 

they were still suitable for consumption. A summary of the intrinsic characteristics (pH, aw, 

NaCl), the concentration of lactic acid bacteria, E. coli, S. aureus and the presence of L. 

monocytogenes in the sampled cheeses is presented in Table 6.1.  

S. aureus was enumerated (≥ 2.0 log CFU/g) in 6.7 % of the cheeses, mainly soft raw milk 

cheeses. In one case, a semi-soft pasteurized cheese, S. aureus was present in 

concentrations of 6.1 log CFU/g which exceeds the process hygiene criterion (i.e. 5.0 log 

CFU/g) as described in EU regulation 2073/2005. E. coli was enumerated (≥ 1.0 log CFU/g) in 

26.7% of the cheeses, mainly raw milk cheeses with levels ranging from 1.0 log CFU/g to 5.0 

log CFU/g and 6 samples exceeding 3 log CFU/g. L. monocytogenes could be detected in 25 g 

of a white-molded soft-ripened raw milk cheese resulting in a prevalence of 1.7 % for this 

small survey (n= 60, thus 95 % confidence interval ranging from 0.3 to 8.7 %). Enumeration 

of L. monocytogenes  in the positive sample revealed a concentration of ca. 5 log CFU/g 

which definitely exceeds the limit of 2 log CFU/g, the threshold limit for ready-to-eat foods 

non-complying to the European legislation with regard to L. monocytogenes in ready-to-eat 

foods (Anonymous, 2005). After contacting the owner of the delicatessen shop where this 

cheese was bought, it was revealed that the cheese was seemingly sold at the day indicated 

on the packaging as the “best before date”. 

Table 6.1. Summary of the results from the survey on L. monocytogenes in (semi-)soft and (semi-) 

hard cheeses. 

 Soft and semi-soft Semi-hard 

Heat treatment None (raw milk) Pasteurization None (raw milk) Pasteurization 

pH 4.16 – 7.47 4.29 – 7.22 5.13 – 5.98 5.33 – 6.04 

aw 0.9366 – 0.9926 0.9399 – 0.9805 0.9372 – 0.9651 0.9353 – 0.9630 

NaCl (%) 0.58 – 3.67 1.21 – 3.36 1.17 – 2.83 1.74 – 2.80 

LAB (log CFU/g) 5.53 – 9.35 5.68 – 9.19 6.29 – 9.02 5.92 – 9.05 

E. coli (log CFU/g) < 1.00 – 5.00 < 1.00 – 3.28 < 1.00 – 3.70 < 1.00 

S. aureus log (CFU/g) < 2.00 – 4.03 < 2.00 – 6.14 <2.00 <2.00 

L. monocytogenes + (1/16) - - - 
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6.3.2 Challenge testing 

A challenge test is designed to estimate the growth potential by assessing the bacterial 

contamination differential between the start and the end of the challenge test. These tests 

can be used to confirm or infirm whether there is significant Listeria growth in a given food 

product. Challenge testing in this study was performed on 5 different types of cheese. The 

intrinsic characteristics of the different cheeses are summarized in Table 6.2. The cheeses 

were compared for their intrinsic characteristics on day 0. From those results it can be 

concluded that there are significant differences (p < 0.05) in pH, aw and percentage NaCl 

between the different cheeses, even if they belong to the same category (e.g. semi-soft 

cheese). The growth potential of L. monocytogenes on soft, semi-soft and semi-hard cheeses 

regardless of storage temperature and the diversity of the microbiota and intrinsic 

characteristics of the these cheeses is illustrated in Figure 6.1. 

 

Figure 6.1. Growth potential of L. monocytogenes on soft, semi-soft and semi-hard cheeses 

regardless to storage temperature and contamination profile 

 

 



 

 

 

 

 

Table 6.2. Intrinsic characteristics of the different cheeses involved in challenge testing. 

Cheese Firmness Crust Heat treatment Day pH aw NaCl 

(%) 

LAB 

log CFU/g 

E. coli 

log CFU/g 

S. aureus 

log CFU/g 

1 Soft White mold None  

(raw milk) 

0 6.2 – 7.1 0.95 – 0.96 1.8 – 2.4 7.73 – 8.88 < 1.00 – 4.90 < 2.00 

14 7.2 – 8.5 0.95 – 0.97 2.1 – 2.7 7.88 – 8.95 < 1.00 – 5.51 < 2.00 

2 Semi-soft Spicy herbs Pasteurisation 0 5.4 – 6.2 0.94 – 0.95 2.6 – 2.9 7.76 – 8.35 < 1.00  < 2.00 

14 5.7 – 6.7 0.94 – 0.96 2.8 – 3.3 8.49 – 8.78 < 1.00 < 2.00 

3 Semi-soft Washed-rind Pasteurisation 0 5.5 – 7.2 0.96 – 0.97 1.6 – 1.9 7.09 – 8.20 < 1.00 < 2.00 

14 6.5 – 7.3 0.94 – 0.98 1.9 – 2.3 7.26 – 7.95 < 1.00 – 2.3 < 2.00 

4 Semi-hard Bacterium Linens None  

(raw milk) 

0 5.2 – 5.4 0.95 – 0.96 2.0 – 2.6 7.39 – 8.10 2.04 – 4.23 < 2.00 

14 5.5 – 6.7 0.95 – 0.96 2.1 – 2.6 7.35 – 8.16 2.08 – 4.94 < 2.00 

5 Semi-hard Natural-ripened None  

(raw milk) 

0 5.3 – 6.1 0.94 – 0.96 1.3 – 2.1 8.24 – 8.85 < 1.00 – 3.13 < 2.00 

14 6.2 – 7.3 0.94 – 0.95 1.7 – 2.7 8.11 – 8.75 < 1.00 – 3.12 < 2.00 
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It can be noted that there is a relatively large variation in growth potential of L. 

monocytogenes in the different types of cheese. Listeria monocytogenes growth (> 0.5 log 

CFU/g) is obtained in 79.2 % of the individual challenge tests (n= 178) and in 78.3 % of the 

batches (n= 60). More specifically, Listeria growth > 0.5 log CFU/g and ≤ 2.0 log CFU/g 

occurred in 18 % of the cases, Listeria growth > 2.0 log CFU/g and ≤ 4.0 log CFU/g was 

observed in 42.7 % of the tests and Listeria growth of more than 4.0 log CFU/g was noted in 

18.5 % of the individual challenge tests. There was no substantial growth (≤ 0.5 log CFU/g) in 

20.8 % of the challenge tests. The highest growth potential “δ” of L. monocytogenes (Table 

6.3), determined according to EU-RL guidelines on challenge testing per type of cheese (thus 

taking into account the results of growth potential for the 3 batches), differed for the soft 

cheese types and if stored at 7°C ranged from 1.83 to 4.01 log CFU/g whereas stored at 14°C 

it ranged from 3.55 to 5.46 log CFU/g, whilst this of semi-hard cheeses at 7°C ranged from 

0.08 to 1.42 log CFU/g and at 14°C from 0 to 3.01 log CFU/g. Thus, storage temperature (p < 

0.05) and the cheese type (soft vs. semi-hard) (p < 0.05) have an influence on the growth 

potential of L. monocytogenes.  

Table 6.3. Growth potential of L. monocytogenes as obtained during challenge testing. 

Cheese  Description  Inoculation surface Storage 

(°C) 

Growth potential “δ” 

per batch 

1 2 3 

1  French soft-ripened raw cow’s 

milk cheese, white mold rind 

Cheese rind 7 1.92 1.20 1.30 

14 3.55 2.66 2.74 

Cutting edge 7 3.82 4.01 > 1.82 

14 5.46 4.93 2.82 

2  Belgian semi-soft washed rind 

pasteurised cow’s milk cheese 

with spicy herbs 

Cheese rind 7 2.44 0 0 

14 4.48 3.51 4.82 

Cutting edge 7 0.77 1.83 1.23 

14 3.64 5.18 4.56 

3  Italian semi-soft washed rind, 

pasteurised cows and sheep 

milk cheese 

Cheese rind 7 3.05 2.99 3.02 

14 3.88 4.25 4.53 

Cutting edge 7 3.37 3.16 2.33 

14 5.40 4.82 4.26 

4  Belgian semi-hard smear-

ripened, raw cow’s milk  

Cheese 

Cheese rind 7 0.38 0.40 1.42 

14 3.01 0.70 2.78 

Cutting edge 7 0 0.10 0.90 

14 2.37 2.69 2.22 

5  French semi-hard natural-

ripened, raw cow’s milk  

Cheese 

Cheese rind 7 0 0 0.08 

14 0 0 0 

Cutting edge 7 1.05 0.60 0.50 

14 2.79 2.13 2.37 
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It could not be observed whether the milk treatment may impact Listeria monocytogenes 

outgrowth as the results may be biased by the cheese type. It was also expected that more 

growth occurs on the cheese slicing surface than on the cheese rind (p < 0.05). Indeed, 

growth is seen in 88.6 % of the tests performed on the cheese slicing surface (n= 88), while 

growth on the cheese rind is seen in 70.0 % of the individual challenge tests (n= 90) (Figure 

6.2). 

Still, both a wide variation in growth potential both intra-batch and inter-batch could be 

noted, independent of the method of inoculation and temperature of storage. As an 

example, from Table 6.3 it can be concluded that challenge tests performed on the rind of a 

semi-hard, natural-ripened, raw cow’s milk cheese stored at 14°C will not allow growth of L. 

monocytogenes. However, if detailed results (Annex 6.1) are taken into account substantial 

growth (1 - 2 log units) is observed in 2 of the 9 test units. Besides, an influence of storage 

temperature could not be observed in this case. Also no growth of L. monocytogenes could 

be observed on the spicy herbs rind in 2 out of 3 batches of this semi-soft cheese which was 

stored at 7°C (Table 6.3). However, if looking again into the detailed results of the individual 

challenge tests (Annex 6.1), growth of L. monocytogenes ranging from 0.5 to 3 log units is 

observed in 5 of the 9 test units. These results demonstrate that cheese support growth of 

L. monocytogenes, but that it is quite variable and it cannot be predicted from prior 

challenge tests what the behavior and growth potential will be for a next challenge test in 

another batch or even in another test unit from the same batch of cheese. 

 

6.4 Discussion 

A recall in Belgium on May 13
th

 2015 on an artisanal soft raw milk cheese (Hervé-type) due 

to the presence of L. monocytogenes in 25 g of cheese (FAVV, 2015), raised again the 

discussion on the food safety of artisanal cheeses in Belgium and whether indeed it was 

eligible to withdraw these cheeses from the market, in particular if L. monocytogenes had 

not yet exceeded numbers of 100 CFU/g. As mentioned before, the presence of low 

numbers of L. monocytogenes in cheese is not an infrequent event. In the present survey 

where 60 traditional cheeses had been sampled, one sample of a soft-ripened white-molded  



 

 

  
 

 
 

Figure 6.2. Influence of storage temperature (A), inoculation spot (B), cheese type (C), and milk treatment (D) on the growth potential of L. monocytogenes. 

A B 

C D 
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raw milk cheese was positive for L. monocytogenes in high numbers of > 100 000 CFU/g, 

thus posing an increased risk to consumer health. Unfortunately, cheese from this cheese 

manufacturer had previously been involved in recalls due to the presence of L. 

monocytogenes in cheese (FAVV, 2012). The positive soft raw milk cheese sample seemed to 

have been sold at the best before date, but this was not mentioned by the vendor at the 

time of sale nor could this be noted by the customer when buying the cheese. It has been 

noticed in a prior study in Belgium that for pre-packed soft cheeses sold at (bigger) retail 

shops in Belgium there is no consistent use of an ‘use by’ or ‘best before’ shelf life label. 

Only 26 % of pre-packed soft cheeses (n= 270) indicated an ‘use by’ label, indicating that the 

expiry date is to be regarded as an ultimate date of consumption (Ceuppens et al. 2016). 

Thus, many producers leave it up to the consumer’s judgement whether or not the cheese is 

still deemed good for consumption which mainly occurs by a combination of a visual check 

and smelling (82.5%). Besides, for cheese products in particular, 1 out of 3 consumers was 

willing to eat an expired product (Van Boxstael et al., 2014).  

The observed prevalence of L. monocytogenes in samples of soft or semi-soft cheeses in the 

investigations at retail level reported in 2010 in the EU Summary Report, ranged from 0 % to 

0.7 % (EFSA, 2012). Overall, prevalence data of L. monocytogenes in cheese can be 

influenced by the differences in the types of cheeses sampled, whether cheeses  were 

included made from raw or pasteurized milk, but also by the type of distribution channel 

(local market, small shop or big retail outlet) and by selection of regions where samples 

were taken (Verraes et al., 2015a). A survey (n= 137) similar to ours was conducted in 

Greece including soft and semi soft cheeses but also fresh cheeses and sampling in retail 

shops (Angelidis et al., 2013). None of the samples tested in the survey from Greece were 

positive for L. monocytogenes (per 25 g) (i.e. 0 out of 173 relates to a 95 % confidence 

interval of 0.0 to 2.2 %). From the collection of previous data from traditional cheeses in 

Belgium, L. monocytogenes was detected per 25 g in 66 of 549 samples originating from the 

short supply chain of which the L. monocytogenes numbers were between 10 and 100 CFU/g 

for six samples and were higher than 100 CFU/g for four samples (Verraes et al., 2015b). In 

the present study, the positive cheese sample showed very high numbers of L. 

monocytogenes, but such high numbers in cheese seems to be exceptional. In the data 

obtained from the Belgian Federal Agency for the Safety of the Food Chain (FASFC) 
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monitoring and surveillance plan, the prevalence of L. monocytogenes (at levels exceeding 

100 CFU/g) in raw milk cheeses sampled at farms varied in the period 2008-2011 from 0 to 

3.5 % (315 samples in total), whereas none of the 707 raw milk cheese samples taken at 

retail level in that same period showed L. monocytogenes at levels exceeding the threshold 

limit of 100 CFU/g (FASFC, WIV and CODA, 2010-2011). However, the amount of recalls on 

cheese, issued by competent food safety authorities as a precautionary measure to prevent 

human exposure to unacceptable levels of this pathogen in foods, makes us concerned on 

the presence of L. monocytogenes in cheese. For example, FASFC launched 92 recalls 

involving pathogenic bacteria in a variety of food commodities during the period between 

2007 and 2013. Cheese was the food vehicle implicated in 20 out of 41 L. monocytogenes 

related product recalls. At EU level, the Rapid Alert System for Food and Feed (RASFF) 

reported 3 435 notifications related to pathogenic bacteria in food. Of these, 485 (14.1 %) 

dealt with non-compliance of L. monocytogenes in ready-to-eat foods according to EU 

2073/2005 Regulation on Microbiological Criteria for Food stuffs (Anonymous, 2005) and 

116 (3.4 %) reports involved L. monocytogenes in cheese.  

According to Regulation (EC) No 2073/2005, food business operators marketing ready-to-eat 

foods in which growth of L. monocytogenes can occur, need to show that the numbers of 

this pathogen do not exceed the threshold value of a maximum 100 CFU/g throughout the 

duration of the shelf life of the food product under consideration. If this evidence of growth 

restriction of L. monocytogenes is not demonstrated, the product will have to comply with 

the criterion of absence of L. monocytogenes per 25 g (taking into consideration a 5-unit 

sampling plan). For ready-to-eat foods in which no growth can occur, the threshold value of 

a maximum 100 CFU/g is valid for the duration of the shelf life (thus including the moment 

of consumption). For traditional cheeses, the resources are generally lacking to set-up 

challenge testing to asses the growth potential during distribution and storage, thus many 

of the recalls are based on the finding of L. monocytogenes in 25 gram samples. Therefore, it 

is debated whether these traditional soft and semi-hard cheeses can support the growth of 

L. monocytogenes. If not using commercial starter cultures, there are indigenous lactic acid 

bacteria that can be isolated from cheese in high numbers. These lactic acid bacteria may 

protect against L. monocytogenes growth during (further) ripening and storage (Montel et 

al., 2014). Such growth suppression, rather than inactivation, of a target organism has been 
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referred to as the ‘Jameson Effect’ (Stephens et al., 1997; Ross et al., 2000; Coleman et al., 

2003; Giménez and Dalgaard, 2004; Delignette-Muller et al., 2006).  

Challenge testing is a tool to establish the growth potential of L. monocytogenes, in 

particular when the pathogen is present due to post-contamination. Opportunities for post-

contamination with L. monocytogenes may occur during further distribution of cheese, in 

particular in delicatessen shops, with sometimes own ripening rooms, and serving counters, 

where a wide variety of traditional cheeses are displayed and sold in consumer portions and 

may be handled extensively. This practice provides ample opportunities for contamination 

by food handlers, equipment and the environment (Tan et al., 2008). Therefore, the 

behavior of L. monocytogenes on cheese as a result of post-contamination during 

distribution, (short) further ripening, cold display and slicing during serving consumer 

portions at delicatessen shops was the focus of the present study. Post-contamination was 

simulated in the lab by inoculation of consumer portions of cheese either on the cheese 

slicing surface or the cheese rind and the growth potential was established after 14 days 

storage at either 7 or 14°C. It could not be observed from the challenge tests that growth of 

L. monocytogenes in pasteurized cheesesis better than growth in raw milk cheeses. 

However, Tiwari et al. (2014) demonstrated that L. monocytogenes grew at a slower rate on 

raw milk cheese compared to pasteurized milk cheese. This difference in growth ability of L. 

monocytogenes may be explained by the presence of the lactoperoxidase enzyme in raw 

milk cheese which has bacteriostatic properties in milk and milk based products (FAO/WHO, 

2005). However, in this study, it was noticed that pasteurized milk cheeses have lower 

contamination levels of E. coli than raw milk cheeses due to the heat treatment during 

processing. Therefore, more bacterial competition is expected to be present in raw milk 

cheeses which may be as well an explanation of the lower growth potential of L. 

monocytogenes in these cheeses (Izquierdo et al., 2009; Mellefont et al., 2008; Schvartzman 

et al., 2011). Although the prevalence on pasteurized cheese may be lower, if there are 

opportunities for growth of the pathogen, higher numbers of L. monocytogenes may be 

obtained in pasteurized cheeses, making raw milk cheeses and pasteurized cheeses equally 

important. This is also demonstrated in a study of Gould et al. (2014) where 90 outbreaks in 

the United States attributed to cheese were analyzed. The study showed that 42 % of the 

outbreaks were due to cheese made with unpasteurized milk and 49% due to cheese made 
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with pasteurized milk. Of those outbreaks, 12 were caused by L. monocytogenes with 

unpasteurized milk cheese involved in 4 outbreaks and pasteurized milk cheese in 8 

outbreaks. 

Overall it is acknowledged that soft raw milk cheese holds the greatest risk for survival and 

growth of L. monocytogenes although the growth potential will depend upon the actual 

storage temperature (EFSA, 2015; Farrokh et al., 2013; Kagkli et al., 2009; Mataragas et al., 

2008; Rosshaug et al., 2012). Hard cheeses are assumed not to support the growth of L. 

monocytogenes, but may support its survival (EFSA, 2015). In an EU survey all tested units 

(n=2699) complied with the criteria of levels not exceeding 100 CFU/g at processing and 

retail, except for one single sample of hard cheese made from pasteurized cow’s milk 

sampled at retail (EFSA,2015). Some studies demonstrated that L. monocytogenes will die 

during ripening of hard cheeses (Bachmann and Spahr, 1995; Dalmasso and Jordan, 2014). 

However, a hard cheese has been demonstrated as the causative food of a listeriosis 

outbreak in Belgium in 2011 (Yde et al., 2012). It was also found that semi-hard cheeses will 

not support growth, but only enable survival of L. monocytogenes (Bachmann & Spahr, 

1995; Valero et al., 2014)). However, in the challenge test results in this study, it was noticed 

that L. monocytogenes on semi-hard cheeses may increase up to 1.7 log CFU/g if stored for 

14 days at 7°C and up to 3.5 log CFU/g if stored at 14°C. The growth potential in soft and 

semi-soft cheeses, on the other hand, is noted to be substantially higher than in semi-hard 

cheeses. Thus, it can be concluded that soft and semi-soft cheeses present indeed a higher 

risk with regard to listeriosis.  

Whether a certain type of cheese should be categorized as a soft, semi-soft or semi-hard 

cheese is not always clear to the consumer, as was experienced during the survey in this 

study. The firmness of a cheese is determined by its percentage moisture, on a fat-free 

basis, as defined in Codex general standard for cheese (CAC, 2013a). However, if this 

percentage moisture is not declared, the consumer needs to find more information on the 

classification on the website of the cheese producer or governmental marketing websites 

(e.g. Belgian VLAM). Although semi-soft cheeses are characterized by their firm but elastic 

feel, the difference between a semi-soft and a semi-hard cheese is difficult to recognize. 

Cheese products might be even more complex as some cheeses (e.g. ‘brie or camembert 

type’) may be available as raw or pasteurized milk cheese depending on the producer and 
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the point of sale. When cheese is bought at a local cheese shop, the consumer can only rely 

on the information given by the sales person if the label itself is not well visible or no longer 

present on the cheese at display. 

The results in this study demonstrated also that better growth of L. monoctyogenes is 

obtained on a sliced surface of the cheese than on the cheese rind. It has been described 

that traditional cheeses harbor a rich and diverse microbiota. However, this bio-diversity 

decreases in cheese cores, where a small number of lactic acid bacteria species are 

numerically dominant, but persists on the cheese surfaces, which harbor numerous species 

of bacteria (Montel et al., 2014). A rich and complex microbial community on the cheese 

rind might help in the controlling of L. monocytogenes (Izquierdo et al., 2009; Mellefont et 

al., 2008). This may explain why growth of L. monocytogenes on the cheese rind is unlikely. 

However, as demonstrated in this study, (reduced) growth may still be possible on the rind 

of a smear-ripened cheese, a mold-rinded or washed rind cheese. These results are 

consistent with some studies that demonstrated that no L. monocytogenes inhibition was 

achieved using bacteriocin-producing enterococci on the surface of Taleggio and 

Camembert cheeses (Giraffa, 1995; Sulzer and Busse, 1991). Independent of the inoculation 

location, the type of cheese or the type of milk treatment, it was shown that a better 

growth of L. monocytogenes is obtained at 14°C than at 7°C. It is not surprising that a higher 

storage temperature will result into higher concentrations of L. monocytogenes during 

storage. In a study of Tiwari et al. (2014) it was also shown that in both raw and pasteurized 

semi-soft washed-rind milk cheeses, the L. monocytogenes population increased as the 

temperature increased. 

In this study, the growth potential of L. monocytogenes for each batch was determined 

according the technical guidance document on shelf-life studies for L. monocytogenes in 

ready-to-eat foods published by the EU Community Reference Laboratory (EU CRL, 2014). As 

the difference between the median of the log10 CFU/g at the end of storage of the three 

replicates and the median of the log10 CFU/g of the initial concentrations (day 0, after 

inoculation) of the three replicates was calculated, the maximal growth is not taken into 

account and due to the occasional high intra-batch variability, the actual growth of L. 

monocytogenes might be underestimated. However, challenge tests for assessing the 

growth potential as performed in the present study are mainly performed to classify 
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products into either RTE foods in which growth of L. monocytogenes can occur or in RTE 

foods in which growth of L. monocytogenes will not occur during their shelf-life and thus 

accurate estimation of the growth rate is less important. As such, it was not intended to 

precisely predict the numbers of L. monocytogenes in the cheese under reasonably 

foreseeable conditions of storage from the time of intermediate storage (including short 

further ripening) at the delicatessen shops and at consumer’s home until consumption. Such 

growth rate predictions are important for  calculating the concentration at the end of the 

shelf-life from the initial concentration, or determining the concentration at the beginning 

of the shelf-life in order to comply with the limit of 100 CFU/g at the end of the shelf-life, 

but were out of the scope of the present study. Challenge testing is only one of the tools 

available and should be used in addition to predictive modelling, end product control, GMP 

and HACCP to control the risk for listeriosis due to consumption of RTE food products such 

as traditional cheeses (Uyttendaele et al., 2004). As for a defined cheese type sometimes 

both a considerable inter-batch and intra-batch variability was noted from the replicate 

testing indicating no consistent behavior of L. monocytogenes in these fermented dairy 

products, it is recommended that measures are undertaken to prevent post-contamination. 

Noting the growth potential, compliance to EU legislation 2073/2005 requires absence of L. 

monocytogenes in 25 g of cheese using a multiple sample subunit approach (n= 5) at the 

time of production. The low prevalence (i.e. 0.47%) found in the EU baseline survey shows 

that for soft or semi-soft cheeses it is possible to produce the foods with a rare proportion 

having counts exceeding the level of 100 CFU/g. It demonstrates that properly designed and 

implemented food safety management systems by dairy industry across the EU can produce 

safe compliant food in these categories (EFSA, 2015). Therefore, food business operators in 

these sectors should be aware of the benefits of diligent application of appropriate 

protocols to manage this particular risk. Especially good hygiene practices are very 

important in the prevention of contamination. However, a zero risk will never be obtained 

as demonstrated by the occasionally higher contaminated cheese samples, which was also 

found in this survey (EFSA, 2013b; Fretz et al., 2010; Schoder et al., 2013)  
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6.5 Conclusion 

It has been previously demonstrated that the occurrence of L. monocytogenes in traditional 

cheeses is not an infrequent event. Although initially present at low numbers,  subsequent 

outgrow to higher (infectious) numbers poses a risk of listeriosis. In this study, the results of 

a series of challenge tests conducted on various types of cheese demonstrated that there is 

a wide range in growth potential of L. monocytogenes. Due to this variability, the food 

business operator may not be able to demonstrate, to the satisfaction of the competent 

authority, that the product will not exceed the limit of 100 CFU/g throughout the shelf life. 

Therefore, it is better to focus on prevention through good hygiene practices to comply with 

a limit of absence in 25 g. Besides, raw milk cheeses and pasteurized cheeses are equally 

important towards the risk of listeriosis as post-contamination from the (production or 

storage) environment, utensils or equipment is the main transmission route for introduction 

of low numbers of L. monocytogenes in cheese. As limiting the risk of listeriosis, is a 

teamwork from farmer to retailer, salesmen in cheese shops should be aware of the risk of 

post-contamination as well. 
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Annex 1. Detailed results of challenge testing. 

Cheese Description 
Inoculation  

surface 
Storage  Batch 

Concentration 

(log CFU/g) 

Growth potential  

“δ” per batch  

(log CFU/g) 

Highest “δ” among  

the 3 batches  

(log CFU/g) Day 0 Day end 

 

1 

 

French soft-

ripened, raw 

cow’s milk 

cheese,  white 

mold rind 

Cheese rind 

7°C 

1 2.20 

2.23 

2.23 

2.57 

4.26 

4.15 

1.92 

1.92 

2 2.23 

2.04 

2.15 

2.88 

3.35 

3.58 

1.20 

3 2.08 

1.90 

2.00 

3.30 

3.60 

3.00 

1.30 

14°C 

1 2.20 

2.23 

2.23 

5.81 

5.78 

3.70 

3.55 

3.55 

2 2.23 

2.04 

2.15 

5.64 

4.72 

4.81 

2.66 

3 2.08 

1.90 

2.00 

4.95 

4.74 

4.30 

2.74 

Cutting edge 

7°C 

1 1.90 

1.78 

2.11 

5.67 

5.72 

6.03 

3.82 

4.01 

2 2.08 

2.20 

2.08 

6.08 

6.09 

6.41 

4.01 

3 2.11 

2.18 

2.28 

< 4.00 

< 4.00 

4.30 

>1.82 

14°C 

1 1.90 

1.78 

2.11 

7.36 

7.36 

7.05 

5.46 

5.46 

2 2.08 

2.20 

2.08 

7.24 

7.01 

6.93 

4.93 

3 2.11 

2.18 

2.28 

5.60 

5.00 

< 5.00 

2.82 

2 

Belgian semi-

soft washed 

rind, pasteurised 

cow’s milk 

cheese with 

spicy herbs 

Cheese rind 

7°C 

1 2.20 

2.15 

2.28 

4.64 

5.13 

4.38 

2.44 

2.44 

2 2.11 

1.90 

1.90 

< 1.00 

1.30 

4.45 

0 

3 2.23 

2.30 

2.04 

2.72 

1.00 

< 1.00 

0 

14°C 

1 2.20 

2.15 

2.28 

6.68 

6.64 

6.82 

4.48 

4.82 

2 2.11 

1.90 

1.90 

5.41 

5.26 

5.88 

3.51 

3 2.23 

2.30 

2.04 

4.60 

7.11 

7.05 

4.82 

Cutting edge 7°C 

1 2.26 

2.08 

2.00 

2.48 

2.85 

3.28 

0.77 

1.83 

2 2.18 

1.90 

2.08 

4.17 

3.91 

3.65 

1.83 

3 2.20 

2.23 

2.32 

3.46 

3.08 

3.68 

1.23 



CHAPTER 6 

165 

14°C 

1 2.26 

2.08 

2.00 

5.72 

5.57 

5.75 

3.64 

5.18 

2 2.18 

1.90 

2.08 

7.32 

7.20 

7.26 

5.18 

3 2.20 

2.23 

2.32 

6.79 

5.70 

6.96 

4.56 

3 

Italian semi-soft 

washed-rind, 

pasteurised 

cow’s and sheep 

milk cheese 

Cheese rind 

7°C 

1 2.00 

1.85 

1.90 

5.20 

4.49 

4.95 

3.05 

3.05 

2 1.70 

1.60 

1.70 

4.89 

4.69 

4.49 

2.99 

3 2.30 

2.34 

2.43 

5.49 

5.32 

5.36 

3.02 

14°C 

1 2.00 

1.85 

1.90 

5.78 

6.38 

5.64 

3.88 

4.53 

2 1.70 

1.60 

1.70 

5.89 

5.95 

5.98 

4.25 

3 2.30 

2.34 

2.43 

6.90 

6.75 

6.87 

4.53 

Cutting edge 

7°C 

1 2.11 

1.90 

2.08 

5.30 

5.45 

5.49 

3.37 

3.37 

2 2.15 

2.32 

2.18 

5.34 

5.43 

4.83 

3.16 

3 3.00 

3.23 

3.23 

5.65 

5.56 

5.49 

2.33 

14°C 

1 2.11 

1.90 

2.08 

7.48 

7.48 

7.32 

5.40 

5.40 

2 2.15 

2.32 

2.18 

7.00 

6.83 

7.00 

4.82 

3 3.00 

3.23 

3.23 

7.69 

7.26 

7.49 

4.26 

4 

Belgian semi-

hard smear-

ripened, raw 

cow’s milk 

cheese 

Cheese rind 

7°C 

1 2.46 

2.40 

2.32 

2.78 

2.30 

3.79 

0.38 

1.42 

2 2.00 

1.60 

1.90 

2.30 

2.70 

2.30 

0.40 

3 2.00 

1.85 

1.60 

3.33 

3.14 

3.27 

1.42 

14°C 

1 2.46 

2.40 

2.32 

5.41 

4.58 

5.43 

3.01 

3.01 

2 2.00 

1.60 

1.90 

<2.00 

2.60 

4.46 

0.70 

3 2.00 

1.85 

1.60 

4.48 

4.63 

4.65 

2.78 

Cutting edge 7°C 

1 2.00 

2.20 

2.11 

1.48 

1.60 

1.48 

0 

0.90 
2 1.90 

1.78 

1.95 

2.00 

<2.00 

2.70 

0.10 
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3 2.20 

2.18 

1.95 

3.08 

- 

- 

0.90 

14°C 

1 2.00 

2.20 

2.11 

4.48 

4.61 

4.41 

2.37 

2.69 

2 1.90 

1.78 

1.95 

4.59 

4.76 

4.38 

2.69 

3 2.20 

2.18 

1.95 

4.79 

4.40 

4.18 

2.22 

5 

French, semi-

hard natural-

ripened, raw 

cow’s milk 

cheese 

Cheese rind 

7°C 

1 2.18 

2.30 

2.11 

2.30 

2.00 

<2.00 

0 

0.08 

2 1.85 

1.95 

2.18 

<2.00 

<2.00 

<2.00 

0 

3 2.18 

2.18 

2.08 

1.95 

2.26 

2.26 

0.08 

14°C 

1 2.18 

2.30 

2.11 

4.23 

<2.00 

<2.00 

0 

0 

2 1.85 

1.95 

2.18 

<2.00 

<2.00 

3.00 

0 

3 2.18 

2.18 

2.08 

2.08 

2.20 

1.95 

0 

Cutting edge 

7°C 

1 2.15 

2.15 

2.11 

3.20 

3.53 

3.11 

1.05 

1.05 

2 1.00 

2.00 

1.70 

2.48 

2.30 

2.00 

0.60 

3 2.04 

1.90 

1.95 

2.48 

2.45 

2.00 

0.50 

14°C 

1 2.15 

2.15 

2.11 

4.38 

5.08 

4.94 

2.79 

2.79 

2 1.00 

2.00 

1.70 

3.64 

3.83 

4.56 

2.13 

3 2.04 

1.90 

1.95 

4.11 

4.90 

4.32 

2.37 

 



 

 

 

 

 

 

 

 

CHAPTER 7  

GENERAL DISCUSSION AND CONCLUSION 



 

 



CHAPTER 7 

169 

7.1 Management of microbiological food safety 

Ensuring that food is safe along the entire food supply chain is a major concern for 

competent authorities, food industry associations and food business operators (FBOs). As 

FBOs are best placed to govern food safety and to prevent foodborne outbreaks, they are 

urged to develop and implement a food safety management system (FSMS) when active in 

food processing and food distribution (Anonymous, 2002; Anonymous, 2004b; CAC, 2003). 

This FSMS has to be validated and verified for its proper functioning as the quality and 

safety of the food is largely affected by the performance of this FSMS (Jacxsens et al., 2015, 

Luning et al., 2015). The verification is mostly performed by (internal) auditing the FSMS 

system and reviewing Critical Control Points (CCP) monitoring records. However 

microbiological testing can also have an important role in FSMS validation and verification 

(Buchanan & Schaffner, 2015; Kvenberg and Schwalm, 2000; Martins and Germano, 2008; 

Osimani et al., 2013; Zwietering et al., 2016). As there is a need to empower micro and 

small-sized enterprises, especially those involved into business-to-consumer (B2C) activities, 

in diagnosing and improving their FSMS themselves, it was decided in this PhD thesis to 

focus on microbiological analysis for the validation and verification of FSMS in these 

settings. 

7.1.1 Microbiological analysis to verify food safety management in FSO 

Microbiological testing for verification of a FSMS in the frame of self-checking as explained 

in CHAPTER 1 involves the set-up and elaboration of a sampling plan. The sampling can be 

performed according a risk-based or a statistical approach. Risk-based sampling uses a 

baseline number for sample size/frequency based upon risk and performance, and that 

number can change based on prior inspection results, i.e. it may be reduced due to good 

results or tightened due to poor results. At the level of the government, a risk-based 

approach means that each company is controlled with a frequency of inspections depending 

on the type of activity which it carries and the risk associated with this activity. It may also 

take into account the current consumption pattern and volumes of produced food products. 

At the level of the FBO, risk-based sampling means that food products with a smaller risk 

towards food safety will be sampled less frequent than high risk food products. Statistically-



GENERAL DISCUSSION AND CONCLUSION 

170 

based sampling gathers data from each individual lot from a probability standpoint to 

ensure that the sample is an unbiased representation of the entire batch/population. This 

method may provide a more concrete representation and will therefore be used in 

governmental monitoring and surveillance programs. However, it is not always feasible 

within the limitation of resources for microbiological analysis for FSO, neither within the 

framework of the present research work to elaborate and implement a statistically 

underpinned sampling plan as described by e.g. Augustin and Minvielle (2008), Baird-Parker 

(1995), Green (1991) and Legan et al. (2001). Often, one is bound in (food safety) risk 

management or (research) project management to make choices and restrict sampling and 

testing. If one is aware about the bias or limitations introduced by this enforced restricted 

sampling frequency this does not necessarily detract that still useful knowledge on the food 

safety (or food quality) of a foodstuff or production process in a particular context or setting 

is and can be obtained.  

Due to the limitation of resources for microbial analysis, but also due to the high variety of 

incoming raw materials and served food products, a risk-based sampling method is thus 

preferred above a statistical approach. Therefore, the sampling plans elaborated in this PhD 

study were based on risk analysis, especially with respect to the priority of the food 

product/pathogen combination, sampling locations and frequency of sampling (CHAPTER 2, 

3 and 4). Consequently, one of the core aspects of this thesis was to develop an approach 

for “risk classification” of the diversity of food products present in FSO. This approach is 

based upon i) epidemiological association of the food type with reported foodborne 

outbreaks, ii) the reported prevalence of foodborne pathogens and level of hygiene 

indicators in the food type, and iii) the potential of microorganisms (pathogens but also 

spoilage microflora) to grow or survive during storage and/or further processing. As such, 

the variety of products on the inventory lists of the FSO, but also the variety of end products 

produced within the FSO could be subdivided into risk categories. The products classified in 

the high risk category could then be taken up in the sampling plan for microbiological 

analysis. However, this categorizing of all food items on the inventory list of the institutional 

FSO, by itself, is a challenging issue. Depending on the ingredients of the food recipe, the 

product may end up in different categories. In this PhD study for example, the chocolate 

mousse was classified into the group of milk and dairy products. The chocolate mousse 
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might indeed not be a pure dairy product. However, the classification of the products (as 

mentioned in CHAPTER 3) is based on commodity type and the processing and preservation 

method applied. As gelatin, one of the ingredients, is of animal origin, you might classify 

chocolate mousse as a composite food as composite foods are defined as those food 

products containing ingredients from more than one of the seventeen commodities. 

However, the ratio between the different commodities in composite foods is more equal 

and that distinguish them from products like chocolate mousse. As the main ingredient(s) 

(and thus the ingredient(s) causing most likely a problem) are of dairy origin, it was decided 

to classify chocolate mousse in this commodity (i.e. milk and dairy products). In case it 

would have been artisanal chocolate mousse containing raw egg white, it would be 

proposed to classify it in Ready-To-Eat refrigerated food products with substantial raw 

ingredients, a category with a higher risk score. The specific micro-organisms that should be 

considered are dependent on the microbiological ecology of the food under consideration 

and on the knowledge of prior and further conditions of processing, storage and distribution 

(Buchanan and Schaffner, 2015).  

It is recommended with respect to the sampling locations to perform microbiological 

analysis on raw materials to verify raw material control in the FSMS (e.g. compliance to 

specifications and selection of suppliers). Raw material control is indeed a point of attention 

in FSO as experienced in this PhD study. Most of the time, verification of suppliers is 

performed by visual control for quality and by temperature check when the products are 

delivered. However, sampling is providing objective results and reveals some information on 

the quality and safety of the products (which cannot be visually checked). As illustrated in 

CHAPTER 2 and 3, L. monocytogenes was detected in e.g. raw meat spread, which would 

have been left undetected in case of visual control. At all times the obtained results were 

compared with microbiological criteria and guidelines as set to be applicable at the end of 

shelf life as the products were analyzed in the food service operation when they were 

supposed to be eaten (i.e. somewhere between production and end of shelf life). Although 

this assumes worst case, if raw materials would exceed these threshold values, and if 

temperature of intermediate storage and transport had been respected, it could be 

concluded that initial quality of raw materials delivered by the supplier would be insufficient 

and therefore they could not be in accordance with the specifications set to the suppliers. 
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The systematic approach in the elaboration of a sampling plan allows the FSO to provide 

information on the variability of the microbiological contamination of raw materials and 

thus the consistency (or not) of the quality of the raw materials supplied. As FSO (and FBO in 

general) would become more pro-active in controlling their suppliers with microbiological 

analysis, it will gradually lead to an improvement of food safety and quality of food products 

along the farm-to-fork chain. The elaboration of a microbiological sampling plan in the 

frame of self-checking would also fit within the efforts taken by the Belgian government. 

The Belgian food safety agency is namely stimulating B2C organisations, such as FSO, to 

implement a certified self-checking system by rewarding them with a “Smiley”. This Smiley is 

a certificate in the form of a sticker that shows that the company has a trustworthy system 

of hygiene, based on HACCP. The possession of a Smiley implies confidence to consumers, 

but also that the company can benefit from a considerable discount on annual FASFC levies. 

It also implies that the FASFC will carry out fewer inspections in these organisations because 

their efforts in the field of hygiene have already been inspected resulting in a smaller risk for 

food safety. Another point of interest is that due to the setting-up of the sampling plan in 

CHAPTER 4, the awareness of the responsible for menu selection increased, resulting in a 

more critical selection of raw materials and food products to be served to vulnerable 

people. 

It is also preferred to perform microbiological analysis on intermediate products at a stage 

in the production process where a manual operation and/or physical intervention process 

occurred (e.g. after a thermal treatment step or after a manual handling step such as 

dressing up of plates), but also on finished products at the time they are offered to the 

consumer. Sampling of finished products reflect in this case the integration of the 

microbiological status of raw ingredients with the effectiveness of the preventive and 

control measures during manufacturing. 

It was also decided in this PhD study to perform environmental sampling during food 

processing. When environmental testing in FSO is integrated it is mostly to verify that the 

food processing plant sanitation program is actually effective at controlling the pathogen(s) 

of concern (or their indicator organisms) (Kvenberg & Schwalm, 2000; Tompkin, 2002). 

However, samples performed on surfaces of equipment after cleaning and disinfection, but 

before food processing have a high level of compliance (Tompkin, 2004). Therefore, it is 
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recommended to sample the environment during processing of foods (with at least 2h of 

prior production) or at the end of the production run (but before cleaning and disinfection), 

because cells remaining in harborage sites (biofilms) will be more accessible to sampling 

once dislodged during processing because equipment vibrates or because foods and liquids 

come in contact with harborage sites. Thus not only the sampling location but also the time 

of sampling in the production process affect the probability of detecting a persistent ‘in-

house’ bacterial strain and thus increases the likelihood of detecting the source of 

(continuous) cross-contamination. As food handlers can be asymptomatic carriers of 

foodborne pathogens, it is also of interest to verify hand hygiene (or overall personal 

hygiene) and thus to perform sampling and testing on hands or gloves of food handlers. 

Especially in food service operations, where manual manipulations are very important and 

thus transmission of pathogenic micro-organism may easily occur between food handlers 

and food or surfaces, this type of sampling location is highly recommended (Boxman et al., 

2011 and 2015; Stals et al., 2015). In CHAPTER 2, hand hygiene was identified as a point of 

attention. To evaluate the general hand hygiene of the food handlers, extra swab samples of 

gloves and hands were collected by the responsible during a 6-month period and analyzed 

for TVC and the hygiene indicators E. coli, S. aureus and Enterobacteriaceae. As such, the 

sampling and testing to verify hygiene practices, increased the awareness of food handlers 

and nowadays improvements on hand hygiene within the food service operation are noted. 

No distinction in hand hygiene was made between employees working with or without 

gloves. In both cases, good hygiene practices are necessary. However, it is noticed that 

samples taken from employees with hand gloves have higher TVC values than samples taken 

from bare hands.  

Overall, the sampling plans elaborated in this PhD study may have a limitation of statistical 

power due to the (low) sampling frequency and cannot guarantee food safety and food 

quality. However, in determining the frequency of testing for verification purposes, it is 

important to emphasize that the goal is not to determine the safety of a specific lot (i.e. 

batch control), but to determine if the food safety system is still functioning as intended. 

Besides, to ensure safety of the food product with sampling and microbiological analysis 

only, every part of the batch has to be tested, leaving no product to sell (Zwietering et al. 

2014). More important, the sampling plans are able to detect gross errors in the 
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management of food safety and for sure positive samples detected indicate a situation out 

of control which need corrective actions. As illustrated in CHAPTER 3, the limited number of 

product samples was able to detect L. monocytogenes in e.g. raw meat spread. The food 

service operation will react on each unsatisfactory sample that they detect and take 

corrective actions. If it is noticed that a particular supplier does not respond to these 

complaints as a result of the sampling plan or cannot comply with the imposed 

specifications, it can be decided by the food service operation to remove this supplier from 

the supplier list. This happened in the case of the supplier of the raw meat spread 

contaminated with L. monocytogenes. This creates a pressure on the supplier to improve 

their FSMS as well. The proposed sampling approach can be implemented downstream the 

farm-to-form chain as well. As illustrated by Daelman et al. (2013a and 2013b) in assessing 

the overall microbiological quality and safety of cooked chilled foods. This production 

process uses, just as in case of institutional FSOs, a variety of incoming raw materials and 

needs to apply various ‘food preparation and assembling’ steps to come to a ready-to-eat 

product. The approach is also used in food processing companies with a relative modest 

food product variation, as they focus on the production of a single food stuff such as poultry 

meat preparations, dairy products or pork or lamb meat preparations (Jacxsens et al. 2009; 

Sampers et al. 2010; Osés et al., 2012a and 2012b). The sampling plan has also some 

additional benefits as it gathers knowledge and provides an actual outcome. The results can 

for example be used in communication to suppliers and staff members of the food service 

operation. As such it will increase the awareness and adhered importance to food safety 

and food quality, which might increase the “food safety culture”. It has been noted that this 

type of sampling plan is judged by food businesses as still taking up too much resources, 

although this type of systematic approach in sampling throughout the food production 

system can be used to identify remaining points of attention or critical points in the 

implemented FSMS. However, in due time, sampling is continued at a regular basis (with a 

defined frequency) for these particular identified sampling locations (incoming raw 

materials, environment or intermediate food products) and the microbiological parameters 

(and associated selection method of analysis) considered to be most practical and expected 

to contribute most to improve the degree of food safety or food quality of the product or 

production process. 
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7.1.2 Microbiological analysis to validate food safety management systems 

A FSMS shifts the focus of microbiological sampling and testing of final food products 

towards monitoring in-process control measures. This monitoring of CCPs is mostly 

accomplished by using process parameters, such as measuring the temperature at which a 

food product is held and the time it is held at a particular temperature (Kvenberg and 

Schwalm, 2000). This gives indirect information of the microbiological status of foods or 

intermediate products. The main reason to use indirect methods of measurement is that 

microbiological sampling and testing to monitor CCPs is not always feasible as results of 

tests for pathogens often cannot be obtained in time. However, microbiological analysis are 

needed to validate these control measures. As in particular for micro and small-sized 

enterprises there might be a lack of resources and knowledge to take a collaborative 

approach for validation of identified critical processing and storage conditions, it was 

decided in the present PhD study to focus on the use of challenge testing to provide insight 

in some implemented control measures used in two sectors involving many small businesses 

in a business-to-consumer operation. These validation experiments in the lab mimic the 

actual situation of food handling and storage as good as possible. A comparison between 

the actual and the expected results based on scientific literature or predictive models allows 

then the validation of the control measures. 

7.1.2.1 Validation of heat inactivation procedures 

In CHAPTER 5 challenge testing was performed to validate heat inactivation procedures as 

the heat treatment of meat and meat preparations is a major critical control point in the 

sector of food service operations (hotels, restaurants, catering) to significant reduce 

numbers of pathogenic bacteria possibly being present in the meat. These heat inactivation 

procedures in FSOs depend on safe harbors for thermal treatment, for example, 2 minutes 

at 70°C for safe cooking of burgers. Those safe harbors are in fact widely accepted control 

measures which are based on the outcome of deterministic models using the mean values 

of parameters linked to target organisms’ growth and survival characteristics and 

incorporate simplified thermal inactivation kinetics (Bean et al., 2012). Despite, they are 

often used without further validation because of historical track record of providing safe 
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foods. However in this PhD study, two situations were observed after the validation 

experiments. 

Firstly, a situation for which the thermal treatment of the meat and meat preparations was 

equivalent to 2 min at 70 °C (i.e. thoroughly cooking) but seemingly not always a 6 log 

reduction was obtained as one would expected. It needs to be taken into account that safe 

harbors such as 2 minutes 70°C are set quite conservative in order to achieve a 6 log 

reduction. Information used to establish cooking recommendations has largely been derived 

from D-values in laboratory experiments (ICMSF, 2005). Since the late 1990s, a number of 

studies have evaluated the heat resistance of S. enterica and L. monocytogenes in buffers or 

broth (Juneja et al., 2001; Miller et al., 2009; Sorqvist, 2003), and in meat and meat products 

(Halder et al., 2010; Juneja et al., 2001; Murphy et al., 2006; Vasan et al., 2014), but data 

collected using actual consumer-based handling and cooking processes are comparatively 

scarce. Thermal inactivation studies in the laboratory are usually performed at isothermal 

conditions, yet the cooking processes being used in hotels, restaurants and catering or by 

consumers at home are generally non-isothermal: burgers are usually thermally treated for 

several minutes on each side in a frying pan in hot butter before being served for 

consumption. Furthermore, micro-organisms in ground meat are immobilized and 

constrained to grow as colonies rather than planktonically, which may also have an effect on 

the observed thermal inactivation profiles. Besides, a 6 log reduction is only needed in a 

worst case scenario of initial high levels of pathogen contamination, which needs thorough 

cooking of the meat to render it a safe food. That the request of a 6 or 7 log reduction is 

derived from deterministic worst case approaches is illustrated in the following example. 

Salmonella spp. was identified by a US Food Safety and Inspection Service risk assessment as 

the pathogen of concern for their Lethality Performance Standards for meat and poultry 

products (USFSIS, 1998). The standards define an objective of a 7 log reduction of 

Salmonella in Ready-to-Eat (RTE) poultry products and a 6.5 log reduction of Salmonella in 

RTE beef products. The rationale for these performance standards was based upon i) the 

establishment of a worst-case population of Salmonella spp. by animal species, considering 

baseline survey levels and probability distributions, and ii) the probability of survival of 

Salmonella spp. in 100 g of finished product after the specific lethality processes were 

calculated. For poultry products a worst-case level of 37 500 Salmonella/g was calculated 
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based on data from baseline surveys in the poultry industry. In a serving size of 143 g of raw 

product (assuming a serving size of 100 g of the cooked product) there would be 

approximately 5 362 500 (6.7 log) Salmonella spp. A 7-log reduction of Salmonella is 

therefore considered sufficient to obtain the acceptable level of protection with some 

safety margin. Likewise 6.2 log was determined to be the worst-case level for beef products, 

and 6.5 log lethality was determined to provide an acceptable level of protection. The 

assumptions behind these standards are now being debated in light of many regulatory 

changes concerning the management of the safety of the whole food chain which have 

shifted the focus from end-product control and focus on a preventive approach including a 

greater effort on improvements in hygiene and application of HACCP principles throughout 

the whole meat and poultry processing chain from farm to fork.  

Secondly, another situation is the one that refers to serving meat that has not been 

thoroughly cooked. Thus a situation for which the thermal treatment of the meat and meat 

preparations was not equivalent to 2 min at 70 °C. In this situation, it is indeed expected 

that there is occasional survival of foodborne pathogens. However, it is a part of the culinary 

preferences of consumers in Belgium, especially for intact beef meat. Some consumers 

might also prefer or eat insufficiently cooked burgers (comminuted meat) which is not 

desirable. Serving these types of meat, in particular rare burgers, to susceptible persons 

(YOPI) is debatable and is indeed part of a debate currently going on also in the UK 

(https://www.food.gov.uk/news-updates/news/2015/14362/new-proposals-on-serving-

rare-burgers). 

This PhD study demonstrated thus that the capacity of a physical intervention should first 

be validated in the own production process and should not only be tested by monitoring the 

core temperatures of meat and meat preparations, but should also be verified over time 

with microbiological analysis to confirm the performance of the control measure. In this 

situation, CCP monitoring measuring time-temperature combinations indicated that the 

process was functioning properly, but validation using microbiological challenge testing 

indicated that a microbiological indicator or pathogen could be present at an unacceptable 

level (in particular if prior good hygienic practices and storage at proper refrigerator 

temperatures would not have been respected). However, safe harbors assume thermal 

processing to be the sole intervention for assuring meat safety and often do not take into 
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account the effect of control measures in the food chain before and after thermal 

processing (Fryer and Robbins, 2005; Gaze, 2006). Therefore, in both cases, food safety 

relies on good hygiene at farm and slaughterhouse to minimize pathogen contamination on 

the meat and respect of cold chain during further distribution and storage to keep the initial 

level of pathogens as low as possible. As such also less than ‘the worst case needed 6 log 

reduction” could be sufficient to ensure food safety. This farm to fork approach would be 

strengthened by assessing the quality of incoming raw material and thus to verify supplier 

selection with a systematic sampling approach as described above. 

7.1.2.2 Validation of storage conditions in controlling growth of L. monocytogenes 

Another important control measure in safeguarding the food supply chain and prevention of 

foodborne infections and intoxications is to respect appropriate cold temperatures and 

restriction of shelf life duration to prevent the growth of pathogenic bacteria to an 

unacceptable level. This is in particular applicable in ready-to-eat food products with 

prolonged storage under refrigeration, such as soft and semi-soft or semi-hard cheese as 

those food products are important at risk products for foodborne listeriosis (Fox et al. 2011; 

Hunt et al., 2012; Schoder et al., 2008; Magalhaes et al., 2015). In Belgium many artisanal 

soft and semi-hard cheeses are sold in delicatessen shops and some shops actually promote 

themselves as being specialists in best knowledge on how to handle and select a variety of 

tasteful traditional cheeses to reply to consumer’s requests on high quality food. These 

shops are also allowed to have a cellar or ripening room (under well-defined conditions on 

how to arrange and maintain these rooms under good practices) for (short) further 

maturation of some cheeses upon receipt to fulfil some consumer preferences of well-

matured soft and semi-hard cheeses. In Belgium, temperatures in these ripening rooms 

within delicatessen shops is allowed to be up to 14°C. It is debated if under these 

temperatures L. monocytogenes would be able to grow (and more likely to grow than 

storage upon 7°C) in the presence of active indigenous lactic acid bacteria being present as 

part of the (natural) ferment in these cheeses. Also the performed inoculation procedure is 

often debated in performing challenge testing, in particular for this rather heterogeneous 

artisanal cheese product for which the microbiota of the surface or rind can differ, but also 

can differ according to the produced batch. Besides the microbiota might evolve during 
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ripening of the cheese. Therefore, challenge testing was performed in CHAPTER 6 to 

evaluate the growth potential of L. monocytogenes to assess if this micro-organism is able to 

grow further to elevated numbers in the produced product throughout the shelf life, and 

thus if current storage conditions (i.e. 7 and 14°C) are effective in controlling the growth of 

this pathogen. As during storage, display or slicing post-contamination may occur from L. 

monocytogenes colonizing the environment, it was decided to simulate this by inoculation 

either on the cheese slicing surface or the cheese rind surface.  

The results of a series of challenge tests conducted on various types of cheese within 

CHAPTER 6 of this PhD study demonstrated that there is a wide range in growth potential of 

L. monocytogenes and that current storage conditions are not able to control this hazard. 

The microbiological criterion defined for L. monocytogenes as stated in Regulation EC No. 

2073/2005 defines an end product threshold value of “< 100 CFU L. monocytogenes cells per 

ml or per g” but is only applicable when the producer can proof that L. monocytogenes is 

not able to grow further to elevated numbers in the product throughout the shelf life or the 

ultimate date of consumption (i.e. use by date). Due to this variability, the food business 

operator may not be able to demonstrate, to the satisfaction of the competent authority, 

that the product will not exceed the limit of 100 CFU/g throughout the shelf life. As a 

consequence, cheese will be classified, according to EU-RL Technical Guidance document of 

conducting shelf life studies for L. monocytogenes in RTE foods, as a high risk product and 

should not be served to vulnerable people (EU-RL, 2014).  

If growth occurs there is also an estimate of the order of magnitude of how many log units 

increase of L. monocytogenes could be expected throughout the tested storage conditions. 

However, in the recommended calculation to assess the growth potential in a batch as 

prescribed in the EU-RL Guidance document one takes “the difference between the median 

of results at the end of the challenge test and the median of results at the beginning of the 

challenge test of three replicate test units within a batch”. As such the maximal outgrowth 

that may have been noted in one of three replicates within a batch is not taken into 

account. Although over the three batches that are included in challenge testing for a food 

type, the maximum of the growth potential of the three individual batches is taken into 

consideration to report the ‘overall growth potential’ for a food type, it was noted that 

occasionally the actual growth of L. monocytogenes might be underestimated due to 
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considerable inter-batch and intra-batch variability observed. In particular for these soft and 

semi-soft cheeses the inter-batch and intra-batch variability noted seemed to be higher 

than in case of L. monocytogenes challenge testing for other types of food such as cooked 

meat products, cold-smoked salmon or mayonnaise-based deli-salads for which the service 

lab at the Lab of Food Microbiology and Food Preservation has more experience with 

(Uyttendaele et al. 2004; Vermeulen et al. 2011). This observation indicates no consistent 

behavior of L. monocytogenes in these fermented dairy products. This might be due to 

complexity and biodiversity of the indigenous microbiota in these cheeses (Montel et al., 

2014; Delcenserie et al., 2014). Still, if it cannot be shown that storage conditions are not 

effective in controlling the growth of L. monocytogenes, it is necessary to focus on 

prevention through good hygiene practices to comply with a limit of absence in 25 g of 

cheese using a multiple sample subunit approach (n= 5) at the time of production. However, 

ensuring the absence of L. monocytogenes in artisanal cheeses might be difficult to achieve. 

Besides, challenge testing using an artificial inoculum, may overestimate the actual growth 

of L. monocytogenes in naturally contaminated foods. Therefore, there is still a need to 

collect as much as possible information from follow-up of naturally L. monocytogenes 

contaminated cheese products throughout their shelf life. This is referred to as ‘durability 

testing’. Schoder et al. (2013) could recover some cheeses from the Quargel outbreak in 

Austria, Germany and Czech Republic between 2009 and 2010 and used these cheeses to 

estimate the contamination at end of production based on the results obtained of the 

recalled cheeses. The growth simulations suggested that a very low initial contamination 

level (e.g. <1 CFU/g or 5 CFU/100 g) could justify the levels of L. monocytogenes enumerated 

in recalled samples of Quargel cheese. In our case study, described in CHAPTER 6, a 

naturally contaminated soft cheese was found with L. monocytogenes levels of > 10 000 

CFU/g at the ultimate date of consumption (although the shelf life label indicated a “best 

before date” and not a ‘use by date’). These examples illustrate that there is a reason for 

concern on food safety of artisanal soft and semi-soft cheeses. Due to increased efforts on 

inspection, training and also recalls and outbreaks causing media attention, there is raised 

awareness among small scale cheese producers in EU with regard to L. monocytogenes. 

However, these types of risk products should preferably NOT be served in institutional food 

service operations, such as hospitals, elderly homes, crèches or primary schools as they are 

mainly serving food to vulnerable persons. 
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7.2 Conclusion 

Sampling and microbiological analysis should be performed by FSO to identify hazards and 

to validate the control measures within a FSMS. As the heat treatment of meat and meat 

preparations is a major critical control point in FSO enabling to significantly reduce numbers 

of pathogenic bacteria possibly being present in the meat, microbiological analysis were 

performed in this PhD study to actually validate the current procedures in place in terms of 

pathogen reduction. To prevent insufficient reduction it is important to keep the initial level 

of pathogens as low as possible. This stresses the need of supplier verification to obtain 

information on the microbiological quality and safety of incoming raw materials by setting 

up a ‘horizontal’ sampling plan. Another important control measure in safeguarding the 

food supply chain and prevention of foodborne infections and intoxications is to respect 

appropriate cold temperatures and restriction of shelf life duration to prevent the growth of 

pathogenic bacteria. Results of a series of challenge tests conducted on various types of 

cheese within this PhD study demonstrated that there is a wide range in growth potential of 

L. monocytogenes insinuating that current storage conditions are not able to control this 

hazard if post-contamination occurs. As a consequence, cheese will be classified as a high 

risk product and should not be served to vulnerable people. The results from the two 

validation studies support the categorization of these type of food products, (insufficiently) 

cooked meat and soft and semi-soft or semi-hard artisanal cheeses, as risk products thus 

indeed favouring these type of food as priority foods to be taken up in monitoring and 

surveillance plans, whether by competent authorities or by food business operators in the 

verification of their supplier selection or food safety management system. Focused 

microbiological testing programs based on the risk categorisation of incoming raw materials 

and food served to the consumer are desirable in many micro and small-sized enterprises, 

as they are able to simultaneously verify the effectiveness of control measures and 

procedures in place and at the same time minimize the cost of sampling and testing. In 

addition to verify the effectiveness of a FSMS in the internal auditing process, the setting up 

of a sampling plan may serve to build a systematic track record which can be used in case of 

complaints or external audits. From the results obtained on site during the elaboration of 

the sampling plans, it can be concluded that although the sampling plans have intrinsic 

limitations in assessing the quality and safety of the foods sampled due the low numbers of 



GENERAL DISCUSSION AND CONCLUSION 

182 

samples, it was shown useful to reveal major non-compliances and opportunities to improve 

the FSMS. With the low numbers of samples and sampling plans only detecting gross errors, 

positive results should be seen as a very severe outcome, but absence in a limited number 

of samples is no guarantee of food safety. It is well known that microbial hazards are 

present in the food supply chain and even a well-functioning regulatory and management 

system accompanied with sampling and testing cannot ensure zero risk. 

 

7.3 Recommendations and future perspectives 

- The approach of either vertical or horizontal sampling for respectively validation and 

verification of the implemented FSMS should be applied in more FSO. If the data are then 

shared within an industry association, it could provide an added value to the sector and one 

would build a powerful database. As such it could be noted whether some particular 

sampling locations or microbial hazards are recurring in several of these food businesses 

and are thus microbiological issues that need to be discussed at the level of an industry 

association (e.g. needing extra attention in a hygiene code, or needing additional research in 

the root-cause analysis of this problem, or might be linked to a change in a production 

technology or sourcing region, or change of method of analysis, or a more stringent 

microbiological threshold limit being set etc.). Microbiological analysis per se cannot only 

serve the individual company on performance of food safety managements’ systems, but by 

sharing data, microbiological analysis can provide information and generate insight and 

findings for a sector as a whole independent from the individual company. 

- It is also recommended to use microbiological analysis to validate if control measures 

taken to ensure food safety are adequate in the (own) production process. In particular, 

when deviating from established time-temperature combinations, it is necessary to 

demonstrate, in a measurable way, that the control measures e.g. time and temperature of 

cookers or time and temperature of storage conditions during distribution can control the 

hazards. These results can also be taken up in sector guides to provide more specific 

information.  
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- Validation studies can also help to support the categorization of food products to be taken 

up in monitoring and surveillance plans. In the current PhD study, (insufficiently) cooked 

meat and soft and semi-soft or semi-hard artisanal cheeses were confirmed to be risk 

products thus indeed favoring these type of food as priority foods to be taken up in 

monitoring and surveillance plans whether by competent authorities or by food business 

operators in the verification of their supplier selection or FSMS. 

- As risk products should not be served to vulnerable people (i.e. YOPI group) it is 

recommended to communicate better on these risk products. In analogy with the allergens 

policy, it can be useful to put a symbol or warning on the food packaging of high risk 

products to warn people of the YOPI group. As such, the consumer will be more informed, 

but also in FSO more attention would be paid to the selection of raw materials used or 

served in the FSO. 
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performance of a food safety management system in a food service operation. Journal of food 

protection 75, 706-716  
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Extended abstracts of symposia 

Lahou, E., Uyttendaele, M. (2015). Growth potential of Listeria monocytogenes in soft and semi-hard 

artisanal cheeses. Oral presentation. BSFM Twentieth Conference on Food Microbiology, October 8-

9, Brussels, Belgium. 

Lahou, E., Uyttendaele, M. (2015). Growth potential of Listeria monocytogenes in soft and semi-hard 

artisanal cheeses. Oral presentation. IAFP European symposium on food safety, April 20-22 , Cardiff, 

Wales. 

Lahou, E., Jacxsens, L., Carlier, E., Uyttendaele, M. (2012). Impact of the slow cooking technique on 

the microbiological safety of foods. Poster presentation. BSFM Seventeenth Conference on Food 

Microbiology, September 20-21, Brussels, Belgium. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2012). The development and elaboration of a risk-based 

sampling plan to control Listeria monocytogenes in a hospital food service operation. Oral 

presentation. IAFP Annual meeting, July 22-25, Providence, Rhode Island, USA. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2012). The evaluation of the food safety management 

system of a hospital food service operation towards L. monocytogenes. Oral presentation. Food 

Safety Management 2012, June 19-20, Chipping Campden, United Kingdom. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2012). Evaluation of three swabs-types for recovery of 

Listeria monocytogenes on different food contact surfaces. Oral presentation. IAFP European 

symposium on Food Safety, May 21-23, Warschau, Poland. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2012). Risk-based sampling plan to control Listeria 

monocytogenes in a hospital food service operation. Communications in agricultural and applied 

biological sciences 77, 51-54. Oral presentation. 18
th

 PhD Symposium on Applied Biological Sciences, 

February 10, Leuven, Belgium. 

Lahou, E., Jacxsens, L., Daelman, J., Van Landeghem, F., Uyttendaele M. (2011). Development of a 

horizontal MAS and a vertical MAS for institutional catering to measure microbiological performance 

of the food safety management system. Poster presentation. BSFM Sixteenth conference on Food 

Microbiology, September 22-23, Brussels, Belgium. 

Lahou, E., Jacxsens, L., Daelman, J., Van Landeghem, F., Uyttendaele, M. (2011). Development of a 

horizontal MAS and a vertical MAS for institutional catering to measure microbiological performance 

of the food safety management system. Poster presentation. IAFP Annual meeting, July 31 – August 

3, Milwaukee, Wisconsin, USA. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2011). Evaluating food safety management performance in 

a food service establishment according a microbiological assessment scheme. IAFP European 

symposium on food safety, May 18-20, Ede, The Netherlands.  

Daelman, J., Jacxsens, L., Lahou, E., Uyttendaele, M. (2010) A microbial assessment scheme of the 

cooked chilled food production. Communications in agricultural and applied biological sciences 76, 
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119-123. Oral presentation. 16
th

 PhD Symposium on Applied Biological Sciences, December 20, 

Ghent, Belgium. 

Lahou, E., Jacxsens, L., Daelman, J., Van Landeghem, F., Stals, A., Uyttendaele, M. (2010). Evaluating 

food safety management performance in a food service establishment according a microbiological 

assessment scheme. Poster presentation. 16
th

 PhD Symposium on Applied Biological Sciences, 

December 20, Ghent, Belgium. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2010). Assessing food safety management performance in a 

catering establishment according a microbiological assessment scheme. Poster presentation. BSFM 

Fifteenth Conference on Food Microbiology, September 16-17, Ghent, Belgium. 

 

Dissemination 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2010). Case studie: staalnameplan in de catering. Oral 

presentation. Open opleiding “ Onderbouwing microbiologische staalnameplannen en hun 

interpretatie in het kader van validatie en verificatie van kwaliteitszorgsystemen, December 9, 

Ghent, Belgium. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2011). Listeria monocytogenes in grootkeukens. Oral 

presentation. PR-event Johnson Diversey, May 6, Diegem, Belgium. 

Lahou, E., Uyttendaele, M. (2012). Classical methods in food microbiology: the reference methods. 

Oral presentation. Opleiding Life Technologies, November 13, Ghent, Belgium. 

Lahou, E., Jacxsens, L., Uyttendaele, M. (2012). Environmental sampling for detection of Listeria 

monocytogenes in food processing area. BSFM Seventeenth Conference on Food Microbiology, 

September 20-21, Brussels, Belgium. 

 

Doctoral schools program 

Specialist courses 

2010 Kwaliteitsbeheer en risicoanalyse  

2012 Intensive training on Mycotoxin Analysis  

2014 Statistics - Nonparametric Methods  

 

Personal skills training 

2011 Populair-wetenschappelijk schrijven  

2011 Personal Effectiveness 

2012 Advanced Academic English: Writing Skills  

2012 Basisassistententraining 

2012 Het Feedbackgesprek 

2013 FLAMES Summer School in Methodology and Statistics  
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Supervision of undergraduate students 

AJ 2010-2011  Ellen Verbunt 

  Risico-gebaseerd monsternameplan voor Listeria monocytogenes in grootkeukens 

  van ziekenhuizen. 

AJ 2011-2012 Evelien Carlier: 

  Consumptiedata van groenten en fruit, identificatie van trends en hun impact op de 

  microbiologische veiligheid. 

  Paulien Vanhalst:  

  Alternatieve methoden voor de detectie van Listeria monocytogenes in vis  

  visserijproducten en omgevingsmonsters. 

AJ 2012-2013  Elien De Boeck:  

  Verificatie van hitte-inactivatie van pathogenen in broth en vleesproducten 

AJ 2013-2014 Hanne Van Yperzele:  

  Groeipotentieel van Listeria monocytogenes in zachte en half-harde ambachtelijke 

  kazen 

AJ 2014-2015  Michel Verhagen: 

  Microbiologische kwaliteit en veiligheid van maaltijdsalades



 

 

 


