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SUMMARY 

 

Against the backdrop of an increasing need for new drugs to fight both malaria and 

tuberculosis, the enzyme 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr), which is 

involved in the non-mevalonate pathway for isoprenoid biosynthesis, has emerged as a 

promising drug target. In apicomplexan parasites (including Plasmodium species), most 

Gram-negative and some Gram-positive bacteria (including Mycobacterium tuberculosis), 

Dxr catalyses the first committed step of isoprenoid synthesis via the non-mevalonate 

pathway, which is absent in humans. Inhibitors of Dxr can therefore be anticipated to display 

activity against a variety of bacterial and protozoan pathogens. Fosmidomycin (1.1) and its 

methyl homologue FR900098 (1.2), both natural antibiotics extracted from Streptomyces in 

the 1970s, are established inhibitors of Dxr. Despite its remarkable human safety record and 

promising clinical antimalarial performance, fosmidomycin unfortunately, does not meet all 

the requirements for new antimalarial and/or antituberculosis drugs, by reason of its 

unfavorable pharmacokinetic profile.  

 

Fosmidomycin is structurally characterized by a retrohydroxamic acid group (which chelates 

the bivalent metal ion Dxr depends on), a phosphonate group (which mimics the phosphate 

in DOXP, the natural substrate of Dxr) and a propyl spacer linking these moieties. The work 

covered in this thesis constitutes part of an extensive effort to increase our understanding of 

the structure-activity relationship of fosmidomycin analogues as Dxr inhibitors, and to 

develop new antimalarial and/or antituberculosis agents based on the fosmidomycin or 

FR900098 scaffold. Taking into account reported structural modifications and the prevailing 

SAR (covered in Chapter I), this thesis describes our efforts to introduce modifications at 

three different parts of this lead: the retrohydroxamic acid group, the phosphonate group 

and the propyl linker. Synthetic routes to these analogues were elaborated and the products 

were tested for their ability to inhibit Dxr (our primary attention was focused to PfDxr, but 
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isozymes from other species were also considered), M. smegmatis growth and the 

proliferation of a P. falciparum-K1 Strain.  

Chapter III is dedicated to our attempts to replace the hydroxamate group of fosmidomycin 

with alternative bidentate ligands. Although the chelating ability of hydroxamates often 

makes them potent metalloenzyme inhibitors, most hydroxamic acids suffer from poor oral 

bioavailability and significant binding to other metals (e.g., Zn2+, Cu2+, etc.) besides Mn2+ and 

Mg2+. In addition, hydroxamic acids may be rapidly degraded in vivo by hydrolysis, 

glucuronidation and sulfation and may suffer from poor pharmacokinetic and toxicological 

profiles. Surprisingly, the prepared compounds (3.1a-i, m-q) were essentially inferior in 

activity when compared to the lead compound. This outcome reinforces the view that an 

intact hydroxamate or retrohydroxamate group is imperative for ligating the divalent metal 

in Dxr. 

 

Chapter V describes our efforts to perform the first systematic exploration of substituents, 

introduced at the -position of the propyl backbone of 1.6 (the equipotent hydroxamate 

analogue of FR900098).   

 



vii 
 

While direct introduction of aromatic rings at the -carbon (a modification earlier found 

promising when performed at the -position) afforded moderate PfDxr inhibitors and poor 

EcDxr and MtbDxr inhibitors, introduction of a propyl linker between the -carbon and the 

phenyl ring resulted in optimal E. coli and M. tuberculosis Dxr inhibition. Both a phenylpropyl 

(5.2c) and a phenylbutyl (5.2d) substituent afforded potent PfDxr inhibition. Crystallographic 

studies of the complexes of PfDxr with 5.1a, 5.1b, 5.2c and 5.2d (section V.B.3.) showed two 

different, novel modes of binding to PfDxr. The compounds showing the best enzyme 

inhibition (and best in vitro activity against the parasite, i.e., 5.2c and 5.2d) mimic the 

favorable interactions between the indole ring of the conserved tryptophan in the flap with 

the fosmidomycin backbone that have been seen in a number of antibiotic-bound ternary 

complexes. However, this mimicry is achieved by intramolecular interactions within each 

inhibitor (5.2c and 5.2d), such that the phenyl ring common to this series spatially overlaps 

the usual position of the indole ring. Rearrangement of the flap results in favorable 

interactions between the phenyl ring of the inhibitors and the tryptophan. 

In a follow-up study aiming at exploring the influence of lipophilicity, electronic and steric 

properties of the phenylpropyl side chain of 5.2c, we prepared compounds 5.24. Evaluation 

of these derivatives indicated that it is not trivial to increase the affinity for PfDxr by subtle 

modifications of the phenyl ring anticipated to occupy the aromatic 'hotspot'. 

 

In Chapter VI, we tried to increase the acidity of the phosphonic acid group by incorporating 

a nitrogen atom into the -position of the three-carbon chain of compound 1.6. The 

introduction of electron withdrawing aryl or halogen substituents in -position of the 

phosphonate group of fosmidomycin is known to increase the acidity of the phosphonic acid 

group, thereby leading to a stronger interaction with the phosphate binding site of Dxr. With 

the anticipation that amide derivatives of phosphoric acid (6.1) are chemically and 
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metabolically more stable than the corresponding esters (e.g., 1.35 and 1.36, highly potent 

but metabolically unstable Dxr inhibitors), attempts to prepare the phosphoramides stalled 

due to the surprisingly high lability of the target compounds under synthesis conditions. 

 

The development of a cyclic prodrug scaffold (7.7), which would temporarily lock one of the 

phosphonate O in a cycle with an  substituent as a way of improving the oral bioavailability 

of analogues while reducing toxicity from in vivo activation, was attempted in Chapter VII. 

Unfortunately, high sensitivity of the formed ring to hydrolysis during synthetic manipulation 

of other groups in the intermediates, blocked access to the desired targets.  

 

Finally, in Chapter VIII, a critical reflection is made on the broader international context of 

this thesis, the relevance and future perspectives. 

Overall, during this doctoral study, new analogues of fosmidomycin/FR900098 were 

prepared, which add girth on the current SAR of Dxr inhibition. Specifically, the data on the 

-substituted analogues improve our knowledge of the behavior or interactions of the 

conserved tryptophan residue in the Dxr active site. This serves as a clarion call for further 

exploration of substituents on the propyl spacer, as this has thus far yielded the most 

promising Dxr inhibitors.      
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SAMENVATTING 

 

In het kader van een toenemende behoefte aan nieuwe geneesmiddelen voor de bestrijding 

van zowel malaria als tuberculose, geldt 1-deoxy-D-xylulose-5-phosphate reductoisomerase 

(Dxr), een enzyme betrokken  in de non-mevalonaatweg voor de biosynthese van 

isoprenoïden, als een veelbelovende drug target. In apicomplexe parasieten (waaronder 

Plasmodia), de meeste Gram-negatieve en enkele Gram-positieve bacteriën (waaronder 

Mycobacterium tuberculosis), katalyseert Dxr de eerste differentiërende stap van de  

isoprenoïdsynthese via de, in de mens afwezige, non-mevalonaatweg. Het ligt derhalve in de 

lijn der verwachting verwacht dat inhibitoren van Dxr activiteit vertonen tegen verschillende 

bacteriële en protozoïsche pathogenen. Van de natuurlijke abtibiotica fosmidomycine (1.1) 

en het methylhomoloog FR900098 (1.2), welke omstreeks 1970 voor het eerst werden 

geïsoleerd uit Streptomyces, is vastgesteld dat het inhibitoren van Dxr zijn. Ondanks een 

uitstekend humaan veiligheidsprofiel en veelbelovende klinische anti-malaria 

eigenschappen, voldoet fosmidomycine helaas niet aan alle eisen voor nieuwe anti-malaria 

en/of antituberculose geneesmiddelen, als gevolg van een ongunstig farmacokinetisch 

profiel. 

 

De structuur van fosmidomycine wordt gekenmerkt door een retrohydroxamaat-groep (de 

werking van Dxr is afhankelijk van de chelatie van tweewaardige metaalionen), een 

fosfonaatfunctie (welke de fosfaatgroep van DOXP, het natuurlijke substraat van Dxr, 

nabootst) en een propyleenlinker welke deze twee functionaliteiten verbindt. Het werk 

beschreven in dit proefschrift maakt deel uit van een uitgebreide studie naar de structuur-

activiteitsrelatie van fosmidomycine analogen als Dxr inhibitoren en om nieuwe anti-

malaria- en/of anti-tuberculosemiddelen op basis van het fosmidomycine of FR900098 skelet 

te ontwikkelen. De reeds gepubliceerde structurele aanpassingen en de heersende SAR 

(uiteengezet in hoofdstuk I) in ogenschouw nemend, beschrijft dit proefschrift onze 

inspanningen om variaties aan te brengen in de drie verschillende delen van dit molecule: de 
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(retro)hydroxamaatgroep, de fosfaatgroep en de propyleenlinker. De syntheserouten naar 

deze analogen werden uitgewerkt en de producten werden niet alleen getest op hun 

vermogen om Dxr te remmen (onze aandacht ging hierbij in de eerste plaats uit naar PfDxr, 

maar isozymen uit andere organismen werden later ook beschouwd) maar ook om de groei 

van M. smegmatis alsook de verspreiding van een P. falciparum-K1 stam te onderdrukken.  

Hoofdstuk III beschrijft onze pogingen om de hydroxamaatfunctie van fosmidomycine door 

alternatieve bidentate liganden te vervangen. Hoewel het sterke chelerende vermogen van 

hydroxamaten vaak resulteert in potente metallo-enzyminhibitoren vertonen de meeste 

hydroxamaten een slechte orale biologische beschikbaarheid en een niet te verwaarlozen 

binding aan andere metalen (zoals Zn2+, Cu2+, etc.) naast Mn2+ en Mg2+.  

Bovendien kunnen hydroxamaten in vivo snel worden afgebroken door hydrolyse, 

glucuronidatie en sulfatatie en worden ze vaak in verband gebracht met een slechte 

farmacokinetisch en toxicologisch profiel. Helaas vertoonden de gesynthetiseerde 

verbindingen (3.1a-i, m-q) een inferieure activiteit vergeleken met de lead verbinding. Dit 

resultaat onderstreept de visie, dat een intacte hydroxamaat- of 

retrohydroxamaatfunctionaliteit cruciaal is voor het binden van het tweewaardige metaalion 

in Dxr. 

 

Hoofdstuk V beschrijft onze inspanningen in het kader van het eerste systematische 

onderzoek naar de invoering van substituenten op de β-positie van de propyleenlinker van 

1.6 (het equipotente hydroxamaat analoog van FR900098). 
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Terwijl de directe invoering van arylgroepen op het β-koolstofatoom (een modificatie die uit 

eerdere studies succesvol bleek te zijn indien uitgevoerd op de α-positie) slechts aanleiding 

gaf tot matige PfDxr en slechte EcDxr en MtbDxr inhibitoren, bleek de invoering van een 

propyleenlinker tussen het β-koolstofatoom en de arylgroep te resulteren in een optimale E. 

coli en M. tuberculosis Dxr remming. Zowel een fenylpropyl (5.2c) als een fenylbutyl (5.2d) 

substituent resulteerde in sterke PfDxr inhibitie. Kristallografische studies van de complexen 

van PfDxr met 5.1a, 5.1b, 5.2c en 5.2d (sectie V.B.3.) brachten twee verschillende 

bindingswijzen met PfDxr aan het licht. De analogen met de beste enzyminhibitie (en de 

beste in vitro activiteit tegen de parasiet, te weten 5.2c en 5.2d) bootsen de gunstige 

interactie tussen het fosmidomycineskelet en de indoolring van het geconserveerde 

tryptofaan uit de lus na, die reeds eerder werden waargenomen in een aantal ternaire 

complexen waarin het antibioticum gebonden is. Intramoleculaire interacties binnen de 

remmers (5.2c en 5.2d) zorgt ervoor dat de fenylring de positie bezet die normaal 

ingenomen wordt door de indoolring  van het eerder vermelde tryptofaanresidu. 

Heroriëntatie van de lus resulteert in gunstige interacties tussen de fenylring van de 

remmers en tryptofaan. 

In het kader van een vervolgstudie waarbij het effect van het variëren van het lipofiele, 

elektronische en sterische karakter van de fenylpropyl zijketen uit 5.2c werd onderzocht, 

werden de analogen 5.24 gesynthetiseerd. Het bleek echter niet triviaal om de affiniteit voor 

PfDxr te verhogen door middel van subtiele veranderingen van de fenylring  die een 

aromatische 'hotspot' bezet. 
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Hoofdstuk VI beschrijft onze pogingen om de pKa van de fosfonzuurgroep te verlagen door 

de introductie van een stikstofatoom op de α-positie van de drie-koolstof-keten van 

verbinding 1.6. Het is bekend dat de invoering van elektronenzuigende aryl- of 

halogeensubstituenten op de α-positie van de fosfonaatgroep in fosmidomycine resulteren 

in een verlaging van de pKa deze fosfonzuurgroep, wat op zijn beurt weer leidt tot een 

sterkere interactie met de fosfaatbindingsplaats van Dxr. 

Hoewel vooraf de verwachting heerste dat amidederivaten van fosforzuur (6.1) chemisch en 

metabool stabieler zouden zijn dan de overeenkomstige esters (fosfaatesters 1.35 en 1.36, 

zijn zeer potente maar metabool instabiele Dxr remmers), bleek de verrassend hoge labiliteit 

van de doelverbindingen onder de syntheseomstandigheden fnuikend voor de voortgang 

van dit deelproject. 

 

De ontwikkeling van een cyclisch prodrug motief (7.7), waarbij tijdelijk één van de 

fosfonaatzuurstoffen in een ring met een α-substituent wordt vastgezet, staat beschreven in 

hoofdstuk VII. Deze modificatie beoogde zowel de verhoging van de orale biologische 

beschikbaarheid als het reduceren van de toxiciteit ten gevolge van bioactivatie. Als gevolg 

van de hoge hydrolysegevoeligheid van de gevormde ring tijdens de nodige manipulaties van 

de overige functionele groepen tijdens de synthese, bleken, jammer genoeg, de geplande 

doelmoleculen niet haalbaar. 
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In Hoofdstuk VIII wordt een kritische beschouwing gegeven waarbij wordt ingegaan op de 

bredere internationale context van dit proefschrift, de wetenschappelijke relevantie en de 

toekomstperspectieven. 

Globaal beschouwd, werden tijdens dit doctoraatstraject nieuwe analogen van 

fosmidomycine/FR900098 ontwikkeld, die de huidige SAR-kennis van Dxr inhibitie verder 

uitdiepen. De gegevens verkregen met de β-gesubstitueerde analogen dragen, in het 

bijzonder, bij aan onze kennis over het gedrag en de interacties van het geconserveerde 

tryptofaanresidu in het actieve centrum van Dxr. Dit rechtvaardigt een roep om verder 

onderzoek naar analogen met substituenten op de propyleenlinker aangezien deze strategie 

tot nu toe de meest veelbelovende Dxr inhibitoren opleverde.   
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I.     INTRODUCTION 
 

I.A. Malaria 

I.A.1. Epidemiology 

Malaria, a preventable and treatable disease, is caused by protozoan parasites of the genus 

Plasmodium. Four Plasmodium species are traditionally responsible for malaria in humans: 

Plasmodium falciparum, which causes malaria tropica; 

Plasmodium malariae, which causes malaria tertiana; 

Plasmodium ovale, which causes malaria quartana; and 

Plasmodium vivax; which causes malaria tertiana. 

Recently, some human cases of malaria have been reported with Plasmodium knowlesi, a 

species that is morphologically similar to P. malariae and causes malaria in primates in 

certain forested parts of South-East Asia where its vector thrives.1,2 P. falciparum and P. 

vivax are the two species of greatest economic importance since the former is the most 

virulent (accounting for the majority of all clinical cases), while the latter has the ability to 

form a dormant liver stage (hypnozoites) in infected patients, which may lead to relapse of 

clinical malaria symptoms months or even years after initial infection. Additionally, P. 

falciparum and P. vivax have the shortest development cycles and are therefore more 

common than other Plasmodium species. P. vivax is geographically the most widespread and 

the most common species observed in the temperate regions of the world, due to its ability 

to mature in mosquitoes within a broad temperature range.3,4 Because malaria transmission 

rates are low in most regions where P. vivax is prevalent, the human populations affected 

achieve little immunity to this parasite; as a result, in these regions, P. vivax infections affect 

people of all ages. Mixed infections of P. falciparum and P. vivax are rarely reported, but 

polymerase chain reaction (PCR) detection methods have shown that these can be as high as 

30% of all Plasmodium infections.5 
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The epidemiology of malaria is complex and may vary considerably even within relatively 

small geographical regions. The disease is most prevalent in the tropical and sub-tropical 

regions. In many malaria-endemic zones (parts of Asia, Africa, Central and South America, 

Oceania, and certain Caribbean Islands) occurrence depends on the following factors: the 

availability of competent vectors, parasite development, vector biting habits (anthropophilic 

or zoophilic), and the behavior of infected people. The vector for malaria is the female 

Anopheles mosquito; A. gambiae and A. funetus being the most effective and efficient vector 

species.6 The highest transmission is in sub-Saharan Africa and in parts of Oceania such as 

Papua New Guinea, where nearly all infections are caused by the dreaded P. falciparum. 

Massive eradication campaigns led to elimination of malaria in temperate areas such as 

Europe and the United States but the presence of the anopheles mosquitoes that can 

transmit malaria in some of these areas presents a re-introduction threat.7 

I.A.2. Biology of Plasmodium 

Plasmodium species belong to the phylum Apicomplexa: parasitic protists, which harbor a 

plastid-like organelle called apicoplast and a unique apical secretory structure, mediating 

locomotion and host cell invasion. All species are obligate endoparasites. These unicellular 

eukaryotes obtain nutrients from the cells of their hosts; meanwhile, eluding the immune 

response in these cells. The Apicomplexa have complex life cycles that are characterized by 

three distinct processes: sporogony, merogony and gametogony. The natural ecology of 

human malaria involves Plasmodium species infecting successively two types of hosts: 

humans where the parasite multiplies asexually and female Anopheles mosquitoes, where its 

sexual reproductive cycle occurs. 

Malaria is transmitted through the bite of an infected female Anopheles mosquito by which 

inoculation of plasmodial sporozoites into the human host takes place (Figure I.1). The 

sporozoites infect liver cells and mature into schizonts, which rupture to release merozoites 

into the bloodstream (merogony). In case of P. vivax and P. ovale, some sporozoites turn into 

the aforementioned hypnozoites that persist in the liver. The liberated merozoites access 

and multiply asexually (within 48 to 72 hours) in erythrocytes. Some merozoites differentiate 

into male and female gametocytes (gametogony), which are ingested by a female Anopheles 

mosquito during a blood meal, marking the onset of the sporogonic (sexual) cycle. This 

culminates in the release of sporozoites, which migrate to the mosquitoes salivary glands for 
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inoculation into a new human host. Fever paroxysms, the hallmark of malaria, and other 

clinical manifestations occur when infected red blood cells (RBCs) rupture and release 

parasite-derived molecules that stimulate the production of pro-inflammatory cytokines by 

the host.  

 

Figure I.1: The life cycle of Plasmodium species depicting the point of action of various 

antimalarials.8 

All Plasmodium species studied so far utilize antigenic variation on the surface of infected 

RBCs as a strategy to avoid antibody recognition.9 P. falciparum expresses the var genes, 

which encode proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1), 

so-called because they are exported from the parasite and end up in the membrane of the 

infected RBC (Figure I.2). PfEMP1 is key to the lethality of P. falciparum infection, because 

the PfEMP1 molecules on the erythrocyte surface cause the cell to stick to capillary walls. In 
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this way, the infected cells are prevented from circulating through the spleen where they 

would be recognized by immune cells and removed from the circulation. By switching the 

var gene expressed, the parasite changes the PfEMP1 on the host-cell surface before the 

host immune system can mount a full response to it. Capillaries become clogged, resulting in 

the severe symptoms of tropical malaria.10 

 

Figure I.2: A red blood cell infected with Plasmodium falciparum. The surface of the infected 

cell is studded with proteins of the PfEMP1 family, encoded by var genes. The various 

PfEMP1 molecules can bind to one of a series of receptors on the endothelial cells that line 

the capillary walls.10 

Besides eluding the human immune response, as P. falciparum grows within its host 

erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a 

range of low-molecular-mass solutes including Na+ and K+.11 This results in a Na+ 

concentration gradient between the erythrocyte cytosol and the parasite cytosol, which 

causes a large inward movement of Na+ across the parasite plasma membrane.12 The 

parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic 

phosphate (assisted by a Na+-dependent transporter), an essential nutrient for cell 

metabolism, which is also required for the synthesis of DNA, RNA and numerous 

phosphorylated metabolic intermediates.13 

I.A.3. Current malaria management options 

Clinical illness is caused by the intra-erythrocytic stage of the parasite but also, other stages 

assure the survival and mass dispersion of disease and are thus legitimate targets in malaria 
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eradication efforts (see Figure I.1). In addition to personal protective measures such as 

sleeping under insecticide-impregnated bed nets, use of insecticides against mosquitoes and 

the disruption of mosquito breeding grounds, continuous effort towards a viable treatment 

of infected persons is necessary. An ideal antimalarial drug should accomplish a radical 

treatment of infected persons within a short time frame, so that onwards transmission of 

the parasites is also interrupted. 

I.A.3.1. Prevention of infection and/or clinical disease 

Innate and acquired protective immunity both constitute the natural human arsenal for 

fighting malaria. Innate immunity consists of various traits of erythrocytes that discourage 

infection: The sickle-cell trait protects against the development of severe P. falciparum 

malaria.14 Furthermore, entry of merozoites into erythrocytes is believed to be mediated by 

a crucial RBC surface binding receptor, the Duffy glycoprotein. The Duffy-blood-group-

negative genotype found predominantly in West-African and African-American populations, 

has long been known to confer complete resistance to P. vivax infection,15 although recent 

studies show that this immunity may be fading.16,17 

Adolescents and adults in malaria endemic regions are often clinically immune; they remain 

free of malaria symptoms despite maintaining low-grade infection throughout the 

transmission season, whereas children under 5 years of age suffer severe disease and risk 

death. Immunity may be essentially strain-specific and a long period is required to 'see' the 

local repertoire of strains.18,19 The principal features of naturally acquired immunity to P. 

falciparum are understood but little is known about the underlying mechanisms.20 Clinical 

immunity is usually lost during pregnancy, especially among primigravid women, or after 

migration to areas where the disease is not endemic. Acquired immunity does not prevent 

re-infection but does reduce the severity of disease. Long-term prophylaxis by vaccination 

has been promoted but especially challenging since parasite devices such as the PfEMP1 (P. 

falciparum), assure avoidance of the host immune system. Currently, RTS,S/AS01 

(Mosquirix), a vaccine developed by GlaxoSmithKline (GSK) and backed by the Bill & Melinda 

Gates Foundation, for children, is the most advanced vaccine candidate against P. 

falciparum. Results from phase III trial data released in April 2015, show that the vaccine 

prevented a substantial number of cases of clinical malaria over a 3-4 year period in young 

infants and children when administered with or without a booster dose.21 Efficacy was 
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enhanced by the administration of a booster dose in both age categories. An efficacy of 55% 

reduction in the frequency of malaria episodes during a 12 months follow-up had been 

reported for previous trials.22,23,24 This means that the vaccine has the potential to make a 

significant contribution to malaria control when used in combination with other effective 

control measures, especially in areas of high transmission. Very recently (July 24, 2015) the 

European Regulators (EMA) gave green light to this malaria vaccine candidate after assessing 

its safety and effectiveness and the WHO will consider recommending Mosquirix in the 

course of this year (2016). 

I.A.3.2. Diagnosis and treatment 

Malaria is most widely diagnosed by direct visualization of parasite intra-erythrocytic stages 

through light microscopy of thick and thin Giemsa-stained blood smears.25 Alternative 

diagnostic methods include fluorescence microscopy of parasite nuclei stained with acridine 

orange, rapid dipstick immunoassays of various malaria antigens and polymerase chain 

reaction based assays.26,27 The most commonly used drugs for malaria treatment or 

chemoprophylaxis come from the following five compound classes: 

Quinine and related compounds: Members of this group include quinine, chloroquine, 

amodiaquine, quinidine, mefloquine, halofantrine, primaquine, lumefantrine, piperaquine, 

pyronaridine (Figure I.3). The molecular basis of the action of these drugs is not completely 

understood, but they are thought to interfere with hemoglobin digestion by accumulating in 

the food vacuole (FV) of the plasmodium parasite during the erythrocytic stage of the life 

cycle.28 In order to obtain essential nutrients, parasites digest haemoglobin within the FV, a 

process which generates toxic haem moieties as by-product. Chloroquine interrupts 

subsequent polymerization of haem to non-toxic haemozoin crystals by the parasite through 

the formation of drug-haemozoin complexes and/or binding of the drug to the growing face 

of the haemozoin crystals.29 Other members of this group do not appear to be concentrated 

so extensively in the FV and may act on alternative targets in the parasite. 

Antifolates: Folate synthesis is essential to the parasite as it is unable to scavenge 

pyrimidines from its host. Pyrimethamine, proguanil, chlorproguanil, trimethoprim and 

sulphadoxine affect the pre-erythrocytic and erythrocytic stages of the parasite's life cycle, 

by blocking of the folate biosynthetic pathway in the parasite. Combination drugs, such as 
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sulfadoxine + pyrimethamine, act through sequential and synergistic blockade of 2 key 

enzymes involved in folate biosynthesis. Pyrimethamine and related compounds inhibit 

dihydrofolate reductase, while sulfones and sulfonamides inhibit dihydropteroate 

synthase.30,31,32 

Artemisinin-type compounds: Artemisinins are among the most potent front-line 

antimalarial agents. Structural derivatives of artemisinin such as dihydroartemisinin, 

artemether, artesunate act rapidly throughout the phases of the asexual intra-erythrocytic 

cycle, and also act on young gametocytes.33,34 Due to the short plasma half-lives of 

artemisinin drugs, high rates of recrudescent infections are frequently reported when they 

are administered as mono-therapeutic agents. Recommended current practice is to combine 

an artemisinin drug with another effective long-acting anti-malarial partner (Artemisinin-

based Combination Therapy, ACT). The mechanism of action of compounds in this group is 

incompletely understood, but the prevailing hypothesis is that the endo-peroxide bridge is 

essential for activity. Reductive cleavage of the endo-peroxide moiety through intra-parasitic 

interaction with ferrous iron (in the form of haem or Fe2+ salts) generates free-radical 

species, which alkylate various parasite membranes including the endoplasmic reticulum, 

mitochondrial and plasma membranes, leading to their destruction.35,36  

Hydroxynaphthaquinones: Atovaquone is used in a fixed combination with proguanil 

(MalaroneTM GlaxoSmithKline) for malaria prophylaxis and clinical disease treatment. The 

drug is structurally similar to ubiquinone (also called coenzyme Q), which is an integral 

component of electron flow in aerobic respiration. The passage of electrons from 

ubiquinone to cytochrome bc1 (complex III) is inhibited by atovaquone.37,38 The collapse of 

the mitochondrial membrane potential has been associated with apoptosis.39 
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Figure I.3: Representative compounds from the five mainstream antimalarial drug classes. 

Antibacterial drugs: Clindamycin, ciprofloxacin, azithromycin and doxycycline are antibiotics 

that also exert antimalarial activity. These drugs are weak and slow acting antimalarials and 
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should never be used in monotherapy to treat malaria. The anti-malarial activities of these 

compounds involve the inhibition of DNA replication and inhibition of protein synthesis 

inside the apicoplast of Plasmodium species.40 Doxycycline is the most frequently used 

antibiotic for antimalarial therapy, either in combination with quinine, chloroquine, or as a 

prophylactic agent.41,42,43 Since doxycycline is contra-indicated in small children and 

pregnant women, clindamycin is a valuable alternative.44 

Currently, the WHO recommended first-line treatment for uncomplicated malaria caused by 

P. falciparum comprises the following combinations: artemether-lumefantrine (Coartem), 

amodiaquine-artesunate (Coarsucam), atovaquone-proguanil (Malarone). The combination 

of sulfadoxine and pyrimethamine (Fansidar) is also commonly used.45 Severe malaria should 

be treated with injectable artesunate (intramuscular or intravenous) and followed by a 

complete course of an ACT as soon as the patient can take oral medicines. Intravenous 

quinine is also used for the treatment of severe or complicated malaria, which is caused 

almost exclusively by P. falciparum. In case the infecting species is uncertain (P. malariae, P. 

vivax or P. ovale) or in the event of resistance, clinicians should administer the same 

treatment as for complicated P. falciparum infection, since mixed infections are common. 

Parasitemia should decrease by 75% and clinical status improve within 48 hours after 

initiating therapy. If not, drug resistance, inadequate drug levels or the presence of clinical 

complications should be suspected. In this case, radical treatment with primaquine may be 

necessary after therapy of the blood-stage infection, to eradicate hypnozoites and prevent 

relapses.  

Chloroquine-resistant P. falciparum is widespread and currently exists in all malarious areas 

of the world except Mexico, Central America, the Caribbean and parts of the Middle East. 

Yet, chloroquine remains highly effective against P. malariae, P. ovale, and P. vivax 

everywhere except Papua New Guinea and parts of Indonesia, where significant resistance 

has developed. For regions with chloroquine-sensitive Plasmodium species, chloroquine is 

the recommended chemoprophylactic. Otherwise, mefloquine (Lariam) is the drug of choice 

and doxycycline is an acceptable alternative. 
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I.A.4. The necessity for new antimalarials 

Considering the persistently high annual death toll due to malaria, continuing effort towards 

a more efficient eradication plan is necessary. Antimalarial chemotherapy will play a central 

role in any new strategy since the history of undulating success in eliminating malaria has 

weighed mostly on the lapses in killing the human-borne forms of the parasite.  

I.A.4.1. Mechanisms of antimalarial resistance 

Antimalarial resistance is the ability of a parasite strain to survive and/or multiply despite 

the administration, absorption, entry into the parasite or infected RBC (for the appropriate 

time duration necessary for normal action), of a drug given in doses equal to or higher than 

those usually recommended, but within tolerance of the subject. Drug resistance is 

distinguished from treatment failure (failure to resolve clinical disease) since the former can 

cause the latter, but not all treatment failure is due to drug resistance. Incorrect dosing, non-

compliance with duration of dosing regimen, low drug quality, poor or erratic absorption and 

misdiagnosis are factors that contribute to treatment failure in an individual.46 The 

consequent exposure of parasites to suboptimal drug levels allows the selection of resistant 

parasite strains. Spontaneous single point or multiple mutations confer resistance to 

parasites, such that drug pressure removes susceptible parasites while resistant strains 

survive. Heterogeneous populations of parasites that can have widely varying drug 

susceptibility, from highly resistant to completely sensitive have been found in single malaria 

isolates.47 Over time, resistance becomes established in the population and can be very 

stable, persisting long after specific drug pressure is removed. The mechanism of resistance 

has been well documented for chloroquine, the antifolate combination drugs, and 

atovaquone. 

The global spread of chloroquine-resistant P. falciparum strains was actually the most 

devastating defeat in malaria control of the 20th century. Following this fall, successive 

antimalarial drugs have originally raised a glimmer of hope, just to later meet the same fate 

(Table I.1). The capacity for P. falciparum to expel chloroquine at a rate that does not allow 

this antimalarial drug to reach levels required for inhibition of haem polymerization is 

believed to be the cause of resistance.48 It is unclear whether parasite resistance to other 

quinoline antimalarials (amodiaquine, mefloquine, halofantrine, and quinine) occurs via 

similar efflux mechanisms. Specific gene mutations encoding for resistance to both 
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dihydrofolate reductase and dihydropteroate synthase have been identified and 

combinations of these mutations have been associated with varying degrees of resistance to 

antifolate combination drugs such as sulfadoxine + pyrimethamine. Resistance to 

atovaquone, a hydroxynaphthaquinone, is conferred by single-point mutations in the 

cytochrome-b gene. Polymorphisms in the P. falciparum multidrug resistance protein-1 

gene, which localizes to the membrane of the food vacuole, the site of action of a number of 

drugs, impacts on sensitivity to multiple antimalarial drugs by enhancing efflux of the drugs 

from cells (including resistance to increasingly used components of ACTs).49 

Taking into account the realities of multidrug resistance, the mild-to-severe and/or 

sometimes fatal toxicity issues associated with antimalarials,50 shortcomings on the cost 

effectiveness of currently available therapy, the increasing need for more orally bio-available 

drugs that can be administered in a nonhospital setting (preferably single-daily dosing, and 

short curative regimens), there is broad consensus on the urgent need to accelerate 

research towards new antimalarial entities.  

Table I.1: Chronology of resistance against common antimalarials. 

Antimalarial Introduced in First case of resistance 

Quinine 

Chloroquine 

Proguanil 

Sufadoxine-Pyrimethamine 

Mefloquine 

Atovaquone 

1632 

1945 

1948 

1967 

1977 

1996 

1910 

1957 

1949 

1967 

1982 

1996 

 

I.A.4.2. Feeding the antimalarials pipeline  

Multiple strategies are being explored in the current pipeline for antimalarial drug discovery, 

the most pursued of which are:  

 The piggyback approach is to explore classes of drug molecules as antimalarials that 

have already been thoroughly evaluated as drug leads for other diseases addressed 

by major pharma. One example is the protein farnesyltransferase inhibitors that 
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have been extensively developed over the past decade as anti-cancer agents.51 After 

P. falciparum was shown to contain protein farnesyltransferase, piggybacking of the 

tetrahydroquinoline class of protein farnesyltransferase inhibitors led to the cure of 

malaria-infected rodents, although further work is needed to reduce the metabolic 

instability of this class of drug leads.52,53 

 Recycling of known malaria drugs is being pursued by performing synthetically 

affordable chemical modifications on classical antimalarials, or development of new 

suitable combination partners for existing monotherapy drugs. Indeed since 

halofantrine use is limited by toxicity, the more tolerated analogue lumefantrine was 

developed and is now a component of the co-artemether combination 

(artemether/lumefantrine).54 Re-introduction of drugs after a period of non-use has 

been considered as a strategy to combat malaria. This has been demonstrated in 

Malawi, which halted chloroquine use in 1993 due to resistance. Chloroquine was 

demonstrated to have 99% clinical efficacy a decade later, presumably due to the re-

expansion of susceptible parasites.55,56 

 Arguably, the most innovative approach to chemotherapy is the identification of 

new targets and subsequent discovery of compounds that act on these targets. 

Ideally, new drug combinations should contain both fast acting and long-lasting 

schizonticides combined with transmission-blocking partners. 

Piggybacking or recycling drugs has been promoted as a way to lower overall costs in 

antimalarial drug development but in the latter approach, the risk of fast induction of 

resistance through the lack of structural diversity with predecessors, or by targeting the 

same enzyme or pathway is not to be underestimated. In an effort to catalyze the 

development of new antimalarials, the Medicines for Malaria Venture and Scynexis, Inc., 

assembled the Malaria Box, an open library composed of 400 compounds spanning a 50% 

inhibitory concentration (IC50) range of 30 nM to 4 µM.57 Compounds featured in the Malaria 

Box are also filtered based on druglike properties. The discovery of novel therapeutics, 

hinging especially on structurally different chemical entities and targets that as yet are 

unexplored, remains an attractive approach towards an end game malaria containment 

scenario.  
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I.B. Tuberculosis 

I.B.1. Pathogenesis, diagnosis and treatment 

Human tuberculosis is caused principally by Mycobacterium tuberculosis (Mtb), a member of 

the Mycobacterium tuberculosis complex that also includes M. africanum, M. bovis, M. 

microti, M. canetti and M. pinnipedii. Mycobacterium tuberculosis is contracted through 

inhalation of infectious saliva droplets or mucus expelled by someone with active pulmonary 

disease. The pathogen settles in the lungs where it targets macrophages, important effector 

cells in the immune system, as its preferred habitat as long as they are in their resting 

state.58 For individuals with healthy immune systems, once inside the macrophage, the 

bacteria is encapsulated (phagocytosed) in an endocytic vacuole to form tiny capsules 

(granuloma) which can persist for several years, causing latent infection.59,60 Whereas resting 

macrophages fail to harm M. tuberculosis, activated macrophages can control the growth of 

the microbe, although sterile eradication is seldom achieved.61 Interferon-gamma (IFN-) 

and tumor-necrosis factor-alpha (TNF-), produced by T cells, are important macrophage 

activators. Macrophage activation permits phagosome-lysosome fusion, thereby creating a 

lethal environment for the bacteria due to acidic pH, reactive oxygen intermediates, 

lysosomal enzymes, etc. M. tuberculosis evades this host defense strategy by arresting the 

phagosome at an early stage of maturation, and by preventing fusion of the phagosome with 

lysosomes.62,63,64 Latent infection can be reactivated in infected individuals triggered by a 

compromised immune system and may induce active TB characterized by coughing of blood, 

chest pain, shortness of breath and constitutional symptoms such as malaise, weakness and 

fever. Dissemination of the bacilli via the lymphatic system and bloodstream to other organs 

(kidneys, bone marrow, meninges, etc) is also possible. 

The tuberculin skin test or the TB blood (IFN-) assays are commonly used to determine if a 

person has been infected with the TB bacteria but do not provide information on the nature 

of infection (latent or active disease).65,66 A false-positive tuberculin skin test result is 

possible for people who have received Bacille Calmette-Guérin (BCG), the vaccine for TB 

disease. For complete characterization, additional tests such as a chest x-ray, microscopic 

observation of Ziehl-Neelsen-stained sputum specimens, drug-susceptibility testing of 

cultures, and histopathological examination of biopsy samples supplement the 
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aforementioned tests. Invasive procedures to obtain samples like cerebral spinal fluid for 

testing of extra pulmonary TB makes that the diagnosis of tuberculosis remains clinically 

challenging and logistically difficult in resource-limited settings.67 

The discovery of streptomycin (SM, Figure I.4), a natural antibiotic isolated from 

Streptomyces griseus in the early 1940s, represented the first breakthrough in TB 

chemotherapy.68,69 Shortly afterwards, in 1946, para-aminosalicylic acid (PAS) was 

developed.70 Following the addition of isoniazid (INH) to the antituberculosis arsenal in 1952, 

it was soon discovered that monotherapy of these drugs led to rapid development of 

resistance. Clinicians recognized that if all these drugs were given simultaneously, drug 

resistance did not emerge and lifetime cures of tuberculosis were finally achievable.71,72,73 

With the drug resistance situation getting worse over the decades, a cocktail of drugs is the 

current practice in fighting TB. The recommended first line therapy against drug-sensitive 

active TB consists of four drugs: INH, rifampicin (RIF), pyrazinamide (PZA), and either 

ethambutol (EMB) or SM for two months, followed by an additional four months of 

treatment with RIF and INH. The WHO advises against the use of SM as part of first-line 

treatment regimens for children with pulmonary TB or tuberculous peripheral 

lymphadenitis.74 Persons with latent Mtb infection who are at increased risk for active 

tuberculosis require preventive treatment.75 The preferred regimen is INH alone for nine 

months or for a longer duration in HIV-infected persons, although a combination of INH and 

RIF has recently shown to be comparatively effective.76,77  
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Figure I.4: Structures of first-line and example multidrug-resistant tuberculosis drugs. 

While RIF inhibits DNA coiling and transcription, INH and EMB target cell wall synthesis by 

respectively inhibiting mycolic acid synthesis and arabinogalactan synthesis. The exact target 

of PZA is unclear, but it is thought to disrupt plasma membrane energy metabolism or inhibit 

fatty acid synthesis.78 Streptomycin interferes with protein synthesis at the ribosome level.73 

Multidrug-resistant (MDR) TB, which started in the early 1990s as an emerging torpedo to 

antituberculosis efforts, occurs when a Mycobacterium tuberculosis strain is resistant to INH 

and RIF, the two mainstays of first-line TB therapy.79 To cure MDR TB, healthcare providers 

administer a combination of second-line injectable drugs such as amikacin and kanamycin, 
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alongside selected fluoroquinolones (e.g. levofloxacin). Extensively drug-resistant TB and 

totally drug-resistant TB is terminology used nowadays to characterize complications with 

treatment. This necessitates the use of more complex combinations involving drugs like 

ethionamide and clarithromycin, as the last hope to solve the poor survival rates associated 

with these disease forms.80 Improper diagnosis and/or drug prescription, occasional 

shortage in drug supply and the high stigma about TB, which results in unwillingness to seek 

early treatment, allow the development of a large bacteria population and escalate the 

acquisition of drug resistance.81 All first-line as well as other TB drugs have a number of 

adverse side effects including, but not limited to, hepatitis, gastrointestinal distress, 

peripheral neurotoxicity, disturbed vision and nephrotoxicity, which should be tolerated by 

the patient when not severe.82 However, the usually lengthy treatment, side effects, various 

socioeconomic factors, and the tendency for patients to feel well long before safe 

completion of the prescribed course, promote non adherence, thereby increasing the risk of 

resistance development.83,84 

It is worth noting that no new first-line antibiotics have been introduced into the TB 

pharmaceutical depository during the last fifty years. MDR TB has worse cure rates (40-80%) 

than for drug-susceptible strains (cure rates of >90%),85 whereas the cost of second line 

drugs may be close to 100 times more than first-line therapy.86 The BCG which is the only 

vaccine available, does not fully protect against Mtb, especially in adults.87 Considering that 

the introduction of new, safe, effective and affordable drugs will avert millions of 

unnecessary deaths, the integration of both drug-susceptible and resistant TB into such a 

plan will be possible if the new generation drug strategy exploits unprecedented Mtb 

targets. 

I.C. Isoprenoid biosynthesis as a drug target 

Developing a new drug from original idea to the launch of a finished product is a complex 

process, which can take 10-12 years and cost in excess of $1 billion.88 Drug discovery for a 

given disease (Figure I.5) usually involves either target-based or phenotypic-based high-

throughput (HTS) screening of a compound library. The former approach is frequently 

preferred when the underlying cause of the condition or biochemical pathways involved are 

understood, whereas the latter allows to identify leads without prior knowledge of the 
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molecular mechanisms or implicated target(s). In the past 25 years, molecular target-based 

drug screening has become the main drug discovery paradigm used in both the 

pharmaceutical industry and in academic biomedical research.89 Yet, during the 10-year 

period between 1999 and 2008, the contribution of phenotypic screening to the discovery of 

first-in-class small-molecule drugs exceeded that of the target-based approach; the United 

States Food and Drug Administration approved 28 first-in-class small-molecule drugs 

developed through the former approach as opposed to 17 achieved through the target-

based means.90 Accordingly, the declining use of phenotypic screening over the past 25 years 

is thought to be a reason behind the recent dwindling in drug research and development 

breakthroughs. In actual fact, both approaches to drug discovery have advantages and 

shortcomings: 

 The strengths of the target-based approach include the ease to optimize hits and the 

compatibility of both small-molecule screening strategies and biologic-based 

approaches such as identifying monoclonal antibodies. This drug discovery paradigm 

is however, not so innovative; often leading to (me-too) drugs with no new 

mechanisms of action.  

 On the other hand, the ability to develop first-in-class drugs through phenotypic 

screening is an asset in drug discovery. Prior understanding of the molecular 

mechanism of action is not a requisite for the assays and the observed activity may 

translate into a therapeutic impact in a given disease state more effectively than that 

of target-based assays. Unfortunately, it may cost a lot of efforts to identify targets 

and to elucidate the mechanism of action of promising entities. This in turn slows the 

optimization of the molecular properties of drug candidates. Additionally, effective 

incorporation of new screening technologies into phenotypic screening with the aim 

of increasing the throughput is a challenge.  

The work presented in this thesis focuses on the fifth step of the target-based approach to 

drug discovery, i.e. lead optimization, hence it is further reviewed here below. 
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Figure I.5: The different phases of mainstream drug discovery approaches.88 

I.C.1. Target-based drug design 

A target is usually a single gene, gene product or molecular mechanism that has been 

identified on the basis of genetic analysis or biological observations. Target validation is 

typically done at three levels: the molecular level (e.g., inhibition of a particular enzyme), the 

cellular level and the whole animal model level.91 A target is considered truly validated when 

a drug acting on it is in the clinic for treatment of human diseases. In 2006, Overington et al. 

carried out an extensive analysis of the different molecular targets modulated by registered 

drugs. Of the 1065 drugs reviewed, they estimated 324 targets: 266 human genome-derived 

proteins and 58 pathogenic organism targets.92 G protein-coupled receptors (GPCRs), 

kinases, proteases and ion channels are amongst the most explored drug targets, with 

GPCRs alone representing the target of some 50-60% of currently marketed drugs.93 

After the identification of a biological target of interest, the next challenge begins with the 

conversion of the target into a bioassay that allows a readout of target modulators. 

Following successful assay development, compounds can be screened using this bioassay. 

The basic requirement for a high throughput screening (HTS) assay is that it be sensitive, 

quick, highly reproducible, robust and suitable for screening thousands or even millions of 

samples. HTS affords 'hits', which then undergo more detailed profiling of physicochemical 

and in vitro absorption, distribution, metabolism, and excretion (ADME) properties. Since 

most initial 'hits' usually have low affinity towards their target, they need to be structurally 

modified in order to increase their potency and also to optimize other properties like 

solubility, toxicity, selectivity, etc. Ideally, hit optimization may be steered by the knowledge 

of the three dimensional structure of the biological target obtained through X-ray 

crystallography or nuclear magnetic resonance (NMR) spectroscopy. If an experimental 
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structure of a target is not available, it may be possible to create a homology model of the 

target based on the experimental structure of a related protein.94 Likewise, structure-activity 

relationship (SAR) analysis may help in lead optimization. The objective of the lead 

optimization phase is to maintain favorable properties in lead compounds while synthetically 

improving on deficiencies in the lead structure. Only 10% of small molecule projects within 

industry might make the transition to pre-clinical candidate and since the attrition rate of 

compounds entering the clinical phase is also high, again only 1 in 10 candidates may reach 

the market.95 

I.C.2. The mevalonate versus the non-mevalonate pathway for isoprenoid 

biosynthesis 

Isoprenoids (also referred to as terpenoids) represent the oldest known biomolecules96,97 

and the largest group of contemporary natural products, encompassing over 30,000 known 

compounds.98 Key biochemical functions in all aspects of life have been attributed to this 

family, including but not limited to roles in electron transport (quinones), as photosynthetic 

pigments (carotenoids, side chain of chlorophyll), regulation of growth and development 

(steroid hormones, cytokinins), signal transduction (prenylation of proteins), constituents of 

membranes, bile acids, mating pheromones and reproductive hormones.99,100 Despite their 

huge structural diversity, all isoprenoids are biosynthesized from the 5-carbon isoprene 

building units isopentenyl diphosphate (IPP, Scheme I.1) and dimethylallyl diphosphate 

(DMAPP), as proposed by Ruzicka.101,102 

Since its discovery in the 1950s, the mevalonate (MVA) pathway (Scheme I.1) was for several 

decades unanimously accepted as the unique source of isoprenoid building blocks IPP and 

DMAPP.103,104,105,106 By the early 1990s, the impossibility to reconcile certain biosynthetic 

observations with the MVA paradigm was independently recognized by different 

researchers. For instance, mevinolin, a highly potent competitive inhibitor of HMG-CoA107 

reductase was found to strongly inhibit sterol biosynthesis but unable to interrupt the 

accumulation of plastidial isoprenoids (including monoterpenes, carotenoids, and the prenyl 

moiety of chlorophylls, plastoquinone, and tocopherol) in higher plants.108 Poor yields were 

also reported for the incorporation of 14C-labeled mevalonate into plant chloroplast 

isoprenoids (e.g., carotenoids).109 Further labeling experiments with 13C-labeled precursors, 
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including 13C-pyruvate, did not fit the MVA route, but did shed light on the role of pyruvate 

as the precursor of isoprene units in Escherichia coli (E. coli).110 Eventually, the groups of 

Arigony and Rohmer independently established the existence of a second pathway for 

isoprenoid biosynthesis, variously referred to as the non-mevalonate pathway (NMP), the 2-

C-methyl-D-erythritol-4-phosphate (MEP) pathway, the 1-deoxy-D-xylulose-5-phosphate 

(DOXP) pathway or the Rohmer pathway.111,112 
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Scheme I.1: Isoprenoid biosynthesis via the mevalonate and the non-mevalonate pathway. 



Chapter I 

22 
 

As depicted in scheme I.1, the NMP commences with the condensation of pyruvate and D-

glyceraldehyde 3-phosphate to form 1-deoxy-D-xylulose 5-phosphate (DOXP), catalyzed by 

DOXP synthase.113 In the second and most studied step of this pathway, DOXP 

reductoisomerase (IspC, Dxr), mediates the isomerization and reduction of DOXP using 

nicotinamide adenine dinucleotide phosphate (NADPH) as the hydride source, to yield MEP 

according to a mechanism that is reviewed below (section I.C.4).114 Subsequently, MEP is 

converted to 4-diphosphocytidyl 2-C-methyl-D-erythritol (CDP-ME) in a cytidine triphosphate 

(CTP)-dependent reaction governed by CDP-ME synthase (IspD, YgbP).115 CDP-ME kinase 

(IspE, YchB) mediates the phosphorylation of CDP-ME with ATP, to afford 4-

diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate (CDP-ME-2P).116 Next, 2-C-methyl-D-

erythritol 2,4-diphosphate (MECP) synthase (IspF, YgbB) uses CTP as a cofactor to cyclize and 

dephosphorylate CDP ME-2P, generating MECP.117 The latter is subsequently converted to 1-

hydroxy-2-methyl-2-cis-butenyl 4-diphosphate (HMBPP) by HMBPP synthase (IspG, GcpE)118 

before final conversion into a mixture of IPP and DMAPP by HMBPP reductase (IspH, LytB, 

IPP/DMAPP synthase).119 Unlike their MVA-pathway dependent counterparts, organisms 

using the NMP do not rely on IPP isomerase which interconverts IPP and DMAPP. 

I.C.3. The non-mevalonate pathway in P. falciparum and M. tuberculosis as a 

drug target 

Most eukaryotes (including mammals and fungi) use exclusively the MVA pathway to obtain 

IPP and DMAPP. In contrast, the overwhelming majority of eubacteria use the orthogonal 

NMP, including key pathogens such as some Gram-negative bacteria and 

Mycobacteria.120,121,122 Notable exceptions include several clinically important Gram-positive 

organisms, including staphylococci and streptococci, which have retained the MVA 

pathway.123 Some eukaryotic microbes including the Apicomplexan protozoan pathogens 

Plasmodium species and Toxoplasma gondii utilize only the eubacteria-like NMP.124,125 In 

plants, both pathways are present with the NMP being operative in the chloroplast and the 

MVA pathway in the cytosol and mitochondria.126 Both pathways are also conserved in 

certain Streptomyces species,127,128 while several obligate intracellular organisms such as 

rickettsiae and mycoplasmas, have lost de novo isoprenoid metabolism altogether.129 
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Thus, a common denominator for both P. falciparum and M. tuberculosis is their exclusive 

dependence on the NMP to obtain vital isoprenoids. The fact that all enzymes of this 

pathway have no human homologues, creates a vulnerability for these pathogens. The 

respective enzymes constitute metabolic chokepoints and may be lucrative targets to feed 

the antimalarial and/or antituberculosis pipeline.130,131 All the enzymes involved in the NMP 

have been genetically validated as drug targets132 and the X-ray structure of each of the 

enzymes has been solved.133,134 In a recent systematic druggability assessment of the NMP 

enzymes, Hirsch and co-workers found that all substrate- or cofactor-binding pockets are 

druggable.135 All intermediates of this pathway are phosphorylated and therefore highly 

polar. Correspondingly, the active sites are particularly polar, making the structure-based 

design of drug-like inhibitors for these enzymes challenging. Nevertheless, the promising 

results with fosmidomycin, stimulates the continuing search for inhibitors of the NMP 

enzymes. Fosmidomycin, an inhibitor of Dxr, has been the subject of phase II clinical trials as 

an antibiotic and is currently also being tested for the treatment of malaria (see I.D.1). 

I.C.4. 1-Deoxy-D-xylulose-5-phosphate reductoisomerase 

I.C.4.1. Structure 

Dxr mediates the first committed step of the NMP126 and until now, it is the most widely 

explored therapeutic target in this pathway.135 Over thirty reported (co)crystal structures of 

Dxr from multiple organisms, including P. falciparum and M. tuberculosis, have provided key 

information on both the active site architecture and the binding mode of NADPH, DOXP and 

inhibitors.136 The overall structure of PfDxr is essentially similar to that of other 

species.137,138,139 PfDxr is a homodimer; each monomer shows a V-like shape and consists of 

two large domains separated by a cleft containing a deep pocket, a linker region, and a small 

C-terminal domain (Figure I.6). One of the large domains, the N-terminal domain (amino acid 

residues 77 to 230), binds the NADPH cofactor. A basic element of the secondary structure 

of this domain is the seven-stranded β-sheet in the center of the domain that is sandwiched 

by two arrays of three α-helices. The other arm of the V-shape is the catalytic domain 

(residues 231 to 369) that comprises the binding site for the bivalent cation (usually Mg2+, 

Mn2+ or Co2+), for the inhibitor (fosmidomycin in Figure I.6) and also a flexible loop. It is an 

α/β-type structure consisting of five α-helices (α7-α11) and four β-strands (8-11).  
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Figure I.6: The three-dimensional structure of fosmidomycin-bound quaternary complex of 

PfDxr. The NADPH-binding, catalytic, linker, and C-terminal domains are depicted in blue, 

green, yellow, and red, respectively. The bound fosmidomycin (black for carbon) and NADPH 

(gray for carbon) molecules are shown as ball-and-stick models (adapted from Umeda et al., 

2011).139 

The C-terminal -helical domain (residues 396 to 486) is postulated to play mainly a 

structural role. The linker region connects the catalytic domain to the C-terminal domain 

while also contributing to dimer formation by interacting with the same region of the other 

Dxr subunit. Upon binding of the substrate or an inhibitor (the binding mode is presented 

below), the enzyme undergoes an induced-fit movement and the active site is covered by a 

flexible loop which caps it off from bulk solvent. 

I.C.4.2. Mechanism of action 

Most Dxr mechanistic studies have been performed on the E. coli isozyme, which is high 

yielding on the currently available recombinant expression system, provides comparative 

IC50 values as other isozymes and is also easier to handle than, for instance, the PfDxr.140 As 

mentioned above, Dxr, a clinically validated target, steers the transformation of DOXP to 
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MEP in the first dedicated step of the NMP. The reaction proceeds via an isomerization of 

DOXP to 2-C-methyl-D-erythrose 4-phosphate, followed by an NADPH-mediated reduction to 

MEP.141 Although a concerted -ketol rearrangement has long been under debate as a 

possible mechanism for the isomerization step,142 the current consensus is that a stepwise 

fragmentation-reassembly via a retro-aldol/aldol sequence (Figure I.7) is the most plausible 

mechanism.143,144,145 The evidence accumulated from experiments based on the kinetic 

isotope effect, points to an initial deprotonation of the C4-hydroxyl group of DOXP, followed 

by cleavage of the C3-C4 bond in a retro-aldol manner to afford two fragments, the enolate 

of hydroxyacetone and glycolaldehyde phosphate.146,147 These then reunite in an aldol 

reaction to produce a new C-C bond and generate the aldehyde intermediate, which is 

subsequently reduced by NADPH to yield MEP. Reduction of the aldehyde intermediate 

proceeds by transfer of the pro-S hydride ion from NADPH to its RE face, making Dxr a class 

B dehydrogenase.148,149 

 

Figure I.7: Reaction mechanism for Dxr-catalyzed conversion of DOXP to MEP. 

Recently, Sangari and collaborators identified a new family of enzymes designated Dxr-like 

(DRL) enzymes, which catalyze the transformation of DOXP to MEP in NMP-dependent 

organisms, like Brucella abortus, but have no overall homology to the Dxr.150 B. abortus is an 

infectious, blood borne gram-negative bacterium, which causes brucellosis, manifesting in 

the form of premature abortion of a cattle fetus and can also infect humans.151 
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I.D. Fosmidomycin 

I.D.1. Discovery, antibacterial and antiplasmodial activity 

Research on fosmidomycin (1.1, Figure I.8), also known as FR31564 or 3-(N-formyl-N-

hydroxyamino)propyl-phosphonate, started in the late 1970s when Fujisawa Pharmaceutical 

Co isolated this natural antibiotic from Streptomyces, alongside FR900098 (1.2), FR32863 

(1.3) and FR33289 (1.4), all compounds characterized by a phosphonic acid and an N-

acylhydroxamino function.152,153,154 

 

Figure I.8: Structure of fosmidomycin and related natural compounds originally isolated by 

the Fujisawa Pharmaceutical Co. 

These extracts were found to exhibit antibacterial effects against most Gram-negative 

bacteria, but have minimal activity against Gram-positive bacteria. Fosmidomycin was 

evaluated in the 1980s in an early phase I study and a phase II study for the management of 

urinary tract infections.155,156,157 It proved to be effective and well tolerated; no major 

adverse effects were observed even when given in repeated doses of 8 g/day intravenously 

for 7 days, 4 g/day intramuscularly for 5 days, and 4 g/day orally for 7 days. Unmetabolized 

fosmidomycin was the only bioactive substance found in the urine of volunteers and mild 

outcomes like diarrhea and flatulence was attributed to gut biota alteration.158 However, 

with the emergence of more potent antibiotics at that time, further development of 

fosmidomycin and its congeners was discontinued. 

Seto and coworkers discovered that fosmidomycin inhibits purified recombinant EcDxr 

activity in a dose-dependent manner with an IC50 value of 8.2 nM.159 In 1999, Jomaa and co-

workers124 provided evidence for the presence of the NMP in the apicoplast of P. falciparum 

and revealed that both fosmidomycin and FR900098 were able to: 

 inhibit the enzymatic activity of recombinant PfDxr,  
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 suppress the growth of P. falciparum in culture, and  

 cure mice challenged with Plasmodium vinckei. 

Different groups have since also demonstrated that fosmidomycin potently inhibits Dxr of 

other organisms and kills multiple pathogens reliant on this enzyme.160,161,162,163 Using mass 

spectrometry to profile NMP metabolites, Zhang et al. revealed that IspD is a second in vivo 

target for fosmidomycin within isoprenoid biosynthesis in P. falciparum and E. coli.164 The 

absence of the NMP in humans combined with its essentiality in Plasmodium species 

garnered impetus for the development and use of fosmidomycin as an antimalarial. Indeed, 

in a clinical study conducted in Gabon and Thailand, orally administered fosmidomycin led to 

a fast parasite clearance in subjects with acute uncomplicated P. falciparum malaria, albeit 

with a high rate of recrudescence, thereby precluding its use in monotherapy.165,166 The 

combination of fosmidomycin with most antimalarial agents in clinical use has been 

investigated and successful combination partners, including artesunate and clindamycin, 

tested clinically.167,168,169,170 Although initially very promising, the development of a 

fosmidomycin-clindamycin combination therapy has recently stalled due to inadequate 

efficacy in clearing uncomplicated malaria in Mozambican children less than three years 

old.171 Results from an ongoing clinical Phase II trial of a fosmidomycin-piperaquine 

combination sponsored by Jomaa Pharma GmbH are awaited.172 

I.D.2. Binding mode and kinetics of Dxr inhibition 

Fosmidomycin inhibits the Dxr-catalyzed reaction by mimicking the binding mode of Dxr's 

substrate, as revealed by X-ray crystal structures of fosmidomycin/FR900098-bound 

complexes of EcDxr,173 PfDxr139 and MtbDxr.174 The fosmidomycin molecule lies in a crevice 

of the Dxr catalytic domain where the phosphonate functionality occupies the phosphate 

binding site, the carbon backbone of the inhibitor interacts with a hydrophobic patch, while 

the hydroxamate chelates the active site bivalent metal. Since cellular concentrations of 

Mg2+ are much higher than Co2+ or Mn2+, it is often considered to be the physiologically 

relevant cofactor.175 In PfDxr (Figure I.9b), the phosphonate group of fosmidomycin forms a 

tight hydrogen-bound network with Ser270, Asn311, two water molecules, and His293, 

while the three-carbon backbone lies parallel to the indole ring of Trp296 and also interacts 

with Met298. The hydroxamate group coordinates a Mg2+ ion that is bound by residues 

Asp231, Glu233, and Glu315. A cis (Z) arrangement of the oxygen atoms of the hydroxamate 
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group is essential for tight binding of the inhibitor to the active site metal. The binding mode 

of FR900098 to MtDxr (Figure I.9a), is similar to that of fosmidomycin to PfDxr, but with the 

acetylhydroxyamino group additionally involved in van der Waals contacts with the indole 

ring of Trp203. 

 

Figure I.9: Inhibitor complex with Dxr: (a) Interactions of FR900098 with MtDxr.174 The 

interactions of the acetylhydroxyamino group are indicated in navy blue for the closest van 

der Waals contacts with the indole ring of Trp203 and in sky blue for the hydrogen bond to 

the hydroxyl group of Ser152. (b) Fosmidomycin complex with PfDxr.139 The carbon atoms of 

fosmidomycin, the four buried water molecules, and the bound Mg2+ ion are shown in 

yellow, cyan, and green, respectively. 

The kinetics of inhibition by fosmidomycin have been characterized to different extents for 

Dxrs of various species. Fosmidomycin was initially described as a mixed inhibitor of the 

EcDxr159 and later, as a competitive inhibitor against Z. mobilis160 and A. thaliana176 Dxr. 

More detailed investigations of the pre-steady-state phase of inhibition revealed that 

fosmidomycin is actually a slow-onset, tight-binding inhibitor often described as following a 

two-step binding mechanism (Figure I.10).177,178 In the first phase, a conformational change 

is induced after fosmidomycin binds to Dxr according to a competitive inhibition pattern 

characterized by the constant Ki. This conformational change is essential for tight binding 

and requires prior formation of a Dxr-NADPH complex. Next, a tighter complex (Dxr-

inhibitor*) is formed, consonant with a non-competitive inhibition profile described by the 

constant Ki* where Ki* < Ki. By pre-incubating the enzyme with NADPH and fosmidomycin 
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and then adding DOXP, the slow-onset phase is avoided and therefore, the observed 

inhibition constant represents Ki*. Thus, the slow tight-binding property of fosmidomycin is a 

reason for the difference in measured inhibition constants when the same enzyme/inhibitor 

complex is evaluated; depending on whether the inhibitor was added to an enzyme-

substrate mixture or rather was pre-incubated with the enzyme before substrate addition 

and activity measurement. Most publications do not detail what order was employed. 

Enzyme concentration, pathogen strain (in whole-cell assays), substrate and inhibitor are 

other factors that may influence the measured value thereby complicating the comparison 

of results reported by different research groups.179 Although studies have shown that Dxr 

has a preference for NADPH over nicotinamide adenine dinucleotide (NADH), the Dxr 

maximum turnover numbers using both cofactors are similar, suggesting that the 2'-

phosphate of NADPH contributes predominantly to binding and not to catalysis.180 It is 

considered to interact with active-site residues before DOXP (or the inhibitor) binds and 

induces folding of the flexible loop over the active site.  

 

Figure I.10: Analogy between DOXP and Fosmidomycin/FR900098. 

I.E. Fosmidomycin as a lead in drug design 

The clinical validation of Dxr as a drug target and the use of fosmidomycin to treat malaria 

patients, raised the stakes on blocking the NMP as a drug discovery venture. Although 

fosmidomycin is a remarkably safe antimalarial agent, poor pharmacokinetic properties such 

as moderate bioavailability (with an absorption of approximately 30% after oral dosing), 

short serum half-life (1.6 hours) and the consequent malaria recrudescence limit its 

therapeutic use.181,158,182 Similarly, while fosmidomycin effectively inhibits purified 

recombinant MtbDxr, this highly hydrophilic antibiotic cannot penetrate the notoriously 
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thick and lipophilic mycobacterial cell wall (Figure I.11) and lacks significant activity against 

intact bacteria.161,183 

 

Figure I.11: Current view of the mycobacterial cell wall. The cell wall is mainly composed of a 

large cell-wall core or complex that contains three different covalently linked structures 

(peptidoglycan (grey), arabinogalactan (blue) and mycolic acids (green)). The covalent 

linkage of mycolic acids results in a hydrophobic layer of extremely low fluidity. The outer 

part of the mycomembrane contains various free lipids, such as phenolic glycolipids etc, 

which are intercalated with the mycolic acids. The outer layer, which is generally called the 

capsule, mainly contains polysaccharides (glucan and arabinomannan).184 

Fosmidomycin comprises three main structural parts: a phosphonic acid group, a 

retrohydroxamate and a three-carbon spacer connecting these two moieties. Its 

phosphonate group is highly ionized at physiological pH, which is the main reason for its 

limited capacity to passively diffuse through cell membranes and, consequently, its 

moderate bioavailability. While this does not preclude efficient uptake in P. falciparum, 

other organisms like Mtb, are not sensitive to fosmidomycin because they lack a glycerol-3-

phosphate transporter (GlpT) that is known to actively transport fosmidomycin across the 

hydrophobic cell membranes of bacterial pathogens such as E. coli and some apicomplexan 

parasites like Plasmodium.185,186,187 Furthermore, for Plasmodium and some other species, it 

has been shown that a so-called parasite-induced new permeability pathway accounts for 

selective uptake of fosmidomycin and FR900098 into infected erythrocytes.188 Although the 
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chelating ability of hydroxamates often makes them potent metalloenzyme inhibitors, most 

hydroxamic acids suffer from poor oral bioavailability and significant binding to other metals 

(e.g., Zn2+, Cu2+, etc.) besides Co2+, Mn2+ and Mg2+.189,190,191 In addition, hydroxamic acids 

may be rapidly degraded in vivo by hydrolysis, glucuronidation and sulfation and may suffer 

from poor pharmacokinetic and toxicological profiles.192 

Despite these limitations, a subtle switch of the (N-formyl-N-hydroxy)amino group in 

fosmidomycin to the (N-acetyl-N-hydroxy)amino in FR900098, affords a two-fold increase in 

potency against P. falciparum in vitro and against P. vinckei in a mouse model of infection.124 

Indeed, FR900098 has shown superior activity to fosmidomycin in many assays and these 

two compounds are the most studied Dxr inhibitors. Notably, in the FR900098-PfDxr co-

crystal structure, the N-methyl group is situated in a hydrophobic pocket flanked by Met298 

and Met360, and engages in a favorable van der Waals contact with the indole ring of 

Trp296.139,193 This implies that based on the fosmidomycin/FR900098 scaffold, structural 

modifications leading to more lipophilic Dxr inhibitors, which may better passively permeate 

into cells and display improved pharmacokinetic properties, could yield more efficacious 

agents. Towards this end, extensive medicinal chemistry efforts have yielded various 

synthetic analogues of fosmidomycin/FR900098 with interesting activity profiles that are 

reviewed below. 

Even with the abundance of crystallographic information about Dxr from several organisms, 

its dramatic conformational change upon ligand binding renders the structure-based design 

of improved inhibitors challenging. Owing to the extremely flexible Dxr active site, some 

fosmidomycin analogues have been proposed to bind in a "reversed" fashion by docking 

studies, with the phosphonate moiety binding to the Mg2+ cation and the hydroxamate 

located in the phosphonate-binding site, further demonstrating the challenges to rationally 

optimize this lead.194 In order to circumvent the limitations associated with the phosphonate 

and hydroxamate moiety of fosmidomycin, two strategies have been widely exploited in the 

design of potent analogues: masking of the polar phosphonate group as prodrugs and/or 

substituting the hydroxamate of fosmidomycin with an alternative metal binding group. 

Alteration of the three-carbon scaffold has also been probed and analogues combining any 

of these modifications have been updated. Therefore, in this overview, analogues are 

classified according to the modifications of the fosmidomycin/FR900098 frame. The activity 
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of analogues is most often tested either against live parasites or the reductoisomerase 

enzymes PfDxr, MtbDxr and EcDxr. Inhibitory activities are commonly reported as percentual 

inhibition for a given concentration of inhibitor, as a Ki-value or as an IC50-value, while in vivo 

results are typically reported as graphic representations of mice survival, relative reduction 

in infected red blood cells etc. The activity data of analogues reported by different groups 

have contributed unequivocally towards a better understanding of the structure activity 

relationships, although they do not allow numerical comparison sensu stricto. For a thorough 

understanding of the SARs, the activity trends rather than specific numerical comparisons 

are discussed. 

I.E.1. Modifications of the retrohydroxamate moiety 

I.E.1.1. Hydroxamate reversal 

The retrohydroxamate moiety of fosmidomycin coordinates the vital divalent cation in the 

active site in essentially the same manner as the -hydroxyketone function of DOXP. The 

Rohmer group was the first to demonstrate that 1.5 and 1.6 (Figure I.12), the reverse 

hydroxamate counterparts of respectively fosmidomycin and FR900098, elicit a slow tight-

binding inhibitory activity against E. coli Dxr, comparable to the natural inhibitors.195 The N-

methylated analogue 1.6 is a stronger EcDxr inhibitor than the N-H analogue 1.5, which 

performs equally well as fosmidomycin. Woo et al. later resynthesized compound 1.5 

alongside other analogues (see below) and showed that it is a slower binder, needing more 

time than fosmidomycin to form the tightly bound Dxr-inhibitor complex with Synechocystis 

Dxr.178 

 

Figure I.12: Reversal of the retrohydroxamate function of fosmidomycin or FR900098. 

Zinglé et al. noted that the N-methylated compound (1.6) outperformed its nonmethylated 

homologue 1.5 due to a hydrophobic interaction between the N-methyl group and indole 
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ring of Trp212 (EcDxr), analogous to the acetyl residue of FR900098 or the terminal methyl 

group of DOXP.196 

With this blueprint in mind, multiple fosmidomycin/FR900098 analogues comprising a 

reverse hydroxamate moiety have been prepared by various groups, some of which show 

sub-micromolar IC50 values. The following sections feature such analogues alongside those 

bearing the retrohydroxamate moiety, discussed within the context of other relevant 

modifications. 

I.E.1.2. Alteration of the acyl moiety 

Flexible docking experiments conducted by different groups suggest that pliable spacious 

acyl derivatives of fosmidomycin have the potential to bind in an alternative lipophilic 

pocket.197,198,199 This information, along with the observation that the stability of the acetyl 

group in 1.2 or the N-methyl in 1.6 contributes to the superior activity of these analogues, 

suggests that further extension of the inhibitor into the hydrophobic pocket could introduce 

additional favorable van der Waals interactions and would improve binding affinity. The 

Rohmer group also tested the N-ethylated analogue 1.7 (Figure I.13) but concluded that this 

substituent is too bulky to fit in the apparently narrow active site around the metal ion.195 

 

Figure I.13: Dxr inhibitors with different N-substituted moieties. 

Later, Kurz and co-workers combined the reoriented hydroxamate with favorable -phenyl 

substituent (see below) to generate a series of N-substituted analogues like 1.8-1.11. They 

found that 1.10 and 1.11 perform poorly (with respect to 1.8) as EcDxr and PfDxr inhibitors 

(Table I.2a).200,201 The N-methylated analogue 1.9 is the best of the series, outperforming 

both fosmidomycin and FR900098 on PfDxr inhibition. Generally, PfDxr shows to be more 
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susceptible to the activity of the tested compounds than EcDxr. Ortmann et al. synthesized 

compounds 1.12-1.14, 1.17 (Table I.2b) and showed that introduction of a carbonyl group 

into the acyl chain of 1.13 results in a two fold increase in activity, compared to 1.12, which 

has the same acyl chain length but lacks this functionality. The authors presumed that a 

hydrogen bond formation to a Met214 (EcDxr) N-H of the Dxr flexible loop located over the 

active site is responsible for this observation.198 Even so, none of the compounds in this 

group elicits EcDxr inhibition comparable to that of fosmidomycin and FR900098. 

Table I.2: Biological evaluation of hydroxamate-based fosmidomycin/FR900098 derivatives. 

(a)   (b)  

 Enzyme inhibition 

IC50 (µM) 

  

 

Enzyme inhibition 

IC50 (µM) 

Compound EcDxr PfDxr  Compound EcDxr 

Fosmidomycin (1.1) 

FR900098 (1.2) 

1.8 

1.9 

1.10 

1.11 

0.221 

0.131 

0.592 

0.243 

15 

inactive 

0.144 

0.015 

0.012 

0.003 

0.015 

inactive 

 Fosmidomycin (1.1) 

FR900098 (1.2) 

1.12 

1.13 

1.14 

1.17 

0.035 

0.035 

10 

5.4 

inactive 

5.1 

 

Replacement of the formyl group of fosmidomycin by a benzoyl group in 1.15 leads to 

submicromolar inhibition of E. coli and P. falciparum Dxr, albeit with half the potency of 

fosmidomycin.140 The length of the acyl substituent, however, proved important as insertion 

of a spacer between the carbonyl group and the phenyl ring (as in 1.17) leads to a significant 

loss of activity. This demonstrates that the steric limitation around the metal ion applies for 

analogues with a retrohydroxamate or a hydroxamate moiety alike. There is approximately 

1-3 orders of magnitude difference in activity between EcDxr and PfDxr inhibition values, 

which is noteworthy since EcDxr is often used in place of PfDxr to assess the antimalarial 

potential of compounds. As a general finding, the introduction of large acyl residues 

prevents the formation of the desired hydroxamate-metal interaction geometry and leads to 
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a significant loss of Dxr inhibitory activity compared to the lead compounds 1.1 and 1.2, or 

their reverse hydroxamate counterparts. 

Notwithstanding these failings, the Dowd group recently waded into acyl chain modifications 

by using the Mtb Dxr-fosmidomycin co-crystal structure to design bisubstrate ligands, 

capable of binding to both the DOXP and NADPH sites.202 They observed a more efficient 

coordination of the metal cation by N- versus O-linked substituents on the retrohydroxamate 

of fosmidomycin. While highlighting the importance of having an aromatic group in the 

inhibitor, they also suggested that an alkyl chain between the retrohydroxamate and the aryl 

group is required for accessing an alternate binding pocket. The best result was obtained for 

1.16, which inhibits MtbDxr with an IC50 of 17.8 μM in a competitive manner with respect to 

DOXP, but in a noncompetitive manner with respect to NADPH, in disagreement with the 

modeled binding mode. The adenosine-binding pocket gave a good score on a druggability 

test conducted by Hirsch and co-workers,135 so the possibility to explore it for the 

development of alternative bisubstrate analogues remains open. 

I.E.1.3. Essence of the N-hydroxyl function 

The bivalent nature of the Dxr active site metal demands an intact (retro)hydroxamate group 

in any (potential) inhibitor, for full coordination to this ion. As seen above, acyl chain 

modifications have not resulted in significantly improved activity of fosmidomycin/FR900098 

analogues, even though they retain a carbonyl vicinal to an N-OH group, a feature that 

favors metal complexation. Hence it seems obvious that deleting the essential carbonyl 

and/or the N-OH will be detrimental for Dxr inhibitory activity. 

Giessmann et al. synthesized a series of amidopropylphosphonates (1.18, Figure I.14), but 

none of these showed detectable E. coli Dxr inhibition when tested up to 30 μM, indicating 

the importance of the N-OH group for Dxr inhibition.140 This was further proven by Woo et 

al. following the evaluation of compounds 1.19 wherein the N-OH was replaced with N-

CH3.178 During the synthesis of -substituted fosmidomycin analogues, Haemers et al. 

observed that benzyl removal from the retrohydroxamate moiety by catalytic hydrogenation 

typically resulted in the formation of the desired compound, but also significant amounts of 

the corresponding deoxygenated derivative, i.e., the amide, due to competitive “full” 

reduction.203 Deprotection of the phosphonate moiety of these deoxygenated products 
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afforded analogues such as 1.20, which are moderately potent in inhibiting E. coli Dxr (1.20; 

IC50 = 2.39 µM, versus 0.030 µM for fosmidomycin and 0.31 µM for the corresponding N-

acetyl retrohydroxamate) and capable of inhibiting the growth of a Dd2 P. falciparum strain 

at submicromolar concentrations. Merklé et al. showed that the propylphosphonate 1.21a, 

aminopropylphosphonate 1.21b and 3-acetamidopropylphosphonate 1.21c inhibit EcDxr by 

at least a factor of 106 weaker than fosmidomycin, with the primary amine surprisingly 

emerging the best of all three compounds.179 

 

Figure I.14: N-hydroxyl-free fosmidomycin analogues. 

Recently, the Rohmer group compared the EcDxr inhibition of compounds 1.22-1.24 (Figure 

I.15) to that of fosmidomycin (1.1) or the reverse hydroxamate counterpart of FR900098 

(1.6) under two conditions: with and without pre-incubation of inhibitor and the enzyme 

before substrate addition and measurement of activity (Table I.3).204 

 

Figure I.15: Hydroxamate modified fosmidomycin analogues. 

They found that replacing the hydroxamate chelating group with a hydrazide as in 1.22 is 

detrimental for activity. A plausible explanation for this observation is that the hydrazide 

group is protonated at the pH of the enzymatic assays (pH 7.5) thereby reducing the 

chelating potency of the N-H with the Mg2+ ion. The O-methylated hydroxamate 1.23, is 

similarly inactive against EcDxr. Contrary to the previously noted Dxr-inhibition superiority of 

N-methylated compounds over the non-methylated ones,195 the interaction of the O,N-

dimethylated compound 1.24 with Dxr is worse than that of its N-H hydroxamate analogue 
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1.23, probably by cause of the O-methyl group which is bulky enough (when present 

together with the N-methyl) to prevent binding by steric hindrance. 

Table I.3: Inhibition of recombinant E. coli Dxr by fosmidomycin (1.1), reverse N-methylated 

phosphonohydroxamate (1.6) and chelating analogues 1.22-1.24. 

 

Compound 

IC50 (µM) without 

pre-incubation 

IC50 (µM) with pre-

incubation (2 min) 

1.1 

1.6 

1.22 

1.23 

1.24 

0.25 

0.5 

1800 

11500 

6900 

0.032 

0.048 

1000 

930 

3800 

 

I.E.1.4. Isosteric replacement of the hydroxamate 

In view of the aforementioned limitations associated with the hydroxamate moiety of 1.1 

and 1.2, many research groups have ventured the replacement of this pharmacophore with 

more lipophilic hydroxamate bioisosteres possessing improved bioavailability and/or metal-

binding properties. Dxr is a metalloenzyme containing hard divalent metal ions (e.g., Mg2+) 

which are relatively nonpolarizable and have high charge-to-radius ratios. The active site ion 

therefore goes for hard ligands with oxygen being the most preferred coordinating atom, 

followed by nitrogen or sulfur, although the latter tend to coordinate to soft and more 

polarizable ions like zinc.205 Nakamura and co-workers showed that a cis arrangement of the 

two oxygen atoms of the hydroxamate group is required for effective metal chelation.139 

Furthermore, they suggested that alternative functional groups containing cis oxygen atoms 

might have comparable metal coordination ability. 

Catechols 1.25a and 1.25b (Figure I.16) show IC50 values of 24.8 μM and 4.5 μM, 

respectively, when tested for inhibition of EcDxr, indicating a preference for a 3,4- (1.25b) 

over a 2,3-substitution (1.25a) pattern.206 In search for lipophilic fosmidomycin analogues, 

Andaloussi et al. resynthesized 1.25b alongside other hydroxamate modified compounds 

with a bulky heteroaryl moiety such as 1.25c and the oxazolopyridinones 1.25d-e.207 

Compound 1.25b displays a double-digit micromolar activity against MtbDxr (IC50 = 41 μM), 
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but fails to show any activity against intact M. tuberculosis. Overall, tests conducted with 

these compounds revealed that steric constraint in the vicinity of the Dxr active site is 

deleterious to inhibitory potency. Other attempts to substitute the hydroxamate group of 

fosmidomycin with similar sterically demanding chelating moieties led to the conclusion that 

the Dxr active site is very narrow around the metal cation.208,209 Dithiocarbamates are well-

known metal-complexing compounds.210 However, compounds 1.25f and 1.25g were found 

unable to inhibit the activity of EcDxr (IC50 > 1000 µM),204 probably because in addition to the 

bulky nature of the supposed metal chelating group, the soft-base character of the sulfur 

atoms does not allow efficient coordination of hard cations such as Mg2+. 

 

Figure I.16: Different chelating groups as hydroxamate substitutes. 

Substituted phosphinic acids (e.g., 1.26 and 1.27, Figure I.17)211 and the phosphonic acid 

group (as in 1.28)212 have also been proposed as surrogates for the hydroxamic moiety of 

fosmidomycin. The former compounds are still to be tested for Dxr inhibition, but tests on 

different weed plants in a green house demonstrated insignificant in vivo activity. 

Installation of the phosphonic acid in 1.28 for metal chelation proved deleterious for Dxr 

inhibitory activity (IC50 PfDxr > 300 µM; IC50 EcDxr > 500 µM versus 0.003 µM (PfDxr) and 

0.12 µM (EcDxr) for its N-methyl hydroxamate counterpart (see below)). 
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Figure I.17: Structures of fosmidomycin analogues bearing alternative metal chelating 

groups. 

In sum, the above findings illustrate the importance of the hydroxamate group as the most 

effective bidentate metal binding group in Dxr inhibitors. Even if modifying this group is a 

delicate venture fraught with pitfalls, the door is not fully closed. Notably, the potential to 

increase lipophilicity through surrogate chelators and by designing bisubstrate ligands and 

the moderate activity of the catechol derivatives all suggest that exploiting chemical 

diversity could ultimately afford Dxr inhibitors that do not suffer from the liabilities of a 

hydroxamate group. 

I.E.2. Modifications of the propyl spacer 

Unlike the hydroxamate group of fosmidomycin and FR900098, the three-carbon chain has 

shown to be more suitable for derivatization and till date, analogues modified in this part are 

amongst the most potent Dxr inhibitors known. Modifications at the level of the carbon 

backbone might involve alteration of the chain length as well as introduction of substituents 

at different positions on the linker. Herewith, we present a synopsis of the main outcomes, 

with emphasis on the most promising analogues published. 

I.E.2.1. Chain length variation  

Although it has taken some time to arrive at this conclusion, a three-carbon chain is now 

universally accepted as the ideal length for linking the phosphonate warhead to the 

(retro)hydroxamate moiety in fosmidomycin analogues. Already in the 1980s, the research 

laboratories of Fujisawa reported changes in the carbon backbone. Ethylene analogues 

1.29a-b (Figure I.18) were synthesized and tested on a bacteria panel (Staphylococcus 

aureus, Bacillus subtilis, Proteus vulgaris, Escherichia coli and Pseudomonas aeruginosa) but 

show no antibiotic activity.213 Zinglé et al. later attempted to adopt a two-methylene spacer 

for reverse hydroxamate analogues (1.30a-b) but this resulted in drastically decreased 
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inhibitory activity against EcDXR, whereas lengthening the spacer (1.31a-b) moderately 

decreased activity.196 The group of Nakamura corroborated this finding with crystal 

structural analysis, which revealed that compounds with a shorter carbon chain cannot 

simultaneously occupy the phosphonate binding site and the hydroxamate binding site, 

while a longer carbon backbone in analogues prevents them from efficiently fitting into the 

active site.139 

 

Figure I.18: Fosmidomycin analogues with different carbon chain lengths. 

In an effort to examine what linker length was optimal, the Dowd group recently synthesized 

a series of compounds (amongst which 1.32a-b, 1.33a-b and 1.34a-b) with two to five 

methylene units separating the nitrogen and phosphorus atoms.214 When tested for the 

inhibition of MtbDxr, compounds with three methylene groups emerged as the most active 

(Table I.4). All compounds were unable to inhibit mycobacterial growth in nutrient-rich (7H9) 

or minimal (GAST) media, which was attributed to their high polarity, which diminishes 

penetration of the lipophilic mycobacterial cell wall. 
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Table I.4: Effect of chain length variation on MtbDxr inhibition and Mtb MIC. 

 

 

Compound 

 

 

R 

 

 

n 

MtbDxr IC50, μM  

(% inhibition at 

100 μM) 

Fosmidomycin (1.1) 

FR900098 (1.2) 

1.32b 

1.33b 

1.34b 

H 

CH3 

CH3 

CH3 

CH3 

3 

3 

2 

4 

5 

0.44 

2.39 

(74%) 

(80%) 

(86%) 

 

I.E.2.2. Introduction of substituent(s) at the phosphonate α-carbon atom 

Several studies have shown that the introduction of (preferably electron withdrawing) 

substituents to the α position of the phosphonate of fosmidomycin/FR900098 can 

significantly increase Dxr inhibitory activity. The hypothesis is that electron withdrawing 

substituents in position decrease the pKa2 of the phosphonate group, which for that 

reason appears in its double-ionized form. The dianion species has been shown to act as an 

acceptor in the H-bond network, which is favorable for binding to and potent inhibition of 

Dxr.196,215 Fosfoxacin (1.35, Figure I.19), a natural antibiotic that was extracted for the first 

time in 1990 from Pseudomonas fluorescens, contains a phosphate group in place of the 

phosphonate in fosmidomycin.216 Woo et al. showed that fosfoxacin and its acetyl congener 

(1.36) are significantly more potent inhibitors of Synechocystis sp. PCC6803 Dxr than 

fosmidomycin (Ki of 19 nM (1.35) and 2 nM (1.36) versus 57 nM for fosmidomycin).178 Since 

the metabolic liability of the phosphate precludes its in vivo use as a Dxr inhibitor, -

substituents that tune the pKa of the more stable phosphonate in fosmidomycin/FR900098 

analogues, to approximate that of a phosphate would be beneficial for activity. 

 

Figure I.19: Phosphate analogues of fosmidomycin and FR900098. 
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Apart from influencing the acidity of the phosphonate, some (-)substituents may also 

increase the overall lipophilicity, thereby possibly enhancing cellular uptake. Additionally, 

such substituents may form favorable interactions with Dxr residues possibly improving the 

anchoring of the inhibitor in the active site. The majority and most promising analogues 

known in this category bear -aryl substituents, while a small set of -halogenated 

analogues have also been reported, typically prepared and tested as racemates.  

Groundwork by Haemers et al.217 and subsequently by Devreux et al.218 in our research 

group involved the synthesis of analogues such as 1.37 and 1.38 (Figure I.20), bearing a 

(substituted) phenyl ring in -carbon. The potency of these compounds was related to the 

electron-withdrawing potential of groups introduced on the phenyl ring. 

 

Figure I.20: Alpha-aryl substituted analogues of FR900098 and fosmidomycin. 

The IC50 values of 1.37a (3.60 µM), 1.37b (0.459 µM), 1.37c (0.311 µM), 1.37d (0.119 µM), 

1.37e (0.119 µM), and 1.37f (0.099 µM) against EcDxr illustrate this trend, although these 

compounds all show inferior potency compared to the parent compound FR900098 (0.030 

µM). Generally, the activity of the N-formyl analogues outperformed that of the N-acetyl 

counterparts, but also the N-formyl analogues (1.38) showed weaker activity against EcDxr 

than fosmidomycin and FR900098, except 1.38d which was equipotent to fosmidomycin 

(IC50 = 0.056 µM). Interestingly, when tested for their in vitro inhibition of P. falciparum 

growth, compounds 1.37b-f all surpassed fosmidomycin's activity and among their N-formyl 

counterparts, 1.38e performed best with a 12-fold increased inhibition with respect to 
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fosmidomycin. The dichloro derivatives 1.37e (N-acetyl) and 1.38e (N-formyl) were later 

evaluated against MtbDxr and displayed IC50 values of 0.7 µM and 0.15 µM respectively, 

compared to fosmidomycin (0.08 µM) and FR900098 (0.16 µM).219,220 

Behrendt et al. synthesized and evaluated a series of reverse hydroxamate derivatives 1.39 

(Figure I.21), with different substitution patterns at the  position.200,201 Once more, an 

inhibition discrepancy was observed between EcDxr and PfDxr, with the compounds 

performing inferior in the former compared to fosmidomycin, but surpassing the activity of 

this lead against PfDxr. The N-methylated compound bearing a (3,4-diF)Ph substituent 

outperformed both fosmidomycin and FR900098, displaying the most potent PfDxr 

inhibition (IC50 = 3.0 nM versus 15 nM for FR900098) and in vitro P. falciparum (K1 strain) 

growth inhibition (IC50 = 0.29 µM against 1.48 µM for FR900098). 

Figure I.21: Alpha-aryl substituted analogues of FR900098 and fosmidomycin, bearing a 

reverse hydroxamate. 

As an extension of their work on a series of lipophilic, pyridine- or quinoline-containing 

phosphonates,194,221 the group of Song synthesized and tested analogues 1.40 and 1.41, in 

anticipation that electron-deficient pyridines will do better than a (decorated) phenyl ring in 

modifying the phosphonate acidity.222 Expectedly, the pyridine-containing fosmidomycin 

derivatives were found to be highly potent inhibitors of PfDxr (Ki values of 1.9-13 nM versus 

21 nM for fosmidomycin), with the best one (1.41b) being approximately 11 times more 

active than fosmidomycin. However, except for 1.40a, which was equipotent to 

fosmidomycin, these compounds showed an inferior EcDxr inhibition than the lead. These 

derivatives consistently outperform their phenyl counterparts (1.37 and 1.38) in the 

inhibition of both enzymes, and also potently block the proliferation of multidrug resistant P. 

falciparum with half maximal effective concentration (EC50) values as low as 170 nM. The 

crystal structure of a quaternary complex with PfDxr shows that the pyridine moiety of 1.40b 

is hosted in a rather hydrophobic cavity formed by the flexible loop, where the pyridine 
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nitrogen atom is also favorably engaged in a hydrogen bond with a thiol group of a cysteine 

residue. 

Extensive crystallographic studies of various α-aryl derivatives in complex with EcDxr,201 

MtbDxr,219,221,223 and PfDxr222 show that the active-site flap becomes disordered in these 

structures and the enzyme maintains an open conformation. This prevents the interaction of 

the indole ring of a highly conserved tryptophan residue (Trp211 in EcDxr, Trp203 in MtbDxr, 

and Trp296 in PfDxr) with the fosmidomycin backbone, as observed in earlier antibiotic-

NADPH-active-site metal containing ternary complexes.139,163,174 The changes to the flap are 

a direct consequence of the mode of binding of these analogues to the Dxr active site, since 

extensive clashes would otherwise result with the indole ring's placement in the ternary 

complexes. Recent complexes of various α-aryl derivatives with PfDxr,212,224 however, show 

quite well-defined flaps (including the tryptophan); the substrate-binding site undergoes less 

drastic changes but has opened up sufficiently to accommodate the inhibitors. The major 

conformational changes make it difficult to pinpoint the precise cause of the enhanced 

potency of these -aryl derivatives. This is further complicated by the low overall sequence 

homology between Dxrs from different pathogens, which makes that the activity of a 

particular compound can vary when tested on different enzymes. 

Following the revelation that introduction of one or two fluorine atoms in the -carbon 

(Figure I.22a) can enhance the potential of phosphonates as hydrolytically stable phosphate 

mimics,225 Verbrugghen et al. ventured exchanging the bulky -aryl substituents discussed 

above for sterically less demanding and electron-withdrawing halogens, to generate 1.42-

1.44 (Figure I.22b) as analogues of FR900098.226 These compounds were evaluated in vitro 

against P. falciparum and in vivo in the P. berghei mouse model. In vitro (Table I.5), all three 

analogues showed submicromolar activity on two P. falciparum strains and appeared to be 

5-to 6-fold more active than the parent compound fosmidomycin and slightly superior to 

FR900098 on the K1 strain. The promising in vitro activity of the -fluorinated analogues 

1.43 and 1.44 resonated in the P. berghei (GFP ANKA strain) acute mouse model, where the 

-aryl fosmidomycin analogue 1.38e failed to show significant in vivo activity despite its 

promising in vitro performance. These findings consolidate the view that electron 

withdrawing substituents, causing a decrease in phosphonate pKa, may favor the 

antimalarial activity of fosmidomycin analogues. 
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Figure I.22: Phosphonates as phosphate mimics in FR900098 analogues.225,226 

 

Table I.5: In vitro growth inhibition of the P. falciparum strains GHA and K1. 

 IC50 (µM) 

Compound Pf-GHA Pf-K1 

fosmidomycin (1.1) 

FR900098 (1.2) 

-(3,4diCl)Ph analogue (1.38e) 

1.42 

1.43 

1.44 

nd 

nd 

0.60 ± 0.01 

0.82 ± 0.10 

0.70 ± 0.08 

0.73 ± 0.11 

1.73 ± 0.89 

0.42 ± 0.17 

0.16 ± 0.01 

0.30 ± 0.06 

0.29 ± 0.06 

0.31 ± 0.07 

nd = not determined 

Alternatively, attempts to introduce alkyl substituents in the -position of fosmidomycin or 

FR900098 have not been so rewarding. Analogues characterized by (hydroxy)alkyl 1.45227 

and arylmethyl 1.46228 (Figure I.23) substituents in the -position were synthesized and 

evaluated as bis-pivaloyloxymethyl (POM) ester prodrugs. When tested for their inhibition of 

P. falciparum 3D7 growth, a considerable loss of antimalarial activity was observed with the 

hydroxymethyl, ethyl, propyl, isopropyl, and dimethyl substituted bis-POM analogues (1.45a-

b). Only the formyl- and acetyl-retrohydroxamate-monomethyl analogues were 
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equipotent (97% growth inhibition at 25 µM) to the -phenyl prodrug of fosmidomycin 

(1.47) and FR900098 (1.49). 

 

Figure I.23: (-alkyl/aryl) prodrug derivatives of fosmidomycin and FR900098. 

Electron-withdrawing substituents on the phenyl ring in analogues 1.46 improved the 

antiplasmodial activity, the N-formyl -3,4-dichlorobenzyl derivative being the most potent 

of this series. With an IC50 value of 0.9 μM, this compound was found to be about twice as 

active as the bis-POM ester of fosmidomycin (1.48, IC50 = 2.1 µM), however, less active than 

the corresponding FR900098 prodrug (1.50, IC50 = 0.4 µM). As observed before for -aryl 

substituted analogues, electron-donating substituents lead to a significant reduction of 

antiplasmodial activity, while steric constraints probably impede the activity of the 

tetrahydronaphthyl derivative. Here again, the formyl derivatives were consistently more 

active than the corresponding acetyl derivatives. 

I.E.2.3. Conformationally restricted analogues 

In an effort to further explore SAR and to gain insight in the preferred conformation of 

fosmidomycin or to obtain more potent analogues, compounds 1.51-1.56 (Figure I.24) in 
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which a ring restricts the rotational freedom of the three-carbon chain in fosmidomycin or 

FR900098 have been synthesized. Locking of the spacer in a cyclopentyl ring revealed that 

the trans-isomer 1.51 is more potent (a, IC50 = 0.20 µM; b, IC50 = 2.3 µM) than its 

corresponding cis-isomer 1.52 (a, IC50 = 2.3 µM; b, IC50 = 12 µM), although inferior to both 

fosmidomycin (IC50 = 0.029 µM) and FR900098 (IC50 = 0.035 µM) with respect to EcDxr 

inhibition.203 The racemic formyl analogues outperformed their acetyl counterparts. 

 

Figure I.24: Conformationally restricted fosmidomycin/FR900098 analogues. 

Likewise, incorporation of the ,-bond in a cyclopropyl unit and evaluation of EcDxr and P. 

falciparum growth inhibition,229 learned that the racemic trans-cyclopropane 1.53 inhibits 

EcDxr in the submicromolar range (IC50 = 0.16 µM). Interestingly, the enantiomerically pure 

(1R,2S)-analogue (1.54b) shows EcDxr inhibitory activity comparable to that of fosmidomycin 

and proves also equipotent as a P. falciparum inhibitor. Introduction of an N-formyl group 

(1.54a) leads to an 8-fold drop in activity, while the N-propionyl moiety (1.54c) performs 

even poorer. The superior activity of the N-acetyl 1.54b with respect to the N-formyl 

derivative 1.54a is consistent with the biological activity of fosmidomycin and FR900098, but 

contrary to the trend observed for the cyclopentyl-constrained analogues 1.51 and 1.52. The 

cis-cyclopropane analogue 1.55, featuring a phenyl ring in -position fails to significantly 

inhibit EcDxr (IC50 > 30 µM). Kurz et al. prepared and tested the bis-POM analogues 1.56a-c, 
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but unlike the 'flexible' -aryl-substituted analogues discussed in section I.E.2.2., these 

conformationally restrained aromatic analogues exhibit only moderate in vitro antimalarial 

activity against the chloroquine-sensitive strain 3D7 of P. falciparum.230 The most active 

derivative 1.56c displays an IC50 value of 47 µM. The intrinsic flexibility of the Dxr active site 

seems to call for some degree of rotational freedom in potential inhibitors. In order to 

examine the effect of unsaturation within the propyl chain on MtbDxr inhibition and cell 

growth, Jackson et al.,214 prepared and evaluated the /-unsaturated FR900098 analogues 

1.57a-c (Figure I.25). 

 

Figure I.25: Fosmidomycin analogues characterized by unsaturation within the propyl chain.  

They found that the free phosphonic acid (1.57a) and its more lipophilic pivaloyl ester 

(1.57c) show higher potency than the parent compound (FR900098) on Mtb Dxr inhibition 

and antitubercular activity. 

I.E.3. Modifications of the phosphonate functionality 

I.E.3.1. Phosphonate isosteres 

Under physiological conditions, fosmidomycin's charged polar phosphonate group 

significantly contributes to its poor oral efficacy and prevents penetration across very highly 

lipophilic cell walls, such as that found in Mtb. With the aim of abating these shortcomings, 

numerous attempts have been made to replace this group with less polar alternatives, which 

can adopt the role of H-bonding-acceptor in the DOXP phosphate binding site of Dxr. 

For the fact that rapid in vivo inactivation by phosphatases precludes the clinical 

development of fosfoxacin (1.35) and its acetyl congener (1.36), Woo et al. attempted to 

substitute the phosphonate moiety in fosmidomycin with a carboxylate (1.58, Figure I.26) or 

sulfamate (1.59).178 The group of Rohmer later added the reverse hydroxamate analogues 

1.60-1.61 and the sulfonates 1.62 to this list.196 However, all these efforts resulted in a 

dramatic loss in Dxr inhibition compared to fosmidomycin. The H-bonding essential for Dxr 
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binding is possibly not conserved for these analogues since contrary to the phosphonate 

group which can potentially bind as a mono- or dianion, the carboxylate can only form a 

mono anion and the sulfamate is neutral. Furthermore, the planar carboxylic acid is not an 

effective mimic of the tetrahedral phosphonic acid. Attempts to address the geometric 

requirement in possible phosphonate isosteres resulted in analogues such as the 

(aryl)alkylsulfones (1.63) and the sulfonamides 1.64,215 but also, these compounds fail to 

show significant inhibitory activity against EcDxr. 

 

Figure I.26: Fosmidomycin and FR900098 analogues based on phosphonate omission. 

Recently, Van Aerschot and coworkers reported analogues 1.65-1.66 (Figure I.27) in which 

the phosphonate of fosmidomycin/FR900098 is substituted with an N-acylated sulfonamide 

group.231 They contended that the acidic N-H moiety of acylated sulfonamides (pKa≈ 2.5) will 

result in a negative charge in vivo and could thus at least partially restore interaction with 

Dxr in analogy with the activity noted for phosphonate monoesters,215 while the uptake of 

these analogues could be improved. 

 

Figure I.27: N-Acylated sulfonamides as potential phosphonate isosteres. 
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Unfortunately, also this effort turned out fruitless as the residual EcDxr enzymatic activity 

remained ±100% for concentrations of 1.65-1.66 up to 100 µM. The compounds also failed 

to demonstrate antimicrobial activity at 64 µM. These findings make clear that there is little 

room for substituting the fosmidomycin phosphonate moiety. 

I.E.3.2. Prodrug strategy 

Extensive literature has accumulated on the attempts to mask the charged phosphonate 

group of fosmidomycin/FR900098 or analogues thereof, in an effort to achieve passive 

permeation through cellular membranes. This could avoid dependence on active transport 

systems such as the transporter used by apicomplexans like P. falciparum. Indeed, mutation 

of this carrier is a known mechanism of fosmidomycin resistance.186 Additionally, passive 

diffusion would allow to target NMP-dependent organisms that lack such transport systems. 

For a successful application of this approach, the prodrug must be robust enough to survive 

the gastrointestinal tract milieu until absorption into the systemic circulation where, it must 

also remain intact long enough for intracellular distribution. Hydrolysis of the protective 

group by non-specific esterases inside the cell, would release the active inhibitor. 

The first-generation prodrugs of FR900098 were structurally simple aryl phosphonates. 

Reichenberg et al. demonstrated that out of a series of aryl prodrugs 1.67a-c (Figure I.28), 

the bis-(4-methoxyphenyl) diester 1.67c was the best, outperforming FR900098 when both 

were administered orally in mice infected with P. vinckei and equipotent to this lead during 

intraperitoneal (ip) administration.232 Hydrolysis of the phosphonic ester generates the 

desired phosphonate and the (substituted) phenol component. Concerns over the toxicity of 

the phenol derivatives, motivated the development of alternative protecting groups. Work 

on more functionalized lipophilic moieties including acyloxyalkyl- and 

alkyloxycarbonyloxyalkyl-ester analogues was introduced by Ortmann et al. and later 

expanded for fosmidomycin by the groups of Kurz and Dowd (1.68, Figure 

I.29).227,228,230,233,234,235,236 

 

Figure I.28: Diaryl FR900098 prodrugs. 
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Generally, hydrolysis of such groups in the cell would release a hemiketal, which will 

spontaneously break down into an aldehyde and the active form of the inhibitor.237 In case 

the acyloxy group and the phosphonate O are connected via a methylene group, a hemi-

ester of formaldehyde is formed upon esterase action, followed by rapid conversion to 

formaldehyde (Figure I.30). To avoid the formation of formaldehyde during hydrolysis, other 

analogues were prepared. Several of the lipophilic esters showed improved antimalarial 

activity relative to fosmidomycin and FR900098. The Dowd group tested some of these 

analogues against a panel of organisms, particularly Gram (+) bacteria including M. 

tuberculosis and found their activity to be enhanced, compared to the phosphonate leads. 

While diethyl fosmidomycin showed little antibacterial activity, activity against these 

organisms generally increased with increasing size of the lipophilic ester. Interestingly, 

analogs with a secondary ester did not outperform their primary counterparts possibly 

because the cellular esterase does not tolerate additional bulk adjacent to the phosphonate 

ester. 

Recently Kurz and co-workers reported a systematic comparison of phosphonate and 

phosphonate-hydroxamate double prodrugs of reverse fosmidomycin derivatives.238 For the 

modification of the phosphonate motif, they used acyloxymethyl- and 

alkoxycarbonyloxymethyl ester groups while simple esters, carbonates, and carbamates 

were used to mask the hydroxamate (1.70, Figure I.31). When assayed for inhibition of 

PfDxr, none of the prodrugs caused detectable enzyme inhibition, understandably because 

all prodrugs appear too bulky to get accommodated at the Dxr active site. Moreover, the 

double prodrugs are unable to chelate the essential divalent metal ion of Dxr. Several 

phosphonate prodrugs and double prodrugs were found to inhibit the multiplication of P. 

falciparum blood stages with IC50 values in the single-digit nanomolar range (IC50 values 

versus Pf Dd2: 4-9 nM). Their inhibitory efficacy exceeds that of the parent free phosphonic 

acid 1.69 by about 1 order of magnitude. With few exceptions (e.g., 1.71 IC50 = 4 nM, the 

most active compound from the study), they found that the additional derivatization of the 

hydroxamic acid group led to reduced antiplasmodial activity versus strain Dd2. The 

introduction of a morpholine-containing carbamate for instance, resulted in complete loss of 

antiplasmodial activity. 
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Figure I.29: Overview of reported acyloxyalkyl- and alkyloxycarbonyloxyalkyl-ester prodrugs 

of FR900098. 
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Figure I.30: Hypothetical sequence of reactions for bioactivation of phosphonate prodrugs. 

Likely, hydrolytic cleavage is a limiting factor responsible for the observed reduction of 

antiplasmodial activity caused by several modifiers of the hydroxamate motif. 

 

Figure I.31: Prodrugs of reverse fosmidomycin analogues. 

I.E.4. Overview of fosmidomycin SAR and conclusions 

The trends elaborated in the previous sections regarding the SAR of fosmidomycin and its 

analogues are summarized in Figure I.32. In spite of the many constraints that must be dealt 

with in designing new inhibitors, the biological activity of some published analogues still 

raises questions as to how far one may go into the venture. Notably, analogues such as 1.72-

1.77 (Figure I.33), lacking either the hydroxamate or the phosphonate group have been 

reported to unexpectedly show interesting biological activity. Deng et al. used coordination 

chemistry and structure based design to access 1.72, a strong, lipophilic Dxr inhibitor with 

broad antibacterial activity and structurally distinct from fosmidomycin.206 Even though 1.73 

and 1.74 are fragments of one of the most potent known Dxr inhibitors (1.38e, EcDxr IC50 = 

0.059 µM), both show weak Dxr inhibition.194 
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Figure I.32: Structure activity relationships of fosmidomycin analogues. 

 

Figure I.33: Structures of Dxr inhibitors, together with their IC50 values against E. coli Dxr in 

Parentheses. 

Crystallographic studies on the pyridyl analogue 1.75 revealed that its binding to EcDxr is 

sustained by --stacking interactions between the pyridyl ring and the indole ring of Trp211 

of the Dxr flexible loop. This is further strengthened by charge transfer, an event that does 

not occur with the 3,4-dichloro fragments 1.73 and 1.74. A similar outcome is to be expected 

for 1.76, but it seems the absence of the phosphonate group is deleterious to activity. X-ray 

studies on compound 1.77 showed that the conformation of Trp211 (EcDxr) in the Dxr/1.77 

complex is different (compared to fosmidomycin binding), with the indole ring flipped 

almost 180°. This orientation could allow the 5-phenylpyridine group of the inhibitor to 

undergo more π-π stacking and hydrophobic interactions with the indole, which might 

account for the enhanced activity of 1.77. Even if some of the results trickled in 
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serendipitously, the activity of these 'unclassical' analogues suggests that there may be more 

gaps in the current SAR data of fosmidomycin and that there is much room for exploring new 

inhibitors. Amendment of the three-carbon spacer has so far proven to be beneficial but not 

exhaustive. Exploration of new analogues will mine more SAR information as well as offer 

the opportunity to access potent, druglike Dxr inhibitors. 
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II.     SCOPE AND STRATEGIES 
 

With pressure mounting worldwide on both the economic and social fronts, the need for 

new improved therapeutics for rolling back the incidence of malaria and tuberculosis deaths 

remains urgent. Unfortunately, fosmidomycin does not fit fully into the current reversal plan 

because of its unfavorable pharmacokinetic properties. However, it serves as a valuable 

starting point for further optimization towards new drugs, given its good clinical record as an 

antimalarial and indeed, its potential to kill other Dxr-dependent pathogens like Mtb. The 

overall scope of this PhD work is to synthesize new Dxr inhibitors that combine good 

potency with improved druglike properties and to evaluate their potential as antimalarial 

and/or antitubercular agents. This endeavor will also expand knowledge on the SAR of 

fosmidomycin analogues as Dxr inhibitors. Towards this end, different strategies will be 

employed according to the following specific objectives:  

 Chapter III: The high polarity and hydrolysis-associated toxicity of fosmidomycin's 

metal chelating retrohydroxamate group, are a setback to its use as a drug. Since SAR 

data indicate that despite its efficient metal binding potential, this group is not 

indispensible, the focus of this chapter will be to investigate the possibility of 

replacing the retrohydroxamate of fosmidomycin with alternative bidentate ligands. 

Amide derivatives (3.1, Figure II.1) will be prepared and evaluated. These analogues 

are expected to show higher stability in vivo and an overall enhanced lipophilic 

character, anticipated to improve cellular uptake. 

 Chapter V: Hitherto, substitutions at the -position of fosmidomycin have been 

widely explored, leading to analogues with promising activities. However, 

manipulation of the -position has received much less attention. The acetyl congener 

of fosmidomycin (FR900098) and compound 1.6 have been shown to exhibit 

comparable inhibitory activity against EcDxr. Therefore, we aim at assessing the 

effect of introducing a methyl group or a (substituted) phenyl ring (5.1) in the -

position of 1.6 on Dxr inhibition. Compounds 5.2 will also be synthesized, first to 

investigate the optimal linker length between the propyl backbone of 1.6 and an 

unsubstituted phenyl ring. The most favorable linker will then be combined with 
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decorated phenyl rings, in an effort to sort out the influence of lipophilicity, 

electronic and steric properties on Dxr binding. 

 Chapter VI: Electron withdrawing aryl and halogen substituents in the -position of 

fosmidomycin have a role in increasing the acidity of the phosphonic acid group, 

thereby leading to a stronger interaction with the phosphate binding site of Dxr. Such 

effect could possibly be achieved by incorporating a nitrogen atom into the-

position of the three-carbon chain of 1.6. The lower electronegativity of nitrogen 

compared to oxygen may lead to a better stability of the phosphoramides 6.1 

compared to the phosphate in fosfoxacin, a potent but unstable Dxr inhibitor. 

Additionally, we plan to investigate the possibility to derivatize the -nitrogen atom 

for the construction of a small library of new fosmidomycin analogues. 

 Chapter VII: Masking the polar phosphonate with lipophilic ester prodrug groups has 

proven successful in improving diffusion across biological membranes thereby 

increasing the activity against intact pathogen cells and the in vivo or oral activity. In 

an effort to reduce the toxicity associated with the hydrolysis of such ester groups, 

we envision a new concept of masking one of the phosphonic acid OH groups as an 

integral part of a cyclic phosphonate prodrug, to yield analogues like 7.7. Different 

prodrug moieties can then be used to mask the 'other' phosphonate OH function. We 

anticipate that in vivo hydrolysis would liberate the -ortho-hydroxyphenyl-

substituted phosphonic acid from parent compound inside the cell. 



Scope and strategies 

 

83 
 

 

Figure II.1: Planned modifications of fosmidomycin. 
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III.     HYDROXAMATE-MODIFIED ANALOGUES OF 

FOSMIDOMYCIN 

 

III.A. Introduction 

The chelating ability of hydroxamates often makes them potent metalloenzyme inhibitors. 

Despite this strength, most hydroxamic acids suffer from poor oral bioavailability and low 

selectivity in metal binding; chelating other metals (e.g., Zn2+, Cu2+, etc.) besides Mn2+ and 

Mg2+ and Co2+, which are relevant for Dxr catalysis.1,2 In addition, hydroxamic acids may be 

rapidly degraded in vivo by hydrolysis, glucuronidation and sulfation and may suffer from 

poor pharmacokinetic and toxicological profiles.3 As noted already in the general 

introduction, attempts to circumvent these hydroxamate-associated limitations in 

fosmidomycin analogues by replacing this moiety with alternative metal ion chelators have 

yielded mixed results. Mostly, such modifications have resulted in compounds that elicit 

poor biological activity profiles although a handful of analogues in this category still raise the 

prospects of overcoming this barrier.  

Early in this project, we aimed to more systematically investigate the possibilities of 

replacing the hydroxamate group of fosmidomycin with effective alternative bidentate 

ligands. San Jose et al. reported a more efficient coordination of the metal cation by amide- 

versus O-linked substituents on the hydroxamate of fosmidomycin and also highlighted the 

contribution of an aromatic group to improved lipophilicity of analogues.4 Therefore, as a 

first step, we prepared and evaluated amide derivatives represented by the general 

structure 3.1 (Figure III.1).   

 

Figure III.1: Planned amide derivatives of fosmidomycin. 
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We envisaged a contribution to chelation by ortho-substituents on the amide-linked 

aromatic ring. Compounds with an N-H moiety between carbonyl and sulfonyl groups are 

very acidic (pKa ~ 2). At physiological pH, the presence of a negative charge at this position 

would be expected to improve the interaction with the active-site metal ion.5 Therefore, we 

included one analogue with a methyl sulfonyl group in ortho position of the phenyl ring 

(compound 3.1h, Figure III.2), as well as a (non-aromatic) sulfonamide (compound 3.1m). In 

order to ascertain the influence of electronic factors on chelation, aromatic substituents 

with various electronic properties were selected.  

III.B. Synthesis 

The synthesis of the amide derivatives 3.1a–i, m–q is outlined in Scheme III.1. Carboxylic acid 

3.2 was readily prepared starting from commercially available ethyl 4-bromo-butyrate and 

dibenzyl phosphite as previously described by Kuntz et al.6 

Scheme III.1 Reagents and conditions: (i) oxalyl chloride, DMF, CH2Cl2, 45 °C, 2-3 h, 40%-75%; 

(ii) TFA/CH2Cl2 (for 3.5j); (iii) H2, Pd/C, MeOH, NaOHaq., 25 °C, 10–15 min, quant.; (iv) TMSBr, 

CH2Cl2, H2O, NH4OHaq., quant. 

Anticipation that the cyano substituent on aniline 3.4q would be susceptible to 

hydrogenation later in the synthesis necessitated the use of the diethyl protected 

phosphonate 3.3, obtained from saponification of commercially available triethyl 4-

phosphonobutyrate, for reaction with this aniline. With the exception of anilines 3.4i and 

3.4l, all other anilines used were commercially available. Synthesis of 3.4i (Scheme III.2) 

started from 2-nitro-aniline which was easily converted to the NH-Boc protected form as 

described by McNeil and Kelly.7 Subsequent N,N-dimethylation, followed by Boc removal 
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afforded the aniline. Compound 3.4l was prepared from 2,6-dihydroxyaniline according to a 

literature procedure.8 

 

Scheme III.2 Reagents and conditions: (i) formaldehyde, HCOOH, H2, Pd/C, MeOH, 90%; (ii) 

acetyl chloride, MeOH. 

Anilines are often poor nucleophiles, thus carboxylic acids 3.2 and 3.3 were first converted 

to their respective acid chlorides by treatment with oxalyl chloride before subsequent 

nucleophilic substitution of 3.4a–m, 3.4q to generate a small library of the protected amides 

3.5a–m, and 3.6q in moderate yields. The 1H-NMR spectrum of 3.5c displays two peaks at 

2.17 ppm and 2.21 ppm for the 2,6-dimethyl protons corresponding to the E and Z amide 

rotamers in a 5/1 ratio. Hydrolysis of the tertiary butyl ester group of 3.5j with TFA (20% in 

dichloromethane) further converted this intermediate to 3.5n. Using benzyl protection for 

both the phosphonate and the aryl substituent (3.5k and 3.5l) allowed a mild single 

deprotection by catalytic hydrogenolysis in the presence of palladium over activated 

charcoal at room temperature to access targets 3.1a–i, m–p. TMSBr mediated deprotection 

of 3.6q and basic workup yielded 3.1q as the bisammonium salt. 

III.C. Biological evaluation 

The ability of the final compounds to inhibit the E. coli Dxr and M. tuberculosis Dxr was 

investigated using a spectrophotometric assay monitoring the substrate dependent 

oxidation of NADPH, essentially as described by Jawaid et al.9,10 As shown in Figure III.2, at a 

concentration of 100 μM, all compounds failed to significantly inhibit the E. coli or Mtb Dxr. 

Likewise all compounds were found essentially inactive against P. falciparum K1 in human 

erythrocytes (IC50 > 64 μM). Similar to fosmidomycin, we expected that the phosphonate 

group of these analogs would be accommodated in the phosphate binding pocket of Dxr. 

With the three-carbon spacer unaltered, the introduced modification of the hydroxamate 

group is determining the lack of Dxr inhibitory activity. Monodentate ligands include virtually 

all anions and simple Lewis bases.  
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Figure III.2: Relative activity of 3.1a–i, m–q on purified E. coli (dark grey) and Mtb Dxr (light-

grey). 

While anticipating that the bivalent metal cation would be more readily bound by electron 

rich substituents on the aromatic ring, we expected that the analogues with 2,6-

disubstituted aromatic rings would elicit better enzyme inhibition than their 

monosubstituted counterparts, since possible rotation of the amide bond would still assure a 

favorable conformation (cis) with respect to the carbonyl oxygen. Even though the hard 

metal ion character of Mg2+ favors the formation of stable complexes with dioxygen based 

hard ligands, O-linked substituents on the ring did not improve the inhibitory ability of these 

analogues. Carboxylate is a known chelating group11 but in the assay conditions, the group 

was possibly protonated thereby reducing the chelating potency of the carboxylate oxygen 

of 3.1n with the Mg2+ ion. Obviously, the presence of an aromatic ring improved the 

lipophilicity of these analogues. However, limited flexibility around the amide bond seems 

detrimental for inhibitory activity. Maybe, the introduction of methylene groups between 

the N-H and the (substituted) phenyl ring could increase the likelihood of adopting of a 

better conformation for occupation of ‘alternative’ binding pockets or a better fitting of the 

compound into the active site.  

In the course of our work, Bodill et al. reported similar modifications of the 

retrohydroxamate moiety of fosmidomycin.12 Out of a series of phosphonated N-
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(hetero)arylcarboxamide analogues with one, two, three or four methylene groups linking 

the phosphonate to the carboxamide group, they found that increasing the number of 

methylene groups in the spacer (particularly to three or four methylene groups) decreases 

the Dxr inhibitory activity dramatically. The authors noted that while receptor cavity size 

constraints is an important determinant of binding, allosteric and reverse orientation ligand 

binding modes cannot be excluded. 

III.D. Conclusions  

In conclusion, amide derivatives of fosmidomycin were synthesized from simple starting 

materials. These analogues were inactive against E. coli Dxr, Mtb Dxr and P. falciparum K1 

possibly due their inability to adopt a favorable conformation necessary for the Dxr active 

site metal chelation. Replacing the hydroxamate group of fosmidomycin with an alternative 

and efficient bidentate metal binding group in Dxr inhibitors, remains a daunting challenge 

as previously noted.13  

III.E. Experimental details 

General Methods and Materials. 

1H-, 13C-, 19F- and 31P-NMR spectra were recorded in CDCl3, or D2O on a Mercury 300 

spectrometer (Varian, Palo Alto, CA, USA). Chemical shifts are given in parts per million 

(ppm) (δ relative to TMS for 1H and 13C. In 31P NMR, signals are referenced to the CDCl3 or 

D2O lock resonance frequency according to IUPAC referencing, with H3PO4 set to 0.00 ppm. 

High resolution mass spectroscopy spectra for all compounds were also recorded on a LCT 

Premier XE orthogonal time-of flight spectrometer with API-ES source (Waters, Alliance 

2695XE-LCT Premier XETM, Zellik, Belgium). Preparative HPLC purifications were carried out 

using a Laprep preparative HPLC system equipped with an Xbridge Prep C18 column (19 mm 

× 250 mm, 5 μm) using a water/acetonitrile/formic acid gradient solvent system. All 

synthesized compounds were ≥ 95% pure as verified by LCMS. All solvents and chemicals 

were used as purchased unless otherwise stated. 

Dxr inhibition assay. The E. coli Dxr assay was performed by the Unit of Theoretical and 

Structural Physico-chemistry, Department of Chemistry, University of Namur, Belgium 
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(FUNDP). The M. tuberculosis Dxr inhibition assay was performed by the Department of 

Chemistry and Biochemistry, George Mason University, Manassas, The United States of 

America. Inhibition of Dxr activity was measured in a spectrophotometric assay by 

monitoring the oxidation of NADPH to NADP+, using the absorption of NADPH at 340 nm. 

The EcDxr and MtbDxr assays were performed at 37 °C with 100 nM and 890 μM enzyme, 

respectively. With either enzyme, assays contained a saturating concentration of NADPH and 

a DOXP concentration fixed at the KM. The slope of inhibited reaction was compared to the 

slope of uninhibited reaction to calculate the residual activity.  

In vitro P. falciparum growth inhibition assay. Performed by the Laboratory for 

Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and 

Veterinary Sciences, University of Antwerp. The chloroquine-resistant P. falciparum K1-strain 

was cultured in human erythrocytes (O+) at 37 °C under a low oxygen atmosphere (3% O2, 

4% CO2, and 93% N2) in RPMI-1640, supplemented with 10% human serum. Assays were 

performed in 96-well microtiter plates, each well containing 10 µL of the watery compound 

dilutions together with 200 µL of the malaria parasite inoculum i.e. infected human red 

blood cells (1% parasitaemia, 2% haematocrit). Parasite multiplication was measured by the 

Malstat method:14 After 72 h incubation, test plates were frozen and stored at -20 °C. 

Following thawing, 20 µL of each well was transferred into another plate together with 100 

µL Malstat reagent and 20 µL of a 1/1 mixture of phenazine ethosulfate (0.1 mg/mL) and 

nitro blue tetrazolium grade III (2 mg/mL). Change in color was measured 

spectrophotometrically at 655 nM. Each MIC50 determination was performed in triplicate. 

General Procedure for the Synthesis of Protected Amides 3.5a–p, 3.6q 

To a 0.5 M solution of the acid 3.2/3.3 in dichloromethane under nitrogen atmosphere, was 

added oxalyl chloride (2 eq.) and a few drops of DMF at room temperature. After 

effervescence subsided, the mixture was heated to reflux at 45 °C for 2 h. It was then cooled 

to room temperature, concentrated in vacuo, co-evaporated three times with toluene and 

then re-dissolved in dichloromethane. The aniline (2 eq.) was then added at 0 °C, followed 

by DIPEA (3 eq.) and the mixture stirred overnight at room temperature. The reaction was 

quenched by addition of NaHCO3 and the aqueous layer was extracted three times with 

dichloromethane. The combined organic layer was washed once with brine, dried over 
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Na2SO4 and concentrated in vacuo. Purification by silica gel chromatography using a 

toluene/acetone or dichloromethane/methanol solvent system gave access to the pure 

protected amides (30%–75% yields). 

Dibenzyl 3-(phenylcarbamoyl)propylphosphonate (3.5a). 1H NMR (300 MHz, CDCl3) δH ppm 

1.55-2.09 (m, 4H, P-CH2-CH2), 2.47 (t, J = 6.82 Hz, 2H, CH2-CONHPh), 4.89-5.11 (m, 4H, CH2-

Ph), 6.99-7.55 (m, 15H, Ar-H), 8.27 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 18.93 (d, 

2JP-C = 6.32 Hz, C2), 24.42 (d, 1JP-C = 139.32 Hz, C1), 36.82 (d, 3JP-C = 8.85 Hz), 67.39 (d,2JP-C = 

6.63 Hz, PhCH2, C3), 119.77 (Ar-C), 119.87 (Ar-C), 124.23 (Ar-C), 128.22 (Ar-C), 128.80 (Ar-C), 

136.12 (3JP-C = 5.53 Hz, Cipso-PhCH2), 136.31, (Ar-C) 138.39 (Ar-C), 170.71 (CO). 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 34.00. HRMS (ESI): calculated for C24H27NO4P [(M+H)+], 

424.1672; found 424.1698. 

Dibenzyl 3-(o-tolylcarbamoyl)propylphosphonate (3.5b). 1H NMR (300 MHz, CDCl3) δH ppm 

1.70-2.12 (m, 4H, P-CH2-CH2), 2.24 (s, Ph-CH3), 2.51 (t, J = 6.74 Hz, 2H, CH2-CONHPh), 4.87-

5.12 (m, 4H, CH2-Ph), 7.00-7.23 (m, 3H), 7.28-7.38 (m, 10H, Ar-H), 7.55 (br. s, 1H, NH), 7.78 

(d, J = 7.91 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.18 (PhCH3), 19.16 (d, 2JP-C = 

6.32 Hz, C2), 24.75 (d, 1JP-C = 140.21 Hz, C1), 36.87 (d, 3JP-C = 9.34 Hz, C3), 67.52 (2JP-C = 6.54 

Hz, PhCH2), 123.35 (Ar-C), 125.32 (Ar-C), 126.85 (Ar-C), 128.18 (Ar-C), 128.74 (Ar-C), 128.86 

(Ar-C), 130.70 (Ar-C), 136.00 (Ar-C), 136.43 (d, 3JP-C = 5.93 Hz, Cipso-PhCH2), 170.70 (CO). 31P-

NMR (121.5 MHz, CDCl3): δP ppm = 33.77. HRMS (ESI): calculated for C25H29NO4P [(M+H)+], 

438.1829; found 438.1831. 

Dibenzyl 3-(2,6-dimethylphenylcarbamoyl)propylphosphonate (3.5c). 1H NMR (300 MHz, 

CDCl3) δH ppm 1.69-2.12 (m, 4H, P-CH2-CH2), 2.17 (5/6 of 6H, s, Ph-CH3), 2.17 (1/6 of 6H, s, 

Ph-CH3), 2.49 (t, J = 7.16 Hz, 2H, CH2-CONHPh), 4.86-5.14 (m, 4H, CH2-Ph), 7.02-7.14 (m, 3H, 

Ar-H), 7.29-7.38 (m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.79 (Ph-CH3), 19.22 (d, 

2JP-C = 5.21 Hz, C2), 25.20 (d, 1JP-C = 140.50 Hz, C1), 36.24 (d, 3JP-C = 10.92 Hz, C3), 67.49 (d, 2JP-

C = 6.69 Hz, PhCH2), 127.47 (Ar-C), 128.28 (Ar-C), 128.38 (Ar-C), 128.74 (Ar-C), 128.87 (Ar-C), 

134.14 (Ar-C), 135.53 (Ar-C), 136.48 (d, 3JP-C = 5.85 Hz, Cipso-PhCH2), 170.57 (CO). 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 33.63. HRMS (ESI): calculated for C26H31NO4P [(M+H)+], 

452.1985; found 452.1990. 
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Dibenzyl 3-(2-methoxyphenylcarbamoyl)propylphosphonate (3.5d). 1H NMR (300 MHz, CDCl3) 

δH ppm 1.74-2.12 (m, 4H, P-CH2-CH2),  2.47 (t, J = 7.04 Hz, 2H, CH2-CONHPh), 3.83 (s, 3H, 

NHPh-O-CH3), 4.91-5.10 (m, 4H, CH2-Ph), 6.86 (dd, J = 1.17 Hz, 7.91 Hz, 1H, Ar-H), 6.94 (td, J = 

1.46 Hz, 7.61 Hz, 1H, Ar-H), 7.03 (td, J = 1.76 Hz, 7.62 Hz), 7.26-7.40 (m, 10H, Ar-H), 7.82 (br. 

s, 1H, NH), 8.33 (dd, J = 1.17 Hz, 7.91 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.61 

(d, 2JP-C = 4.98 Hz, C2), 25.09 (d, 1JP-C = 140.42 Hz, C1), 37.48 (d, 3JP-C = 13.27 Hz, C3), 55.67 

(Ph-O-CH3) 67.23 (2JP-C = 6.64 Hz, PhCH2), 109.97 (Ar-C), 119.98 (Ar-C), 121.08 (Ar-C), 123.76 

(Ar-C), 127.61 (Ar-C), 127.99 (Ar-C), 128.46 (Ar-C), 128.65 (Ar-C), 136.41 (d, 3JP-C = 6.08 Hz, 

Cipso-PhCH2), 147.889 (Ar-C), 170.03 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.52. 

HRMS (ESI): calculated for C25H29NO5P [(M+H)+], 454.1778; found 454.1791. 

Dibenzyl 3-(2,6-dimethoxyphenylcarbamoyl)propylphosphonate (3.5e). 1H NMR (300 MHz, 

CDCl3) δH ppm 1.85-2.11 (m, 4H, P-CH2-CH2), 2.33-2.59 (m, 2H, CH2-CONHPh), 3.75 (br. s, 6H, 

OCH3) 4.86-5.12 (m, 4H, CH2-Ph), 6.55 (d, J = 8.51 Hz, 2H, Ar-H), 7.17 (t, J = 8.52 Hz, 1H, Ar-H)  

7.27-7.36 (m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.12 (Ph-CH3), 22.26 (d, 2JP-C = 

5.35 Hz, C2), 25.28 (d, 1JP-C = 139.10 Hz, C1), 36.21 (d, 3JP-C = 9.83 Hz, C3), 67.38 (d, 2JP-C = 6.58 

Hz, PhCH2), 127.39 (Ar-C), 128.20 (Ar-C), 128.32 (Ar-C), 128.45 (Ar-C), 128.92 (Ar-C), 129.13 

(Ar-C), 135.51 (Ar-C), 136.97 (d, 3JP-C = 6.08 Hz, Cipso-PhCH2), 165.22 (CO).   31P-NMR (121.5 

MHz, CDCl3): δP ppm = 33.07. HRMS (ESI): calculated for C26H31NO6P [(M+H)+], 484.1884 ; 

found 484.0402. 

Dibenzyl 3-(2-fluorophenylcarbamoyl)propylphosphonate (3.5f). 1H NMR (300 MHz, CDCl3) δH 

ppm 1.76-2.01 (m, 4H, P-CH2-CH2),  2.50 (t, J = 7.06 Hz, 2H, CH2-CONHPh), 4.88-5.15 (m, 4H, 

CH2-Ph), 6.96-7.16 (m, 3H, Ar-H), 7.28-7.39 (m, 10H, Ar-H), 7.84 (br. s, 1H, NH), 8.25 (t, J = 

8.18 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.64 (d, 2JP-C = 5.24 Hz, C2), 24.71 (d, 

1JP-C = 140.37 Hz, C1), 36.85 (d, 3JP-C = 10.64 Hz, C3), 67.29 (d, 2JP-C = 6.59 Hz, PhCH2), 114.86 

(d, 2JF-C = 19.38 Hz, F-Ph), 122.02 (Ar-C), 124.36 (d, 2JF-C = 7.58 Hz, F-Ph), 124.49 (d, 3JF-C = 3.79 

Hz, F-Ph), 128.00 (Ar-C), 128.49 (Ar-C), 128.62 (Ar-C), 136.26 (d, 3JP-C = 5.71 Hz, Cipso-PhCH2), 

152.42 (d, 1JF-C = 243.71 Hz, F-Ph), 170.43 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.60. 

HRMS (ESI): calculated for C24H26FNO4P [(M+H)+], 442.1578; found 442.1586. 

Dibenzyl 3-(2-acetylphenylcarbamoyl)propylphosphonate (3.5g). 1H NMR (300 MHz, CDCl3) δH 

ppm 1.80-2.12 (m, 4H, P-CH2-CH2), 2.49 (t, J = 7.11 Hz, 2H, CH2-CONHPh), 2.65 (s, 3H, 
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OCCH3), 4.93-5.11 (m, 4H, CH2-Ph), 7.11 (dd, 1H, J = 1.17 Hz, 8.23 Hz, Ar-H), 7.29-7.38 (m, 

10H, Ar-H), 7.54 (dd, J = 1.68 Hz, 8.52 Hz, 1H, Ar-H), 7.88 (dd, J = 1.50 Hz, 7.86 Hz, 1H, Ar-H), 

8.72 (dd, J = 1.10 Hz, 8.52, 1H Ar-H), 11.70 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 

18.59 (d, 2JP-C = 4.42 Hz, C2), 25.45 (d, 1JP-C = 140.98 Hz, C1), 28.69 (PhCOCH3), 38.45 (d, 3JP-C = 

16.03 Hz, C3), 67.25 (d, 2JP-C = 6.63 Hz, PhCH2), 120.82 (Ar-C), 121.90 (Ar-C), 122.45 (Ar-C), 

128.01 (Ar-C), 128.45 (Ar-C), 128.70 (Ar-C), 131.79 (Ar-C), 135.30 (Ar-C), 136.45  (d, 3JP-C = 

6.08 Hz, Cipso-PhCH2), 141.07 (Ar-C), 174.24 (CO), 202.91 (PhCOCH3). 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 33.43. HRMS (ESI): calculated for C26H29NO5P [(M+H)+], 466.1778; found 

466.1779.  

Dibenzyl 3-(2-(methylsulfonyl)phenylcarbamoyl)propylphosphonate (3.5h). 1H NMR (300 

MHz, CDCl3) δH ppm 1.74-2.12 (m, 4H, P-CH2-CH2), 2.50 (t, J = 7.10 Hz, 2H, CH2-CONHPh), 

2.99 (br. s, 3H, SO2-CH3), 4.92-5.11 (m, 4H, CH2-Ph), 7.21-7.29 (m, 2H, Ar-H), 7.30-7.37 (m, 

10H, Ar-H), 7.62 (td, J = 1.62 Hz, 7.07 Hz, 1H, Ar-H), 7.90 (dd, J = 1.62 Hz, 7.98 Hz), 8.45 (dd, J 

= 1.27 Hz,   8.01 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.56 (d, 2JP-C = 5.07 Hz, C2), 

25.42 (d, 1JP-C = 141.36 Hz, C1), 37.92 (d, 3JP-C = 14.76 Hz, C3), 44.41 (-PhSO2CH3), 67.47 (d, 2JP-

C = 6.82 Hz, PhCH2), 123.06 (Ar-C), 124.40 (Ar-C), 127.28 (Ar-C), 128.21 (Ar-C), 128.68 (Ar-

C),128.85 (Ar-C),129.54 (Ar-C), 135.54 (Ar-C), 136.53 (d, 3JP-C = 5.81 Hz, Cipso-PhCH2), 137.11 

(Ar-C), 170.66 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.10. HRMS (ESI): calculated for 

C25H29NO6PS [(M+H)+], 502.1448; found 502.1470.    

Dibenzyl 3-(2-(dimethylamino)phenylcarbamoyl)propylphosphonate (3.5i). 1H NMR (300 

MHz, CDCl3) δH ppm 1.75-2.12 (m, 4H, P-CH2-CH2), 2.49 (t, J = 7.07 Hz, 2H, CH2-CONHPh), 

2.60 (br. s, 6H, N-(CH3)2), 4.92-5.10 (m, 4H, CH2-Ph), 7.00-7.18 (m, 3H, Ar-H), 7.27-7.38 (m, 

10H, Ar-H), 8.33 (d, 1H, J = 7.78, Ar-H), 8.43 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 

18.80 (d, 2JP-C = 4.81 Hz, C2), 25.51 (d, 1JP-C = 140.87 Hz, C1), 37.89 (d, 3JP-C = 14.19 Hz, C3), 

45.00 (N-CH3), 67.41 (d, 2JP-C = 6.60 Hz, PhCH2), 119.72 (Ar-C), 120.12 (Ar-C), 123.92 (Ar-C), 

125.26 (Ar-C), 128.15 (Ar-C), 128.63 (Ar-C), 128.82 (Ar-C), 133.53 (Ar-C), 136.58 (d, 3JP-C = 

6.02 Hz, Cipso-PhCH2), 142.87 (Ar-C), 170.16 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 

33.53. HRMS (ESI): calculated for C26H32N2O4P [(M+H)+], 467.2094; found 467.2330.  

Dibenzyl 3-(2-(tert-butoxycarbonyl)phenylcarbamoyl)propylphosphonate (3.5j). 1H NMR (300 

MHz, CDCl3) δH ppm 1.59 (br. s, 9H, O-tBu), 1.77-2.13 (m, 4H, P-CH2-CH2), 2.50 (t, J = 7.21 Hz, 
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2H, CH2-CONHPh), 4.93-5.11 (m, 4H, CH2-Ph), 7.05 (td, J = 1.10 Hz, 7.38, 1H, Ar-H), 7.25-7.38 

(m, 10H, Ar-H), 7.49 (td, J = 1.75 Hz, 7.38 Hz, 1H, Ar-H), 7.97 (dd, J = 1.75 Hz, 8.32 Hz 1H, Ar-

H), 8.67 (dd, J = 1.06 Hz, 8.51 Hz 1H, Ar-H), 11.20 (br. s, 1H, NH). 13C-NMR (75 MHz, CDCl3) δC 

ppm 18.66 (d, 2JP-C = 4.94 Hz, C2), 25.54 (d, 1JP-C = 140.62 Hz, C1), 28.41 (PhCOOCCH3), 38.55 

(d, 3JP-C = 15.82 Hz, C3), 67.38 (d, 2JP-C = 6.35 Hz, PhCH2), 82.66 (Ar-C), 116.62 (Ar-C), 120.47 

(Ar-C), 122.48 (Ar-C), 128.15 (Ar-C), 128.57 (Ar-C), 128.79 (Ar-C), 131.24 (Ar-C), 134.31 (Ar-C), 

136.63 (d, 3JP-C = 5.92 Hz, Cipso-PhCH2), 141.71 (Ar-C), 167.91 (COOtBu), 170.96 (C0). 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 33.41.  

Dibenzyl 3-(2-(benzyloxy)phenylcarbamoyl)propylphosphonate (3.5k). 1H NMR (300 MHz, 

CDCl3) δH ppm 1.74-2.10 (m, 4H, P-CH2-CH2), 2.40 (t, J = 7.21 Hz, 2H, CH2-CONHPh), 4.86-5.16 

(m, 4H, CH2-Ph), 5.10 (br. s, 2H, NH-Ph-O-CH2-Ph), 6.88-7.05 (m, 3H, Ar-H), 7.24-7.43 (m, 

15H, Ar-H), 7.79 (br. s, 1H, NH), 8.35 (td, J = 2.47 Hz, 7.84 Hz, 1H, Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 19.25 (d, 2JP-C = 4.98 Hz, C2), 25.66 (d, 1JP-C = 140.43 Hz, C1), 38.00 (d, 3JP-C = 

14.37 Hz, C), 67.54 (2JP-C = 6.6.63 Hz, PhCH2), 71.50 (NH-Ph-O-CH2-Ph), 112.35 (Ar-C), 120.72 

(Ar-C), 122.04 (Ar-C), 124.28 (Ar-C), 128.09(Ar-C), 128.49(Ar-C), 128.90 (Ar-C), 128.95 (Ar-C), 

129.14 (Ar-C), 129.35 (Ar-C), 136.91 (d, 3JP-C = 6.09 Hz, Cipso-PhCH2), 136.97 (Ar-C), 147.66 (Ar-

C), 170.49 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.55. HRMS (ESI): calculated for 

C31H33NO5P [(M+H)+], 530.2091; found 530.2122. 

Dibenzyl 3-(2,6-bis(benzyloxy)phenylcarbamoyl)propylphosphonate (3.5l). 1H NMR (300 MHz, 

CDCl3) δH ppm 1.69-1.98 (m, 4H, P-CH2-CH2), 2.38 (app. s, 2H, CH2-CONHPh), 5.82-5.01 (m, 

4H, P-O-CH2-Ph), 5.06 (s, 4H, N-Ph-O-CH2-Ph), 6.62 (d, J = 8.57 Hz, 2H, Ar-H), 7.12 (t, J = 8.39 

Hz, 1H, Ar-H), 7.21-7.45 (m, 20 H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 18.19 (C2), 24.49 

(d, 1JP-C = 138.22 Hz, C1), 36.07 (C3), 67.02 (d, 2JP-C = 6.59 Hz, PhCH2OP), 70.71 (NH-

PhOCH2Ph), 106.08 (Ar-C), 115.21 (Ar-C), 127.33 (Ar-C), 127.89 (Ar-C), 128.31 (Ar-C), 128.53 

(Ar-C), 136.39, (d, 3JP-C = 5.53 Hz, Cipso-PhCH2), 138.81 (Ar-C), 154.92 (CO). 31P-NMR (121.5 

MHz, CDCl3): δP ppm = 34.16.  

Dibenzyl (4-(methylsulfonamido)-4-oxobutyl)phosphonate (3.5m). 1H NMR (300 MHz, CDCl3) 

δH ppm 1.75-2.04 (m, 4H, P-CH2-CH2), 2.47 (t, J = 7.03 Hz, 2H, CH2-CONHPh), 3.21 (s, 3H, 

SO2NHCH3), 4.89-5.11 (m, 4H, CH2-Ph), 7.28-7.40 (m, 10H, Ar-H), 10.63 (br.s, 1H, NH). 13C-

NMR (75 MHz, CDCl3) δC ppm 17.79 (d, 2JP-C = 5.93 Hz, C2), 24.46 (d, 1JP-C = 140.57 Hz, C1), 



Hydroxamate-modified analogues of fosmidomycin 

 

99 
 

35.84 (d, 3JP-C = 10.02 Hz, C3), 41.61 (SO2NHCH3), 67.93 (d, 2JP-C = 6.47 Hz, PhCH2), 128.14 (Ar-

C), 128.88 (Ar-C), 128.93 (Ar-C), 136.18 (d, 3JP-C = 5.81 Hz, Cipso-PhCH2), 172.17 (CO). 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 33.41. HRMS (ESI): calculated for C19H25NO6PS [(M+H)+], 

426.1140; found 426.1162.      

2-(4-(Bis(benzyloxy)phosphoryl)butanamido)benzoic acid (3.5n). Compound 3.5j (0.416 g) 

was dissolved in a dichloromethane/TFA mixture (5/1, 8mL) at 0 °C. After stirring for an hour, 

TLC analysis showed a completed reaction. Toluene (15 mL) was then added to the reaction 

mixture before concentration in vacuo. Column chromatography (97.5% CH2Cl2/2% 

MeOH/0.5% CH3COOH) yielded 272 mg of 3.5n as an oil (73% yield). 1H NMR (300 MHz, 

CDCl3) δH ppm 1.94-2.17 (m, 4H, P-CH2-CH2), 2.52 (t, J = 6.26 Hz, 2H, CH2-CONHPh), 4.87-5.14 

(m, 4H, CH2-Ph), 7.06 (td, J = 1.08 Hz, 8.10 Hz, 1H, Ar-H), 7.27-7.35 (m, 10H, Ar-H), 7.51 (td, J 

= 1.08 Hz, 8.28 Hz, 1H, Ar-H), 8.10 (dd, J = 1.68 Hz, 8.10 Hz, 1H, Ar-H), 8.66 (td, J = 1.00 Hz, 

8.39 Hz, 1H, Ar-H), 11.44 (br.s 1H, NH). 13C-NMR (75 MHz, CDCl3) δC ppm 18.25 (d, 2JP-C = 5.04 

Hz, C2), 25.22 (d, 1JP-C = 140.04 Hz, C1), 38.52 (d, 3JP-C = 17.22 Hz, C3), 67.96 (d, 2JP-C = 6.52 Hz, 

PhCH2), 115.55 (Ar-C), 120.23 (Ar-C), 122.72 (Ar-C), 128.21 (Ar-C), 128.77 (Ar-C), 128.86 (Ar-

C), 131.81 (Ar-C), 134.71 (Ar-C), 136.14 (d, 3JP-C = 5.92 Hz, Cipso-PhCH2), 141.89 (Ar-C), 170.90 

(CO), 170.98 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 26.02. 

Diethyl 3-(2-cyanophenylcarbamoyl)propylphosphonate (3.6q). 1H NMR (300 MHz, CDCl3) δH 

ppm 1.34 (t, J = 7.11 Hz, 6H, P-O-CH2CH3), 1.79-2.17 (m, 4H, P-CH2-CH2), 2.64 (t, J = 7.11 Hz, 

2H, CH2-CONHPh), 4.01-4.23 (m, 4H, -O-CH2-CH3), 7.19 (dd, J = 1.05 Hz, 7.64 Hz, 1H, Ar-H), 

7.51-7.66 (m, 2H, Ar-H), 8.14 (br. s, 1H, NH), 8.28 (dd, J = 1.10 Hz, 8.96 Hz, 1H Ar-H). 13C-NMR 

(75 MHz, CDCl3) δC ppm 16.49 (d, 3JP-C = 6.32 Hz, P-O-CH2-CH3), 18.58 (d, 2JP-C = 6.32 Hz, C2), 

24.43 (d, 1JP-C = 141.21 Hz, C1), 37.02 (d, 3JP-C = 12.19 Hz, C3), 61.75 (d, 2JP-C = 6.06 Hz, P-O-

CH2-CH3), 102.97 (Ar-C), 116.46 (CN), 122.10 (Ar-C), 124.39 (Ar-C), 132.46 (Ar-C), 134.04 (Ar-

C), 140.37 (Ar-C), 170.86 (CO). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.14. HRMS (ESI): 

calculated for C25H22N2O4P [(M+H)+], 325.1317; found 325.1317. 

General procedure for hydrogenolysis towards targets 3.1a-i, m-p 

The amide (100 - 150 mg) was dissolved in MeOH (10 mL) and Pd/C (10%) was added under 

inert atmosphere. The resulting mixture was then stirred under hydrogen atmosphere for 10 

minutes and the progress monitored by mass spectrometry. At completion, the reaction 
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mixture was filtered and neutralized with 1 eq. of a NaOH. The mixture was concentrated in 

vacuo, re-dissolved in a mixture of water and t-butanol, frozen and lyophilized to afford the 

desired targets compounds 3.1a-i, m-p as a white powder in quantitative yield. 

Sodium hydrogen3-(phenylcarbamoyl)propylphosphonate (3.1a). 1H NMR (300 MHz, D2O) δH 

ppm 1.40-1.56 (m, 2H, -CH2-), 1.78-1.93 (m, 2H, P-CH2-), 2.46 (t, J = 7.47 Hz, 2H, CH2-

CONHPh), 7.24 (dt, J = 5.78, 2.82 Hz, 1H, Ar-H), 7.34-7.46 (m, 4 H, Ar-H). 13C-NMR (75 MHz, 

D2O) δC ppm 21.13 (d, 2JP-C = 3.71 Hz, C2), 28.55 (d, 1JP-C = 131.25 Hz, C1), 38.10 (d, 3JP-C = 

16.61 Hz, C3), 122.45 (Ar-C), 125.79 (Ar-C), 129.33 (Ar-C), 136.92 (Ar-C), 176.00 (CO). 31P-

NMR (121.5 MHz, D2O): δP ppm = 22.06. HRMS (ESI): calculated for C10H13NO4P [(M-H)-], 

242.0588; found 242.0061.    

Sodium hydrogen3-(o-tolylcarbamoyl)propylphosphonate (3.1b). 1H NMR (300 MHz, D2O) δH 

ppm 1.47-1.62 (m, 2H, -CH2-), 1.70-1.90 (m, 2H, P-CH2-), 2.10 (s, Ph-CH3), 2.40 (t, J = 7.44 Hz, 

2H, CH2-CONHPh), 7.18-7.35 (m, 4H, Ar-H), 8.42 (br. s, 1H, NH). 13C-NMR (75 MHz, D2O) δC 

ppm 17.14 (Ph-CH3), 21.06 (d, 2JP-C = 3.65 Hz, C2), 28.42 (d, 1JP-C = 131.87 Hz, C1), 37.68 (d, 

3JP-C = 16.61 Hz, C3), 126.76 (Ar-C), 127.21 (Ar-C), 127.81 (Ar-C), 130.89 (Ar-C), 134.56 (Ar-C), 

137.97 (Ar-C), 176.47 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 23.60. HRMS (ESI): 

calculated for C11H15NO4P [(M-H)-], 256.0744; found 256.0322.  

Sodium hydrogen3-(2,6-dimethylphenylcarbamoyl)propylphosphonate (3.1c). 1H NMR (300 

MHz, D2O) δH ppm 1.47-1.65 (m, 2H, -CH2-), 1.80-2.20 (m, 2H, P-CH2-), 2.17 (s, 6H, Ph-CH3), 

2.54 (t, J = 7.47 Hz, 2H, CH2-CONHPh), 7.07-7.25 (m, 3H, Ar-H). 13C-NMR (75 MHz, D2O) δC 

ppm 17.44 (Ph-CH3), 21.11 (d, 2JP-C = 3.44 Hz, C2), 28.68 (d, 1JP-C = 131.75 Hz, C1), 37.24 (d, 

3JP-C = 17.28 Hz, C3), 128.21 (Ar-C), 133.48 (Ar-C), 136.31 (Ar-C), 176.37 (CO). 31P-NMR (121.5 

MHz, D2O): δP ppm = 22.47. HRMS (ESI): calculated for C12H17NO4P [(M-H)-], 270.0901; found 

270.0319.   

Sodium hydrogen3-(2-methoxyphenylcarbamoyl)propylphosphonate (3.1d). 1H NMR (300 

MHz, D2O) δH ppm 1.37-1.52 (m, 2H, -CH2-), 1.77-1.92 (m, 2H, P-CH2-), 2.47 (t, J = 7.52 Hz, 

2H, CH2-CONHPh), 3.83 (s, 3H, Ph-O-CH3), 7.00 (td, J = 7.65 Hz, 1.33 Hz, 1H, Ar-H), 7.09 (dd, J 

= 8.31 Hz, 1.24 Hz, 1H, Ar-H), 7.20-7.32 (m, 1H, Ar-H), 7.52 (dd, J=  7.87 Hz, 1.68 Hz, 1H, Ar-

H). 13C-NMR (75 MHz, D2O) δC ppm 21.40 (d, 2JP-C = 3.36 Hz, C2), 28.94 (d, 1JP-C = 130.12 Hz, 

C1), 38.04 (d, 3JP-C = 16.84 Hz, C3), 56.01 (-Ph-O-CH3), 112.30 (Ar-C), 121.07 (Ar-C), 125.20 
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(Ar-C), 125.53 (Ar-C), 127.65 (Ar-C), 152.22 (Ar-C), 176.45 (CO). 31P-NMR (121.5 MHz, D2O): 

δP ppm = 21.28. HRMS (ESI): calculated for C11H15NO5P [(M-H)-], 272.0693; found 272.0129. 

Sodium hydrogen3-(2,6-dimethoxyphenylcarbamoyl)propylphosphonate (3.1e). 1H NMR (300 

MHz, D2O) δH ppm 1.42-1.57 (m, 2H, -CH2-), 1.69-1.88 (m, 2H, P-CH2-), 2.40 (t, J = 7.39 Hz, 

2H, CH2-CONHPh), 3.71 (s, 6H, Ph-O-CH3), 6.66 (d, J = 8.47 Hz, 2H, Ar-H), 7.33 (t, J = 8.47 Hz, 

1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.82 (d, 2JP-C = 3.64 Hz, C2), 28.05 (d, 1JP-C = 

132.26 Hz, C1), 37.12 (d, 3JP-C = 17.22 Hz, C3), 56.34 (PhOCH3), 105.38 (Ar-C), 113.06 (Ar-C), 

129.44 (Ar-C), 155.33 (Ar-C), 176.72 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 24.34. HRMS 

(ESI): calculated for C12H17NO6P [(M+H)+], 302.0799; found 302.0074.    

Sodium hydrogen3-(2-fluorophenylcarbamoyl)propylphosphonate (3.1f). 1H NMR (300 MHz, 

D2O) δH ppm 1.44-1.61 (m, 2H, -CH2-), 1.80-1.94 (m, 2H, P-CH2-), 2.51 (t, J = 7.32 Hz, 2H, CH2-

CONHPh), 7.13-7.33 (m, 3H, Ar-H), 7.53 (td, J = 1.74 Hz, 7.63 Hz, 1H, Ar-H). 13C-NMR (75 MHz, 

D2O) δC ppm 20.89 (d, 2JP-C = 3.54 Hz, C2), 28.30 (d, 1JP-C = 131.37 Hz, C1), 37.50 (d, 3JP-C = 

17.13 Hz, C3), 116.05 (d, JF-C = 19.91 Hz, Ar-C), 124.03 (d, JF-C = 3.36 Hz, Ar-C), 124.71 (d, JF-C = 

12.74 Hz, Ar-C), 126.62 (Ar-C), 128.08 (d, JF-C = 7.95 Hz, Ar-C), 157.44 (Ar-C), 176.42 (CO). 31P-

NMR (121.5 MHz, D2O): δP ppm = 22.63. HRMS (ESI): calculated for C10H12FNO4P [(M-H)-], 

260.0494; found 260.0001. 

Sodium hydrogen3-(2-acetylphenylcarbamoyl)propylphosphonate (3.1g). 1H NMR (300 MHz, 

D2O) δH ppm 1.24 (s, 3H, PhCOCH3), 1.40-1.58 (m, 2H, -CH2-), 1.84-1.99 (m, 2H, P-CH2-), 2.51 

(t, J = 7.13 Hz, 2H, CH2-CONHPh), 7.20-7.43 (m, 4H, Ar-H), 13C-NMR (75 MHz, D2O) δC ppm 

21.43 (d, 2JP-C = 3.87 Hz, C2), 29.10 (d, 1JP-C = 129.92 Hz, C1), 29.71 (PhCOCH3), 37.69 (d, 3JP-C = 

16.58 Hz, C3), 126.83 (Ar-C), 127.98 (Ar-C), 128.23 (Ar-C), 129.40 (Ar-C), 133.94 (Ar-C), 

141.189 (Ar-C), 177.12 (-CO-), 177.20 (-COCH3). 31P-NMR (121.5 MHz, D2O): δP ppm = 22.19. 

HRMS (ESI): calculated for C12H15NO5P [(M-H)-], 284.0693; found 284.0693.  

Sodium hydrogen3-(2-(methylsulfonyl)phenylcarbamoyl)propylphosphonate (3.1h). 1H NMR 

(300 MHz, D2O) δH ppm 1.40-1.58 (m, 2H, -CH2-), 1.81-1.98 (m, 2H, P-CH2-), 2.57 (t, J = 7.66 

Hz, 2H, CH2-CONHPh), 3.23 (s, 3H, -Ph-SO2CH3), 7.57 (td, J = 1.36 Hz, 7.73 Hz, 1H, Ar-H), 7.65 

(dd, J = 1.36 Hz, 8.13 Hz, 1H, Ar-H), 7.79 (td, J = 1.49 Hz, 7.73 Hz, 1H, Ar-H), 8.01 (dd, J = 8.00 

Hz, 1.53 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.97 (d, 2JP-C = 3.37 Hz, C2), 28.89 (d, 

1JP-C = 130.92 Hz, C1), 37.91 (d, 3JP-C = 17.13 Hz, C3), 43.14 (-Ph-SO2CH3), 128.31 (Ar-C), 
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129.60 (Ar-C), 129.83 (Ar-C), 133.81 (Ar-C), 134.67 (Ar-C), 135.82 (Ar-C), 177.16 (CO). 31P-

NMR (121.5 MHz, D2O): δP ppm = 22.51. HRMS (ESI): calculated for C11H15NO6PS [(M-H)-], 

320.0363; found 319.9703. 

Sodium hydrogen3-(2-(dimethylamino)phenylcarbamoyl)propylphosphonate (3.1i). 1H NMR 

(300 MHz, D2O) δH ppm 1.37-1.56 (m, 2H, -CH2-), 1.79-1.96 (m, 2H, P-CH2-), 2.51 (t, J = 7.52 

Hz, 2H, CH2-CONHPh), 2.62 (s, 6H, Ph-N-CH3), 7.07-7.15 (m, 1H, Ar-H), 7.22-7.29 (m, 2H, Ar-

H), 7.45 (app. d, J = 7.65 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 21.31 (d, 2JP-C = 3.69 

Hz, C2), 29.11 (d, 1JP-C = 130.27 Hz, C1), 38.17 (d, 3JP-C = 16.91 Hz, C3), 43.71 (Ph-N-CH3), 

120.11 (Ar-C), 123.95 (Ar-C), 126.90 (Ar-C), 127.79 (Ar-C), 129.99 (Ar-C), 147.99 (Ar-C), 

176.57 (CO). 31P- NMR (121.5 MHz, D2O): δP ppm = 24.24. HRMS (ESI): calculated for 

C12H18N2O4P [(M-H)-], 285.1010; found 285.0459.   

Sodium hydrogen (4-(methylsulfonamido)-4-oxobutyl)phosphonate (3.1m). 1H NMR (300 

MHz, D2O) δH ppm 1.55-1.69 (m, 2H, -CH2-), 1.78-1.92 (m, 2H, P-CH2-), 2.40 (t, J = 7.27 Hz, 

2H, CH2-CONHPh), 2.39 (s, 3H, -N-SO2CH3). 13C-NMR (75 MHz, D2O) δC ppm 19.78 (d, 2JP-C = 

3.87 Hz, C2), 27.41 (d, 1JP-C = 133.24 Hz, C1), 38.62 (d, 3JP-C = 17.14 Hz, C3), 40.10 (-N-SO2CH3), 

180.33 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 25.22. HRMS (ESI): calculated for 

C5H11NO6PS [(M-H)-], 244.0050; found 244.0611.  

Sodium hydrogen3-(2-carboxyphenylcarbamoyl)propylphosphonate (3.1n). 1H NMR (300 

MHz, D2O) δH ppm 1.55-1.70 (m, 2H, -CH2-), 1.81-1.98 (m, 2H, P-CH2-), 2.51 (t, J = 7.31 Hz, 

2H, CH2-CONHPh), 7.22 (td, J = 1.03 Hz, 7.64 Hz, 1H, Ar-H), 7.50 (td, J = 1.65 Hz, 7.64 Hz, 1H, 

Ar-H), 7.85 (dd, J = 7.83, 1.60 Hz, 1H, Ar-H), 8.01 (app.  d, 1H, Ar-H). 13C-NMR (75 MHz, D2O) 

δC ppm 19.97 (d, 2JP-C = 3.95 Hz, C2), 27.37 (d, 1JP-C = 133.39 Hz, C1), 38.45 (d, 3JP-C = 17.66 Hz, 

C3), 121.99 (Ar-C), 124.67 (Ar-C), 125.10 (Ar-C), 130.71 (Ar-C), 132.22 (Ar-C), 137.17 (Ar-C), 

173.83 (CO, PhCOOH), 174.88 (CO, -CH2-CO-NH-). 31P-NMR (121.5 MHz, D2O): δP ppm = 

24.98. HRMS (ESI): calculated for C11H13NO6P [(M-H)-], 286.0486; found 286.0268. 

Sodium hydrogen3-(2-hydroxyphenylcarbamoyl)propylphosphonate (3.1o). 1H NMR (300 

MHz, D2O) δH ppm 1.46-1.61 (m, 2H, -CH2-), 1.79-1.96 (m, 2H, P-CH2-), 2.51 (t, J = 7.44 Hz, 

2H, CH2-CONHPh), 6.88-7.03 (m, 2H, Ar-H), 7.18 (td, J = 1.79 Hz, 7.45 Hz, 1H, Ar-H), 7.35 (dd, 

J = 7.83 Hz, 1.60 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.85 (d, 2JP-C = 3.84 Hz, C2), 

28.25 (d, 1JP-C = 131.65 Hz, C1), 37.47 (d, 3JP-C = 17.18 Hz, C3), 116.89 (Ar-C), 120.73 (Ar-C), 
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124.10 (Ar-C), 126.37 (Ar-C), 128.15 (Ar-C), 149.83 (Ar-C), 176.39 (CO). 31P-NMR (121.5 MHz, 

D2O): δP ppm = 22.85. HRMS (ESI): calculated for C10H13NO5P [(M+H)+], 258.0537; found 

258.0058.   

Sodium hydrogen3-(2,6-dihydroxyphenylcarbamoyl)propylphosphonate (3.1p). 1H NMR (300 

MHz, D2O) δH ppm 1.48-1.66 (m, 2H, -CH2-), 1.78-1.99 (m, 2H, P-CH2-), 2.54 (t, J = 7.43 Hz, 

2H, CH2-CONHPh), 6.52 (d, J = 8.33 Hz, 2H, Ar-H), 7.07 (t, J = 8.22 Hz, 1H, Ar-H). 13C-NMR (75 

MHz, D2O) δC ppm 20.63 (d, 2JP-C = 3.95 Hz, C2), 28.12 (d, 1JP-C = 131.80 Hz, C1), 37.02 (d, 3JP-C 

= 16.52 Hz, C3), 108.25 (Ar-C), 111.93 (Ar-C), 129.19 (Ar-C), 152.84 (Ar-C), 177.01 (CO). 31P-

NMR (121.5 MHz, D2O): δP ppm = 22.22. HRMS (ESI): calculated for C10H13NO6P [(M-H)-], 

274.0486; found 273.9962.  

Bisammomium3-(2-cyanophenylcarbamoyl)propylphosphonate (3.1q). Intermediate 3.6q 

(150 mg, 0.334 mmol) was dissolved in dry dichloromethane under inert atmosphere and 

cooled to 0 °C. TMSBr (0.5 mL, 3.3 mmol) was added dropwise while stirring. The icebath 

was removed after 10 minutes and the reaction stirred at room temperature for 24 hours. 

31P confirmed that the starting phosphonate was completely deprotected (shift from δ = 32–

25 ppm). The volatiles were removed in vacuo, the crude material was dissolved in 5% 

aqueous ammonia and washed with diethyl ether. Lyophilization of the ammonia solution 

yielded the product as a brown solid in quantitative yield. 1H NMR (300 MHz, D2O) δH ppm 

1.50-1.65 (m, 2H, -CH2-), 1.85-2.20 (m, 2H, P-CH2-), 2.68 (t, J = 7.58 Hz, 2H, CH2-CONHPh), 

7.45 (td, J = 0.99 Hz, 7.96 Hz, 1H, Ar-H), 7.60 (d, J = 8.05 Hz, 1H, Ar-H), 7.77 (td, J = 1.51 Hz, 

7.20 Hz, 1H, Ar-H), 8.08 (dd, J = 1.33 Hz, 7.96 Hz, 1H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 

21.55 (d, 2JP-C = 3.87 Hz, C2), 27.80 (d, 1JP-C = 136.00 Hz, C1), 35.65 (d, 3JP-C = 16.59 Hz, C3), 

121.59 (Ph-CN), 126.40 (Ar-C), 126.65 (Ar-C), 127.45 (Ar-C), 134.95 (Ar-C), 149.45 (Ar-C), 

157.68 (Ar-C), 162.45 (CO). 31P-NMR (121.5 MHz, D2O): δP ppm = 25.00. HRMS (ESI): 

calculated for C11H13N2O4P [(M-H)-], 267.0540; found 267.0823. 

o-(Dimethylamino)aniline (3.4i). To a solution of 3.7 (0.5 g; 2 mmol) in MeOH (100 mL) was 

added formalin (14 mL), Pd/C 10% (160 mg) and formic acid (1 mL). The resulting mixture 

was allowed to stir under a hydrogen atmosphere for 3 h, after which, the mixture was 

filtered over a celite path and the filtrate concentrated to about 25 mL. The mixture was 

then basified by adding NaHCO3 and the water layer was extracted three times with EtOAc (3 
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× 50 mL). The combined organic phase was washed once with brine and dried over Na2SO4. 

Column chromatography (Hexane/EtOAc 95:5) yielded 3.8 (0.450 g, 90%) as a colorless oil. 

Subsequent treatment of 3.8 with 30% TFA in dichloromethane at 0°C afforded 3.4i which 

was used for the next step without further purification. 

Tert-butyl 2-(dimethylamino)phenylcarbamate (3.8). 1H NMR (300 MHz, CDCl3) δH ppm 1.54 

(br. s, 9H, tert-Bu), 2.62 (s, 6H, N-CH3), 6.96 (td, J = 1.16 Hz, 7.57 Hz, 1H, Ar-H), 7.05-7.16 (m, 

2H, Ar-H), 7.70 (br. s, 1H, NH), 8.07 (d, J = 8.17). 13C-NMR (75 MHz, CDCl3) δC ppm 28.93 (CH3 

of tert-Bu), 44.83 (N-CH3), 80.27 (Cq of tert-Bu), 117.97 (Ar-C), 120.16 (Ar-C), 122.51 (Ar-C), 

125.22 (Ar-C), 134.13 (Ar-C), 142.35 (Ar-C), 153.29 (CO). HRMS (ESI): calculated for 

C13H21N2O2 [(M+H)+], 237.1598; found 237.1602.  
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IV.     GENERAL CONSIDERATIONS ON PHOSPHONATE 

CHEMISTRY 
 

Phosphonates represent a large group of chemical compounds with a wide range of 

applications in pharmaceuticals and as intermediates in synthetic chemistry. An important 

challenge in preparing phosphonate compounds is the introduction of the phosphonic acid 

group and the subsequent removal of the phosphonate protecting groups. Several synthetic 

methodologies exist for the construction of C-P bonds including the Michaelis-Arbusov 

reaction, the Michael addition, the Michaelis-Becker reaction, the Horner-Wadsworth-

Emmons reaction and some coupling reactions. Within the context of this PhD study, the C-P 

bond formation principles and the phosphonate deprotection strategies used are briefly 

discussed below.  

IV.A. Formation of the C-P bond in phosphonates 

IV.A.1. The Michaelis-Arbusov reaction 

One of the most useful approaches for forming a C-P bond, the Michaelis-Arbusov reaction is 

a double substitution nucleophilic bi-molecular (SN2) process between an alkyl halide 

(bromide or iodide) and a trialkylphosphite (Figure IV.1), promoted by heat. The 

transformation is initiated by an SN2 reaction of the nucleophilic trialkylphosphite with the 

alkyl halide to give a phosphonium intermediate and a halide anion. A second SN2 reaction of 

the displaced halide anion with the phosphonium intermediate affords the phosphonate 

ester along with an alkyl halide. 

Despite its popularity, a couple of drawbacks limit the universal application of this strategy 

to access phosphonates. For instance, both aryl and vinyl phosphonates (the corresponding 

halides of which react weakly with phosphites) and α-hydroxyl/α-amino phosphonates 

(whose corresponding halides are unstable) are not affordable via this strategy. In the case 

of phosphite reaction with α-haloketones, the products are vinyl phosphates (the Perkow 

reaction) instead of alkyl phosphonates. Concerns over a further restriction on the scope of 
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suitable substrates for the Michaelis-Arbusov reaction by the required high temperatures, 

have led to the development of room-temperature variants of this reaction.1,2  

 

Figure IV.1: Mechanism of the Michaelis-Arbusov reaction. 

IV.A.2. Phosphonylation by Michael addition 

The Michael addition, refers to the 1,4-addition of a stabilized or 'soft' nucleophile (also 

known as Michael donor, which can be carbon or heteroatom based) to an alkene or alkyne 

that is in conjugation with an activating group such as a carbonyl (Michael acceptor). 

Michael addition of a di- or tri-alkylphosphite or a dialkyl methylphosphonate anion to such 

,-unsaturated compounds (Figure IV.2, path a, b and c respectively) results in the 

corresponding dialkyl phosphonic esters. The existence of two tautomeric forms of H-

phosphonates (a) is an important feature, since the presence of a lone electron pair on the 

phosphorus atom of the phosphite tautomer allows these compounds to react readily as 

nucleophilic species.3 The use of trialkylphosphites as nucleophiles (b) implies a different 

mechanistic pathway involving the addition of an external nucleophilic agent (e.g. phenol), 

which participates in a Michaelis-Arbusov type rearrangement after the conjugate addition 

step, to deliver the phosphonate moiety.4 A strong base is required for nucleophile 

generation from dialkyl methylphosphonates (c). The nucleophiles attack at the vinylogous 

position of the electron-deficient system to yield a stabilized carbanion intermediate, which 

is then trapped with an electrophile (a proton in the simplest case) to furnish the 1,4-

addition product. 

If a large excess of the conjugated compound is used, it is possible to get a double-Michael 

(dialkylated) product, while the use of 'hard' nucleophiles will lead to a 1,2-attack on the 

carbonyl.    
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Figure IV.2: Michael addition of various phosphorus-based nucleophiles to an electron 

deficient carbonyl compound. 

IV.B. Phosphonate deprotection strategies 

The methyl, ethyl or isopropyl esters of pentavalent organophosphorus compounds can be 

cleaved by refluxing in concentrated hydrochloric acid (HCl) or hydrobromic (HBr) acid 

(Figure IV.3).  

 

Figure IV.3: Phosphonate deprotection options. 

Since these harsh conditions may be incompatible with other functionalities, 

bromotrimethylsilane (TMSBr) has been widely used as a mild but efficient alternative.5 

Treatment with the latter leads to the formation of trimethylsilyl esters of phosphonic acid, 

which are easily cleaved to afford the acid by the action of protic solvents. The deprotection 
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(Figure IV.4) starts with an attack on the silicon atom in TMSBr by the P=O oxygen of the 

phosphonate, expelling bromide anion from TMSBr and leading to the formation of a 

phosphonium-like intermediate. Next, P=O is recreated from one of the alkoxy groups upon 

attack of the bromide anion on the carbon closest to a bridging oxygen, leading to the 

formation of alkyl bromide. The sequence is repeated for cleavage of the remaining 

phosphonate ester to yield bis(trimethylsilyl) phosphonate. The latter is then hydrolyzed by 

water to deliver the free phosphonic acid. 

 

Figure IV.4: Mechanism of phosphonate deprotection by TMSBr. 

Alternatively, catalytic hydrogenation is used to deprotect dibenzyl-protected phosphonates. 
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V.     BETA-SUBSTITUTED ANALOGUES OF FOSMIDOMYCIN  
 

V.A. Introduction 

A survey of the most successful modifications on the fosmidomycin/FR900098 scaffold 

clarifies that the propyl spacer linking the phosphonate and the hydroxamate group is the 

most amenable of the three structural segments. The knowledge that both cellular access 

and binding to Dxr may be improved by electron-withdrawing -(aryl) substituents, 

reinforces the view that new alterations on this carbon chain may be a step in the right 

direction. Although substitution of the α-position of fosmidomycin has been widely 

explored, manipulation of the β-position has received much less attention. 

V.B. -(Alkyl)aryl analogues 

After Timothy Haemers of our research group found that the β-oxa derivative of FR900098 

(5.3, Figure V.1) was almost equipotent to this lead,1 Brucher et al. demonstrated that β-oxa 

modifications combined with α-aryl substituents may afford potent PfDxr inhibitors (e.g., 

5.4a), with promising in vitro antiplasmodial activity.2 The Kurz group showed that 

replacement of the β-methylene group with a sulfur atom in 5.4b resulted in lower IC50 

values for E. coli and MtbDxr compared with the oxa ligand 5.4a.3 Furthermore, they 

demonstrated that the PfDxr inhibitory activity of the S-(+)-enantiomers was clearly superior 

to that of the R-(−) distomers (e.g., S-(+)-5.4c IC50 = 9.4 nM, R-(−)-5.4c IC50 = 12 μM), in 

agreement with results from crystallographic studies on the Dxr binding of 1.38e (section 

I.E.2.2.) and related analogues carried out by Andaloussi et al.4 and Jansson et al.5  

 

Figure V.1: Structures of reported -modified analogues of FR900098. 
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In our effort to assess the effect of introducing aromatic moieties in the β-position of the 

propyl backbone of 1.6 on Dxr inhibition (Figure V.2), we decided first to introduce aryl 

groups (5.1a−e) based on Topliss’ scheme,6 an operational decision tree that suggests the 

optimum substitution pattern on a phenyl ring for attaining drug potency. Additionally, an 

analogue of compound 1.6 bearing a methyl group in the β-position (5.1f) was prepared. 

 

Figure V.2: Planned β-substituted fosmidomycin analogues. 

Although the latter compound has not been reported before, its retro-hydroxamate formyl 

and acetyl counterparts appear in a patent7 and have been studied in silico.8,9 The known 

1.610 was resynthesized to serve as a positive control for evaluation. Compounds 5.2a−d 

were synthesized to assess the optimal linker length between the propyl backbone of 

fosmidomycin and the phenyl ring.  

V.B.1. Synthesis 

The retrosynthesis of our efforts towards the preparation of 5.1a−f is shown in Scheme V.1. 

The presence of a hydroxamate and a phosphonate group in 5.1 provides two disconnection 

points for these target compounds. Thus, reaction of various (substituted) cinnamic acids 

5.5a−f with N-methyl-O-benzylhydroxylamine and subsequent Michael addition of dibenzyl 

methylphosphonate to the cinnamic hydroxamates 5.6a−f would afford the penultimate 

protected intermediates 5.10a−f. An alternative approach involving the preparation of tert-

butyl cinnamates (5.7a−f) from the respective acids followed by Michael addition, hydrolysis 

of the tert-butyl ester and hydroxamate formation to access 5.10a−f, would also be viable. 

Final deprotection by catalytic hydrogenation would yield the target compounds 5.1a−f. 
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Scheme V.1: Retrosynthesis of the strategy towards 5.1a−f. 

Since phosphonate addition to the respective cinnamic hydroxamates would afford the 

shortest synthetic route, this option was considered first. As outlined in Scheme V.2, during 

the first attempt starting from commercially available 4-chlorocinnamic acid (5.5d), the 

Michael addition step proved unsuccessful as only the undesired 1,2-addition product (5.8) 

was observed.  

 

Scheme V.2 Reagents and conditions: (i) MeI, NaH, DMF, rt, overnight, 93%; ii) TFA, CH2Cl2, 

45 min; (iii)(a) (COCl)2, DMF, CH2Cl2, 0 °C, 5 h; (b) 5.13, Et3N, CH2Cl2, rt, 16 h, 72%; iv) 

CH3P(O)(OBn)2, n-BuLi, THF, -78 °C, 1.5 h, 33%. 

This unfavorable outcome forced us to the alternative synthetic strategy, using the tert-butyl 

ester of the respective cinnamic acids as a surrogate Michael acceptor for the preparation of 

compounds 5.1a−f (Scheme V.3). The commercially available cinnamic acids 5.5a−e were 

esterified by treatment with di-tert-butyl dicarbonate in tert-butanol.11  
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The resulting tert-butyl cinnamates 5.7a−c and the purchased tert-butyl crotonate 5.7f 

served as Michael acceptors in a reaction with dibenzyl methylphosphonate to furnish 

predominantly the desired 1,4-addition adducts 5.9a−c,f as described by Yamaguchi and co-

workers.12 Previously encountered complications during catalytic hydrogenation of related 

compounds bearing a chlorinated phenyl ring led to the use of diethyl methylphosphonate 

as a Michael donor for addition to 5.7d and 5.7e to yield 5.14d and 5.14e, respectively. 

 

Scheme V.3 Reagents and conditions: (i) Boc2O, DMAP, tert-BuOH, rt, overnight, (68%−92%); 

(ii) (BnO)2OPMe (for 5.9a−c, f; 72% (5.9a), 73% (5.9b), 69% (5.9c), (EtO)2OPMe (for 5.14d and 

5.14e), n-BuLi, THF, −78 °C, 2.5 h, 5.14d (71%), 5.14e (73%); (iii) (a) TFA, CH2Cl2, 45 min, 0 °C 

to rt; (b) MeNH(OBn), EDC, DMAP, CH2Cl2, rt, overnight, 51% (5.10a), 56% (5.10b), 47% 

(5.10c), 62% (5.10f), 46% (5.15d), 49% (5.15e); (iv) H2, Pd/C, MeOH, NaOH(aq), 25 °C, 10−15 

min, quant.; (v) BCl3, CH2Cl2, −78 °C, 1 h, 79% (5.16d), 74% (5.16e); (vi) (a) TMSBr, BSTFA, 

CH2Cl2, 0 °C to rt, 22 h; (b) H2O, NH4OH(aq), quant. 
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Hydrolysis of the tert-butyl ester group of 5.9a−c,f and 5.14d,e with 20% TFA in CH2Cl2 and 

subsequent EDC-mediated coupling of the resulting carboxylic acids with O-benzyl-N-methyl 

hydroxylamine yielded the protected N-methyl-hydroxamates 5.10a−c,f and 5.15d,e. 

Compounds 5.10a−c and 5.10f were deprotected by catalytic hydrogenolysis to access target 

phosphonates 5.1a−c and 7f. The hydroxamate group of 5.15d and 5.15e was unmasked 

with BCl3. Bromotrimethyl silane mediated deprotection of phosphonate esters 5.16d and 

5.16e and basic workup yielded 5.1d−e as bisammonium salts.  

The synthesis of target compounds 5.2a−d is outlined in Scheme V.4. The preparation of the 

appropriate Michael acceptors 5.19a−d commenced with a Dess−Martin oxidation of 

commercially available alcohols 5.17a−d to afford aldehydes 5.18a−d, which were swiftly 

transformed to the corresponding tert-butyl esters 5.19a−d via Wittig olefination. Michael 

addition of dibenzyl methylphosphonate to 5.19a−d predominantly afforded 1,4-addition 

adducts 5.20a−d due to steric hindrance of the tert-butyl group. Compounds 5.20a−d were 

converted to the desired phosphonates 5.2a−d as before. 

 

Scheme V.4 Reagents and conditions: (i) Dess-Martin periodinane, CH2Cl2; (ii) 

Ph3P=CHCOOtert-Bu, toluene, 120 °C, overnight, 80% (5.19a), 84% (5.19b), 79% (5.19c), 87% 

(5.19d); (iii) (BnO)2OPMe, n-BuLi, THF, −78 °C, 2.5 h, 66% (5.20a), 63% (5.20b), 71% (5.20c), 

68% (5.20d); (iv) (a) TFA, CH2Cl2, 45 min, 0 °C to rt,; (b) MeNH(OBn), EDC, DMAP, CH2Cl2, rt, 

43% (5.21a), 60% (5.21b), 68% (5.21c), 74% (5.21d); (v) H2, Pd/C, MeOH, NaOH(aq), 25 °C, 

10−15 min, quant. 
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35P NMR spectra of 5.1a−f and 5.2a indicate that these appear as rotameric mixtures, a 

known13,14 phenomenon that was further validated by variable temperature 31P NMR 

studies. 

V.B.2. Biological evaluation 

Final compounds were tested for inhibition of recombinant enzymes using a 

spectrophotometric assay monitoring the substrate-dependent oxidation of NADPH 

associated with the Dxr-catalyzed reaction (see section III.D.). 

Initially, Dxr inhibition was studied at a compound concentration of 100 μM (Figure V.3). At 

this point, differences among the enzymes and compounds were already evident. As 

anticipated, the known hydroxamate 1.610 was highly effective at inhibiting MtbDxr. A 

lipophilic prodrug of this compound has recently been shown to effectively inhibit M. 

smegmatis growth in Kirby−Bauer disk diffusion assays.15 In contrast, compounds 5.1a−e had 

only modest activity on MtbDxr and EcDxr. Interestingly, compound 5.1f, characterized by 

the presence of a β-methyl substituent rather than the bulkier aromatic group, retained 

good inhibitory activity. Other noteworthy trends were the fact that 5.2a−d were more 

potent on EcDxr than the 5.1-series compounds and that PfDxr was more effectively 

inhibited than the other two enzymes. IC50 values of the most promising compounds are 

reported in Table V.1. Again, differences between the various enzymes were apparent. PfDxr 

was most easily inhibited (followed by EcDxr), and for this enzyme, the 5.2-series 

compounds were more potent than 5.1a−c. For the homologue series 5.2a−d, the activity 

against EcDxr was most dependent on the linker length, although all enzymes were sensitive 

to this parameter to some degree. In general, a three-carbon linker appeared to be best for 

EcDxr and MtbDxr, but both three- and four-carbon linkers showed very good activity on 

PfDxr.  
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Figure V.3: Residual Dxr activity upon treatment with 100 μM of the indicated compounds. 

The enzyme assays for EcDxr and MtbDxr were performed at 37 °C with a saturating 

concentration of NADPH (150 μM), a DOXP concentration fixed at its KM (47 μM for MtbDxr 

and 100 μM for EcDxr), and 100 μM of the indicated inhibitor. For MtbDxr, the results were 

identical whether the enzyme was pre-incubated with the inhibitor for 10 min prior to the 

addition of NADPH or the enzyme was pre-incubated with NADPH prior to the addition of 

the inhibitor. For EcDxr, the enzyme was pre-incubated with the inhibitor and the cofactor 

for 5 min at 37 °C. Enzyme activity was initiated by adding the substrate DOXP. Details 

specific to the assay for PfDxr are outlined in the experimental details below. Enzyme activity 

was spectrophotometrically monitored immediately following the addition of DOXP at 340 

nm. Residual enzyme activity is relative to an assay performed with vehicle alone (DMSO). 

All assays were performed in duplicate for MtbDxr and in triplicate for EcDxr, and bars 

indicate standard deviation. 
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Table V.1: IC50 (± sd) Values for recombinant Dxrs from E. coli, M. tuberculosis, and P. 

falciparum. 

 IC50 (µM) 

Compound EcDxr MtbDxr PfDxr 

fosmidomycin (1.1) 

1.6 

5.1a 

5.1b 

5.1c 

5.1f 

5.2a 

5.2b 

5.2c 

5.2d 

0.030 ± 0.008 

0.159 ± 0.018 

nd 

nd 

nd 

0.205 ± 0.052 

nd 

31.39 ± 21.61 

0.843 ± 0.163 

6.67 ± 1.48 

0.438 ± 0.09 

1.15 ± 0.21 

nd 

nd 

nd 

7.13 ± 1.2 

nd 

nd 

10.35 ± 1.3 

273.2 ± 54.6 

0.036 ± 0.006 

nd 

3.3 ± 0.17 

9.3 ± 0.75 

18.8 ± 4.2 

nd 

nd 

1.36 ± 0.02 

0.117 ± 0.012 

0.069 ± 0.005 

nd = not determined 

Table V.2 summarizes the antibacterial/antiparasitic activity of these compounds. Of the 

compounds evaluated against E. coli, only 1.6 showed moderate activity (MIC50 15.6−31.25 

μM, generally comparable to those of fosmidomycin and FR900098). The most promising 

MtbDxr inhibitors, 1.6 and 5.2c, were also tested against intact M. smegmatis cells. M. 

smegmatis was used as a model for Mtb due to its nonpathogenicity and shorter doubling 

time.16 However, as for the other compounds tested (Table V.2), they showed no activity 

(MIC50 > 250 μM). Overall, the lack of correlation between activity against purified enzymes 

and activity against whole bacteria suggests a lack of uptake or active efflux of these 

molecules. 

All analogues were also evaluated in vitro for schizontocidal activity against the P. falciparum 

K1 strain. This activity correlated surprisingly well with the PfDxr inhibitory activity 

summarized in Table V.1. Compounds 5.1a−e were not active against blood stage P. 

falciparum. Compound 1.6, the congener of 1.2 with a hydroxamate group, showed potent 

antiplasmodial activity (IC50 < 0.26 μM). Introduction of a β-methyl group (5.1f) was well 

tolerated (IC50 = 0.74 μM). The activity trend in the homologue series 5.2b−d was similar to 
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that observed for PfDxr enzyme inhibition and indicates that a linker of three or four carbons 

is optimal in this case. 

Table V.2: MIC50 Values against in vitro growth of E. coli and M. smegmatis and IC50 values 

against the P. falciparum-K1 Strain. 

 MIC50 (µM)  

Compound   E. coli    M. smegmatis P. falciparum-K1 

IC50 (µM) ATCC 

8739 

ATCC 

25922 

K-12 ATCC 

607 

ATCC 

700084 

fosmidomycin (1.1) 

FR900098 (1.2) 

1.6 

5.1a 

5.1b 

5.1c 

5.1d 

5.1e 

5.1f 

5.2a 

5.2b 

5.2c 

5.2d 

0.98 

7.8 

31.25 

>250 

>250 

>250 

>250 

>250 

nd 

nd 

>250 

>250 

>250 

250 

62.5 

15.6 

>250 

>250 

>250 

>250 

>250 

nd  

nd 

>250 

>250 

>250 

7.8 

15.6 

31.25 

>250 

>250 

>250 

>250 

>250 

nd 

nd 

>250 

>250 

>250 

 >250 

>250 

>250 

>250 

>250 

>250 

>250 

>250 

nd 

nd 

>250 

>250 

>250 

>250 

>250 

>250 

>250 

>250 

>250 

>250 

>250 

nd 

nd 

>250 

>250 

>250 

1.73 ± 0.8917 

0.42 ± 0.1717 

0.26 ± 0.02 

>64 

>64 

>64 

>64 

>64 

0.74 ± 0.13 

≥56.8 ± 10.1 

35.4 ± 8.7 

0.43 ± 0.09 

<0.25 ± 0.00 

nd = not determined 

Comparison of the P. falciparum-K1 growth inhibition assay with the enzyme activity results 

suggests that there is an improved interaction with the Plasmodium enzyme with longer 

linker lengths, but there could also be a positive influence on cell permeability. 

V.B.3. X-ray structures of PfDxr in complex with four inhibitors 

The structures of PfDxr in complex with four of the new β-substituted inhibitors (5.1a, 5.1b, 

5.2c, and 5.2d) have been solved at resolutions of 1.9, 2.1, 1.6, and 1.9 Å, respectively. 

Although the compounds were synthesized as racemic mixtures, the high resolution of the 

study (Figures V.4, V.5 and V.6) allowed us to identify the favored enantiomer for each 
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ligand. Tests of both enantiomers in the refinement strongly suggested that all compounds 

were bound primarily as the R-enantiomer, although chemical rules of priority mean that the 

actual arrangement of the β-substituent at the chiral carbon is different for 5.1a and 5.1b 

compared with 5.2c and 5.2d. 

The protein in the complexes with 5.1a and 5.1b is for the most part identical, with an rms 

distance of only 0.2 Å when the subunits are compared. The largest difference is at Pro294 

of the active-site flap, where the Cα position differs by approximately 1 Å in the two 

structures; there is well-ordered electron density for all residues in the respective flaps. This 

movement is directly linked to the addition of the methyl group in 5.1b and correlates well 

with the observation that IC50 increases as larger groups are added at this position. 

Interactions with the hydroxamate and phosphonate are essentially the same.  

 

Figure V.4: Active site of PfDxr bound to 5.2c and 5.2d. The background cartoon was created 

with a red-to-blue rainbow coloring for one chain. Water molecules are shown as small red 

spheres, and the Mn2+ ion is gold. (A) Electron density for the inhibitor 5.2c and selected 

nearby residues is contoured at the rms value of the -weighted (2m|Fo| − D|Fc|) electron 

density map18 (0.33 e/Å3) in light blue, as well as at 2.5 e/Å3 (gold) to show the higher 

electron density near the metal ion. (B) Magenta colored dots show hydrogen-bond 

interactions between 5.2c and protein or solvent, while gold ones show metal coordination; 

blue and cyan dots indicate close contacts (<3.7 Å) between the phenyl group of 5.2c and 

the indole ring of Trp296 from the flap or within the inhibitor, respectively. (C) The 

structures of bound 5.2c and 5.2d are superimposed. The flap in the complex with 5.1a is 

shown in magenta for comparison. 
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The methyl group of the hydroxamic acid in each case makes close interactions with the 

indole ring of Trp296 (Figure V.5C). Both of these protein structures are quite similar to the 

complexes with fosmidomycin and FR900098, with the caveat that His293, Met298, and 

Ile302 must adjust somewhat to accommodate the new β-substituent. 

More substantial differences are observed for the complexes with 5.2c and 5.2d. As can be 

seen in Figure V.5C, the β-substituents are placed in a very different way in the two series of 

compounds. Again, most of the protein is very similar, but the active-site flaps are pushed 

further away as the β-substituent of 5.2c and 5.2d displaces Trp296. In the 5.2c complex, 

density is weak between 293 and 295 of both chains. Only the flap of the A molecule of the 

5.2d complex has continuous density at the rms of the map; in the B-site, there is a break 

between residues 292 and 296.  

 

Figure V.5: Active site of PfDxr bound to 5.1a and 5.1b. The cartoon is presented as 

described for Figure V.4. (A) Electron density for 5.1a and selected nearby residues is 

contoured at the rms of the map (0.28 e/Å3) in light blue, as well as at 2.5 e/Å3 (gold) to 

show the higher electron density near the metal ion. (B) Magenta-colored dots show 

hydrogen-bond interactions between 5.1a and protein or solvent, while gold ones show 

metal coordination; blue dots indicate close contacts (<3.7 Å) between the methyl group of 

5.1a and the indole ring of Trp296 from the flap. (C) The structures of bound 5.1a, 5.1b, 5.2c, 

and 5.2d are superimposed. The flap in the complex with 5.1a is shown in magenta for 

comparison with that of 5.2c. Dots indicate the hydrogen bond interactions of 5.2c with the 

enzyme and solvent. 
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In each complex, the methylene linker of the inhibitor is found in a depression described in 

numerous Cα-aryl complexes, wedged between three ordered and one often disordered 

loop (containing PfDxr residues 272, 338, 358, and 296, respectively).   

As shown in Figures V.4C and V.5C, the flexibility of the linker means it can take on a 

boomerang shape that allows the phenyl group of each inhibitor to interact with its methyl 

group (Figure V.4B). The phenyl ring occupies the place normally assumed by the indole ring 

of the conserved tryptophan of the flap (Figure V.4C), resulting in acyl-group-toring 

interactions similar to those seen in the 5.1a and 5.1b complexes (Figure V.5B and Figure 

V.6), as well as 1.2 ternary complexes.19 In three of the four active sites where we are able to 

observe Trp296, the face of the indole ring stacks on the edge of the phenyl ring of the 

inhibitor (Figure V.4B). 

These favorable interactions are achieved in the 5.2c complex with the same ligand 

backbone conformation normally observed in antibiotic/NADPH ternary complexes. In the 

5.2d complex, fitting in the extra methylene group while conserving the position of the 

phenyl group requires a rearrangement of the fosmidomycin backbone (Figures V.4C and 

V.5C). 

 

Figure V.6: Electron density and aromatic interactions for compounds 5.1b and 5.2d. 

While the position of the hydroxamate remains unchanged, there are small but significant 

changes in the orientation of the phosphonate. These changes do not cause a ripple of 
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differences in protein side chains involved in phosphonate binding, but instead there is a 

rearrangement of which phosphonate oxygen interacts with which hydrogen-bond donor. 

Figure V.5C shows a superposition of the hydrogen bond donors that interact with 5.1a, 

5.1b, 5.2c, or 5.2d. Clearly, they are structurally highly conserved, while the phosphonate 

groups are not so tightly clustered. The analysis shows that only one phosphonate oxygen 

has the full set of three interacting groups in all complexes, a second oxygen has two 

interacting groups, and the third has either two or three interacting groups. The 

rearrangement of the fosmidomycin backbone in 5.2c would produce a close contact with 

the usual conformation seen for Lys312, and so a small conformational change is needed to 

relieve this clash while maintaining an interaction with the phosphonate (Figure V.5C). The 

side chain of His293 does not contribute to phosphonate binding in any of the complexes, in 

contrast to observations in antibiotic/NADPH ternary complexes. 

In all active sites, in all complexes, the hydroxamic acid group adopts a synperiplanar 

conformation (O=C−N−O angle is 0°), in which both oxygen atoms coordinate to the 

manganese, as does a single carboxyl oxygen atom from each of the highly conserved acidic 

residues, Asp231, Asp233, and Glu315. The differences from the usual set of interactions 

observed in the antibiotic/NADPH ternary complexes are merely a consequence of the 

hydroxamate group in the new structures. Figures V.4C and V.5B show that the hydrogen 

bonding interactions are conserved, and the N-formyl oxygen now accepts a hydrogen bond 

from Asn311-ND2, while the N-hydroxyl oxygen interacts with Ser232-OG and a conserved 

water molecule. 

V.B.4. Molecular modeling on MtbDxr 

At present, it is not clear why such large differences are observed for the inhibition of the 

different enzymes. Modeling experiments were therefore performed in an attempt to gain 

insights into how the new inhibitors might interact with MtbDxr. Specifically, we were 

interested in understanding how the phenylpropyl substituent of 5.2c might be interacting 

with the Trp-containing loop of Dxr. In the X-ray structure of MtbDxr in complex with 1.2 

(PDB code 4A03),19 a loop containing Trp203 closes over the bound ligand, while this loop is 

disordered in the reported X-ray structures of Dxr cocomplexes with α-phenyl-substituted 

analogues, which are all less potent inhibitors of the enzyme.  
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When comparing the predicted binding of 5.1f and the aromatic analogues 5.2a−d to the 

measured binding of fosmidomycin, one makes an interesting observation with respect to 

Ser213. In the cocrystal structure with fosmidomycin bound, Ser213 is hydrogen bonded to 

the phosphonate of the ligand. This same orientation is predicted when 5.1f is bound. For 

the aromatic analogues, however, Ser213 is reoriented and points instead toward His200. It 

appears that the hydrogen bonding between Ser213 and the phosphonate is disrupted upon 

binding of the aromatic analogues. His203 appears to bind to Ser213 in order to compensate 

for the loss of interaction with the phosphonate. This might explain the loss of activity of 

aromatic analogues 5.2a−d relative to fosmidomycin.  

The modeled structure of 5.2c (white carbons) compared with the X-ray structure of the 

protein with fosmidomycin bound (green carbons) is shown in Figure V.7. In the minimized 

structure of 5.2c, the aromatic ring occupies almost exactly the same position as the phenyl 

portion of Trp203 in the complex with fosmidomycin. Since the aromatic ring of Trp203 

occupies what is presumably a stable position in the folded protein, it could be assumed that 

this position would also be favorable for a ligand to occupy when the loop needs to be 

displaced for steric reasons. This could be described as an aromatic “hotspot”. Therefore, it 

could be that this results in favorable van der Waals and lipophilic interactions of the phenyl 

ring in this position, which accounts for the better activity of 5.2c compared with the shorter 

5.2b, which may not reach the hotspot, and 5.2d, where the carbon chain is too long for the 

phenyl to occupy the same position. In addition, Trp203 in the loop of the minimized 

structure with 5.2c makes an edge-to-face interaction with the phenyl ring of the ligand, 

potentially stabilizing the loop and ligand in this position.  
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Figure V.7: Optimized geometry of 5.2c in the minimized protein structure PDB entry 4A03 

(MtbDxr). Only relevant residues close to the ligand are shown for clarity and labeled 

according to their residue numbers in the 4A03 structure. The position of Trp203 in 4A03 is 

shown with green carbon atoms. The carbon atoms of the optimized protein residues are 

shown in orange, while the ligand carbon atoms are shown in white. The position of the 

Trp203 indole ring overlaps with the position of the phenyl ring in 5.2c. In the optimized 

structure, Trp203 forms a T-stacking interaction with the phenyl ring of 5.2c. 

V.B.5. Conclusions 

In this thesis, the first systematic study on β-substituted analogues of fosmidomycin was 

conducted. A series of analogues with different aromatic moieties connected directly to the 

β-carbon (5.1a−e) failed to inhibit EcDxr and MtbDxr and proved moderately active against 

PfDxr. None of these compounds was capable of inhibiting the growth of E. coli, M. 

smegmatis, or P. falciparum strain K-1. Exploration of alkyl linkers of different lengths 
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between the β-carbon and a phenyl ring resulted in establishment of a three-carbon linker 

(5.2c) as optimal for E. coli and M. tuberculosis Dxr inhibition and a four-carbon linker (5.2d) 

for inhibition of P. falciparum Dxr. While compounds 5.2a−d also lacked activity against E. 

coli and M. smegmatis, 5.2c and 5.2d showed submicromolar schizontocidal activity against 

the P. falciparum K1 strain, where essentially the same SAR was observed as for PfDxr 

inhibition. Interestingly, the activity of 5.2c and 5.2d surpassed that of 5.1f, indicating a 

favorable contribution of the phenylpropyl and phenylbutyl substituents to antiplasmodial 

growth inhibition. 

Crystallographic studies on four of the compounds most active on PfDxr (5.1a, 5.1b, 5.2c, 

and 5.2d) show two different, novel modes of binding to the enzyme. The compounds 

showing the best enzyme inhibition and best in vitro activity against the parasite mimic the 

favorable interactions between the indole ring of the conserved tryptophan in the flap with 

the fosmidomycin backbone that have been seen in a number of antibiotic-bound ternary 

complexes. However, this mimicry is achieved by intramolecular interactions within each 

inhibitor (5.2c, 5.2d), such that the phenyl ring common to this series spatially overlaps the 

usual position of the indole ring. Rearrangement of the flap results in favorable interactions 

between the phenyl ring of the inhibitors and the tryptophan. The improved activity of 5.2d 

compared with 5.2c is likely a consequence of this set of interactions. 
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V.B.6. Experimental details 

General Methods and Materials. See section III.E. 

All synthesized compounds were ≥95% pure as verified by LCMS. NMR analysis showed a 

rotameric mixture for some of the prepared compounds. At high temperature (80 °C), the 

phosphorus signals of the two rotameric forms of a representative compound (5.1b) merged 

into a single peak. 

P. falciparum Dxr inhibition assay and crystallography. The PfDxr assay and crystallography 

was performed by the Department of Cell and Molecular Biology, Science for Life Laboratory, 

Uppsala University, Sweden. The activity of PfDxr was evaluated at room temperature at an 

enzyme concentration of 0.5 μM. The Km for DXP was determined to be 100 μM, and that for 

NADPH was 120 μM; kcat was 0.5 s-1. Each IC50 experiment contained 15.5 μL of reaction 

buffer mix (50 mM Na-HEPES pH 7.5, 1.5 mM MnCl2, 100 mM NaCl), 5 μl PfDxr (in 100 mM 

NaCl, 0.01% Brij-35 and 50 mM Na-HEPES pH 7.5), 2.5 μl NADPH (in dH2O, final 

concentration 150 μM), 2 μl of dH2O or inhibitor solution and 25 μl of DXP (in dH2O, final 

concentration 150 μM). The reported IC50 values were based on triplicates. Co-crystallization 

experiments produced complexes with four ligands (5.1a, 5.1b, 5.2c and 5.2d). 

Modeling of compound 5.2c into MtbDxr. The Evenor Consulting Ltd., United Kingdom 

conducted modeling studies on 5.2c with MtbDxr. All available X-ray structures of MtbDxr 

with manganese (PDB codes 2y1c and 2y1e), 1.38e (PDB code 2y1d), 1.38e-NADPH (PDB 

codes 2y1f and 4a03) and 1.37e (PDB code 2y1g) were superimposed. Ligand structures 

were superimposed on the fosmidomycin scaffold and geometries were fully optimized using 

the OPLS2005 force field in Macromodel 9.9 Schrodinger Inc.).20 Protein residues within 10 Å 

from the inhibitor were treated as fully flexible, only the Mn2+ ion was kept fixed. Explicit 

hydrogen atoms were added to the protein using Macromodel. Geometry optimizations of 

ligand-protein complexes were performed for fosmidomycin, 1.6, 5.1a, 5.1f and 5.2a−d. All 

water molecules from the 4a03 X-ray structure within 10 Å around the ligands were kept and 

were also optimized. 

Antimicrobial susceptibility testing. The M. smegmatis assay was performed by the 

Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium. The minimal 
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inhibitory concentration that reduces growth of M. smegmatis cultures to maximum 50% of 

the untreated control (MIC50) was determined according to the European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) standard broth microdilution protocol.21 Each 

MIC50 determination was performed in triplicate. 

General Procedure I: Synthesis of tert-butyl cinnamates 5.7a−e 

To a 0.1 M solution of the appropriate cinnamic acid (40-45 mmol, 1 equiv) in tert-butanol at 

35 °C, was added di-tert-butyl dicarbonate (2.0 equiv) and 4-dimethylaminopyridine (0.3 

equiv). The mixture was heated to 35 °C overnight and then poured into water and extracted 

three times with dichloromethane. The organic fractions were pooled, washed once with 

brine and dried over Na2SO4. Filtration, in vacuo concentration and subsequent silica gel 

column chromatography gave the respective tert-butyl cinnamates. Characterization was in 

agreement with reported data.22,23  

General Procedure II: Dess-Martin oxidation and concomitant Wittig olefination 

A 0.05 M solution of the starting material in CH2Cl2 and a nitrogen atmosphere was cooled to 

0 °C. Solid Dess-Martin periodinane (2.0 equiv) was added and the temperature was allowed 

to rise to RT. Upon completion of the reaction (TLC monitoring; typically 3 hours), the 

mixture was washed with a mixture (5:1 v/v) of NaHCO3 (sat. aq.) and Na2S2O3 (aq. 2.0 M). 

The formed water layer was then extracted three times with diethyl ether. The organic 

fractions were combined, washed with HCl (0.1 M, once), brine (once) and dried over 

anhydrous Na2SO4 before in vacuo concentration. The resulting crude aldehyde was 

dissolved in toluene under a nitrogen atmosphere and 3.0 equiv of tert-butyl 

(triphenylphosphoranylidene)acetate was added. The mixture was refluxed at 120 °C 

overnight. It was allowed to cool to RT and concentrated in vacuo. The crude mixture was 

adsorbed onto celite and purified by silica gel chromatography. 

General procedure III: Michael addition of methylphosphonatediesters to α,β-unsaturated 

tert-butyl esters. 

To a 1.0 M solution of dibenzylmethyl- or diethylmethyl-phosphonate (2.0 equiv) in THF was 

added n-BuLi (1.6 M solution in hexanes, 2.0 equiv) at -78 °C under a N2 atmosphere. After 

30 minutes, a 0.5 M solution of the α,β-unsaturated ester (1.0 equiv) in THF was added 
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dropwise. When the reaction was complete (typically 3 hours), the reaction was quenched 

with sat. aq. NH4Cl and transferred to a separatory funnel. The aqueous solution was 

extracted three times with EtOAc. The organic fractions were combined, washed once with 

brine, dried (Na2SO4), filtered and concentrated. Column chromatography of the residue 

yielded the Michael adduct. 

General procedure IV: Acidic cleavage of the tert-butyl ester and protected hydroxamate 

formation.  

A 0.1 M solution of the tert-butyl ester (1.0 equiv) in CH2Cl2/TFA (80:20) at 0 °C, was stirred 

for 2 hours, after which an excess of toluene was added to the reaction mixture and 

concentrated in vacuo. The crude acid was redissolved in CH2Cl2 (0.1 M), followed by 

addition of EDC (1.2 equiv), DMAP (1.2 equiv) and DiPEA (2.0 equiv). O-Benzyl-N-

methylhydroxylamine TFA salt (1.2 equiv) was added as a 0.2 M solution in CH2Cl2, and the 

ensemble was allowed to stir overnight at room temperature. The mixture was quenched 

with sat. aq. NaHCO3, extracted three times with CH2Cl2, washed with brine and dried over 

Na2SO4. Column chromatography produced the protected hydroxamic acids. 

General procedure V: Catalytic hydrogenolysis of benzyl protective groups. 

The benzyl protected compound was dissolved in MeOH (10 mg/mL) under a nitrogen 

atmosphere and a catalytic amount of Pd/C (10 %) was added. The resulting mixture was 

then stirred under a hydrogen atmosphere for 10 minutes. Upon completion of the reaction 

(confirmed by MS), the mixture was filtered and neutralized with 1.0 equiv of NaOH (aq. 

1.0M). It was then concentrated in vacuo, re-dissolved in a mixture of water and tert-butanol 

(1:1 v/v, 1.0 mL/10 mg starting material), frozen and lyophilized affording the desired 

phosphonic acid monosodium salts in quantitative yield. 

General procedure VI: Boron trichloride mediated selective debenzylation of the 

hydroxamate. 

A 0.1 M solution of the benzylated hydroxamate in dichloromethane was cooled to -75 °C. 

BCl3 (1 M solution in CH2Cl2, 3.0 equiv) was added dropwise and the mixture allowed to stir 

at this temperature for 45 minutes. Next, the reaction mixture was poured into aqueous 

NaHCO3, and extracted 4 times with CH2Cl2. The organic fractions were combined, washed 
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with brine, dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified by 

silica gel column chromatography to obtain the free hydroxamate. 

General procedure VII: Trimethylbromosilane mediated deprotection of diethyl 

phosphonates. 

To a 0.1 M solution of starting material in dichloromethane, was added BSTFA (4.0 equiv). 

The mixture was allowed to stir at room temperature for 15 minutes before an ice bath was 

installed, and TMSBr (10.0 equiv) was added. The ice bath was removed after 10 minutes, 

and the reaction allowed to stir until phosphorus NMR confirmed complete deprotection. All 

volatiles were removed in vacuo and the resultant oil was re-dissolved in acetonitrile. 

Concentrated ammonia was added, and the mixture was allowed to stir at room 

temperature for 20 minutes. Evaporation of volatiles and subsequent lyophilization from a 

mixture of tert-butanol and water afforded the compound in quantitative yield.  

Dibenzyl 2-phenyl-3-(tert-butoxycarbonyl)propylphosphonate (5.9a). Prepared from 

compound 5.7a (715 mg, 3.50 mmol) according to general procedure III. Colorless oil; 

purification 1.5:1 Hex/EtOAc v/v; yield 72%. 1H NMR (300 MHz, CDCl3) δH ppm 1.25 (br s, 9H, 

t-Bu), 2.17 (dd, J = 3.5 Hz, 18.6 Hz, 1H, P-CH2-), 2.19 (dd, J = 2.8 Hz, 18.6 Hz, 1H, P-CH2-), 2.52 

(ddd, J = 1.3 Hz, J = 9.3 Hz, 15.2 Hz, 1H, -CH2-CO), 2.78 (dd, J = 6.2 Hz, 15.2 Hz, 1H, -CH2-CO), 

3.44-3.62 (m, 1H, -CH-),  4.66-4.87 (m, 4H, -CH2Ph), 7.17-7.36 (m, 15H, Ar-H). 13C-NMR (75 

MHz, CDCl3) δC ppm 27.8, 32.8 (d, 1JC-P = 139.2 Hz), 36.9, (d, 2JC-P = 3.1 Hz), 43.1 (d, 3JC-P = 12.9 

Hz), 66.8 (d, 2JC-P = 6.5 Hz), 67.1 (d, 2JC-P = 6.4 Hz), 80.5, 126.9, 127.5, 127.8, 127.9, 128.3, 

128.4, 136.2 (d, 3JC-P = 6.2 Hz), 136.3 (d, 3JC-P = 6.1 Hz), 142.9 (d, 3JC-P = 8.9 Hz), 170.5. 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 32.9. HRMS (ESI): calculated for C28H34O5P [(M+H)+], 481.2138; 

found 481.2148. 

Dibenzyl 2-(p-methylphenyl)-3-(tert-butoxycarbonyl)propylphosphonate (5.9b). Prepared 

from compound 5.7b (680 mg, 3.11 mmol) according to general procedure III. Colorless oil; 

purification 2:1 Hex/EtOAc v/v; yield 73%. 1H NMR (300 MHz, CDCl3) δH ppm 1.27 (br s, 9H, t-

Bu), 2.11-2.23 (m, 2H, P-CH2-), 2.28 (s, 3H, -Ph-CH3), 2.50 (ddd, J = 1.5 Hz, 9.2 Hz, 15.2 Hz, 1H, 

-CH2-CO), 2.75 (dd, J = 6.4 Hz, 15.2 Hz, 1H, -CH2-CO), 3.40-3.57 (m, 1H, -CH-), 4.68-4.88 (m, 

4H, -CH2-Ph), 7.01-7.11 (m, 4H, Ar-H), 7.18-7.36 (m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC 

ppm 21.0, 27.9, 32.8 (d, 1JC-P = 139.6 Hz), 36.5 (d, 2JC-P = 3.2 Hz), 43.3 (d, 3JC-P = 12.8 Hz), 66.8 
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(d, 2JC-P = 6.4 Hz), 67.0 (d, 2JC-P = 6.6 Hz), 80.4, 127.3, 127.8, 127.8, 128.2, 128.5, 129.1, 136.3 

(d, 2JC-P = 6.1 Hz), 136.4 (d, 2JC-P = 6.0 Hz), 139.9 (d, 3JC-P = 8.8 Hz), 170.7. 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 31.4. HRMS (ESI): calculated for C29H36O5P [(M+H)+], 495.2295; found 

495.2315.    

Dibenzyl 2-(p-methoxyphenyl)-3-(tert-butoxycarbonyl)propylphosphonate (5.9c). Prepared 

from compound 5.7c(700 mg, 2.99 mmol) according to general procedure III. White crystal; 

purification 1:1 Hex/EtOAc v/v; yield 69%. 1H NMR (300 MHz, CDCl3) δH ppm 1.27 (br s, 9H, t-

Bu), 2.04-2.27 (m, 2H, P-CH2-), 2.48 (ddd, J = 1.4 Hz, 9.3 Hz, 15.2 Hz, 1H, -CH2-CO), 2.73 (dd, J 

= 6.3 Hz, 15.2 Hz, 1H, -CH2-CO), 3.40-3.57 (m, 1H, -CH-), 3.74 (s, 3H, -Ph-O-CH3), 4.68-4.91 

(m, 4H, -CH2Ph), 6.78 (d, J = 8.5 Hz, 2H, Ar-H), 7.11 (d, J = 8.5 Hz, 2H, Ar-H), 7.18-7.37 (m, 

10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 27.8, 32.9 (d, 1JC-P = 137.7 Hz), 36.2 (d, 2JC-P = 3.5 

Hz), 43.4 (d, 3JC-P = 12.2 Hz), 55.1, 66.8 (d, 2JC-P = 5.8 Hz), 67.0 (d, 2JC-P = 5.8 Hz), 80.4, 113.7, 

127.8, 127.8, 128.2, 128.4, 134.9 (d, 3JC-P = 8.5 Hz), 136.2 (d, 3JC-P = 5.9 Hz), 136.3 (d, 3JC-P = 5.3 

Hz), 158.4, 170.5. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 30.25 HRMS (ESI): calculated for 

C29H36O6P [(M+H)+], 511.2244; found 511.2260.   

Dibenzyl 2-methyl-3-(tert-butoxycarbonyl)propylphosphonate (5.9f). Prepared from 

compound tert-butylcrotonate (890 mg, 6.26 mmol) according to general procedure III. 

Colorless oil; purification 1.5:1 Hex/EtOAc v/v; yield 62%. 1H NMR (300 MHz, CDCl3) δH ppm 

1.08 (d, J = 6.5 Hz, 3H, -CH(CH3)-), 1.42 (br s, 9H, t-Bu), 1.61-1.79 (m, 2H, P-CH2-), 1.83-2.00 

(m, 1H, -CH2-CO), 2.06-2.20 (m, 1H, -CH-), 2.28-2.47 (m, 2H, -CH2-CO), 4.90-5.10 (m, 4H, -CH2-

Ph), 7.27-7.41 (m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 21.7 (3JC-P= 8.6 Hz), 25.1 (2JC-P 

= 5.2 Hz), 27.8, 32.4 (1JC-P= 139.5 Hz), 39.7 (3JC-P= 12.0 Hz), 67.01 (2JC-P= 6.5 Hz), 67.03 (2JC-P= 

6.5 Hz), 76.2, 127.9, 127.9, 129.2, 134.5, 136.17 (3JC-P= 5.9 Hz), 173.3. 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 32.87.HRMS (ESI): calculated for C23H32O5P [(M+H)+], 419.1982; found 

419.1904.  

Dibenzyl 3-(N-(benzyloxy)-N-methylcarbamoyl)-2-phenylpropylphosphonate (5.10a). 

Prepared from compound 5.9a (1.0 g, 2.08 mmol) according to general procedure IV. 

Colorless oil; purification 97:3 CH2Cl2/MeOH v/v; yield 51%. 1H NMR (300 MHz, CDCl3) δH 

ppm 2.04-2.39 (m, 2H, P-CH2-), 2.69-2.90 (m, 2H, -CH2-CON-), 3.07 (s, 3H, N-CH3), 3.56-3.75 

(m, 1H, -CH(Ph)-), 4.63 (s, 2H, NOCH2Ph) 4.67-4.91 (m, 4H, POCH2Ph), 7.13-7.41 (m, 20H, Ar-
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H). 13C-NMR (75 MHz, CDCl3) δC ppm 32.2 (d, 1JC-P = 137.6 Hz), 36.1 (d, 2JC-P = 3.4 Hz), 39.8 (d, 

3JC-P = 12.6 Hz), 66.8 (d, 2JC-P = 6.4 Hz), 67.1 (d, 2JC-P = 6.4 Hz), 76.1, 126.8, 127.5, 127.8, 127.9, 

128.1, 128.2, 128.5, 128.7, 128.9, 129.2, 134.5, 136.3, (d, 3JC-P = 6.6 Hz), 136.4 (d, 3JC-P = 6.4 

Hz), 143.6 (d, 3JC-P = 8.4 Hz), 172.9. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.16.HRMS (ESI): 

calculated for C32H35NO5P [(M+H)+], 544.2247; found 544.2318.  

Dibenzyl 3-(N-(benzyloxy)-N-methylcarbamoyl)-2-p-tolylpropylphosphonate (5.10b). 

Prepared from compound 5.9b (980 mg, 1.98 mmol) according to general procedure IV. 

Colorless oil; purification 97:3 CH2Cl2/MeOH v/v; yield 56%. 1H NMR (300 MHz, CDCl3) δH 

ppm 2.04-2.37 (m, 5H, P-CH2-, Ph-CH3), 2.69-2.90 (m, 2H, -CH2CO), 3.08 (s, 3H, N-CH3), 3.54-

3.71 (m, 1H, -CH-), 4.64 (s, 2H,-NOCH2Ph), 4.70-4.89 (m, 4H, POCH2Ph), 7.05 (m, 4H, Ar-H), 

7.15-7.40 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 20.9, 32.2 (d, 1JC-P = 139.6 Hz), 

35.5, 39.7 (d, 3JC-P = 11.8 Hz), 66.6 (d, 2JC-P = 5.7 Hz), 66.8 (d, 3JC-P = 6.4 Hz), 66.4, 127.2, 127.6, 

127.7, 128.0, 128.3, 128.5, 128.7, 130.0, 129.1, 134.4, 136.0, 136.2 (d, 3JC-P = 6.9 Hz), 136.3 

(d, 3JC-P = 6.3 Hz), 140.4 (d, 3JC-P = 8.3 Hz), 172.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 31.67. 

HRMS (ESI): calculated for C33H37NO5P [(M+H)+], 558.2404; found 558.2408.   

Dibenzyl 3-(N-(benzyloxy)-N-methylcarbamoyl)-2-(4-methoxyphenyl)propylphosphonate 

(5.10c). Prepared from compound 5.9c (850 mg, 1.67 mmol) according to general procedure 

IV. Colorless oil; purification gradient 0–5% MeOH in CH2Cl2; yield 47%. 1H NMR (300 MHz, 

CDCl3) δH ppm 2.01-2.37 (m, 2H, P-CH2-), 2.66-2.88 (m, 2H, -CH2-CO), 3.07 (s, 3H, N-CH3), 

3.53-3.70 (m, 1H, -CH-), 3.72 (s, 3H, Ph-O-CH3), 4.64 (s, 2H, NOCH2Ph), 4.70-4.90 (m, 4H, -

CH2-Ph), 6.76 (d, J = 8.8 Hz, 2H, Ar-H), 7.08 (d, J = 8.8 Hz, 2H, Ar-H), 7.14-7.39 (m, 15H, Ar-H). 

13C-NMR (75 MHz, CDCl3) δC ppm 32.3 (1JC-P = 138.72 Hz), 35.2 (3JC-P = 3.99 Hz), 39.9 (3JC-P = 

13.1 Hz), 55.0, 66.6 (2JC-P = 7.1 Hz), 66.8 (2JC-P = 7.0 Hz), 75.9, 113.7, 127.6, 127.8, 128.1, 

128.1, 128.3, 128.3, 128.6, 128.8, 129.1, 134.4, 135.5 (3JC-P = 9.0 Hz), 136.2 (3JC-P = 7.1 Hz), 

136.33 (3JC-P = 7.1 Hz), 158.2. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 30.59.HRMS (ESI): 

calculated for C33H37NO6P [(M+H)+], 574.2353; found 574.2306.  

Dibenzyl 3-(N-(benzyloxy)-N-methylcarbamoyl)-2-methylpropylphosphonate (5.10f). 

Prepared from compound 5.9f (1.0 g, 2.39 mmol) according to general procedure IV. 

Colorless oil; purification gradient 0–5% MeOH in CH2Cl2; yield 62%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.06 (d, J = 6.5 Hz, 3H, -CH(CH3)-CH2-), 1.61-1.73 (m, 1H, P-CH2-), 1.88-2.05 (m, 
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1H, P-CH2-), 2.26-2.60 (m, 3H, -CH(CH3)-, -CH2-CO), 3.15 (s, 1H, N-CH3), 4.75 (s, NOCH2Ph), 

4.89-5.09 (m, 4H, -CH2-Ph), 7.27-7.42 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 21.4 

(3JC-P= 8.6 Hz), 25.2 (2JC-P= 5.2 Hz), 32.3 (1JC-P= 138.5 Hz), 39.7 (3JC-P= 12.9 Hz), 67.0 (2JC-P= 6.5 

Hz), 67.0 (2JC-P= 6.5 Hz), 76.2, 127.9, 127.9, 128.3, 128.5, 128.7, 128.9, 129.3, 134.5, 136.5 

(3JC-P= 6.1 Hz), 173.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.16.HRMS (ESI): calculated for 

C27H33NO5P [(M+H)+], 482.2091; found 482.2086. 

Diethyl 2-(p-chlorophenyl)-3-(tert-butoxycarbonyl)propylphosphonate (5.14d). Prepared from 

compound 5.7d (784 mg, 3.28 mmol) according to general procedure III. Pale yellow oil; 

purification 1.5:1 Hex/Me2CO v/v; yield 71%. 1H NMR (300 MHz, CDCl3) δH ppm 1.17-1.34 (m, 

6H, P-CH2CH3), 1.29 (br, 9H, t-Bu), 1.96-2.22 (m, 2H, -CH2-), 2.52 (dd, J = 9.5 Hz, 15.8 Hz, 1H, -

CH2-CO), 2.80 (dd, J = 6.3 Hz, 15.8 Hz, 1H, -CH2-CO), 3.40-3.58 (m, 1H, -CH-), 3.86-4.05 (m, 

4H, P-CH2CH3), 7.18 (d, J = 8.4 Hz, 2H, Ar-H), 7.27 (d, J = 8.4 Hz, 2H, Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 16.1 (d, 3JC-P = 16.1 Hz), 16.1 (d, 3JC-P = 6.3 Hz), 27.7, 32.2 (d, 1JC-P = 140.8 Hz), 

36.3 (d, 2JC-P = 3.5 Hz), 42.8 (d, 3JC-P = 12.7 Hz), 61.2 (d, 2JC-P = 6.9 Hz), 61.4 (d, 2JC-P = 6.9 Hz), 

80.5, 128.3, 128.8, 132.3, 141.5 (d, 3JC-P = 9.6 Hz), 170.2. 31P-NMR (121.5 MHz, CDCl3): δP ppm 

28.47. HRMS (ESI): calculated for C18H29ClO5P [(M+H)+], 391.1436; found 391.1610.   

Diethyl 2-(3,4-dichlorophenyl)-3-(tert-butoxycarbonyl)propylphosphonate (5.14e). Prepared 

from compound 5.7e (656 mg, 2.40 mmol) according to general procedure III. Pale yellow 

oil; purification 1:1 Hex/Me2CO v/v; yield 73%. 1H NMR (300 MHz, CDCl3) δH ppm 1.22 (t, J = 

7.1 Hz, 3H, -OCH2CH3), 1.23 (t, J = 7.2 Hz, 3H, -OCH2CH3), 1.32 (br, 9H, t-Bu), 1.95-2.21 (m, 

2H, P-CH2-), 2.52 (ddd, J = 1.2 Hz, 9.3 Hz, 15.8 Hz, 1H, -CH2-CO), 2.80 (dd, J =  6.1 Hz, 15.8 Hz, 

1H, -CH2-CO), 3.40-3.55 (m, 1H, -CH-), 3.88-4.07 (m, 4H, OCH2CH3), 7.10 (dd, J = 2.1 Hz, 8.4 

Hz, 1H, Ar-H), 7.34 (d, J = 2.1 Hz, 1H, Ar-H), 7.37 (d, J = 8.4 Hz, 1H, Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 16.2 (d, 3JC-P = 2.9 Hz), 16.3 (d, 3JC-P = 2.4 Hz), 27.9, 32.1 (d, 1JC-P = 140.7 Hz), 

36.3 (d, 2JC-P = 3.9 Hz), 42.7 (d, 3JC-P = 12.1 Hz), 61.5 (d, 2JC-P = 7.8 Hz), 61.6 (d, 2JC-P = 7.3 Hz), 

80.9, 126.9, 129.6, 130.2, 130.6, 132.2, 143.4 (d, 3JC-P = 9.0 Hz), 170.1. 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 27.96.  HRMS (ESI): calculated for C18H28Cl2O5P [(M+H)+], 425.1046; found 

425.1029.  

Diethyl 3-(N-(benzyloxy)-N-methylcarbamoyl)-2-(4-chlorophenyl)propylphosphonate (5.15d). 

Prepared from compound 5.14d (870 mg, 2.23 mmol) according to general procedure IV. 
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Colorless oil; purification 97:3 CH2Cl2/MeOH v/v; yield 46%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.16 (app. t, J = 7.1 Hz, 3H, P-CH2CH3), 1.21 (app. t, J = 7.1 Hz, 3H, P-CH2CH3), 1.91-2.26 

(m, 2H, P-CH2-), 2.67-2.89 (m, 2H, -CH2-CO-), 3.10 (s, 3H, N-CH3), 3.50-3.66 (m, 1H, -CH-), 

3.86-4.03 (m, 4H, POCH2Ph), 4.72 (app. d., J = 3.3 Hz, 2H, NOCH2Ph), 7.02-7.15 (m, 2H, Ar-H), 

7.21-7.27 (m, 2H Ar-H), 7.30-7.42 (m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.11-6.39 

(m), 31.88 (d, 1JC-P = 140.2 Hz), 35.50 (d, 2JC-P = 3.2 Hz), 39.60 (d, 3JC-P = 12.5 Hz), 61.33 (d, 2JC-P 

= 6.4 Hz), 61.55 (d, 2JC-P = 6.6 Hz), 76.2, 128.4, 128.7, 128.9, 129.0, 129.3, 132.3, 134.4, 140.4, 

142.3 (d, 3JC-P = 8.3 Hz), 167.1. 31P-NMR (121.5 MHz, CDCl3): δP ppm 29.87. HRMS (ESI): 

calculated for C22H30ClNO5P [(M+H)+], 454.1545; found 454.0736.  

Diethyl 3-(N-(benzyloxy)-N-methylcarbamoyl)-2-(3,4-dichlorophenyl)propylphosphonate 

(5.15e). Prepared from compound 5.14e (700 mg, 1.65 mmol) according to general 

procedure IV. Colorless oil; purification 95:5 CH2Cl2/MeOH v/v; yield 49%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.18 (app. t, J = 7.1 Hz, 3H, P-CH2CH3), 1.22 (app. t, J = 7.2 Hz, 3H, P-CH2CH3), 

1.86-2.24 (m, 2H, P-CH2-), 2.61-2.85 (m, 2H, -CH2-CO-), 3.12 (s, 3H, N-CH3), 3.44-3.62 (m, 1H, 

-CH-), 3.82-4.05 (m, 4H, POCH2CH3), 4.75 (s, 2H, NOCH2Ph), 7.02 (dd, J = 2.2 Hz, 8.34 Hz, 1H, 

Ar-H), 7.23-7.44 (m, 7H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.2 (d, 3JC-P = 6.8 Hz), 16.3 

(d, 3JC-P = 6.6 Hz), 31.7 (d, 1JC-P = 140.4 Hz), 33.4, 35.3 (d, 2JC-P = 3.3 Hz), 39.3 (d, 3JC-P = 13.1 Hz), 

61.4 (d, 2JC-P = 6.7 Hz), 61.6 (d, 2JC-P = 6.6 Hz), 76.1, 127.1, 128.7, 129.0, 129.3, 129.5, 130.2, 

130.4, 132.1, 134.3, 144.1 (d, 3JC-P = 7.9 Hz), 172.3. 31P-NMR (121.5 MHz, CDCl3): δP ppm 

28.22. HRMS (ESI): calculated for C22H29Cl2NO5P [(M+H)+], 488.1155; found 488.1144.  

Diethyl 3-(N-hydroxy-N-methylcarbamoyl)-2-(4-chlorophenyl)propylphosphonate (5.16d). 

Prepared from compound 5.15d (400 mg, 0.88 mmol) according to general procedure VI. 

Colorless oil; purification gradient 0–10% MeOH in CH2Cl2, 1% triethylamine; yield 79%. 1H 

NMR (300 MHz, CDCl3) δH ppm 1.18 (app. t, J = 7.1 Hz, 3H, P-CH2CH3), 1.26 (app. t, J = 7.0 Hz, 

3H, P-CH2CH3), 1.90-2.37 (m, 2H, P-CH2-), 2.66-2.80 (m, 1H of -CH2-CO-), 3.11-3.29 (m, 3H, N-

CH3, 1H of -CH2-CO-), 3.51-3.74 (m, 1H, -CH-), 3.82-3.05 (m, 4H, POCH2Ph), 7.15-7.33 (m, 4H, 

Ar-H), 9.46 (s, 1H, N-OH). 13C-NMR (75 MHz, CDCl3) δC ppm 16.0-16.5 (m), 31.5 (d, 1JC-P = 

139.2 Hz), 33.2, 35.8 (d, 3JC-P = 8.7 Hz), 37.7 (d, 2JC-P = 7.0 Hz), 61.9 (d, 2JC-P = 7.2 Hz), 62.2 (d, 

2JC-P = 6.5 Hz), 128.6, 128.7, 132.5, 142.7 (d, 3JC-P = 11.1 Hz), 171.7. 31P-NMR (121.5 MHz, 

CDCl3): rotamers at δP ppm 29.46, 30.85. HRMS (ESI): calculated for C15H24ClNO5P [(M+H)+], 

364.1075; found 364.0480.      
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Diethyl 3-(N-hydroxy-N-methylcarbamoyl)-2-(3,4-dichlorophenyl)propylphosphonate (5.16e). 

Prepared from compound 5.15e (350 mg, 0.72 mmol) according to general procedure VI.  

Colorless oil; purification gradient 0–10% MeOH in CH2Cl2, 1% triethylamine; yield 74%. 1H 

NMR (300 MHz, CDCl3) δH ppm 1.21 (app. t, J = 7.2 Hz, 3H, P-CH2CH3), 1.27 (app. t, J = 7.1 Hz, 

3H, P-CH2CH3), 2.00-2.27 (m, 2H, P-CH2-), 2.74 (dd, J = 6.5 Hz, 15.17 Hz, 1H, -CH2CO), 3.19 

(dd, J = 8.1 Hz, 15.2 Hz, 1H, -CH2CO), 3.22 (s, 3H, N-CH3), 3.52-3.72 (m, 1H, -CH-), 3.87-4.07 

(m, 4H, -POCH2CH3), 7.14 (d, J = 8.1 Hz, 1H, Ar-H), 7.32-7.45 (m, 2H, Ar-H), 9.44 (s, 1H, N-OH). 

13C-NMR (75 MHz, CDCl3) δC ppm 16.2 (d, 3JC-P = 6.7 Hz), 16.3 (d, 3JC-P = 6.4 Hz), 31.3 (d, 1JC-P = 

141.7 Hz), 35.6 (d, 2JC-P = 3.3 Hz), 35.9, 37.6 (d, 3JC-P = 7.5 Hz), 62.0 (d, 2JC-P = 6.9 Hz), 62.3 (d, 

2JC-P = 7.8 Hz), 126.9, 129.3, 130.4, 132.4, 130.7, 144.5 (d, 3JC-P = 12.2 Hz), 171.4. 31P-NMR 

(121.5 MHz, CDCl3): rotamers at δP ppm 29.01, 30.45. HRMS (ESI): calculated for C15H23 

Cl2NO5P [(M+H)+], 398.0685; found 398.0705.  

(E)-tert-butyl 4-phenylbut-2-enoate (5.19a). Prepared from compound 5.17a (1.0 g, 8.19 

mmol) according to general procedure II. Yellow oil; purification 97:3 Hex/Et2O v/v; yield 

80% over two steps. 1H NMR (300 MHz, CDCl3) δH ppm 1.46 (br, 9H, t-Bu), 3.46 (dd, J = 1.6 

Hz, 6.7 Hz, 2H –CH2-), 5.73 (dt, J = 1.7 Hz, 15.6 Hz, 1H, -CH=CH-CO-), 6.99 (dt, J = 6.7 Hz, 15.5 

Hz, 1H, -CH=CH-CO-), 7.14-7.34 (m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 38.1, 

80.2, 124.1, 126.5, 128.6, 128.8, 137.9, 145.9, 165.8.  

(E)-tert-butyl 5-phenylpent-2-enoate (5.19b). Prepared from compound 5.17b (1.0 g, 7.34 

mmol) according to general procedure II. Colorless oil; purification 97:3 Hex/Et2O v/v; yield 

84% over two steps. 1H NMR (300 MHz, CDCl3) δH ppm1.48 (br, 9H, t-Bu), 2.43-2.54 (m, 2H, -

CH2C=CH-), 2.78 (t, J = 7.4 Hz, 2H, Ph-CH2-), 5.78 (dt, J = 1.8 Hz, 15.5 Hz, 1H, -CH=CH-CO-), 

6.90 (dt, J = 6.7 Hz, 15.5 Hz, 1H, -CH=CH-CO-), 7.13-7.43 (m, 5H, Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 28.2, 33.8, 34.5, 80.1, 123.4, 126.1, 128.3, 128.5, 141.1, 147.0, 166.0.   

(E)-tert-butyl 6-phenylhex-2-enoate (5.19c). Prepared from compound 5.17c (1.5 g, 9.99 

mmol) according to general procedure II. Colorless oil; purification 98:2 Hex/Et2O v/v; yield 

79% over two steps. 1H NMR (300 MHz, CDCl3) δH ppm 1.48 (br, 9H, t-Bu), 1.78 (app. quin, 

2H, -CH2-), 2.15-2.25 (m, 2H, -CH2CH=CH-), 2.64 (t, J = 7.6 Hz, 2H, Ph-CH2-), 5.75 (dt, J = 1.6 

Hz, 15.6 Hz, 1H, CH=CH-CO-), 6.87 (dt, J = 6.8 Hz, 15.6 Hz, 1H, -CH=CH-CO-), 7.13-7.33 (m, 5H, 

Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.2, 29.8, 31.5, 35.3, 80.1, 123.3, 125.9, 128.4, 
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128.4, 141.8, 147.5, 166.1. HRMS (ESI): calculated for C16H23O2 [(M+H)+], 247.1693; found 

247.1630. 

(E)-tert-butyl 7-phenylhept-2-enoate (5.19d). Prepared from compound 5.17d (1.0 g, 6.09 

mmol) according to general procedure II. Colorless oil; purification 98:2 Hex/Et2O v/v; yield 

87% over two steps. 1H NMR (300 MHz, CDCl3) δH ppm1.44-1.55 (m, 9H, t-Bu, 2H, -CH2-), 

1.58-1.71 (m, 2H, -CH2-), 2.14-2.24 (m, 2H, -CH2-), 2.61 (t, J = 7.5 Hz, 2H, Ph-CH2-), 5.7 (dt, J = 

1.6 Hz, 15.6 Hz, 1H, -CH=CH-CO-), 6.84 (dt, J = 6.9 Hz, 15.6 Hz, 1H, -CH=CH-CO-), 7.13-7.32 

(m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 27.7, 28.2, 30.9, 31.9, 35.7, 80.0, 123.1, 

125.7, 123.3, 128.4, 142.3, 147.7, 166.1. HRMS (ESI): calculated for C17H25O2 [(M+H)+], 

261.1849; found 261.1865. 

Dibenzyl 2-((tert-butoxycarbonyl)methyl)-3-phenylpropylphosphonate (5.20a). Prepared from 

compound 5.19a (1.2 g, 5.50 mmol) according to general procedure III. Colorless oil; 

purification 5:1 Hex/Me2CO v/v; yield 66%. 1H NMR (300 MHz, CDCl3) δH ppm 1.41 (br, 9H, t-

Bu), 1.624-2.03 (m, 2H, P-CH2-), 2.32-2 .40 (m, 2H, -CH2-CO), 2.38-2.56 (m, 3H, -CH(CH2-Ph)-), 

4.81-5.18 (m, 4H, O-CH2-Ph), 7.01-7.41 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 

28.0, 29.4 (d, 1JC-P = 138.9 Hz), 30.5 (d, 2JC-P = 4.5 Hz), 32.2, 37.1 (d, 3JC-P = 11.1 Hz), 41.2 (d, 3JC-

P = 9.1 Hz), 67.12 (d, 2JC-P = 6.1 Hz), 67.13 (d, 2JC-P = 6.50 Hz), 80.40, 127.30, 127.32 127.9, 

128.4, 139.81 (d, 3JC-P = 6.06 Hz), 139.84 (d, 3JC-P = 6.1 Hz), 141.1, 173.3. 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 33.0. HRMS (ESI): calculated for C29H36O5P [(M+H)+], 495.2295; found 

495.2321.     

Dibenzyl 2-((tert-butoxycarbonyl)methyl)-4-phenylbutylphosphonate (5.20b). Prepared from 

compound 5.19b (1.0 g, 4.30 mmol) according to general procedure III. Colorless oil; 

purification 5:1 Hex/Me2CO v/v; yield 63%. 1H NMR (300 MHz, CDCl3) δH ppm 1.41 (br, 9H, t-

Bu), 1.62-2.00 (m, 4H, -CH2-), 2.22-2 .39 (m, 2H, -CH2-), 2.43-2.52 (m, 1H, -CH-), 2.56 (t, J = 

8.4 Hz, 2H, -CH2-), 4.89-5.09 (m, 4H, -CH2-Ph), 7.07-7.26 (m, 5H, Ar-H), 7.30-7.37 (m, 10H, Ar-

H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 29.8 (d, 1JC-P = 138.8 Hz), 30.1 (d, 2JC-P = 4.7 Hz), 

32.7, 36.33 (d, 3JC-P = 10.1 Hz), 40.1 (d, 3JC-P = 9.4 Hz), 67.0 (d, 2JC-P = 6.4 Hz), 67.1 (d, 2JC-P = 6.5 

Hz), 80.4, 125.7, 127.9, 128.3, 128.5, 136.3 (d, 3JC-P = 6.1 Hz), 136.4 (d, 3JC-P = 6.1 Hz), 141.7, 

171.5. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.04. HRMS (ESI): calculated for C30H38O5P 

[(M+H)+], 509.2451; found 509.2466.    
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Dibenzyl 2-((tert-butoxycarbonyl)methyl)-5-phenylpentylphosphonate (5.20c). Prepared from 

compound 5.19c (1.35 g, 5.48 mmol) according to general procedure III. Colorless oil; 

purification 6:1 Hex/Me2CO v/v; yield 71%. 1H NMR (300 MHz, CDCl3) δH ppm 1.41 (br, 9H, t-

Bu), 1.42-1.63 (m, 4H, -CH2-), 1.72-2.03 (m, 2H, -CH2-), 2.16-2.56 (m, 4H, -CH2-, 1H, -CH-), 

4.86-5.09 (m, 4H, -CH2-Ph), 7.03-7.47 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.0, 

28.3, 29.8 (d, 1JC-P = 139.4 Hz), 30.3 (d, 2JC-P = 4.1 Hz), 34.2 (d, 3JC-P = 10.4 Hz), 35.8, 40.2 (d, 3JC-

P = 9.6 Hz), 66.9 (d, 2JC-P = 6.2 Hz), 67.1 (d, 2JC-P = 6.3 Hz), 80.3, 125.6, 127.9, 128.2, 128.3, 

128.49, 129.4, 136.4 (d, 3JC-P = 6.1 Hz), 136.4 (d, 3JC-P = 6.1 Hz), 142.2, 171.6. 31P-NMR (121.5 

MHz, CDCl3): δP ppm 33.16. HRMS (ESI): calculated for C31H40O5P [(M+H)+], 523.2608; found 

523.2411.  

Dibenzyl 2-((tert-butoxycarbonyl)methyl)-6-phenylhexylphosphonate (5.20d). Prepared from 

compound 5.19d (1.0 g, 3.84 mmol) according to general procedure III. Colorless oil; 

purification 6:1 Hex/Me2CO v/v; yield 68%. 1H NMR (300 MHz, CDCl3) δH ppm 1.20-1.35 (m, 

2H, -CH2-), 1.41 (br, 9H, t-Bu), 1.43-1.61 (m, 4H, -CH2-), 1.77-1.92 (m, 2H, -CH2-), 2.16-2.32 

(m, 3H, -CH2-, -CH-), 2.55 (t, J = 7.6 Hz, 2H, -CH2-), 4.90-5.08 (m, 4H, -CH2-Ph), 7.10-7.37 (m, 

15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 26.0, 28.1, 29.9 (d, 1JC-P = 138.4 Hz), 30.3 (d, 2JC-P 

= 3.9 Hz), 31.3, 34.4 (d, 3JC-P = 10.2 Hz), 35.7, 40.2 (d, 3JC-P = 9.7 Hz), 67.0 (d, 2JC-P = 6.6 Hz), 

67.1 (d, 2JC-P = 6.7.1 Hz), 80.3, 125.6, 127.9, 128.2, 128.3, 128.3, 128.5, 136.4 (d, 3JC-P = 6.3 

Hz), 136.4 (d, 3JC-P = 6.3 Hz), 142.5, 171.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.32. 

HRMS (ESI): calculated for C32H42O5P [(M+H)+], 537.2764; found 537.2784.  

Dibenzyl 2-((N-(benzyloxy)-N-methylcarbamoyl)methyl)-3-phenylpropylphosphonate (5.21a). 

Prepared from compound 5.20a (1.0 g, 2.02 mmol) according to general procedure IV.  

Colorless oil; purification gradient 0–5% MeOH in CH2Cl2; yield 43%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.77-2.07 (m, 2H, P-CH2-), 2.40-2.83 (m, 5H, -CH2-CO-, -CH-CH2-Ph), 3.11 (s, 

3H, N-CH3), 4.63 (s, 2H, NOCH2Ph), 4.86-5.05 (m, 4H, POCH2Ph), 7.07-7.42 (m, 20H, Ar-H). 

13C-NMR (75 MHz, CDCl3) δC ppm 29.0 (d, 1JC-P = 138.7 Hz), 31.6 (d, 2JC-P = 3.1 Hz), 35.9 (d, 3JC-P 

= 9.6 Hz), 40.9 (d, 3JC-P = 11.4 Hz), 67.2 (d, 2JC-P = 6.6 Hz), 67.3 (d, 2JC-P = 6.7 Hz), 76.1, 126.2, 

127.9, 127.9, 128.3, 128.3, 128.5, 128.6, 128.8, 129.2, 129.4, 134.5, 136.6 (d, 3JC-P = 6.8 Hz), 

136.7 (d, 3JC-P = 6.4 Hz), 139.6, 165.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm 33.28. HRMS (ESI): 

calculated for C33H37NO5P [(M+H)+], 558.2404; found 558.2431. 
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Dibenzyl 2-((N-(benzyloxy)-N-methylcarbamoyl)methyl)-4-phenylbutylphosphonate (5.21b). 

Prepared from compound 5.20b (1.0 g, 1.97 mmol) according to general procedure IV.  

Colorless oil; purification gradient 0–5% MeOH in CH2Cl2; yield 60%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.64-2.09 (m, 4H, -CH2-), 2.31-2.58 (m, 3H, -CH2-, 1H, -CH-), 2.65 (dd, J = 7.1 

Hz, J = 16.5 Hz, 1H, -CH2-), 3.14 (s, 3H, N-CH3), 4.73 (br. s, 2H, NOCH2Ph), 4.87-5.08 (m, 4H, -

CH2-Ph), 7.04-7.26 (m, 5H, Ar-H), 7.27-7.39 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 

29.6 (d, 2JC-P= 4.0 Hz), 29.6 (d, 1JP-C = 138.2 Hz), 32.9, 33.5, 36.5 (3JC-P = 9.6 Hz), 36.6 (3JC-P= 6.7 

Hz), 67.0 (2JC-P = 6.5 Hz), 76.1, 125.7, 127.9, 127.9, 128.3, 128.3, 128.5, 128.6, 128.9, 129.3, 

134.6, 136.4 (3JC-P= 6.3 Hz), 173.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.26. HRMS (ESI): 

calculated for C34H39NO5P [(M+H)+], 572.2560; found 572.2585. 

Dibenzyl 2-((N-(benzyloxy)-N-methylcarbamoyl)methyl)-5-phenylpentylphosphonate (5.21c). 

Prepared from compound 5.20c (1.5 g, 2.87 mmol) according to general procedure IV.  

Colorless oil; purification gradient 0–5% MeOH in CH2Cl2; yield 68%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.36-1.63 (m, 4H, -CH2-), 1.72-2.03 (m, 2H, -CH2-), 2.26-2.66 (m, 5H, -CH2-, -

CH-), 3.12 (s, 3H, N-CH3), 4.72 (s, 2H, NOCH2Ph), 4.82-5.06 (m, 4H, POCH2Ph), 7.03-7.43 (m, 

20H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.2, 28.6, 29.7 (d, 2JC-P = 3.2 Hz), 29.7 (d, 1JC-P = 

138.6 Hz), 34.6 (d, 3JC-P = 9.3 Hz), 35.8, 36.7 (d, 3JC-P = 8.3 Hz), 66.8-67.2 (m), 76.1, 125.7, 

127.9, 128.2, 128.3, 128.4, 128.51, 128.53, 128.7, 128.9, 129.3, 136.5 (d, 3JC-P = 7.0 Hz), 

142.4, 172.1. 31P-NMR (121.5 MHz, CDCl3): δP ppm 33.40. HRMS (ESI): calculated for 

C35H41NO5P [(M+H)+], 586.2717; found 586.2709. 

Dibenzyl 2-((N-(benzyloxy)-N-methylcarbamoyl)methyl)-6-phenylhexylphosphonate (5.21d). 

Prepared from compound 5.20d (1.28 g, 2.39 mmol) according to general procedure IV. 

Colorless oil; purification gradient 0–15% MeOH in CH2Cl2; yield 74%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.12-1.31 (m, 2H, -CH2-), 1.34-1.56 (m, 4H, -CH2-), 1.71-2.02 (m, 2H, -CH2-), 

2.22-2.63 (m, 4H, -CH2-, 1H, -CH-), 3.11 (s, 3H, N-CH3), 4.69 (s, 2H, -NOCH2Ph), 4.88-5.06 (m, 

4H, POCH2Ph), 7.07-7.42 (m, 20H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 25.9, 27.9, 29.4 (d, 

2JC-P = 3.9 Hz), 29.5 (d, 1JC-P = 137.7 Hz), 31.1, 34.4 (d, 3JC-P = 9.4 Hz), 35.5, 36.5 (d, 3JC-P = 9.4 

Hz), 66.6-66.8 (m), 75.8, 125.4, 127.7, 128.0, 128.1, 128.2, 128.3, 128.4, 128.6, 129.1, 134.4, 

136.2-136.3 (m), 142.3, 173.6. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.52. HRMS (ESI): 

calculated for C36H43NO5P [(M+H)+], 600.2873; found 600.2814. 
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Sodium hydrogen3-(N-hydroxy-N-methylcarbamoyl)-2-phenylpropylphosphonate (5.1a). 

Prepared from compound 5.10a (150 mg, 0.28 mmol) according to general procedure V.  

White powder. 1H NMR (300 MHz, D2O) δH ppm 1.69-1.96 (m, 2H, P-CH2-), 2.89-3.14 (m, 5H, -

CH2-, N-CH3), 3.23-3.50 (m, 1H, -CH-) 7.16-7.41 (m, 5H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 

29.4, 36.1 (d, 1JC-P = 127.7 Hz), 38.1 (d, 2JC-P = 2.8 Hz), 38.5 (d, 3JC-P = 5.3 Hz), 126.3, 127.3, 

128.4, 146.1 (d, 3JC-P = 12.1 Hz), 174.0. 31P-NMR (121.5 MHz, D2O): rotamers at δP ppm 19.64, 

19.87. HRMS (ESI): calculated for C11H15NO5P [(M-H)-], 272.0693; found 272.0622.  

Sodium hydrogen3-(N-hydroxy-N-methylcarbamoyl)-2-p-tolylpropylphosphonate (5.1b). 

Prepared from compound 5.10b (150 mg, 0.27 mmol) according to general procedure V. 

White powder. 1H NMR (300 MHz, D2O) δH ppm 1.73-1.97 (m, 2H, P-CH2-), 2.26 (s, 3H, Ph-

CH3), 2.86-3.09 (m, 5H, -CH2-CO, N-CH3), 3.20-3.46 (m, 1H, -CH-), 7.10-7.25 (m, 4H, Ar-H). 13C-

NMR (75 MHz, D2O) δC ppm 20.2, 35.9, 36.1 (d, 1JC-P = 130.5 Hz), 37.7 (d, 2JC-P = 2.8 Hz), 38.9 

(d, 3JC-P = 6.7 Hz), 127.5, 129.2, 136.5, 142.8 (d, 3JC-P = 13.1 Hz), 174.4. 31P-NMR (121.5 MHz, 

D2O): rotamers at δP ppm 24.34, 24.65. HRMS (ESI): calculated for C12H17NO5P [(M-H)-], 

286.0849; found 286.0816.   

Sodium hydrogen3-(N-hydroxy-N-methylcarbamoyl)-2-(4-methoxyphenyl)propylphosphonate 

(5.1c). Prepared from compound 5.10c (200 mg, 0.35 mmol) according to general procedure 

V. White powder. 1H NMR (300 MHz, D2O) δH ppm 1.55-1.81 (m, 2H, P-CH2-), 2.72-2.98 (m, 

5H, -CH2-CO, N-CH3), 3.11-3.37 (m, 1H, -CH-), 3.71 (s, 3H, Ph-O-CH3), 6.84 (d, J = 7.4 Hz, 2H, 

Ar-H), 7.18 (d, J = 7.4 Hz, 2H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 36.8, 37.1 (d, 1JC-P = 132.9 

Hz), 40.3 (d, 3JC-P = 8.3 Hz), 45.6 (d, 2JC-P = 5.8 Hz), 55.4, 113.6, 128.6, 139.5 (d, 3JC-P = 11.7 Hz), 

156.7, 167.8. 31P-NMR (121.5 MHz, D2O): δP ppm = 20.79, 20.83. HRMS (ESI): calculated for 

C12H17NO6P [(M-H)-], 302.0799; found 302.0926. 

3-(N-hydroxy-N-methylcarbamoyl)-2-(p-chlorophenyl)propylphosphonic acid, bisammonium 

salt (5.1d). Prepared from compound 5.16d (200 mg, 0.55 mmol) according to general 

procedure VII. Brown powder. 1H NMR (300 MHz, D2O) δH ppm 1. 87-2.09 (m, 2H, P-CH2-), 

2.81-2 .97 (m, 2H, -CH2-CO-), 3.04 (s, 5/6 of N-CH3), 3.11 (s, 1/6 of N-CH3), 3.24-3.51 (m, 1H, -

CH-), 7.20-7.38 (m, 4H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 34.8 (d, 1JC-P = 131.6 Hz), 35.6, 

37.0 (d, 2JC-P = 2.5 Hz), 39.4 (d, 3JC-P = 10.8 Hz), 128.3, 128.8, 131.5, 142.7 (d, 3JC-P = 9.5 Hz), 
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173.6. 31P-NMR (121.5 MHz, D2O): rotamers at δP ppm 23.25, 23.52. HRMS (ESI): calculated 

for C11H14ClNO5P [(M-H)-], 306.0304; found 306.0306. 

3-(N-hydroxy-N-methylcarbamoyl)-2-(3,4-dichlorophenyl)propylphosphonic acid, 

bisammonium salt (5.1e). Prepared from compound 5.16e (150 mg, 0.38 mmol) according to 

general procedure VII. Brown powder. 1H NMR (300 MHz, D2O) δH ppm 1.84-2.08 (m, 2H, P-

CH2-), 2.57-3.02 (m, 2H, -CH2-CO), 3.06 (s, 5/6 of N-CH3), 3.16 (s, 1/6 of N-CH3), 3.24-3.50 (m, 

1H, -CH-), 7.18 (dd, J = 2.18 Hz, 8.50 Hz, 1H, Ar-H), 7.40-7.50 (m, 2H, Ar-H). 13C-NMR (75 MHz, 

D2O) δC ppm 34.8 (d, 1JC-P = 131.5 Hz), 35.9, 37.2 (d, 2JC-P = 2.7 Hz), 39.5 (d, 3JC-P = 11.3 Hz), 

127.51, 129.53, 129.8, 130.4, 131.6, 144.9 (d, 3JC-P = 9.4 Hz), 173.6. 31P-NMR (121.5 MHz, 

D2O): rotamers at δP ppm 22.47, 22.72. HRMS (ESI): calculated for C11H13Cl2NO5P [(M-H)-], 

339.9914; found 340.0130.  

Sodium hydrogen 3-(N-hydroxy-N-methylcarbamoyl)-2-methylpropylphosphonate (5.1f). 

Prepared from compound 5.10f (125 mg, 0.26 mmol) according to general procedure V. 

Colorless oil. 1H NMR (300 MHz, D2O) δH ppm 1.01 (d, J = 8.40 Hz, 3H, -CH(CH3)-), 1.41-172 

(m, 2H, P-CH2-), 2.06-2.34 (m, 1H, -CH-), 2.36-2.49 (m, 1H, -CH2-CO), 2.59 (dd, J = 6.3 Hz, 

14.02 Hz), 3.20 (s, 5/6 of N-CH3), 3.38 (s, 1/6 of N-CH3). 13C-NMR (75 MHz, D2O) δC ppm 20.6 

(d, 3JC-P = 8.0 Hz), 28.6 (d, 2JC-P = 3.4 Hz), 35.0 (d, 3JC-P = 132.1 Hz), 36.1, 40.2 (d, 3JC-P = 13.3 Hz), 

175.2. 31P-NMR (121.5 MHz, D2O): rotamers at δP ppm 25.03, 25.42. HRMS (ESI): calculated 

for C6H13NO5P [(M-H)-], 210.0537; found 210.1632.  

Sodium hydrogen2-((N-hydroxy-N-methylcarbamoyl)methyl)-3-phenylpropylphosphonate 

(5.2a). Prepared from compound 5.21a (200 mg, 0.36 mmol) according to general procedure 

V. White powder. 1H NMR (300 MHz, D2O) δH ppm 1.46-1.79 (m, 2H, P-CH2-), 2.34-2.66 (m, 

4H, -CH2-), 2.80-2.9 (m, 1H, -CH-), 3.08 (s, 5/6 of N-CH3), 3.18 (s, 1/6 of N-CH3), 7.13-7.39 (m, 

5H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 32.2 (d, 1JC-P = 132.3 Hz), 32.7 (d, 2JC-P = 3.8 Hz), 

35.8, 36.6, 41.0 (d, 3JC-P = 9.2 Hz), 126.2, 128.4, 129.4, 140.4, 174.6. 31P-NMR (121.5 MHz, 

D2O): rotamers at δP ppm 24.68, 25.01. HRMS (ESI): calculated for C12H17NO5P [(M-H)-], 

286.0850; found 286.0821.  

Sodium hydrogen2-((N-hydroxy-N-methylcarbamoyl)methyl)-4-phenylbutylphosphonate 

(5.2b). White powder. Prepared from compound 5.21b (130 mg, 0.23 mmol) according to 

general procedure V. 1H NMR (300 MHz, D2O) δH ppm 1.34-1.84 (m, 4H, -CH2-), 2.08-2.27 (m, 
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1H, -CH-), 2.54-2.77 (m, 4H, -CH2-), 3.20 (s, 5/6 of N-CH3), 3.35 (s, 1/6 of N-CH3), 7.17-7.40 

(m, 5H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 32.0 (d, 1JC-P = 3.7 Hz), 32.5, 33.0 (d, 1JC-P = 

129.9 Hz), 36.1, 36.3 (d, 3JC-P = 6.4 Hz), 37.7 (d, 3JC-P = 10.6 Hz), 126.0, 128.7, 128.8, 143.5, 

175.0. 31P-NMR (121.5 MHz, D2O): δP ppm 22.47. HRMS (ESI): calculated for C13H19NO5P [(M-

H)-], 300.1006; found 300.1204.           

Sodium hydrogen 2-((N-hydroxy-N-methylcarbamoyl)methyl)-5-phenylpentylphosphonate 

(5.2c). Prepared from compound 5.21c (175 mg, 0.30 mmol) according to general procedure 

V. White powder. 1H NMR (300 MHz, D2O) δH ppm 1.28-1.70 (m, 6H, -CH2-), 2.05-2.26 (m, 1H, 

-CH-), 2.50-2.72 (m, 4H, P-CH2-, CH2-CON-), 3.18 (s, 5/6 of N-CH3), 3.35 (s, 1/6 of N-CH3), 

7.18-7.36 (m, 5H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 28.2, 31.8 (d, 2JC-P = 3.6 Hz), 33.0 (d, 

1JC-P = 130.1 Hz), 35.0 (d, 3JC-P = 10.3 Hz), 35.3, 36.1, 36.6 (d, 3JC-P = 6.2 Hz), 126.0, 128.7, 128.8, 

143.7, 175.2. 31P-NMR (121.5 MHz, D2O): δP ppm = 23.18. HRMS (ESI): calculated for 

C14H21NO5P [(M-H)-], 314.1163; found 314.1101.   

Sodium hydrogen 2-((N-hydroxy-N-methylcarbamoyl)methyl)-6-phenylhexylphosphonate 

(5.2d). Prepared from compound 5.21d (175 mg, 0.29 mmol) according to general procedure 

V. White powder. 1H NMR (300 MHz, D2O) δH ppm 1.20-1.66 (m, 8H, -CH2-), 2.11 (m, 1H, -CH-

), 2.46-2.68 (m, 4H, -CH2-), 3.18 (s, 5/6 of N-CH3), 3.34 (s, 1/6 of N-CH3), 7.15-7.38 (m, 5H, Ar-

H). 13C-NMR (75 MHz, D2O) δC ppm 25.6, 31.2, 31.9 (d, 2JC-P = 3.8 Hz), 33.1 (d, 1JC-P = 130.2 Hz), 

35.1, 35.3 (d, 3JC-P = 10.0 Hz), 36.1, 36.6 (d, 3JC-P = 7.0 Hz), 125.9, 128.7, 128.8, 143.7, 175.3. 

31P-NMR (121.5 MHz, D2O): δP ppm = 23.20. HRMS (ESI): calculated for C15H23NO5P [(M-H)-], 

328.1319; found 328.1340.   
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V.C. -Arylpropyl- analogues of fosmidomycin 

As has been described above, Dxr isozymes contain a strictly conserved tryptophan residue 

within a flexible loop that undergoes an induced-fit conformational change upon 

fosmidomycin binding, closing over and interacting with the bound inhibitor. This flexible 

loop is considered essential for Dxr's catalytic activity.24,25,26,27,28 Murkin and coworkers 

demonstrated a change in the rate-limiting step of the M. tuberculosis Dxr catalyzed reaction 

upon alteration of Trp203 in the flexible loop, thereby establishing a functional link between 

this amino acid and chemical barrier crossing.29 Inhibition and binding studies with 

fosmidomycin further reinforced the importance of the flexible loop and the conserved Trp 

in particular, for ligand association. Structural evaluation of a series of Dxr-bound 

compounds like 5.22 and 5.23 (Figure V.8) showed that the indole group of Trp211 in EcDxr 

is considerably displaced in order to accommodate the inhibitors’ pyridine/quinoline rings, 

which form π-π stacking or charge-transfer interactions with the indole of that Trp residue.30  

 

Figure V.8: Relevant Dxr inhibitors (5.22 and 5.23) and target -substituted (5.24a−j) 

fosmidomycin analogues. 

The findings reported in Section V.B make clear that direct introduction of aromatic rings at 

the -carbon (5.1a–e) affords moderate PfDxr inhibitors and a 3-carbon linker between the 

reverse fosmidomycin propyl backbone and a phenyl ring (5.2c) seems optimal for E. coli and 

M. tuberculosis Dxr inhibition, while both a phenylpropyl (5.2c) and a phenylbutyl (5.2d) 

substituent affords potent PfDxr inhibition. This observation is rationalized by 

crystallographic studies of PfDxr in complex with 5.2c and 5.2d, which show that the phenyl 

rings of both compounds spatially overlap and occupy the 'usual' position of the indole ring 

of the conserved Trp296 residue in ternary complexes of active site metal-containing19,24,26 

and metal-free structures.25 This allows an intra-molecular interaction between the phenyl 
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ring and methyl group of the hydroxamic acid that is equivalent to the inter-molecular 

interactions observed in ternary complexes with FR900098.19,26 Rearrangement of the loop 

results in favorable interactions between these phenyl rings and the tryptophan residue. 

Importantly, both analogues showed submicromolar schizontocidal activity against the P. 

falciparum K1 strain, where essentially the same SAR was observed as for PfDxr inhibition. 

We therefore embarked on a follow-up study aimed at exploring the influence of 

lipophilicity, electronic and steric properties of the phenylpropyl side chain of 5.2c. While 

anticipating that analogues 5.24a−j would retain the capacity to occupy the aromatic 

'hotspot', we envisioned reinforced interactions between their phenyl substituents and the 

loop residues. 

V.C.1. Synthesis 

The synthesis of 5.24a−j (Scheme V.5) was achieved starting from commercially available 

aryl iodides 5.25a−j. Sonogashira coupling with but-3-yn-1-ol afforded the corresponding 

alkynols 5.26a−j, which were readily converted to 5.27a−j upon catalytic hydrogenation.  

 

Scheme V.5 Reagents and conditions: i) but-3-yn-1-ol, PdCl2(PPh3), CuI, Et3N, 117 °C; ii) H2, 

Pd/C, MeOH; iii) Dess-Martin periodinane, CH2Cl2; iv) Ph3P=CHCOOtert-Bu, toluene, 120 °C, 

59% (5.29a), 51% (5.29b), 64% (5.29c), 65% (5.29d), 53% (5.29e), 49% (5.29f), 60% (5.29g), 

67% (5.29h), 67% (5.29i), 61% (5.29j); v) (BnO)2OPMe, n-BuLi, THF, -78 °C, 54% (5.30a), 45% 

(5.30b), 53% (5.30c), 47% (5.30d), 43% (5.30e), 47% (5.30f), 62% (5.30g), 55% (5.30h), 49% 

(5.30i), 71% (5.30j); vi) (a) TFA, CH2Cl2, 45 min, 0 °C to rt; (b) MeN(OBn)H, EDC, DMAP, 
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CH2Cl2, 18 h  rt, 71% (5.31a), 72% (5.31b), 57% (5.31c), 51% (5.31d), 71% (5.31e), 69% 

(5.31f), 55% (5.31g), 44% (5.31h), 78% (5.31i), 68% (5.31j); vii) H2, Pd/C, MeOH, NaOHaq., 25 

°C, 10-15 min, quant.   

Dess-Martin oxidation to the corresponding aldehydes 5.28a−j and subsequent Wittig 

olefination afforded the ,-unsaturated esters 5.29a−j, which served as electrophiles in a 

Michael reaction with dibenzyl methylphosphonate to yield the respective 1,4-addition 

adducts 5.30a−j. Hydrolysis of the tert-butyl ester and EDC-mediated coupling with O-benzyl-

N-methyl-hydroxylamine gave 5.31a−j. Finally, removal of all benzyl protecting groups by 

catalytic hydrogenolysis afforded the desired analogues 5.24a−j.  

V.C.2. Biological evaluation 

The title compounds were tested for their capacity to inhibit recombinant EcDxr and PfDxr  

(Table V.3) using a spectrophotometric assay monitoring the substrate-dependent oxidation 

of NADPH associated with the Dxr-catalyzed reaction as described in section III.D.  

Fosmidomycin and FR900098 remain superior in inhibition of EcDxr, PfDxr and Pf-K1 growth, 

when compared to 5.2c and its phenyl ring derivatives 5.24a–5.24j. Surprisingly, none of the 

changes introduced in 5.24a–5.24j relative to 5.24c, improve the inhibition of EcDxr. The 

assortment of substituents that induce variable electronic and steric effects was expected to 

yield some outliers in the inhibition of this enzyme. Meta substitution seems to be favorable 

for PfDxr inhibition as the meta-methyl- (5.24b) and the meta-fluoro (5.24f) analogues both 

surpass 5.2c in inhibition of this enzyme. This is not an absolute pattern, however, as 5.24d 

does not perform better than 5.24c. Steric bulk is clearly relevant as both the 1-naphthyl- 

(5.24h) and the 2-napthyl- (5.24i) analogues perform poorly in the enzyme assays while 

5.24h, 5.24i and 5.24j all rank amongst the poorest in inhibiting Pf-K1 growth. Note that the 

above (section V.B.3.) crystallography studies showed that upon binding, the rearrangement 

of the fosmidomycin backbone in 5.2c would produce a close contact with the usual 

conformation seen for Lys312, and so a small conformational change is needed to relieve 

this clash while maintaining an interaction with the phosphonate. Even if their ‘extra’ 

aromatic moieties confer improved lipophilicity and therefore better cellular access, steric 

constraints at the Dxr active site probably obstruct tight binding of 5.24h, 5.24i and 5.24j. 
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Table V.3: In vitro inhibition of recombinant Dxrs from E. coli and P. falciparum and MIC50 

values against in vitro growth of the P. falciparum K1 strain. 

 IC50 (µM) P. falciparum K1 

Compound EcDxr PfDxr IC50 (μM) 

fosmidomycin (1.1) 

FR900098 (1.2) 

5.2c 

5.24a 

5.24b 

5.24c 

5.24d 

5.24e 

5.24f 

5.24g 

5.24h 

5.24i 

5.24j 

0.03 

0.03 

0.84 

1.04 

10.40 

1.18 

0.97 

10.53 

2.00 

7.33 

13.91 

4.07 

nd 

0.036 ± 0.006 

0.01831 

0.117 ± 0.012 

0.56 ± 0.007 

0.05 ± 0.007 

0.12 ± 0.006 

0.15 ± 0.006 

3.2 ± 0.115 

0.07 ± 0.001 

0.27 ± 0.01 

0.28 ± 0.015 

0.87 ± 0.03 

1.6 ± 0.25 

1.7 ± 0.8917 

0.42 ± 0.1717 

2.67 ± 0.43 

1.37 ± 1.23 

19.97 ± 15.98 

3.84 ± 2.50 

7.83 ± 3.65 

51.42 ± 21.79 

5.72 ± 4.38 

45.72 ± 21.28 

49.34 ± 18.90 

46.63 ± 15.40 

 64 ± 0.0  

              nd = not determined 

Generally, the changes introduced in 5.24a–5.24j relative to 5.24c did not improve the MIC50 

values against in vitro growth of P. falciparum K1 strain. It is puzzling to see that 5.24b does 

not elicit a MIC50 value consistent with its PfDxr inhibition, rather effecting lower inhibition 

compared to its isomer (5.24a), which shows only modest PfDxr inhibition. Remarkably, 

methyl-substitution of the aromatic ring at the meta-position (5.24b) increases PfDxr 

inhibition, while it unfavorably influences EcDxr inhibition. A similar trend is observed for the 

meta-fluoro analogue 5.24f.  

V.C.3. X-ray structures of PfDxr in complex with seven inhibitors 

The structures of PfDxr in complex with seven of the new -substituted inhibitors (5.24a-d, 

5.24f, 5.24g, and 5.24h) have been solved. All seven of the new -substituted complexes 

were found to take on the same general structure seen in the 5.2c complex (section V.B.3.), 

but can be grouped into two sets depending on whether they represent meta- or para- 
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substitutions to the phenyl ring. The structures for 3 meta- (5.24b, 5.24d, 5.24f) and 3 para- 

(5.24a, 5.24c, 5.24g) substitutions, as well as 5.24h (which was included as a member of the 

meta-class) are shown in Figure V.9. The members of the meta-class form a tight cluster of 

eight independent structures (including both subunits of the dimers), where the phenyl rings 

of the new compounds closely overlap that observed in the 5.2c complex (Figure V.9B). 

Interactions of the phosphonate and hydroxamic acid groups in all complexes are essentially 

identical to that of the 5.2c complex, as is the overall conformation of the fosmidomycin 

backbone. All members adopt the same pose, where the substituent is directed towards the 

indole ring of Trp296 in the 5.2c complex; none points in the other direction, towards 

His341. However, all inhibitors have an effect on the positioning of the indole ring, and on 

the quality of the electron density of the flap. Unsurprisingly, the introduction of a 

naphthalene ring in 5.24h causes a large change in the conformation of Trp293, which is 

needed to prevent clashes with the indole (Figure V.9B); the flap in this structure is well 

defined. Although there are no close contacts to the indole ring, only a few atoms of one 

edge of the naphthalene ring are solvent-exposed.  

The slightly smaller methoxyphenyl substituent in 5.24d also causes a movement of the 

tryptophan residue, to prevent close contacts between the indole ring and the methyl group. 

The flap is rather well defined in both chains, as is the density for the indole group, but the 

change in conformation results in a loss of the close contacts to the indole seen in the 5.2c 

complex. The methoxyphenyl group is approximately planar, and so occupies the same place 

as the corresponding portion of the naphthalene ring of 5.24h (Figure V.9B). The oxygen of 

the methoxy group does not form any hydrogen bonding interactions with the protein, and 

is shielded from the solvent by residues near 360. The introduction of the methyl and 

fluorine substituents in 5.24b and 5.24f, respectively, would result in close contacts to one 

edge of the indole, if the conformation seen in the 5.2c complex were maintained (three 

contacts are predicted, of 2.5 Å and ~3.1Å, in 5.24b and 5.24f, respectively). Instead, the flap 

moves, and the electron density in a three-residue region of the flap at and prior to Trp296 

becomes poorly defined; the indole ring is moderately clear in only one of the four active 

sites (that of the 6f A-chain). Both 5.24b and 5.24f show better IC50s than 5.2c, however, 

while the other three meta-substitutes have slightly higher values (Table V.3). 
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Figure V.9: X-ray structures of Dxr inhibitors. (A) Electron density for the inhibitor 5.24h and 

selected nearby atoms, contoured at the rms value of the σ-weighted (2m|Fo| − D|Fc|) 

electron-density map18 (0.39 e/Å3) in light blue, as well as at 2.5 e/Å3 (gold) to show the 

higher electron density near the metal ion. (B) Superimposed structures of the meta-class 

compounds, 5.24b (light brown), 5.24d (orange), 5.24f (dark brown) and 5.24h (yellow), on 

5.2c (dark gray). The well-defined flap residue, Trp296, of 5.24h and 5.2c is seen to undergo 

a conformational change. (C) Superimposed structures of the para-class compounds, 5.24a 

(dark green), 5.24c (light green) and 5.24g (cyan), on 5.2d (dark grey). Fluorine atoms are 

shown in magenta. (D) All the structures superimposed, using the same coloring scheme 

defined in panels B and C. 
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The lack of well-defined interactions between the best inhibitors and the indole ring of 

Trp296 suggests that the interactions with the indole that are observed in the 5.2c complex 

are not the most important determinants of the observed IC50s. We attribute this pattern to 

subtle changes in the intra-molecular interactions of the phenyl ring of each inhibitor with 

the methyl group of the hydroxamic acid. It is striking that the longer the substituent, the 

higher the IC50 observed. We suggest that the most energetically favorable phenyl/methyl 

interaction, which presumably dominates in solution, depends on the size of the substituent. 

This conformation becomes harder to attain in the enzyme complexes, because it occurs in 

the context of other enzyme-inhibitor interactions. 

The members of the para-group (5.24a, 5.24c, 5.24g) form a cluster of six independent 

structures (Figure V.9B). The interactions at the phosphonate and hydroxamic acid groups 

are essentially identical in all complexes, as is the conformation of the fosmidomycin 

backbone. While their phenyl rings are closely co-planar with that of the 5.2c complex, the 

separate rings are not so tightly clustered and each is shifted to some degree within the 

binding site. The smallest shift is associated with the smallest substitution: ~0.5 Å for (5.24a, 

~0.7Å for 5.24c and ~1.0 Å for 5.24g. This effect is achieved by small differences in the 

torsion angles of the bonds between the ring and the phosphonate group, which give the 

effect of splaying the methylene linker, while sliding the ring in the plane of the phenyl ring 

seen in 5.2c (Figure V.9C). The important intra-ligand ring-methyl group interactions are, 

therefore, maintained in all complexes (Figure V.9D).  

Again, the electron density in each complex is poorly defined in regions of the flap; the 

indole ring of Trp296 well defined in only three active sites. In these three complexes, 

Trp296 is similar to the 5.2c complex, and the indole ring helps to shield the edge of the 

phenyl ring of the inhibitor. Two of the fluorine atoms in the 5.24g substitution interact with 

a water molecule that is structurally highly conserved (although slightly displaced in the 

5.24a complex), while the oxygen atom in the methoxy-substituent of 5.24c accepts a 

hydrogen bond from the main-chain amino nitrogen of residue 359. Overall, the para-

substituted ligands are poorer inhibitors than their meta-equivalents (placing 5.24i in the 

para-group, as the para-equivalent of 5.24h). This is probably due to the translation of the 

relevant phenyl group from its energetically-preferred position in the 5.2c complex, although 
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this is compensated for in part by interactions of 5.24g and 5.24c with structurally-conserved 

polar atoms 

V.C.4. Conclusions 

The introduction of substituents on the phenyl ring of 5.2c that will reinforce interactions of 

analogues with the aromatic ‘hot spot’ that is clearly influential in the binding of 5.2c shows 

to not be a trivial task. It tends out that the supposed interactions with the conserved 

tryptophan residue in this area do not account majorly for the outcome of the binding, and 

hence even when the interactions do happen, the fate of Dxr inhibition still lies in other 

factors (such as the active site stretching and the implications on the H-bonding interactions 

with the inhibitor), which should be systematically investigated. X-rays studies corroborate 

the adverse steric effects caused by the 1-naphthyl group in 5.24h. All the prepared 

compounds 5.24a-j failed to elicit similar potency as fosmidomycin or FR900098 as EcDxr, 

PfDxr and P. falciparum K1 strain growth inhibitors. Given that some analogues performed 

better than 5.2c in inhibiting PfDxr (the 3-fluoro phenyl and the 3-methylphenyl), there 

remains a wealth of knowledge to be understood on details of active site interactions 

beyond the well described aromatic hotspot. 
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V.C.5. Experimental details 

General Methods and Materials. See sections III.E. and V.B.6. 

General Procedure I: Sonogashira coupling towards aralkynols 5.26a–j    

To a solution of the aryl iodide (5.25a–j) in degassed triethylamine, was added PdCl2(PPh3)2, 

CuI and but-3-yn-1-ol. The reaction mixture was refluxed at 117 °C for 3 h after which, it was 

cooled and concentrated in vacuo. Column chromatography using a Hex/EtOAc solvent 

system  afforded compounds 5.26a–j.   

General Procedure II: Triple bond reduction  

To a solution of the alkyne 5.26a–j in MeOH, was added 10 % of Pd/C under a nitrogen 

atmosphere. Molecular hydrogen (H2) was bubbled through the mixture for 30 minutes 

followed by filtration through a Whatman filter paper path. In vacuo concentration yielded 

compounds 5.27a–j which were used for the next step without further purification. 

General Procedure III: Dess-Martin oxidation and concomitant Wittig olefination 

A solution of the starting material (5.27a–j) in CH2Cl2 and a nitrogen atmosphere was cooled 

to 0 °C. Dess-Martin periodinane (2.0 equiv) was added and the mixture allowed to attain 

RT. After stirring for 3 h, TLC analysis showed a completed reaction. The reaction mixture 

was washed once with a 5:1 mixture of NaHCO3 (sat. aq.) and Na2S2O3 (aq. 2.0 M), and the 

water layer extracted three times with diethyl ether. The combined organic layer was 

washed successively with a 0.1 M solution of HCl and brine, dried over anhydrous Na2SO4 

and concentrated in vacuo to obtain the corresponding aldehyde (5.28a–j) which was used 

without further purification. The aldehyde was dissolved in toluene under nitrogen 

atmosphere and tert-butyl (triphenylphosphoranylidene)acetate (3 equiv) was added. An 

overnight reflux at 120°C, was followed by cooling and in vacuo concentration. Sorption of 

the crude on celite and silica gel chromatography gave access to the tert-butyl esters 5.29a–

j. 
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General procedure IV: Michael addition of methylphosphonatediesters to α,β-unsaturated 

tert-butyl esters.  

To a solution of dibenzylmethyl phosphonate (2 eq.) in THF and under a nitrogen 

atmosphere was added n-BuLi (2 eq.) at -78 °C. After 30 minutes, a solution of the ester was 

added to the reaction mixture dropwise. Three hours later, the reaction showed to be 

complete by TLC and was quenched with NH4Cl (sat. aq.). The water layer was extracted 

three times with EtOAc. Organic fractions were pooled, washed once with brine and dried 

over anhydrous Na2SO4. Column chromatography (EtOAc/Hex system) afforded the adducts 

5.30a–j. 

General procedure V: Acidic cleavage of the tert-butyl ester and protected hydroxamate 

formation 

A 0.1 M solution of the starting material (5.30a–j) in CH2Cl2/TFA (80:20), at 0 °C, was stirred 

for two hours, after which an excess of toluene was added to the reaction mixture and 

concentrated in vacuo. The crude acid was redissolved in CH2Cl2 (0.1 M), followed by 

addition of EDC (1.2 equiv), DMAP (1.2 equiv) and triethylamine (2.0 equiv). O-Benzyl-N-

methylhydroxylamine TFA salt (1.2 equiv) was added as a 0.2 M solution in CH2Cl2, and the 

mixture stirred overnight at RT. The reaction was subsequently quenched with sat. aq. 

NaHCO3, extracted three times with CH2Cl2, washed with brine and dried over Na2SO4. 

Column chromatography (CH2Cl2/MeOH system) produced the protected hydroxamic acids 

5.31a–j.  

General procedure VI: Catalytic hydrogenolysis of benzyl protective groups 

The benzyl protected compound 5.31a–j (100-130 mg) was dissolved in MeOH (10 ml) under 

inert atmosphere and 10 % of Pd/C was added. The resulting mixture was then stirred under 

hydrogen atmosphere while monitoring the progress by mass spectroscopy. At completion 

(about 10 minutes), the reaction mixture was filtered and neutralized with NaOH (1 equiv). 

The reaction mixture was then concentrated in vacuo, re-dissolved in a 1:1 (v/v) mixture of 

water and tert-butanol, frozen and lyophilized to afford the desired targets compounds 

5.24a–j as monosodium phosphonic acid salts in quantitative yield. 
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Tert-butyl (E)-6-(p-tolyl)hex-2-enoate (5.29a). Prepared according to general procedure III. 

Purification 1:1 toluene/hexane v/v; yield 59%. 1H NMR (300 MHz, CDCl3) δH ppm 1.47 (br. s, 

9H, t-Bu), 1.75 (app. quint. J = 8.0 Hz, 2H, -CH2-), 2.12-2.23 (m, 2H, -CH2-), 2.30 (s, 3H, Ph-

CH3), 2.58 (t, J = 7.5 Hz, 2H, -CH2-), 5.74 (dt, J = 1.5 Hz, 15.6 Hz, 1H, -CH=CHCO), 6.87 (dt J = 

7.1 Hz, 15.6 Hz, 1H, -CH=CHCO), 7.00-7.16 (m, 4H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 

20.9, 28.1, 29.7, 31.4, 34.7, 79.9, 123.2, 128.2, 128.9, 135.2, 138.6, 147.5, 170.0. HRMS (ESI): 

calculated for C17H25O2 [(M+H)+], 261.1849; found 261.1856. 

Tert-butyl (E)-6-(m-tolyl)hex-2-enoate (5.29b). Prepared according to general procedure III. 

Purification 1:1 toluene/hexane v/v; yield 51%. 1H NMR (300 MHz, CDCl3) δH ppm 1.44 (br. s, 

9H, t-Bu), 1.76 (app. quint. J = 7.7 Hz, 2H, -CH2-), 2.14-2.24 (m, 2H, -CH2-), 2.32 (s, 3H, Ph-

CH3), 2.59 (t, J = 7.7 Hz, 2H, -CH2-), 5.75 (dt, J = 1.6 Hz, 15.6 Hz, 1H, -CH=CHCO), 6.87 (dt J = 

6.9 Hz, 15.5 Hz, 1H, -CH=CHCO), 6.93-7.02 (m, 3H Ar-H), 7.12-7.20 (m, 1H, Ar-H). 13C-NMR 

(75 MHz, CDCl3) δC ppm 21.3 , 28.1, 29.7, 31.5, 35.2, 80.0, 123.3, 125.4, 126.6, 128.2, 129.2, 

137.8, 141.7, 147.5, 166.0. HRMS (ESI): calculated for C17H25O2 [(M+H)+], 261.1849; found 

261.1852. 

Tert-butyl (E)-6-(4-methoxyphenyl)hex-2-enoate (5.29c). Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 64%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.47 (br. s, 9H, t-Bu), 1.73 (app. quint. J = 7.7 Hz, 2H, -CH2-), 2.12-2.23 (m, 2H, -CH2-), 

2.32 (s, 3H, Ph-CH3), 2.57 (t, J = 7.4 Hz, 2H, -CH2-), 3.76 (s, 3H, PhOCH3), 5.74 (dt, J = 1.7 Hz, 

15.7 Hz, 1H, -CH=CHCO), 6.82 (dt J = 6.4 Hz, 15.7 Hz, 1H, -CH=CHCO), 7.26-7.42 (m, 4H, Ar-H). 

13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 29.8, 31.3, 34.2, 55.1, 78.3, 113.7, 123.2, 129.2, 

133.7, 147.5, 157.7, 166.0. HRMS (ESI): calculated for C17H25O3 [(M+H)+], 277.1798; found 

277.1790. 

Tert-butyl (E)-6-(3-methoxyphenyl)hex-2-enoate (5.29d). Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 65%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.46 (br. s, 9H, t-Bu), 1.76 (app. quint. J = 7.6 Hz, 2H, -CH2-), 2.16-2.24 (m, 2H, -CH2-), 

2.57 (t, J = 7.6 Hz, 2H, -CH2-), 3.72 (s, 3H, PhOCH3), 5.73 (dt, J = 1.6 Hz, 15.7 Hz, 1H, -

CH=CHCO), 6.87 (dt J = 6.9 Hz, 15.7 Hz, 1H, -CH=CHCO), 6.92-7.04 (m, 3H Ar-H), 7.12-7.21 (m, 

1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 27.9 , 28.1, 29.4, 31.5, 35.8, 80.0, 123.3, 125.4, 
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126.6, 128.2, 129.2, 137.8, 141.7, 146.8, 165.4. HRMS (ESI): calculated for C17H25O3 [(M+H)+], 

277.1798; found 277.1799. 

Tert-butyl (E)-6-(4-fluorophenyl)hex-2-enoate (5.29e): Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 53%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.47 (br. s, 9H, t-Bu), 1.66-1.82 (app. quint, J = 7.6 Hz, 2H, -CH2-), 2.19 (m, 2H, -CH2-), 

2.60 (t, J = 7.4 Hz, 2H, -CH2-), 5.75 (dt, J = 1.7 Hz, 15.80 Hz, 1H, -CH=CHCO), 6.80-7.00 (m, 3H, 

-CH=CHCO, Ar-H), 7.06-7.15 (m, 2H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 29.8, 31.3, 

34.4, 80.0, 115.0 (d, 2JC-F = 20.9 Hz), 123.4, 129.7 (d, 3JC-F = 8.8 Hz), 137.3 (d, 4JC-F = 3.6 Hz), 

147.2, 161.3 (d, 1JC-F = 242.9 Hz), 166.0. HRMS (ESI): calculated for C16H22FO2 [(M+H)+], 

265.1598; found 265.1597. 

Tert-butyl (E)-6-(3-fluorophenyl)hex-2-enoate (5.29f): Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 49%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.48 (br. s, 9H, t-Bu), 1.78 (app. quint. J = 8.0 Hz, 2H, -CH2-), 2.15-2.25 (m, 2H, -CH2-), 

2.63 (t, J = 7.7 Hz, 2H, -CH2-), 5.75 (dt, J = 1.7 Hz, 15.6 Hz, 1H, -CH=CHCO), 6.79-6.97 (m, 4H, -

CH=CHCO, Ar-H), 7.18-7.27 (m, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 29.4, 31.3, 

34.9 (d, 4JC-F = 1.8 Hz), 80.1, 112.7, 115.2 (d, 2JC-F = 21.1 Hz), 123.5, 124.0 (d, 4JC-F = 2.8 Hz), 

129.7 (d, 3JC-F = 8.2 Hz), 144.3 (d, 3JC-F = 7.1 Hz), 147.1, 162.8 (d, 2JC-F = 245.5 Hz), 166.0. HRMS 

(ESI): calculated for C16H22FO2 [(M+H)+], 265.1598; found 265.1599. 

Tert-butyl (E)-6-(4-(trifluoromethyl)phenyl)hex-2-enoate (5.29g). Prepared according to 

general procedure III. Purification 1:1 toluene/hexane v/v; yield 60%. 1H NMR (300 MHz, 

CDCl3) δH ppm 1.48 (br. s, 9H, t-Bu), 1.80 (app. quint. J = 7.5 Hz, 2H, -CH2-), 2.21 (m, 2H, -CH2-

), 2.69 (t, J = 7.8 Hz, -CH2-), 5.76 (dt, J = 1.8 Hz, 15.6 Hz, 1H, -CH=CHCO), 6.86 (dt, J = 6.8 Hz, 

15.6 Hz, 1H, -CH=CHCO), 7.28 (d, J = 9.0 Hz, 2H, Ar-H), 7.54 (d, J = 8.5 Hz, 2H, Ar-H). 13C-NMR 

(75 MHz, CDCl3) δC ppm 28.1, 29.4, 31.3, 35.0, 80.1, 123.6, 124.3 (quart., 1JC-F = 271.9 Hz), 

125.3 (quart., 3JC-F = 7.2 Hz), 128.3 (quart., 2JC-F = 32.5 Hz), 128.7, 145.9, 146.9, 165.9. HRMS 

(ESI): calculated for C17H22F3O2 [(M+H)+], 315.1566; found 315.1570. 

Tert-butyl (E)-6-(naphthalen-1-yl)hex-2-enoate (5.29h). Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 67%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.47 (br. s, 9H, t-Bu), 1.90 (app. quint. J = 7.6 Hz, 2H, -CH2-), 2.21-2.31 (m, 2H, -CH2-), 

3.08 (t, J = 7.6 Hz, -CH2-), 5.78 (dt, J = 1.5 Hz, 15.6 Hz, 1H, -CH=CHCO), 6.91 (dt, J = 6.9 Hz, 
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15.6 Hz, 1H, -CH=CHCO), 7.26-7.53 (m, 4H, Ar-H), 7.70 (d, J = 8.4 Hz, 1H, Ar-H), 7.80-8.00 (m, 

2H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 28.9, 31.8, 32.4, 80.0, 123.4, 123.6, 125.4, 

125.5, 125.7, 126.0, 126.7, 128.7, 131.7, 133.9, 137.8, 147.3, 166.0. HRMS (ESI): calculated 

for C20H25O2 [(M+H)+], 297.1849, found 297.1854. 

Tert-butyl (E)-6-(naphthalen-2-yl)hex-2-enoate (5.29i). Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 67%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.48 (br. s, 9H, t-Bu), 1.84 (app. quint. J = 8.1 Hz, 2H, -CH2-), 2.21 (m, 2H, -CH2-), 2.77 (t, 

J = 7.7 Hz, -CH2-), 5.76 (dt, J = 1.6 Hz, 15.2 Hz, 1H, -CH=CHCO), 6.89 (dt, J = 7.3 Hz, 15.8 Hz, 

1H, -CH=CHCO), 7.29 (dd, J = 1.8 Hz, 8.4 Hz, 1H, Ar-H), 7.36-7.47 (m, 2H, Ar-H), 7.58 (s, 1H, 

Ar-H),7.71-7.81 (m,2H, Ar-H).13C-NMR (75 MHz, CDCl3) δC ppm 28.1, 29.5, 31.4, 35.3, 80.0, 

123.3, 125.1, 125.8, 126.4, 127.1, 127.3, 127.5, 127.9, 132.0, 133.5, 139.2, 147.4, 

166.0.HRMS (ESI): calculated for C20H25O2 [(M+H)+], 297.1849; found 297.1852. 

Tert-butyl (E)-6-([1,1'-biphenyl]-4-yl)hex-2-enoate (5.29j). Prepared according to general 

procedure III. Purification 1:1 toluene/hexane v/v; yield 61%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.48 (br. s, 9H, t-Bu), 1.84 (app. quint. J = 7.5 Hz, 2H, -CH2-), 2.21-2.35 (m, 2H, -CH2-), 

2.65 (t, J = 7.8 Hz, -CH2-), 5.75 (dt, J = 1.7 Hz, 15.7 Hz, 1H, -CH=CHCO), 6.90 (dt, J = 6.8 Hz, 

15.7 Hz, 1H, -CH=CHCO), 7.22 (d, J = 8.5 Hz, 2H, Ar-H), 7.27-7.67 (m, 7H, Ar-H). 13C-NMR (75 

MHz, CDCl3) δC ppm 28.1, 29.6, 31.4, 34.8, 80.0, 123.4, 126.9, 127.0, 127.1, 128.7, 128.8, 

138.8, 140.8, 141.0, 147.4, 166.0. HRMS (ESI): calculated for C22H27O2 [(M+H)+], 323.2006, 

mass not found. 

Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(p-tolyl)hexanoate (5.30a). Prepared 

according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 54%. 1H 

NMR (300 MHz, CDCl3) δH ppm 1.38 (br. s, 9H, t-Bu), 1.42-1.62 (m, 4H, -CH2-), 1.76-1.95 (m, 

2H, -CH2-), 2.19-2.32 (m, 5H, Ph-CH3, -CH2-), 2.35-2.54 (m, 3H, -CH2-, -CH-), 4.87-5.08 (m, 4H, 

-CH2-Ph), 6.97-7.08 (m, 4H, Ar-H), 7.28-7.35 (m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 

21.2, 28.3, 28.7, 30.1 (d, 1JC-P = 138.6 Hz), 30.6 (d, 2JC-P = 4.1 Hz), 31.1, 34.5 (d, 3JC-P = 10.1 Hz), 

35.6, 40.5 (d, 3JC-P = 9.3 Hz), 66.9 (d, 2JC-P = 6.6 Hz), 67.0 (d, 2JC-P = 6.6 Hz), 80.2, 127.9, 127.9, 

128.2, 128.3, 128.5, 128.9, 135.0, 136.4 (d, 3JC-P = 6.2 Hz), 136.4 (d, 3JC-P = 6.0 Hz), 139.1, 

171.6. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.29. HRMS (ESI): calculated for C32H42O5P 

[(M+H)+], 537.2764; found 537.2778. 
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Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(m-tolyl)hexanoate (5.30b). Prepared 

according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 45%. 1H 

NMR (300 MHz, CDCl3) δH ppm 1.39 (br. s, 9H, t-Bu), 1.42-1.63 (m, 4H, -CH2-), 1.78-1.98 (m, 

2H, -CH2-), 2.17-2.34 (m, 5H, Ph-CH3, -CH2-), 2.35-2.54 (m, 3H, -CH-, -CH2-), 4.88-5.08 (m, 4H, 

-CH2-Ph), 6.88-7.00 (m, 3H, Ar-H), 7.14 (t, J = 7.7 Hz, 1H, Ar-H), 7.28-7.37 (m, 10H, Ar-H). 13C-

NMR (75 MHz, CDCl3) δC ppm 21.6, 28.3, 28.6, 30.1(d, 1JC-P = 138.6 Hz), 30.6 (d, 2JC-P = 3.9 Hz), 

34.6 (d, 3JC-P = 10.3 Hz), 36.1, 40.5 (d, 3JC-P = 10.3 Hz), 67.3 (d, 2JC-P = 6.2 Hz), 80.6, 125.6, 

126.7, 128.2, 128.4, 128.6, 128.8, 128.4, 136.7 (d, 3JC-P = 7.1 Hz), 138.0, 142.5, 171.9.31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 33.29. HRMS (ESI): calculated for C32H42O5P [(M+H)+], 

537.2764; found 537.2786. 

Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(4-methoxyphenyl)hexanoate (5.30c). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

53%. 1H NMR (300 MHz, CDCl3) δH ppm 1.39 (br. s, 9H,t-Bu), 1.43-1.97 (m, 6H, -CH2-), 2.17-

2.52 (m, 5H, -CH2-, -CH-), 3.77 (s, 3H, PhOCH3), 4.88-5.10 (m, 4H, -CH2-Ph), 6.79 (d, J = 9.1 Hz, 

2H, Ar-H), 7.02 (d, J = 9.1 Hz, 2H, Ar-H), 7.26-7.44 (m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC 

ppm 28.0, 28.5, 29.8 (d, 1JC-P = 138.5 Hz), 30.3 (d, 2JC-P = 3.9 Hz), 34.2 (d, 3JC-P = 10.7 Hz), 34.9, 

40.2 (d, 3JC-P = 9.9 Hz), 55.2, 67.0 (d, 2JC-P = 6.1 Hz), 67.0 (d, 2JC-P = 6.7 Hz), 80.3, 113.7, 127.9, 

128.3, 128.5, 129.2, 134.3, 136.4 (d, 3JC-P = 5.3 Hz), 136.4 (d, 3JC-P = 5.9 Hz), 157.7, 171.6. 31P-

NMR (121.5 MHz, CDCl3): 32.18.HRMS (ESI): calculated for C32H42O6P [(M+H)+], 553.2714; 

found 553.2717. 

Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(3-methoxyphenyl)hexanoate (5.30d). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

47%. 1H NMR (300 MHz, CDCl3) δH ppm 1.39 (br. s, 9H, t-Bu), 1.42-1.63 (m, 4H, -CH2-), 1.76-

1.93 (m, 2H, -CH2-), 2.19-2.54 (m, 5H, -CH2-, -CH-), 3.76 (s, 3H, PhOCH3), 4.87-5.08 (m, 4H, –

CH2-Ph), 6.65-6.74 (m, 3H, Ar-H), 7.16 (t, J = 8.1 Hz, 1H, Ar-H), 7.28-7.36 (m, 10H, Ar-H). 13C-

NMR (75 MHz, CDCl3) δC ppm 28.3, 28.5, 30.2 (d, 1JC-P = 139.8 Hz), 30.6 (d, 2JC-P = 4.1 Hz), 34.5 

(d, 3JC-P = 11.0 Hz), 36.1, 40.4 (d, 3JC-P = 9.4 Hz), 55.3, 67.2 (d, 2JC-P = 4.1 Hz), 67.3 (d, 2JC-P = 4.3 

Hz), 80.6, 111.2, 114.4, 121.0, 128.2, 128.6, 128.8, 129.5, 136.6 (d, 3JC-P = 1.5 Hz), 136.7 (d, 

3JC-P = 6.0 Hz), 136.7 (d, 3JC-P = 6.0 Hz),  144.1, 159.8, 171.9. 31P-NMR (121.5 MHz, CDCl3): δP 

ppm = 33.24. HRMS (ESI): calculated for C32H42O6P [(M+H)+], 553.2714; found 553.2717. 
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Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(4-fluorophenyl)hexanoate (5.30e). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

43%. 1H NMR (300 MHz, CDCl3) δH ppm 1.38 (br. s, 9H, t-Bu), 1.42-1.61 (m, 4H, -CH2-), 1.76-

1.96 (m, 2H, -CH2-), 2.16-2.34 (m, 2H, -CH2-), 2.18-2.52 (m, 3H, -CH2-, -CH-), 4.89-5.08 (m, 4H, 

-CH2-Ph), 6.78-6.96 (m, 2H, Ar-H), 7.03 (m, 2H, Ar-H), 7.28-7.37 (m, 10H, Ar-H). 13C-NMR (75 

MHz, CDCl3) δC ppm 28.0, 28.4, 29.9 (d, 1JC-P = 138.9 Hz), 30.3 (d, 2JC-P = 3.9 Hz), 34.1 (d, 3JC-P = 

10.2 Hz), 34.9, 40.2, (d, 3JC-P = 10.2 Hz), 67.0 (m), 80.3, 114.9 (d, 2JC-F = 20.4 Hz), 127.9, 128.3, 

128.5, 129.6 (d, 3JC-F = 7.7 Hz), 136.4 (d, 3JC-P = 6.3 Hz), 137.8 (d, 4JC-F = 3.3 Hz), 161.1 (d, 1JC-F = 

243.0 Hz), 171.6. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.00. HRMS (ESI): calculated for 

C31H39FO5P [(M+H)+], 541.2514; found 541.2519. 

Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(3-fluorophenyl)hexanoate (5.30f). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

47%. 1H NMR (300 MHz, CDCl3) δH ppm 1.33-1.40 (br. s, 9H, t-Bu), 1.41-1.61 (m, 4H, -CH2-), 

1.72-1.97 (m, 2H, -CH2-), 2.18-2.33 (2H, m, -CH2-), 2.36-2.55 (m, 3H, -CH2-, -CH-), 4.89-5.08 

(m, 4H, CH2-Ph), 6.76-6.90 (m, 3H, Ar-H), 7.19 (td, 1H, J = 6.08 Hz, 13.96 Hz, Ar-H), 7.29-7.39 

(m, 10H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.2, 28.3, 30.2 (d, 1JC-P = 139.9 Hz), 30.5 (d, 

2JC-P = 4.9 Hz), 34.4 (d, 3JC-P = 10.8 Hz), 35.7, 40.5 (d, 3JC-P = 9.8 Hz), 66.9 (d, 2JC-P = 6.6 Hz), 67.0 

(d, 2JC-P = 6.4 Hz), 80.6, 112.8 (d, 2JC-F = 21.0 Hz), 115.4 (d, 2JC-F = 20.7 Hz), 124.2 (d, 4JC-F = 3.1 

Hz), 128.2, 128.6, 128.8, 129.9 (d, 3JC-F = 8.3 Hz), 136.3 (d, 3JC-P = 6.3 Hz), 136.4 (d, 3JC-P = 6.4 

Hz), 145.1(d, 3JC-F = 7.3 Hz), 162.8 (d, 1JC-F = 246.5 Hz), 171.8. 31P-NMR (121.5 MHz, CDCl3): δP 

ppm = 33.16. HRMS (ESI): calculated for C31H39FO5P [(M+H)+], 541.2514; found 541.2515. 

Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(4-(trifluoromethyl)phenyl)hexanoate 

(5.30g). Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate 

v/v; yield 62%. 1H NMR (300 MHz, CDCl3) δH ppm 1.37 (br. s, 9H, t-Bu), 1.41-1.64 (m, 4H, -

CH2-), 1.72-1.96 (m, 2H, -CH2-), 2.18-2.61 (m, 5H, -CH2-, -CH-), 4.90-5.09 (m, 4H, -CH2-Ph), 

7.19 (d, J = 8.0 Hz, 2H, Ar-H), 7.28-7.36 (m, 10H, Ar-H), 7.49 (d, J = 8.0 Hz, 2H, Ar-H). 13C-NMR 

(75 MHz, CDCl3) δC ppm 28.3, 28.4, 30.2 (d, 1JC-P = 138.2 Hz), 30.6 (d, 2JC-P = 5.4 Hz), 34.4 (d, 

3JC-P = 10.8 Hz), 35.9, 40.6 (d, 3JC-P = 9.2 Hz), 67.4 (d, 2JC-P = 6.7 Hz), 67.5 (d, 2JC-P = 6.6 Hz), 80.8, 

124.6 (quart., 1JC-F= 271.5 Hz), 125.5 (quart., 3JC-F= 3.8 Hz), 128.3, 128.5 (quart., 2JC-F= 27.1 

Hz), 128.7, 128.9, 129.0, 136.7 (d, 3JC-P = 6.0 Hz), 146.7, 171.9. 31P-NMR (121.5 MHz, CDCl3): 

δP ppm = 31.86 HRMS (ESI): calculated for C32H39F3O5P [(M+H)+], 591.2482; found 591.2487. 
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Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(naphthalen-1-yl)hexanoate (5.30h). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

55%. 1H NMR (300 MHz, CDCl3) δH ppm 1.37 (br. s, 9H, t-Bu), 1.45-1.75 (m, 4H, -CH2-), 1.77-

1.94 (m, 2H, -CH2-), 2.20-2.49 (m, 3H, -CH2-, -CH-), 2.98 (t, J = 7.1 Hz, 2H, -CH2-), 4.86-5.09 (m, 

4H, -CH2-Ph), 7.21-7.39 (m, 12H, Ar-H), 7.41-7.51 (m, 2H, Ar-H), 7.68 (d, J = 8.4 Hz, 1H, Ar-H), 

7.80-7.86 (m, 1H, Ar-H), 7.93-7.99 (m, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 27.8, 28.2, 

30.1 (d, 1JC-P = 138.8 Hz), 30.5 (d, 2JC-P = 4.5 Hz), 33.1, 34.8 (d, 3JC-P = 10.9 Hz), 40.3 (d, 3JC-P = 

10.0 Hz), 66.9 (d, 2JC-P = 6.7 Hz), 7.2 (d, 2JC-P = 6.4 Hz), 80.5, 123.9, 125.5, 125.6, 125.84, 126.0, 

126.7, 128.1, 128.5, 128.7, 128.9, 131.9, 134.0, 135.3 (d, 3JC-P = 6.4 Hz), 135.7 (d, 3JC-P = 6.1 

Hz), 138.5, 171.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.23. HRMS (ESI): calculated for 

C35H42O5P [(M+H)+], 573.2764; found 573.2761. 

Tert-butyl 3-((bis(benzyloxy)phosphoryl)methyl)-6-(naphthalen-2-yl)hexanoate (5.30i). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

49%. 1H NMR (300 MHz, CDCl3) δH ppm 1.39 (br. s, 9H, t-Bu), 1.44-1.96 (m, 6H, -CH2-), 2.21-

2.53 (m, 3H, -CH2-, -CH-), 2.71 (t, J = 7.2 Hz, 2H, -CH2-), 4.91-5.10 (m, 4H, -CH2-Ph), 7.25-7.49 

(m, 13H, Ar-H), 7.56 (s, 1H, Ar-H), 7.73-7.83 (m, 3H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 

28.0, 28.1, 29.9 (d, 1JC-P = 139.1 Hz), 30.3 (d, 2JC-P = 4.5 Hz), 34.2 (d, 3JC-P = 10.5 Hz), 35.9, 40.2 

(d, 3JC-P = 9.8 Hz), 66.9 (d, 2JC-P = 5.8 Hz), 67.00 (d, 2JC-P = 6.9 Hz), 80.3, 125.0, 125.8, 126.3, 

127.2, 127.3, 127.5, 127.8, 127.9, 128.3, 128.5, 131.9, 133.5, 136.4 (d, 2JC-P = 6.2 Hz), 139.7, 

171.6. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.13. HRMS (ESI): calculated for C35H42O5P 

[(M+H)+], 573.2764; found 573.2772. 

Tert-butyl 6-([1,1'-biphenyl]-4-yl)-3-((bis(benzyloxy)phosphoryl)methyl)hexanoate (5.30j). 

Prepared according to general procedure IV. Purification 2:1 hexane/ethyl acetate v/v; yield 

71%. 1H NMR (300 MHz, CDCl3) δH ppm 1.38 (br. s, 9H, t-Bu), 1.42-1.99 (m, 6H, -CH2-), 2.20-

2.63 (m, 5H, -CH2-, -CH-), 4.88-5.09 (m, 4H, -CH2-Ph), 7.17 (d, J = 8.2 Hz, 2H, Ar-H), 7.25-7.60 

(m, 17H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.0, 28.2, 29.9 (d, 1JC-P = 138.5 Hz), 30.3(d, 

2JC-P = 3.9 Hz), 34.2 (d, 3JC-P = 10.9 Hz), 35.4, 40.2(d, 3JC-P = 9.3 Hz), 67.0(d, 2JC-P = 6.6 Hz),67.1 

(d, 2JC-P = 6.4 Hz), 80.3, 126.9, 127.0, 127.9, 128.0, 128.3, 128.5, 128.6, 128.7, 136.3(d, 3JC-P = 

6.1 Hz), 136.4(d, 3JC-P = 6.1 Hz), 138.6, 141.0, 141.3, 171.6. 31P-NMR (121.5 MHz, CDCl3): δP 

ppm = 31.83 HRMS (ESI): calculated for C37H44O5P [(M+H)+], 599.2921; found 599.2928. 
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Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(p-tolyl)pentyl)phosphonate (5.31a). 

Prepared according to general procedure V. Purification 3:1 hexane/acetone v/v; yield 71%. 

1H NMR (300 MHz, CDCl3) δH ppm 1.34-1.58 (m, 4H, -CH2-), 1.72-2.05 (m, 3H, -CH2-, -CH-), 

2.30 (s, 3H, Ph-CH3), 2.37-2.65 (m, 4H, -CH2-), 3.13 (s, 3H, N-CH3), 4.72 (s, 2H, NOCH2Ph), 

4.86-5.06 (m, 4H, -POCH2Ph), 6.98 (d, J = 8.1 Hz, 2H, Ar-H), 7.05 (d, J = 8.1 Hz, 2H, Ar-H), 7.28-

7.36 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 19.2, 21.0, 28.7, 29.6 (d, 1JC-P = 139.3 

Hz), 29.6 (d, 2JC-P = 5.1 Hz), 33.5, 34.6 (d, 3JC-P = 10.2 Hz), 35.4, 36.6 (d, 3JC-P = 9.2 Hz), 67.1 (d, 

2JC-P = 6.3 Hz), 67.5 (d, 2JC-P = 6.1 Hz), 76.1, 127.9, 127.9, 128.2, 128.3, 128.5, 128.6, 128.9, 

128.9, 129.3, 134.5, 135.0, 136.5(m), 139.3, 173.8. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 

33.55. HRMS (ESI): calculated for C36H43NO5P [(M+H)+], 600.2873; found 600.2903.  

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(m-tolyl)pentyl)phosphonate 

(5.31b). Prepared according to general procedure V. Purification 98:2 

dichloromethane/methanol v/v; yield 72%. 1H NMR (300 MHz, CDCl3) δH ppm 1.37-1 .59 (m, 

4H, -CH2-), 1.74-2.04 (m, 2H, -CH2-), 2.30 (s, 3H, Ph-CH3), 2.37-2.65 (m, 5H, -CH2-, -CH-), 3.12 

(s, 3H, N-CH3), 4.72 (s, 2H, NOCH2Ph), 4.89-5.05 (m, 4H, -POCH2Ph), 6.86-7.00 (m, 3H, Ar-H), 

7.13 (t, J = 7.4 Hz, 1H, Ar-H), 7.27-7.36 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 21.3, 

28.5, 28.6, 28.6 (d, 3JC-P = 8.8 Hz), 29.5 (d, 1JC-P = 138.8 Hz), 29.6 (d, 2JC-P = 4.9 Hz), 34.6 (d, 3JC-P 

= 10.8 Hz), 35.7, 66.9 (m), 76.0, 125.3, 126.3, 127.8, 128.1, 128.2, 128.5, 128.6, 128.8, 129.1, 

129.2, 136.4 (m), 137.6, 142.3. 171.9. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.54. HRMS 

(ESI): calculated for C36H43NO5P [(M+H)+], 600.2873; found 600.2883. 

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(4-

methoxyphenyl)pentyl)phosphonate (5.31c). Prepared according to general procedure V. 

Purification 3:1 hexane/acetone v/v; yield 57%. 1H NMR (300 MHz, CDCl3) δH ppm 1.34-1.59 

(m, 4H, -CH2-), 1.73-2.04 (m, 2H, -CH2-), 2.26-2.65 (m, 5H, -CH2-, -CH-), 3.13 (s, 3H, N-CH3), 

3.75 (s, 3H, PhOCH3), 4.72 (s, 2H, -NOCH2Ph), 4.88-5.07 (m, 4H, -POCH2Ph), 6.78 (d, J = 9.6 

Hz, 2H, Ar-H), 7.00 (d, J = 9.6 Hz, 2H, Ar-H), 7.27-7.39 (m, 15H, Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 29.1, 29.9 (d, 2JC-P = 4.3 Hz), 30.0, 30.1 (d, 1JC-P = 136.9 Hz), 34.8 (d, 3JC-P = 9.8 

Hz), 35.1, 36.9 (d, 3JC-P = 9.2 Hz), 55.5, 67.2 (d, 2JC-P = 6.7 Hz), 67.3 (d, 2JC-P = 6.1 Hz), 76.3, 

113.9, 128.2, 128.5, 128.8, 128.9, 129.1, 129.5, 129.6, 134.7, 134.8 (d, 3JC-P = 5.5 Hz), 136.7, 

157.9, 173.5. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.35. HRMS (ESI): calculated for 

C36H43NO6P [(M+H)+], 616.2823; found 616.2830.  



Beta-substituted analogues of fosmidomycin 

 

165 
 

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(3-

methoxyphenyl)pentyl)phosphonate (5.31d). Prepared according to general procedure V. 

Purification 5:1 dichloromethane/ethyl acetate v/v; yield 51%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.35-1.61 (m, 4H, -CH2-), 1.72-2.07 (m, 2H, -CH2-), 2.27-2.67 (m, 5H, -CH2-, -CH-), 3.12 (s, 

3H, N-CH3), 3.75 (s, 3H, PhOCH3),  4.72 (s, 2H, -NOCH2Ph), 4.87-5.07 (m, 4H, -POCH2Ph), 6.64-

6.74 (m, 3H, Ar-H), 7.16 (t, J = 7.9 Hz, 1H, Ar-H), 7.26-7.37 (m, 15H, Ar-H). 13C-NMR (75 MHz, 

CDCl3) δC ppm 28.4, 29.5 (d, 2JC-P = 4.5 Hz), 29.6 (d, 1JC-P = 138.4 Hz), 29.7, 34.5 (d, 3JC-P = 10.3 

Hz), 35.8, 36.6 (d, 3JC-P = 9.0 Hz), 55.0, 66.8 (d, 2JC-P = 6.7 Hz), 66.9 (d, 2JC-P = 6.6 Hz), 76.0, 

110.9, 114.0, 120.7, 127.8, 128.2, 128.4, 128.6, 128.8, 129.1, 129.2, 134.5, 136.4 (d, 3JC-P = 

6.1 Hz), 136.4 (d, 3JC-P = 6.1 Hz), 144.0, 159.5, 173.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 

32.31. HRMS (ESI): calculated for C36H43NO6P [(M+H)+], 616.2823; found 616.2831.  

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(4-fluorophenyl)pentyl)phosphonate 

(5.31e). Prepared according to general procedure V. Purification 3:1 hexane/acetone v/v; 

yield 71%. 1H NMR (300 MHz, CDCl3) δH ppm 1.36-1.56 (m, 4H, -CH2-), 1.71-2.02 (m, 2H, -CH2-

), 2.23-2.50 (m, 5H, -CH2-, -CH-), 3.13 (s, 3H, N-CH3), 4.73 (s, 2H, -NOCH2Ph), 4.87-5.09 (m, 

4H, -POCH2Ph), 6.85-7.06 (m, 4H, Ar-H), 7.27-7.39 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) 

δC ppm 28.6, 29.6 (d, 2JC-P = 4.3 Hz), 29.7 (d, 3JC-P = 10.0 Hz), 34.4 (d, 3JC-P = 10.0 Hz), 34.9, 36.7 

(d, 3JC-P = 10.0 Hz), 37.0, 66.9 (d, 2JC-P = 6.6 Hz), 67.0 (d, 2JC-P = 6.3 Hz), 76.1, 114.9 (d, 2JC-F= 

21.8 Hz), 127.8 (d, 3JC-F= 9.8 Hz), 127.9, 128.3, 128.6, 128.9, 129.2, 129.5, 134.5, 136. 4 (d, 3JC-

P = 6.7 Hz), 137.9 (d, 4JC-F= 4.2 Hz), 161.2 (d, 1JC-F= 242.42 Hz), 173.4. 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 32.11. HRMS (ESI): calculated for C35H40FNO5P [(M+H)+], 604.2623; found 

604.2657.  

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(3-fluorophenyl)pentyl)phosphonate 

(5.31f). Prepared according to general procedure V. Purification 3:1 hexane/acetone v/v; 

yield 69%. 1H NMR (300 MHz, CDCl3) δH ppm 1.32-1.58 (m, 4H, -CH2-), 1.69-2.03 (m, 2H, -CH2-

), 2.25-2.53 (m, 5H, -CH2-, -CH-), 3.13 (s, 3H, N-CH3), 4.73 (s, 2H, -NOCH2Ph), 4.86-5.09 (m, 

4H, -POCH2Ph), 6.73-7.92 (m, 3H, Ar-H), 7.14-7.38(m, 16H, Ar-H). 13C-NMR (75 MHz, CDCl3) 

δC ppm 28.2, 29.6 (d, 2JC-P = 4.1 Hz), 29.7 (d, 1JC-P = 137.6 Hz), 31.6, 34.4 (d, 3JC-P = 9.83 Hz), 

35.5, 36.7 (d, 3JC-P = 9.1 Hz), 66.9 (d, 2JC-P = 6.7 Hz), 67.0 (d, 2JC-P = 6.0 Hz), 76.1, 112.5 (d, 2JC-F= 

22.0 Hz), 115.1 (d, 2JC-F= 22.0 Hz), 124.0 (d, 4JC-F= 3.1 Hz), 127.9, 128.3, 128.5, 128.6, 128.9, 

129.3, 129.5 (d, 3JC-F= 8.6 Hz), 134.5, 136.4 (d, 3JC-P = 6.1 Hz), 144.9 (d, 3JC-F= 7.7 Hz), 162.8 (d, 
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1JC-F= 244.7 Hz), 173.25. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.43. HRMS (ESI): calculated 

for C35H40FNO5P [(M+H)+], 604.2623; found 604.2656.  

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(4-

(trifluoromethyl)phenyl)pentyl)phosphonate (5.31g): Prepared according to general 

procedure V. Purification 3:1 hexane/acetone v/v; yield 55%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.34-1.59 (m, 4H, -CH2-), 1.70-2.05 (m, 2H, -CH2-), 2.25-2.64 (m, 5H, -CH2-, -CH-), 3.12 (s, 

3H, N-CH3), 4.72 (s, 2H, -NOCH2Ph), 4.87-5.08 (m, 4H, -POCH2Ph), 7.17 (d, J = 8.2 Hz, 2H, Ar-

H), 7.32(m, 15H, Ar-H), 7.48 (d, J = 8.2 Hz, 2H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.2, 

29.5 (d, 2JC-P = 3.6 Hz), 29.7 (d, 1JC-P = 138.2 Hz), 32.8, 34.4 (d, 3JC-P = 10.1 Hz), 35.5, 36.7 (d, 3JC-

P = 9.5 Hz), 66.9 (d, 2JC-P = 6.4 Hz), 67.0 (d, 2JC-P = 6.6 Hz), 76.1, 124.5 (quart., 1JC-F= 272.7 Hz), 

125.1 (quart., 4JC-F= 3.8 Hz), 127.9, 128.2 (quart., 2JC-F= 22.1 Hz), 128.3, 128.5, 128.6, 128.9, 

129.2, 134.5, 136.4 (d, 3JC-P = 6.3 Hz), 146.4, 173.8. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 

33.43. HRMS (ESI): calculated for C36H40F3NO5P [(M+H)+], 654.2591; found 654.2601.  

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(naphthalen-1-

yl)pentyl)phosphonate (5.31h). Prepared according to general procedure V. Purification 98:2 

dichloromethane/methanol v/v; yield 44%. 1H NMR (300 MHz, CDCl3) δH ppm 1.50-2.04 (m, 

6H, -CH2-), 2.29-2.64 (m, 3H, -CH2-, -CH-), 2.90-3.00 (m, 2H, -CH2-), 3.12 (s, 3H, N-CH3), 4.68 

(s, 2H, -NOCH2Ph), 4.88-5.05 (m, 4H, -POCH2Ph), 7.19-7.40 (m, 17H, Ar-H), 7.43-7.50 (m, 2H, 

Ar-H), 7.66-7.72 (m, 1H, Ar-H), 7.80-7.86 (m, 1H, Ar-H), 7.93-7.99 (m, 1H, Ar-H). 13C-NMR (75 

MHz, CDCl3) δC ppm 28.1, 29.9 (d, 1JC-P = 138.4 Hz), 29.9 (d, 2JC-P = 4.9 Hz), 33.2, 35.2 (d, 3JC-P = 

9.8 Hz), 36.9 (d, 3JC-P = 8.5 Hz), 67.2 (d, 2JC-P = 6.7 Hz), 67.3 (d, 2JC-P = 6.7 Hz), 76.3, 124.1, 

125.6, 125.8, 125.9, 126.1, 126.7, 128.2, 128.5, 128.8, 128.9, 129.0, 129.1, 129.5, 132.0, 

134.1, 134.8, 136.7 (d, 3JC-P = 6.4 Hz), 136.7 (d, 1JC-P = 6.1 Hz), 138.8, 168.0. 31P-NMR (121.5 

MHz, CDCl3): δP ppm = 33.49. HRMS (ESI): calculated for C39H43NO5P [(M+H)+], 636.2873; 

found 636.2880.   

Dibenzyl (2-(2-((benzyloxy)(methyl)amino)-2-oxoethyl)-5-(naphthalen-2-

yl)pentyl)phosphonate (5.31i). Prepared according to general procedure V. Purification 3:1 

hexane/acetone v/v; yield 78%. 1H NMR (300 MHz, CDCl3) δHppm 1.37-2.02 (m, 6H, -CH2-), 

2.26-2.75 (m, 5H, -CH-, -CH2-), 3.11 (s, 1H, N-CH3), 4.71 (s, 2H, -NOCH2Ph), 4.85-5.08 (m, 4H, -

POCH2Ph), 7.21-7.34 (m, 16H, Ar-H), 7.36-7.47 (m, 2H, Ar-H), 7.53 (s, 1H, Ar-H), 7.70-7.81 (m, 
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3H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.7, 29.9 (d, 2JC-P = 3.9 Hz), 30.0 (d, 1JC-P = 138.8 

Hz), 32.9, 34.8 (d, 3JC-P = 10.4 Hz), 36.2, 36.9 (d, 3JC-P = 9.1 Hz), 67.2 (d, 2JC-P = 6.6 Hz), 67.3 (d, 

2JC-P = 6.0 Hz), 76.3, 125.3, 126.0, 126.6, 127.5, 127.6, 127.8, 128.0, 128.2, 128.5, 128.8, 

128.9, 129.1, 129.5, 132.2, 133.8, 134.8, 136.7 (d, 2JC-P = 6.6 Hz), 136.8 (d, 2JC-P = 6.2 Hz), 

140.1, 170.4. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 33.49. HRMS (ESI): calculated for 

C39H43NO5P [(M+H)+], 636.2873; found 636.2880.   

Dibenzyl (5-([1,1'-biphenyl]-4-yl)-2-(2-((benzyloxy)(methyl)amino)-2-

oxoethyl)pentyl)phosphonate (5.31j). Prepared according to general procedure V. 

Purification 97:3 dichloromethane/ethyl acetate v/v; yield 68%. 1H NMR (300 MHz, CDCl3) δH 

ppm 1.38-1.64 (m, 4H, -CH2-), 1.75-2.04 (m, 2H, -CH2-), 2.28-2.66 (m, 5H, -CH2-, -CH-), 3.13 (s, 

3H, N-CH3), 4.72 (s, 2H, NOCH2Ph), 4.89-5.07 (m, 4H, -POCH2Ph), 7.11-7.19 (m, 3H, Ar-H), 

7.25-7.60 (m, 21H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.5, 29.6 (d, 2JC-P = 4.7 Hz), 30.3, 

29.6 (d, 1JC-P = 138.2 Hz), 34.5 (d, 3JC-P = 10.2 Hz), 35.4, 36.6 (d, 3JC-P = 10.2 Hz), 66.9 (d, 2JC-P = 

6.1 Hz), 70.0 (d, 2JC-P = 6.6 Hz), 76.0, 126.9, 127.9, 128.2, 128.5, 128.6, 128.7, 128.8, 128.9, 

129.2, 134.5, 136.4 (d, 3JC-P = 6.4 Hz), 138.5, 141.0, 141.5, 172.6. 31P-NMR (121.5 MHz, 

CDCl3): δP ppm = 32.33. HRMS (ESI): calculated for C41H45NO5P [(M+H)+], 662.3030; found 

662.3039.  

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(p-tolyl)pentyl)phosphonate 

(5.24a). White powder. Prepared from compound 5.31a (150 mg, 0.25 mmol) according to 

general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.29-1.78 (m, 6H, -CH2-), 1.94-2.41 

(m, 4H, -CH-, Ph-CH3), 2.45-2.70 (m, 4H, -CH2-), 3.01 (s, 5/6 of N-CH3), 3.23 (s, 1/6 of N-CH3), 

6.89-7.23 (m, 4H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 20.0, 27.6, 30.5 (d, 2JC-P = 4.3 Hz), 

31.6 (d, 1JC-P = 130.7 Hz), 34.1 (d, 3JC-P = 12.7 Hz), 34.5, 37.0, 39.2 (d, 1JC-P = 7.1 Hz), 128.4, 

128.9, 135.4, 139.8, 177.8. 31P-NMR (121.5 MHz, D2O): δP ppm 25.97. HRMS (ESI): calculated 

for C15H23NO5P [(M-H)-], 328.1319; found 328.1320. 

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(m-tolyl)pentyl)phosphonate 

(5.24b). White powder. Prepared from compound 5.31b (150 mg, 0.25 mmol) according to 

general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.22-1.69 (m, 6H, -CH2-), 1.99-2.23 

(m, 1H, -CH-), 2.28 (s, 3H, Ph-CH3), 2.49-2.68 (m, 4H, -CH2-), 3.18 (s, 5/6 of N-CH3), 3.35 (s, 

1/6 of N-CH3), 7.02-7.15 (m, 3H, Ar-H), 7.23 (app. t, J = 7.4 Hz, 1H, Ar-H). 13C-NMR (75 MHz, 
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D2O) δC ppm 20.5, 28.4, 32.2 (d, 2JC-P = 4.1 Hz), 33.4 (d, 1JC-P = 130.7 Hz), 35.3, 35.4 (d, 3JC-P = 

9.8 Hz), 36.2, 36.3 (d, 3JC-P = 5.9 Hz), 125.8, 126.5, 128.7, 129.4, 138.7, 143.8, 174.4. 31P-NMR 

(121.5 MHz, D2O): rotamers at δP ppm 22.14 and 22.25. HRMS (ESI): calculated for 

C15H23NO5P [(M-H)-], 328.1319; found 328.1318. 

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(4-

methoxyphenyl)pentyl)phosphonate (5.24c). White powder. Prepared from compound 5.31c 

(125 mg, 0.20 mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 

1.23-1.66 (m, 6H, -CH2-), 2.01-2.26 (m, 1H, -CH-), 2.47-2.67 (m, 4H, -CH2-), 3.17 (s, 5/6 of N-

CH3), 3.34 (s, 1/6 of N-CH3), 3.78 (s, 3H, PhOCH3), 6.91 (m, 2H, Ar-H), 7.21 (m, 2H, Ar-H). 13C-

NMR (75 MHz, D2O) δC ppm 28.3, 32.0 (d, 2JC-P = 4.0 Hz), 33.3 (d, 1JC-P = 129.9 Hz), 34.4, 35.1 

(d, 3JC-P = 10.7 Hz), 36.1, 36.4 (d, 3JC-P = 6.2 Hz), 55.6, 114.1, 129.9, 136.2, 156.9, 175.0. 31P-

NMR (121.5 MHz, D2O): δP ppm = 22.48. HRMS (ESI): calculated for C15H23NO6P [(M-H)-], 

344.1268; found 344.1269. 

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(3-

methoxyphenyl)pentyl)phosphonate (5.24d). White powder. Prepared from compound 5.31d 

(150 mg, 0.24 mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 

1.24-1.69 (m, 6H, -CH2-), 2.02-2.26 (m, 1H, -CH-), 2.51-2.66 (m, 4H, -CH2-), 3.17 (s, 5/6 of N-

CH3), 3.34 (s, 1/6 of N-CH3), 3.79 (s, 3H, Ph-OCH3), 6.77-6.93 (m, 3H, Ar-H), 7.26 (app. t, J = 

7.9 Hz, 1H, Ar-H). ). 13C-NMR (75 MHz, D2O) δC ppm 28.0, 31.8 (d, 2JC-P = 4.1 Hz), 33.1 (d, 1JC-P 

= 130.2 Hz), 35.1 (d, 3JC-P = 10.6 Hz), 35.4, 36.1, 36.5 (d, 3JC-P = 7.3 Hz), 55.4, 111.5, 114.2, 

121.7, 129.8, 145.5, 159.0, 175.2. 31P-NMR (121.5 MHz, D2O): δP ppm = 21.72. HRMS (ESI): 

calculated for C15H23NO6P [(M-H)-], 344.1268; found 344.1269. 

Sodium hydrogen (5-(4-fluorophenyl)-2-(2-(hydroxy(methyl)amino)-2-

oxoethyl)pentyl)phosphonate (5.24e). White powder. Prepared from compound 5.31e (100 

mg, 0.17 mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.14-

1.68 (m, 6H, -CH2-), 1.92-2.20 (m, 1H, -CH-), 2.42-2.66 (m, 4H, P-CH2-, CH2-CON-), 3.14 (s, 5/6 

of N-CH3), 3.27 (s, 1/6 of N-CH3), 6.97-7.09 (m, 2H, Ar-H), 7.20-7.33 (m, 2H, Ar-H). 13C-NMR 

(75 MHz, D2O) δC ppm 28.0, 31.4 (d, 2JC-P = 4.5 Hz), 33.9 (d, 1JC-P = 139.3 Hz), 34.6 (d, 3JC-P = 8.1 

Hz), 34.7, 36.3 (d, 3JC-P = 8.3 Hz), 37.1, 114.7 (d, 2JC-F = 21.2 Hz), 129.9 (d, 3JC-F = 8.3 Hz), 139.2 

(d, 4JC-F = 3.7 Hz), 160.7 (d, 1JC-F = 239.1 Hz), 169.0. 31P-NMR (121.5 MHz, D2O): rotamers at δP 
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ppm 21.40, 21.50. HRMS (ESI): calculated for C14H21FNO5P [(M-H)-], 332.1069; found 

332.1088. 

Sodium hydrogen (5-(3-fluorophenyl)-2-(2-(hydroxy(methyl)amino)-2-

oxoethyl)pentyl)phosphonate (5.24f). White powder. Prepared from compound 5.31f (130 

mg, 0.22 mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.23-

1.68 (m, 6H, -CH2-), 2.02-2.23 (m, 1H, -CH-), 2.50-2.69 (m, 4H, -CH2-), 3.17 (s, 5/6 of N-CH3), 

3.35 (s, 1/6 of N-CH3), 6.88-7.10 (m, 3H,Ar-H), 7.25-7.34 (m,1H,Ar-H). 13C-NMR (75 MHz, D2O) 

δC ppm 27.9, 31.9 (d, 2JC-P = 4.1 Hz), 33.1 (d, 1JC-P = 129.1 Hz), 35.0 (d, 3JC-P = 8.2 Hz), 35.1, 

36.1, 36.4 (d, 3JC-P = 7.0 Hz), 112.5 (d, 2JC-F = 23.32 Hz), 115.3 (d, 2JC-F = 21.9 Hz), 124.6 (d, 4JC-F = 

2.7 Hz), 130.1 (d, 3JC-F = 8.7 Hz), 146.2 (d, 3JC-F = 8.7 Hz), 162.9 (d, 1JC-F = 247.1 Hz), 175.0. 31P-

NMR (121.5 MHz, D2O): δP ppm = 22.75. HRMS (ESI): calculated for C14H20FNO5P [(M-H)-], 

332.1069; found 332.1067. 

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(4-

(trifluoromethyl)phenyl)pentyl)phosphonate (5.24g). White powder. Prepared from 

compound 5.31g (150 mg, 0.25 mmol) according to general procedure VI. 1H NMR (300 MHz, 

D2O) δH ppm 1.27-1.71 (m, 6H, -CH2-), 2.00-2.26 (m, 1H, -CH-), 2.50-2.61 (m, 2H, -CH2-), 2.66 

(t, J = 7.4 Hz, 2H, -CH2-), 3.16 (s, 5/6 of N-CH3), 3.34 (s, 1/6 of N-CH3), 3.79, 7.40 (d, J = 7.9 Hz, 

2H, Ar-H), 7.61 (d, J = 7.9 Hz, 2H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 27.5, 29.5, 31.5 (d, 

2JC-P = 4.1 Hz), 32.8 (d, 1JC-P = 130.7 Hz), 34.5 (d, 3JC-P = 11.0 Hz), 34.9, 35.8, 36.3 (d, 3JC-P = 6.8 

Hz), 124.4 (quart., 1JC-F = 270.5 Hz), 125.0 (quart., 3JC-F = 4.1 Hz), 128.9 (app. s), 147.6, 174.9. 

31P-NMR (121.5 MHz, D2O): δP ppm = 21.49. HRMS (ESI): calculated for C15H20F3NO5P [(M-H)-

], 382.1037; found 382.1039.  

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(naphthalen-1-

yl)pentyl)phosphonate (5.24h). White powder. Prepared from compound 5.31h (150 mg, 

0.24 mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.38-1.84 

(m, 6H, -CH2-), 2.02-2.27 (m, 1H, -CH-), 2.46-2.65 (m, 2H, -CH2-), 3.07 (t, J = 7.6 Hz, 2H, -CH2-), 

3.13 (s, 5/6 of N-CH3), 3.24 (s, 1/6 of N-CH3), 7.39-7.62 (m, 4H, Ar-H), 7.78 (dd, J = 2.4 Hz, 7.4 

Hz, 1H, Ar-H), 7.92 (dd, J = 2.4 Hz, 8.1 Hz, 1H, Ar-H), 8.18 (d, J = 8.1 Hz, 1H, Ar-H). 13C-NMR 

(75 MHz, D2O) δC ppm 27.8, 32.1 (d, 2JC-P = 4.5 Hz), 32.7, 33.8 (d, 1JC-P = 129.3 Hz), 34.5, 35.7 

(d, 3JC-P = 10.8 Hz), 36.4 (d, 3JC-P = 7.6 Hz), 36.6, 124.4, 126.1, 126.2, 126.3, 126.4, 128.8, 
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131.6, 133.7, 139.7, 172.7. 31P-NMR (121.5 MHz, D2O): rotamers at δP ppm 21.94, 22.18. 

HRMS (ESI): calculated for C18H23NO5P [(M-H)-], 364.1319; found 364.1315. 

Sodium hydrogen (2-(2-(hydroxy(methyl)amino)-2-oxoethyl)-5-(naphthalen-2-

yl)pentyl)phosphonate (5.24i). White powder. Prepared from compound 5.31i (150 mg, 

0.24mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.23-1.80 (m, 

6H, -CH2-), 2.01-2.29 (m, 1H, -CH-), 2.46-2.65 (m, 2H, -CH2-), 2.78 (t, J = 7.8 Hz, 2H, -CH2-), 

3.12 (s, 5/6 of N-CH3), 3.30 (s, 1/6 of N-CH3), 7.44-7.55 (m, 3H, Ar-H), 7.77 (s, 1H, Ar-H), 7.84-

7.92 (m, 3H, Ar-H). 13C-NMR (75 MHz, D2O) δC ppm 29.8, 31.8 (d, 2JC-P = 3.7 Hz), 34.1 (d, 1JC-P = 

130.8 Hz), 35.0 (d, 3JC-P = 10.9 Hz), 35.8, 36.5 (d, 3JC-P = 8.0 Hz), 37.3, 125.5, 126.3, 126.4, 

127.5, 127.7, 127.9, 128.1, 131.7, 133.5, 141.6, 169.7. 31P-NMR (121.5 MHz, D2O): δP ppm = 

22.48. HRMS (ESI): calculated for C18H23NO5P [(M-H)-], 364.1319; found 364.1315. 

Sodium hydrogen (5-([1,1'-biphenyl]-4-yl)-2-(2-(hydroxy(methyl)amino)-2-

oxoethyl)pentyl)phosphonate (5.24j). White powder. Prepared from compound 5.31j (200 

mg, 0.30 mmol) according to general procedure VI. 1H NMR (300 MHz, D2O) δH ppm 1.23-

1.73 (m, 6H, -CH2-), 1.98-2.24 (m, 1H, -CH-), 2.42-2.70 (m, 4H, -CH2-), 3.14 (s, 5/6 of N-CH3), 

3.30 (s, 1/6 of N-CH3), 7.35-7.53 (m, 5H, Ar-H), 7.58-7.71 (m, 4H, Ar-H). 13C-NMR (75 MHz, 

D2O) δC ppm 27.9, 31.5 (d, 2JC-P = 4.1 Hz), 33.0 (d, 1JC-P = 130.1 Hz), 34.5 (d, 2JC-P = 10.1 Hz), 

35.0, 36.3 (d, 3JC-P = 8.38 Hz), 37.1, 126.7, 126.8, 127.4, 129.0, 129.3, 137.8, 140.4, 143.1, 

169.2. 31P-NMR (121.5 MHz, D2O): rotamers at δP ppm 21.37, 21.54. HRMS (ESI): calculated 

for C20H25NO5P [(M-H)-], 390.1476; found 390.1479. 
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VI.     PHOSPHORAMIDE ANALOGUES OF FOSMIDOMYCIN 
 

VI.A. Introduction 

Phosphoric acid amides and their derivatives constitute an important class of 

organophosphorus compounds with a wide range of applications. A host of bioactive 

molecules showing potent antifungal, antitumor, and anti-HIV activities contain the 

phosphoramide structural scaffold.1,2 Apart from their importance in medicine, they serve in 

other uses such as flame retardants,3 in agriculture4 as pesticides and herbicides as well as in 

organic chemistry where they afford synthetic intermediates5,6 and phosphorylation has also 

been validated as a protecting strategy for amines.7  

Due to their wide use, several approaches have been developed towards the synthesis of 

phosphoramides (Figure VI.1),8 including the well-known reaction of an amine with a 

phosphoryl halide in the presence of a strong base.   

 

Figure VI.1: Synthetic routes to phosphoramides. 

The Atherton-Todd reaction exploits the generation of a reactive phosphoryl halide in situ 

from dibenzyl or dialkyl phosphites and CCl4, which then reacts with an amine.9 The use of 

CCl4 has been circumvented by the Staudinger-phosphite reaction, which allows the use of 

alkyl azides and phosphites to form phosphorimides followed by hydrolysis to attain the 

desired phosphoramides.10 Oxidative cross-coupling reactions between amines and H-

phosphonates are popular alternative strategies for the synthesis of phosphoramides.11,12,13                                                                                                     
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The natural substrate of Dxr (DOXP), is a phosphate monoester. The introduction of electron 

withdrawing aryl or halogen substituents in -position of the phosphonate group of 

fosmidomycin increase the acidity of the phosphonic acid group, thereby leading to a 

stronger interaction with the phosphate binding site of Dxr. Woo et al. modified the polar 

phosphonate head group of fosmidomycin/FR900098 to a phosphate and showed that 

fosfoxacin (1.35, also a natural antibiotic), and its acetyl congener 1.36 are more potent 

inhibitors of Synechocystis sp. PCC6803 Dxr than fosmidomycin (Ki of 19 nM (1.35) and 2 nM 

(1.36) versus 57 nM for fosmidomycin).14 Such an effect could possibly be achieved by 

incorporating a nitrogen atom into the -position of the three-carbon chain of compound 

1.6. With the anticipation that amide derivatives of phosphoric acid are chemically and 

metabolically more stable than the corresponding esters, we sought to abate the liability 

associated with the phosphate in fosfoxacin by preparing the phosphoramidic acid 

analogues 6.1 (Figure VI.2). Furthermore, alkylation at the nitrogen would offer the 

possibility to construct a small library with various substituents that may elicit further 

interactions with active site residues.  

 

Figure VI.2: Analogues of fosmidomycin/FR900098 bearing a (substituted)heteroatom in the 

-position. 

VI.B. Synthesis 

A synthetic strategy for accessing the envisaged analogues is outlined in Scheme VI.1. Since 

N-arylation would be achievable via a Buchwald-Hartwig cross coupling reaction, 

commercially available N-Boc-protected -alanine was considered a suitable starting 

material for synthesis of the phosphoramidic acid 6.1a and its N-aryl derivative. Boc-N-

methyl--alanine meanwhile, served as starting material for the corresponding N-methyl 

analogue. EDC-mediated coupling of these acids with O-benzyl-N-methyl-hydroxylamine 

afforded the protected hydroxamates 6.3a-b. Compound 6.3a was in turn transformed to 
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6.3c via a Buchwald-Hartwig coupling with 1-bromo-4-chlorobenzene. Boc group removal 

and subsequent phosphorylation of 6.3a-b with diethyl chlorophosphate in the presence of 

triethylamine yielded the diethylphosphoramides 6.4a-b, which were subsequently treated 

with BCl3 to obtain the hydroxamates 6.5a-b. TMSBr-mediated deprotection of the ethyl 

protecting groups of 6.5a-b proved unsuccessful and led us to convert 6.3a-b to the 

dibenzylphosphoramides 6.6a-b by phosphorylation with dibenzyl phosphite. Unfortunately, 

attempts to remove the benzyl groups of 6.6a-b by catalytic hydrogenolysis were also 

unsuccessful. Reaction monitoring by MS revealed only traces of the target compounds (6.1a 

or 6.1b). A literature search was conducted to understand the underlying reasons for the 

fruitless deprotection. 

 

Scheme VI.1 Reagents and conditions: i) MeNH(OBn), EDC, Et3N, CH2Cl2, rt, overnight, 81% 

(6.3a), 83% (6.3b); ii) 1-bromo-4-chlorobenzene, Pd(OAc)2, Xantphos, Cs2CO3, 1,4-dioxane, 

reflux, 48 h, 45%; iii) TFA, Et3SiH, CH2Cl2, 2 h, 0 °C to rt; (a) (EtO)2OPCl, Et3N, CH2Cl2, 2 h, 71% 

(6.4a), 78% (6.4b); (b) (BnO)2OPH, NCS, toluene; Et3N, CH2Cl2, 2 h, 64% (6.6a), 68% (6.6b); iv) 

BCl3, CH2Cl2, −78 °C, 1 h, 72% (6.5a), 74% (6.5b); v) TMSBr, BSTFA, CH2Cl2, 0 °C to rt; vi) H2, 

Pd/C, MeOH, rt. 

Different groups have reported that (N-substituted) phosphoramidic acids are hydrolyzed in 

aqueous solution to the corresponding amines and phosphoric acid.15,16,17 The anticipation 

that phosphoramide analogues of fosmidomycin/FR900098 will be more stable than their 

phosphate counterparts such as fosfoxacin (which we erstwhile prepared for a collaborative 

project) turned out to be naive. Halmann and colleagues examined the mechanism of 
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hydrolysis of phosphoramidic acid and found that the rate follows strict first-order kinetics 

and rises steadily with increasing acidity.16 In aqueous solution within the pH 1−7 range, the 

neutral molecule (which probably exists as a zwitterion) or the conjugate acid appears to 

react by a unimolecular mechanism to form a transient metaphosphate intermediate, which 

then rapidly reacts with water to give the products. At alkaline pH however, the compounds 

lose the positive charge on the nitrogen and resist hydrolysis. Following this analogy, it can 

be understood that the onset of the deprotection of 6.5 or 6.6 is as expected, with the target 

compounds 6.1a-b initially formed, but then subsequently and rapidly degraded as depicted 

in Figure VI.3.  

 

Figure VI.3: Plausible mechanism for the degradation of compounds 6.1a-b.  

An alternative mechanism consistent with a new study18 on the pH-dependent hydrolysis of 

phosphoramidates may involve the hydroxamic acid moiety (Figure VI.4). This pathway is 

also based on the notion that at physiological conditions, phosphoramidates have 

zwitterionic character. A proton transfer to the phosphoramidate, which results in a more 

electrophilic phosphorus center, facilitates nucleophilic attack by water. 

 

Figure VI.4: Intramolecular acid mechanism of phosphoramidate hydrolysis. 

VI.C. Conclusions  

Tandem degradation of the target compounds upon deprotection of their respective 

precursors made that the synthesis of the target compounds could not be realized due to 

decomposition during the final deprotection step. The lability of these compounds is 

probably due to the combination of the positively charged nitrogen and the tendency of the 

phosphoryl group towards resonating forms with a positive charge on the phosphorus atom.  
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VI.D. Experimental details 

General Methods and Materials. See section III.E. 

General procedure I: EDC-mediated formation of protected hydroxamate. 

To a solution of the acid (1.0 equiv, 0.15 M) in CH2Cl2 was added triethylamine (5.0 equiv) 

and EDC (1.2 equiv). O-Benzyl-N-methylhydroxylamine TFA salt (1.2 equiv) was added as a 

0.5 M solution in CH2Cl2 and the mixture stirred overnight at room temperature. Upon 

completion of the reaction, the mixture was quenched with sat. aq NaHCO3, extracted three 

times with CH2Cl2, washed with brine, and dried over Na2SO4. Column chromatography 

produced the protected hydroxamic acids 6.3a-b. 

General procedure II: Acidic cleavage of Boc protecting group and phosphorylation of 6.3a-

b. 

A 0.1 M solution of the N-Boc-protected compound 6.3a-b (1.0 equiv) in CH2Cl2/TFA (70:30) 

and triethylsilane (2 equiv) at 0 °C was stirred for 2 hours, after which an excess of toluene 

was added to the reaction mixture which was then reduced in vacuo. The crude amine was 

redissolved in CH2Cl2 and the pH adjusted to 9 by addition of KOH before washing with water 

and in vacuo concentration. To the 'free' base in CH2Cl2 (0.1 M), was added the 

chlorophosphate (1.3 equiv) and triethylamine (3 equiv) dropwise at 0 °C before warming 

the mixture to room temperature and stirring for 2 hours. The reaction was quenched with 

NH4Cl and after separation, the aqueous layer was extracted three times with CH2Cl2, 

washed once with brine, dried over Na2SO4, filtered and concentrated in vacuo. Column 

chromatography gave to access the phosphorylated compounds (6.4 and 6.6).   

Dibenzyl chlorophosphate (for the preparation of 6.6) was prepared by dissolving dibenzyl 

phosphite (1.3 equiv) in dry toluene (0.3 M) followed by the addition of N-chlorosuccinimide 

(1.4 equiv). The mixture was then stirred for 2 hours, filtered and concentrated to obtain an 

oil, which was immediately used for phosphorylation. 

General procedure III: Boron trichloride mediated selective debenzylation of 6.4a-b.  

A 0.1 M solution of the benzylated hydroxamate in dichloromethane was cooled to −75 °C. 

BCl3 (1 M solution in CH2Cl2, 3.0 equiv) was added dropwise, and the mixture allowed to stir 
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at this temperature for 45 min. Next, the reaction mixture was poured into aqueous NaHCO3 

and extracted 4 times with CH2Cl2. The organic fractions were combined, washed with brine, 

dried (Na2SO4), filtered, and concentrated in vacuo. The residue was purified by silica gel 

column chromatography to obtain the free hydroxamate. 

General procedure IV: Trimethylbromosilane mediated deprotection of diethyl 

phosphonates 6.5a-b. 

To a 0.1 M solution of starting material in dichloromethane was added BSTFA (4.0 equiv). 

The mixture was allowed to stir at room temperature for 15 min before an ice bath was 

installed, and TMSBr (10.0 equiv) was added. The ice bath was removed after 10 min, and 

the reaction allowed to stir while being monitored by MS and phosphorus NMR. 

Unexpectedly, several peaks emerged on the MS spectrum, which did not represent the 

product (or species related to the 'normal' deprotection pathway) and this coincided with a 

cluster of phosphorus peaks observed on the 31P NMR. Different attempts using a lower 

concentration of TMSBr and/or keeping the reaction in an ice bath throughout monitoring 

were futile, as a similar pattern was observed in each case.  

General procedure V: Catalytic hydrogenolysis of benzyl protective groups. 

The benzyl protected compound (6.6a-b) was dissolved in MeOH (10 mg/mL) under a 

nitrogen atmosphere, and a catalytic amount of Pd/C (10%) was added. The resulting 

mixture was then stirred under a hydrogen atmosphere while monitoring by MS and 31P 

NMR. Unfortunately, the unusual deprotection findings described above (general procedure 

IV) were again the outcome in this case, so that compounds 6.1a-b were ultimately 

inaccessible.  

Tert-butyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)carbamate (6.3a). Prepared from 

compound 6.2a (1.4 g, 7.40 mmol) according to general procedure I. Clear wax; purification 

2:1 Hex/EtOAc v/v; yield 81%.  1H NMR (300 MHz, CDCl3) δH ppm 1.43 (br S, 9H, t-Bu), 2.51-

2.68 (m, 2H, -CH2-CO), 3.20 (s, 3H, N-(CH3)CO), 3.29-3.48 (m, 2H, N(Boc)-CH2-), 4.81 (s, 2H, -

CH2Ph), 7.29-7.47 (m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.4, 32.6, 33.4, 35.8, 

76.2, 79.0, 128.7, 129.0, 129.3, 134.2, 155.9, 173.9. HRMS (ESI): calculated for C16H25N2O4 

[(M+H)+], 309.1809; found 309.1827.      
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Tert-butyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)(methyl)carbamate (6.3b). Prepared 

from compound 6.2b (1.4 g, 6.89 mmol) according to general procedure I. Clear wax; 

purification 2:1 Hex/EtOAc v/v; yield 83%. 1H NMR (300 MHz, CDCl3) δH ppm 1.44 (br S, 9H, t-

Bu), 2.52-2.74 (m, 2H, -CH2-CO), 2.84 (s, 3H, N-(CH3)CO), 3.20 (s, 3H, N(CH3)Boc), 3.39-3.58 

(m, 2H, N(Boc)-CH2-), 4.83 (s, 2H, -CH2Ph), 7.31-7.47 (m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) 

δC ppm 28.4, 30.9, 44.9, 76.3, 79.3, 128.6, 128.9, 129.3, 134.2, 155.5. HRMS (ESI): calculated 

for C17H27N2O4 [(M+H)+], 323.1965; found 323.1941.      

Tert-butyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)(4-chlorophenyl)carbamate (6.3c). 

Compound 6.3a (740 mg, 2.40 mmol) was dissolved in degassed 1,4-dioxane (5.0 mL) at 

room temperature, followed by addition of 1-bromo-4-chlorobenzene (515 mg, 2.64 mmol), 

palladium (II) diacetate (22 mg, 0.10 mmol), Xantphos (186 mg, 13 mole%) and cesium 

carbonate (1.11 g, 3.4 mmol). The reaction mixture was heated to 110 °C over 48 hours, 

after which it was cooled to room temperature, sorped on celite and purified by column 

chromatography (2:1 Hex/EtOAc v/v) to produce 452 mg of the title compound (45%) as a 

white wax. 1H NMR (300 MHz, CDCl3) δH ppm 1.42 (br s, 9H, t-Bu), 2.59-2.74 (m, 2H, -CH2-

CO), 3.15 (s, 3H, N-CH3), 3.85-3.98 (m, 2H, N(4-ClPh)-CH2-), 4.98 (s, 2H, -CH2Ph), 7.06-7.41 

(m, 9H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 28.3, 31.4, 33.4, 46.2, 76.4, 80.3, 126.1, 

127.1, 128.3, 128.7, 134.4, 140.9, 142.3, 154.2, 154.5. HRMS (ESI): calculated for 

C22H28ClN2O4 [(M+H)+], 419.1732; found 419.1749. 

Diethyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)phosphoramidate (6.4a). Prepared from 

compound 6.3a (1.1 g, 3.57 mmol) according to general procedure II. Colorless oil; 

purification 97.5: 2.5 CH2Cl2/MeOH v/v; yield 71%. 1H NMR (300 MHz, CDCl3) δH ppm 1.30 (t, 

J = 7.1 Hz, 3H, -CH2-CH3), 1.31 (t, J = 7.1 Hz, 3H, -CH2-CH3), 2.59 (t, J = 5.7 Hz, 2H, -CH2-CO), 

3.09-3.24 (m, 5H, N-CH3, -NH-CH2-), 3.96-4.12 (m, 4H, P-O-CH2-CH3), 4.83 (s, 2H, -CH2Ph), 

7.31-7.46 (m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.9 (d, 3JC-P = 7.1 Hz), 31.8, 34.0, 

45.0 (d, 3JC-P = 4.6 Hz), 62.4 (d, 2JC-P = 6.7 Hz), 76.4, 128.7, 128.9, 129.2, 129.5 136.1, 168.1. 

31P-NMR (121.5 MHz, CDCl3): δP ppm = 8.90. HRMS (ESI): calculated for C15H26N2O5P 

[(M+H)+], 345.1574; found 345.1501. 

Diethyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)(methyl)phosphoramidate (6.4b). 

Prepared from compound 6.3b (900 mg, 2.79 mmol) according to general procedure II. 
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Colorless oil; 98:2 CH2Cl2/MeOH; yield 78%. 1H NMR (300 MHz, CDCl3) δH ppm 1.28 (t, J = 7.3 

Hz, 3H, -CH2-CH3), 1.29 (t, J = 7.0 Hz, 3H, -CH2-CH3), 2.58-2.69 (m, 5H, N-CH3, -CH2-CO), 3.21 

(s, 3H, N-CH3), 3.26-3.39 (m, 2H, -N(CH3)-CH2-), 3.91-4.10 (m, 4H, P-O-CH2-CH3), 4.86 (s, 2H, -

CH2Ph), 7.34-7.45 (m, 5H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.1 (d, 3JC-P = 7.3 Hz), 

31.5, 33.9, (d, 2JC-P = 4.1 Hz), 45.0 (d, 3JC-P = 4.8 Hz), 62.0 (d, 2JC-P = 6.9 Hz), 76.3, 128.6, 128.9, 

129.2, 134.3, 164.1. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 10.0. HRMS (ESI): calculated for 

C16H28N2O5P [(M+H)+], 359.1730; found 359.1748. 

Diethyl (3-(hydroxy(methyl)amino)-3-oxopropyl)phosphoramidate (6.5a). Prepared from 

compound 6.4a (500 mg, 1.45 mmol) according to general procedure III. Pale yellow oil; 

purification 94:6 CH2Cl2/MeOH v/v; yield 72%. 1H NMR (300 MHz, CDCl3) δH ppm 1.31 (t, J = 

6.9 Hz, 3H, -CH2-CH3), 1.32 (t, J = 7.1 Hz, 3H, -CH2-CH3), 2.67 (t, J = 7.36 Hz, 2H, -CH2-CO), 

3.08-3.23 (m, 5H, N-CH3, -NH-CH2-), 3.96-4.09 (m, 4H, P-O-CH2-CH3). 13C-NMR (75 MHz, 

CDCl3) δC ppm 15.1 (d, 3JC-P = 7.7 Hz), 33.9 (d, 3JC-P = 6.2 Hz), 34.7, 36.7, 62.3 (d, 2JC-P = 5.8 Hz), 

172.6. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 10.01. HRMS (ESI): calculated for C8H20N2O5P 

[(M+H)+], 255.1104; found 255.1201. 

Diethyl (3-(hydroxy(methyl)amino)-3-oxopropyl)(methyl)phosphoramidate (6.5b). Prepared 

from compound 6.4b (450 mg, 1.26 mmol) according to general procedure III. Pale yellow 

oil; purification 95:5 CH2Cl2/MeOH v/v; yield 74%. 1H NMR (300 MHz, CDCl3) δH ppm 1.25-

1.44 (m, 6H, -CH2-CH3), 2.60-2.83 (m, 5H, N-CH3, -CH2-CO), 3.23 (s, 3H, N-CH3), 3.31-3.49 (m, 

2H, -N(CH3)-CH2-), 3.91-4.09 (m, 4H, -CH2CH3). 13C-NMR (75 MHz, CDCl3) δC ppm 16.0 (d, 3JC-P 

= 7.64 Hz), 33.4 (d, 3JC-P = 4.9 Hz), 33.6 (d, 2JC-P = 3.5 Hz), 35.91, 45.2 (d, 2JC-P = 6.3 Hz), 62.6 (d, 

2JC-P = 6.3 Hz), 171.2. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 10.70. HRMS (ESI): calculated for 

C9H22N2O5P [(M+H)+], 269.1261; found 269.1280. 

Dibenzyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)phosphoramidate (6.6a). Prepared from 

compound 6.3a (650 mg, 2.11 mmol) according to general procedure II. Colorless oil; 

purification 97:3 CH2Cl2/MeOH v/v; yield 64%. 1H NMR (300 MHz, CDCl3) δH ppm 2.52 (t, J = 

6.3 Hz, 2H, -CH2-CO), 3.07-3.25 (m, 5H, N-CH3, N(CH3)-CH2-), 4.71 (s, 2H, -CH2Ph), 4.97-5.21 

(m, 4H, P-O-CH2-Ph), 7.23-7.42 (m, 15H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 29.5, 33.7 

(d, 2JC-P = 4.8 Hz), 36.7, 67.9, 76.1, 127.7,128.1, 128.4, 128.6, 129.0, 129.2, 136.4, 136.5 (d, 
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3JC-P = 8.1 Hz), 178.0. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 9.50. HRMS (ESI): calculated for 

C25H30N2O5P [(M+H)+], 469.1887; found 469.1881.  

Dibenzyl (3-((benzyloxy)(methyl)amino)-3-oxopropyl)(methyl)phosphoramidate (6.6b). 

Prepared from compound 6.3a (630 mg, 1.95 mmol) according to general procedure II. 

Colorless oil; purification 97:3 CH2Cl2/MeOH v/v; yield 68%. 1H NMR (300 MHz, CDCl3) δH 

ppm 2.50-2.74 (m, 5H, N-CH3, -CH2-CO), 3.14 (s, 3H, N-CH3), 3.22-3.40 (m, 2H, N(CH3)-CH2-), 

4.75 (s, 2H, -CH2Ph), 4.89-5.09 (m, 4H, P-O-CH2-Ph), 7.27-7.41 (m, 15H, Ar-H). 13C-NMR (75 

MHz, CDCl3) δC ppm 28.1, 29.4, 33.1 (d, 2JC-P = 5.1 Hz), 35.4, 67.9 (d, 2JC-P = 4.8 Hz), 75.9, 

127.0, 127.9, 128.3, 128.5, 129.0, 129.2, 135.8, 136.1 (d, 3JC-P = 8.4 Hz), 176.2. 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 10.39. HRMS (ESI): calculated for C26H32N2O5P [(M+H)+], 

483.2043; found 483.2056.    
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VII.     CYCLIC PHOSPHONATE PRODRUGS OF FR900098 
 

VII.A. Introduction 

As a result of extensive efforts to overcome the moderate bioavailability of fosmidomycin 

which mainly stems from the polarity of its phosphonate group, several prodrugs of this lead 

have been developed (see I.E.3.2). In this regard, the acyloxymethyl- and 

alkoxycarbonyloxymethyl esters are amongst the most explored groups and have resulted in 

analogues that inhibit the multiplication of P. falciparum blood stages with IC50 values in the 

single-digit nanomolar range. Such phosphonate prodrug moieties are established in 

marketed antiviral drugs, e.g., the bis-pivaloyloxymethyl ester of adefovir (Hepsera, 7.1, 

Figure VII.1) and the diisopropyloxycarbonyloxymethyl ester of tenofovir fumarate (Viread, 

7.2). These acyclic nucleoside phosphonates are used for the treatment of hepatitis B and 

HIV infections.1 Despite their successful development, in vivo decomposition-related toxicity 

is a current concern especially during long term treatment.2,3 

 

Figure VII.1: Structures of Hepsera (7.1) and Viread (7.2). 

Reducing the amount of debris generated from the in vivo hydrolysis of known effective 

prodrug moieties through a cyclic prodrug technology is an interesting challenge. In this 

strategy, only one of the phosphonate O is connected to the prodrug moiety, while the 

second O is temporarily locked in a cyclic structure with an integral part of the parent 

compound. The concept of cyclic phosphonate masks has been studied before. 
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Cyclosaligenyl phosphonate prodrugs4,5, which present a salicyl alcohol (7.3, Figure VII.2) as 

the only masking unit for both hydroxyl moieties of the phosphonic acid, have been 

successfully applied for the intracellular delivery of a number of antiviral nucleotides (e.g., 

azidothymidine).3 The HepDirect prodrugs, which contain a cyclic 1-aryl-1,3-propanyl ester 

(7.4), target phosph(on)ate-containing drugs to the liver for antiviral therapy, due to their 

selective activation by a liver specific cytochrome P450 isozyme, CYP3A4.6 In the context of 

antimalarials, HepDirect prodrugs will be relevant for targeting hypnozoids or for 

prophylactic use. A more effective plan, however, would be the development of such cyclic 

prodrug entities that neutralize the disease-causing erythrocytic stage of the malaria 

parasite or that access and kill Mtb cells since these do not concentrate in hepatocytes.  

 

Figure VII.2: Structures of known cyclic phosphonate prodrug moieties (7.3 and 7.4), 

reported -aryl fosmidomycin analogues (7.5 and 7.6) and planned derivatives (7.7 and 7.8). 

Several fosmidomycin/FR900098 analogues bearing a (substituted) phenyl ring in -position 

have been reported to elicit promising inhibitory activity both at the levels of isolated PfDxr 

or in parasite growth assays (see I.E.2.2). Andaloussi et al. reported on the ability of -aryl-

substituted fosmidomycin analogues to inhibit MtbDxr and intact Mycobacteria cells.7 This 

study featured the bicyclic compound 7.5, which unfortunately, lacked activity against the 
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enzyme and was also shown to have MIC > 32 μg/mL. However, the IC50 value of the bromo 

derivative 7.6 (5.6 μM) indicates that substitution in ortho position is tolerated by the 

enzyme. While steric constraints (stemming from the ring architecture in 7.5) may 

unfavorably influence binding to the enzyme, the (possibly) unliberated phosphonate 

hydroxyl may have sacrificed a part of the crucial H-bonding that is necessary to anchor the 

analogue to the active site. The synthesis of compounds 7.7, would be a good starting point 

to investigate the potential of new cyclic prodrug derivatives. We envisioned that upon entry 

into the pathogen cells, the compounds would hydrolyze to the -ortho-hydroxyphenyl 

analogue 7.8, while releasing halve as much side products as the corresponding ‘bis-‘ 

prodrug analogues. Preparation of compound 7.8 was also planned, to serve as a control in 

the assessment of this cyclic prodrug paradigm.  

VII.B. Synthesis 

A retrosynthesis for the preparation of 7.7 and 7.8 is shown in Scheme VII.1. We planned to 

access compounds 7.7 by cyclizing intermediate 7.22 via a Michaelis-Arbusov reaction and 

then substituting the phosphonate ethyl group with various prodrug moieties before final 

debenzylation of the hydroxamate function. 

 

Scheme VII.1: Retrosynthesis of the cyclic prodrug derivatives (7.7) and -ortho-

hydroxyphenyl FR900098 analogue (7.8) starting from salicylaldehyde. 

The uncyclized parent compound 7.8 would be obtained from debenzylation and cleavage of 

the ethyl groups in 7.22. Hydroboration of 7.11, followed by Dess-Martin periodinane 
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oxidation of the resulting primary alcohol and hydroxamate formation affords compound 

7.22. Intermediate 7.11 is attainable through zinc-mediated addition of allyl bromide to 

commercially available salicylaldehyde (7.9) and subsequent Arbusov reaction. 

The synthesis of 7.7 (Scheme VII.2) commenced, as envisioned, with the allylation of 

purchased salicylaldehyde (7.9) according to the procedure described by Einhorn and 

Luche.8 Phosphorylation of the resulting allyl diol 7.10 was accomplished by refluxing it in 

dry toluene in the presence of triethyl phosphite to obtain 7.12, albeit in low yield. Attempts 

to transform 7.12 into 7.13 by hydroboration did not afford the desired compound, rather, 

yielding a reaction mixture fraught with polar constituents that remain on the base-line 

during thin layer chromatography (TLC) analysis and accordingly do not elute when loaded 

on a silica gel column. This failure, barely two steps into the synthesis, together with a low 

yield recorded for the previous step led to the suspicion that the five membered ring in 7.12 

is susceptible to reaction conditions, necessitating a switch to a synthetic approach that 

allows late stage ring formation. 

 

Scheme VII.2 Reagents and conditions: (i) Zn, allyl bromide, THF, NH4Cl, rt, 1.5 h, 92%; (ii) 

(EtO)3P, dry toluene, 130 °C, 48 h, 21%; (iii) BH3, THF, NaBO3.H2O, H2O, 0 °C to rt, 4 h.    

Thus an alternative route (Scheme VII.3) was explored, starting still from salicylaldehyde. 

Treatment of 7.9 with methoxymethyl chloride afforded 7.16 which was then allylated to 

obtain 7.17.  
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Scheme VII.3 Reagents and conditions: (i) CH2Cl2, DIPEA, MOMCl, rt, 8 h, 94%; (ii) CH2=CHCH2Br, Zn, THF, NH4Cl, rt, 2 h, 91%; (iii) P(OEt)3, ZnBr2, 

rt, 1.5 h, 89%; (iv) BH3, THF, NaBO3.H2O, H2O, 0 °C to rt, 4.5 h, 93%; (v) TEMPO, BAIB, MeCN, H2O, rt, 18 h, 73%; (vi) CH3N(OH)H, EDC.HCl, Et3N, 

CH2Cl2, rt, 18 h, 74%; (vii) PTSA.H2O, MeOH, H2O, rt, 42 h, 87%; (viii) H2, Pd/C, MeOH, 25 °C, 15 min, 62%; (ix) TMSBr, CH2Cl2, H2O, NH4OHaq., 48 

h, quant.; (x) dry toluene, 130 °C, 36 h.    
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Phosphorylation with triethyl phosphite produced 7.18, which was easily hydroborated to 

obtain 7.19. Oxidation of 7.19 with catalytic 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in 

the presence of  (diacetoxyiodo)benzene (BAIB) generated the corresponding carboxylic acid 

7.20, which was then coupled with N-methyl O-benzyl hydroxyl amine to afford the fully 

protected intermediate 7.21. Acidic cleavage of the methoxymethyl ether in 7.21 yielded 

7.22, an intermediate from where divergence could be exploited to arrive at both 7.7 and 

7.8. Thus intermediate 7.22 was debenzylated to 7.23. Bromotrimethyl silane mediated 

removal of the phosphonate esters of 7.23 followed by basic workup gave access to the 

target 7.8 as the bisammonium salt. 

Attempts to obtain the cyclized precursor 7.14 were, however, unsuccessful. We observed 

that at the end of the reaction, TLC analysis typically indicated a major product spot but 

unfortunately, after filtration of the reaction mixture and in vacuo concentration, mass 

spectrometry analysis revealed a mixture of the target product, starting material and a 

product derived from hydrolysis of the five membered ring in 7.14. Efforts to resolve this 

mixture by column chromatography failed as only a small amount of the product was 

recovered, which in turn generated multiple 31P signals and cumbersome 1H and 13C NMR 

spectra. In a subsequent attempt, mass spectrometry analysis of the crude reaction mixture 

and the residue after filtration showed that 7.14 was indeed formed during the reaction, but 

contaminated with the mono-protected phosphonate form, responsible for the baseline 

spot on the TLC. 

Remarkably, Eom and collaborators did not report any decay problems during the synthesis 

of related benzoxaphosphole 1- and 2-oxides (Figure VII.3, 7.24 and 7.25 respectively) from 

phosphonic and phosphinic acids.9 However, an earlier investigation by Aksnes and 

Bergesen10 revealed that there is an enormous increase (factor of 5 X 104) in hydrolysis rate 

when moving from the phospholan 7.26 to the oxaphospholan 7.27 ester and also a strong 

increase when moving from the latter to the dioxaphospholan ester 7.28. 
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Figure VII.3: Structures of cyclic phosphoryl esters. 

The authors observed that hydrolysis in water or water-alcohol mixtures is exclusively by 

ring opening and attributed the high rate to a release of ring strain during hydrolysis, as well 

as a favorable entropy of activation. These findings, together with our experience in handling 

compound 7.14, make clear that the target cyclic prodrugs 7.7 are not attainable according 

to our synthetic plan and/or probably too labile to serve as useful prodrugs. 

VII.C. Conclusion 

In conclusion, the objective of preparing cyclic phosphonate prodrugs with one phosphonate 

O masked by a substituent on the molecule is theoretically attractive, but the synthesis and 

purification of such entities proved problematic. The 3H-benzo [][1,2]oxaphosphole 2-oxide 

system shows to be prone to cleavage, making mono-protection of the other phosphonate O 

a serious challenge, and undermining the envisaged prodrug initiative. 

VII.D. Experimental procedures 

General Methods and Materials. See section III.E. 

2-(1-Hydroxybut-3-en-1-yl)phenol (7.10). To a solvent mixture of THF and NH4Cl (50 mL, 1:3), 

was added salicylaldehyde (2.67 mL, 25 mmol), followed by zinc granules (3.3 g, 50 mmol) 

and allyl bromide (1.4 mL, 50 mmol) at room temperature. An exothermic reaction ensued 

with disappearance of the zinc granules, and the mixture was stirred for 1.5 hours after 

which TLC analysis confirmed a completed reaction. Transfer of the mixture to a separation 

funnel was followed by aqueous layer extraction (three times with 75 mL EtOAc). The 

organic fractions were pooled, dried over Na2SO4, filtered and concentrated under reduced 

pressure before purification by silica gel chromatography (gradient of 0 to 20% EtOAc in 

toluene) to obtain 3.78 g of 7.10 as a colorless oil (yield 92%). 1H NMR (300 MHz, CDCl3) δH 
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ppm 2.46-2.70 (m, 2H, -CH2-), 3.07 (s, 1H, -CH(CH2)-OH), 4.83 (t, J = 6.3 Hz, -CH(CH2)-OH), 

5.17 (app. d, J = 12.7 Hz, 2H, CH2=CH-), 5.73-5.89 (m, 1H, CH2=CH-), 6.78-6.87 (m, 2H, Ar-H), 

6.95 (dd, J = 1.8 Hz, 7.4 Hz, 1H, Ar-H), 7.15 (td, J = 1.8 Hz, 7.3 Hz, 1H, Ar-H), 8.05 (s, 1H, Ar-

OH). 13C-NMR (75 MHz, CDCl3) δC ppm 42.1, 74.6, 117.1, 119.2, 119.9, 126.5, 127.2, 128.9, 

133.9, 155.3. HRMS (ESI): calculated for C10H13O2 [(M+H)+], 165.0910; found 165.0918.        

3-Allyl-2-ethoxy-3H-benzo[d][1,2]oxaphosphole 2-oxide (7.12). In the presence of powdered 

4 Å molecular sieves, a solution of 7.10 (500 mg, 3.05 mmol) and triethyl phosphite (0.53 mL, 

3.05 mmol) in dry toluene (15 mL) and was stirred under reflux for 36 hours. Solvent 

evaporation under vacuum and column chromatography (0 to 20% EtOAc in toluene) 

afforded 158 mg of 7.12 (yield 21%) as a brown oil. 1H NMR (300 MHz, CDCl3) δH ppm 1.37 (t, 

J = 6.9 Hz, 3H, -CH2CH3), 2.47-2.84 (m, 2H, -CH2-), 3.29-3.43 (m, 1H, P-CH(Ar)-), 4.20-4.38 (m, 

2H, -CH2CH3), 5.11-5.34 (m, 2H, CH2=CH-), 5.91-6.07 (m, 1H, CH2=CH-), 6.96-7.09 (m, 2H, Ar-

H), 7.19-7.28 (m, 2H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.4 (d, 3JC-P = 6.1 Hz), 32.9 (d, 

2JC-P = 6.1 Hz), 35.5 (d, 1JC-P = 124.2 Hz), 63.7 (d, 2JC-P = 6.9 Hz), 117.8, 123.3, 125.68, 127.2 (d, 

2JC-P = 6.5 Hz), 128.8, 129.0 (d, 3JC-P = 7.7 Hz), 134.6 (d, 3JC-P = 8.7 Hz), 152.0 (d, 3JC-P = 9.2 Hz). 

31P-NMR (121.5 MHz, CDCl3): δP ppm = 47.1. HRMS (ESI): calculated for C12H16O3P [(M+H)+], 

239.0832; found 239.0810.           

2-Ethoxy-3-(3-hydroxypropyl)-3H-benzo[d][1,2]oxaphosphole 2-oxide (7.13). Compound 7.12 

(432 mg, 1.81 mmol) was dissolved in 18 mL of THF and BH3 (1 M solution in THF, 2 mL) was 

added at 0 °C. After 10 minutes, the ice bath was removed and the reaction mixture allowed 

to slowly rise to room temperature while stirring over 2 hours. Water (18 mL) and 

NaBO3.H2O (199 mg) was added and the mixture stirred for another 2 hours after which, it 

was diluted with EtOAc, the organic phase collected and the aqueous layer extracted three 

times with EtOAc. The combined organic fractions were washed with water and brine, dried 

over Na2SO4, filtered and concentrated in vacuo and TLC analysis showed the product to 

remain at the baseline, and would not elute at eluent polarities higher than expected. 

Attempts to purify this by silica gel chromatography failed, as the product did not elute. 

2-(Methoxymethoxy)benzaldehyde (7.16). Methoxymethyl chloride (2.38 mL, 30.71 mL) was 

added dropwise to a solution of salicylaldehyde (7.9; 2.5 g, 20.47 mmol) and DIPEA (15 mL, 

81.87 mmol) in CH2Cl2 (102 mL) at room temperature. After stirring for 4 h, water was added 
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and the organic layer separated. The aqueous layer was further extracted with CH2Cl2, (3 X 

150 mL), the combined organic extracts were dried (Na2SO4) and the solvent was removed in 

vacuo. The crude product was purified by flash chromatography (hexane/EtOAc, 9:1) to give 

7.16 (3.20 g, 94 %) as a pale brownish oil. 1H NMR (300 MHz, CDCl3) δH 3.53 (s, 3 H, CH3-O-

CH2-), 5.34 (s, 2H, CH3-O-CH2-), 7.04 (t, J = 7.4 Hz, 1 H, Ar-H), 7.21 (d, J = 8.4 Hz, 1 H, Ar-H), 

7.50–7.57 (m, 1 H, Ar-H), 7.83 (dd, J = 2.1, 8.0 Hz, 1 H, Ar-H), 10.51 (d, J = 1.0 Hz, 1 H, CHO). 

13C-NMR (75 MHz, CDCl3) δC ppm = 56.3, 95.1, 114.9, 121.5, 125.5, 128.8, 135.5, 160.1, 

190.0.  

1-(2-(Methoxymethoxy)phenyl)but-3-en-1-ol (7.17). To a solution of compound 7.16 (3 g, 

18.05 mmol) in a solvent mixture of THF and NH4Cl (40 mL, 1:3) was added zinc granules 

(2.36 g, 36.12 mmol) and allyl bromide (3.20 mL, 36.12 mmol) at room temperature. An 

exothermic reaction proceeded with disappearance of the zinc granules, and the mixture 

was stirred for 2 hours after which TLC analysis confirmed a completed reaction. The mixture 

was transferred to a separation funnel and the organic phase was separated from the 

aqueous layer which was then extracted with EtOAc(3 X 70 mL). The combined organic 

fractions were pooled, dried over Na2SO4, filtered and concentrated under reduced 

pressure. Purification by silica gel chromatography afforded 3.42 g of 7.17 as a yellow oil 

(yield 91%). 1H NMR (300 MHz, CDCl3) δH ppm 2.56-2.93 (m, 2H, -CH2-), 3.34 (s, 3 H, CH3-O-

CH2-), 5.10 (t, J = 5.9 Hz, -CH(CH2)-OH), 5.20 (m, 2H, CH2=CH-), 5.34 (s, 2H, CH3-O-CH2-), 5.41-

5.90 (m, 1H, CH2=CH-), 6.78-6.86 (m, 2H, Ar-H), 6.90 (m, 1H, Ar-H), 7.22 (td, J = 1.9 Hz, 7.1 Hz, 

1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 42.2, 53.1, 69.9, 91.4, 117.2, 119.7, 119.8, 126.7, 

127.2, 128.9, 133.9, 154.9. HRMS (ESI): calculated for C12H17O3 [(M+H)+], 209.1172; found 

209.0991. 

Diethyl (1-(2-(methoxymethoxy)phenyl)but-3-en-1-yl)phosphonate (7.18). To a solution of 

compound 7.17 (634 mg, 3.04 mmol) and triethylphosphite (2.65 mL, 15.23 mmol) at room 

temperature, zinc bromide (760 mg, 3.35 mmol) was added and the mixture allowed to stir 

for 1.5 hours. After consumption of the starting material (monitored by TLC), the reaction 

mixture was transferred to a separation funnel containing ice and 2N HCl solution. The 

organic layer was separated and the aqueous layer extracted with EtOAc (3 X 50 mL), dried 

(Na2SO4), filtered and the solvent removed under vacuo. Flash column chromatography 

(toluene/EtOAc; 1:1) afforded 889 mg of 7.18 as a colorless oil (yield 89%). 1H NMR (300 
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MHz, CDCl3) δH ppm 1.09 (t, J = 7.0 Hz, 3H, -CH2CH3), 1.28 (t, J = 7.3 Hz, 3H, -CH2CH3), 2.58-

2.93 (m, 2H, -CH(Ar)-CH2CH=C), 3.48 (s, 3H, CH3-O-CH2-), 3.70-4.15 (m, 5H, P-CH(Ar)-CH2-, -

CH2CH3), 4.85-5.02 (m, 2H, CH2=CH-), 5.20 (s, 2H, CH3-O-CH2-), 5.54-5.71 (m, 1H, CH=CH2-), 

6.97-7.11 (m, 2H, Ar-H), 7.14-7.22 (m, 1H, Ar-H), 7.48 (dt, J = 2.1 Hz, 7.7 Hz, 1H, Ar-H). 13C-

NMR (75 MHz, CDCl3) δC ppm 16.20 (d, 3JC-P = 5.7 Hz), 16.4 (d, 3JC-P = 6.0 Hz), 34.2 (d, 2JC-P = 2.3 

Hz), 34.9 (d, 1JC-P = 138.0 Hz), 56.0, 61.7 (d, 2JC-P = 7.6 Hz), 62.3 (d, 2JC-P = 7.1 Hz), 94.6, 114.1 

(d, 4JC-P = 2.3 Hz), 116.4, 121.8 (d, 4JC-P = 3.6 Hz), 125.0 (d, 2JC-P = 6.9 Hz), 127.9 (d, 5JC-P = 3.5 

Hz), 129.2 (d, 3JC-P = 4.6 Hz), 135.4 (d, 3JC-P = 16.3 Hz), 155.1 (d, 3JC-P = 8.2 Hz). 31P-NMR (121.5 

MHz, CDCl3): δP ppm = 29.1. HRMS (ESI): calculated for C16H26O5P [(M+H)+], 329.1512; found 

329.1499. 

Diethyl (4-hydroxy-1-(2-(methoxymethoxy)phenyl)butyl)phosphonate (7.19). Compound 7.18 

(2.97 g, 9.05 mmol) was dissolved in 90 mL of THF and BH3 (1 M solution in THF, 10 mL) was 

added at 0 °C. After 10 minutes, the ice bath was removed and the reaction mixture allowed 

to slowly rise to room temperature while stirring over 2.5 hours. Water (90 mL) and 

NaBO3.H2O (1.04 g, 10 mmol) was added and the mixture stirred for another 2 hours after 

which, it was diluted with EtOAc, the organic phase collected and the aqueous layer 

extracted three times with EtOAc. The combined organic fractions were washed with water 

and brine, dried over Na2SO4, filtered and column chromatography (CH2Cl2/MeOH; 97:3) 

gave access to 7.19 (2.92 g, 93% yield). 1H NMR (300 MHz, CDCl3) δH ppm 1.08 (t, J = 7.4 Hz, 

3H, -CH2CH3), 1.26 (t, J = 7.0 Hz, 3H, -CH2CH3), 1.47 (app. quint. J =7.8 Hz, 2H, C(Ar)H-CH2-

CH2-), 1.84-2.29 (m, 2H, C(Ar)H-CH2-CH2-), 2.64 (s, 1H, OH), 3.48 (s, 3H, CH3-O-CH2-), 3.56 (t, J 

= 6.5 Hz, 2H, -CH2-CH2-OH), 3.67-4.15 (m, 5H, P-CH(Ar)-CH2-, -CH2CH3), 5.18 (s, 2H, CH3-O-

CH2-), 7.00 (t, J = 5.6 Hz, 1H, Ar-H), 7.06-7.22 (m, 2H, Ar-H), 7.47 (app. dt, J = 2.2 Hz, 7.7 Hz, 

Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.1 (d, 3JC-P = 5.6 Hz), 16.3 (d, 3JC-P = 6.5 Hz), 26.2 (d, 

2JC-P = 2.5 Hz), 30.5 (d, 3JC-P = 14.9 Hz), 34.4 (d, 1JC-P = 139.3 Hz), 56.0, 61.6 (d, 2JC-P = 7.5 Hz), 

61.9, 62.3 (d, 2JC-P = 7.5 Hz), 94.5, 114.0 (d, 4JC-P = 2.5 Hz), 121.9 (d, 3JC-P = 3.5 Hz), 125.2 (d, 2JC-

P = 6.3 Hz), 127.9 (d, 4JC-P = 3.7 Hz), 128.9 (d, 3JC-P = 5.47 Hz), 155.2 (d, 3JC-P = 8.3 Hz). 31P-NMR 

(121.5 MHz, CDCl3): δP ppm = 29.7. HRMS (ESI): calculated for C16H28O6P [(M+H)+], 347.1618; 

found 347.1619.  

4-(Diethoxyphosphoryl)-4-(2-(methoxymethoxy)phenyl)butanoic acid (7.20). TEMPO (0.32 g, 

2.07 mmol) and BAIB (7.36 g, 22.85 mmol) were added to a solution of 7.19 in a mixture of 
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water and acetonitrile (50 mL, 1:1). The reaction mixture was stirred at room temperature 

until TLC analysis indicated a complete reaction. The reaction then quenched with a 5% 

aqueous Na2S2O3, the organic layer separated and the aqueous layer extracted with EtOAc (3 

X 100 mL). Column chromatography (7% MeOH in CH2Cl2 and 0.5 mL CH3COOH) yielded 7.20 

as an oil. 1H NMR (300 MHz, CDCl3) δH ppm 1.09 (t, J = 7.1 Hz, 3H, -CH2CH3), 1.28 (t, J = 7.1 Hz, 

3H, -CH2CH3), 2.01-2.50 (m, 4H, -CH2-CH2-CO), 3.47 (s, 3H, CH3-O-CH2-), 3.70-4.15 (m, 5H, P-

CH(Ar)-CH2-, -CH2CH3), 5.17 (s, 3H, CH3-O-CH2-), 6.96-7.24 (m, 3H, Ar-H), 7.47 (dt, J = 1.9 Hz, 

7.8 Hz, 1H, Ar-H). 13C-NMR (75 MHz, CDCl3) δC ppm 16.1 (d, 3JC-P = 5.8 Hz), 16.3 (d, 3JC-P = 6.0 

Hz), 25.2, 31.9 (d, 3JC-P = 16.6 Hz), 34.1 (d, 1JC-P = 139.5 Hz), 56.0, 62.0 (d, 2JC-P = 7.9 Hz), 62.7 

(d, 2JC-P = 7.4 Hz), 94.6, 114.1, 122.1 (d, 4JC-P = 3.9 Hz), 124.3 (d, 2JC-P = 6.9 Hz), 128.4 (d, 5JC-P = 

2.4 Hz), 129.0 (d, 3JC-P = 4.6 Hz), 155.4 (d, 2JC-P = 8.6 Hz), 176.9. 31P-NMR (121.5 MHz, CDCl3): 

δP ppm = 28.9. HRMS (ESI): calculated for C16H26O7P [(M+H)+], 361.1411; found 361.1362. 

Diethyl (4-((benzyloxy)(methyl)amino)-1-(2-(methoxymethoxy)phenyl)-4-

oxobutyl)phosphonate (7.21). To a solution of the acid 7.20 (3.50 g, 9.71 mmol) and EDC.HCl 

(2.23 g, 11.66 mmol) in CH2Cl2 (77 mL) was added O-Benzyl-N-methylhydroxylamine (1.60 g, 

11.66 mmol) and Et3N (8 mL, 58.28 mmol). After stirring overnight at room temperature, 

water was added and the mixture was extracted with CH2Cl2 (3 X 150 mL). The organic layer 

was washed with brine, dried over Na2SO4 and after evaporation of the solvent, the residue 

was purified by column chromatography (CH2Cl2/MeOH; 97:3) affording compound 7.21 

(3.45 g, 74%) as a yellow oil. 1H NMR (300 MHz, CDCl3) δH ppm 1.09 (t, J = 7.0 Hz, 3H, -

CH2CH3), 1.28 (t, J = 7.0 Hz, 3H, -CH2CH3), 2.08-2.56 (m, 4H, -CH2-CH2-CO), 3.13 (s, 3H, N-CH3), 

3.43 (s, 3H, CH3-O-CH2-), 3.73-4.16 (m, 5H, -CH2CH3, P-CH(Ar)-CH2-), 4.59 (s, 2H, -CH2Ph), 5.15 

(s, 2H, CH3-O-CH2-), 6.96-7.35 (m, 8H, Ar-H), 7.50 (dt, J = 2.2 Hz, 7.81 Hz, 1H, Ar-H). 13C-NMR 

(75 MHz, CDCl3) δC ppm 16.1 (d, 3JC-P = 5.7 Hz), 16.3 (d, 3JC-P = 7.0 Hz), 24.7, 30.0 (d, 3JC-P = 16.5 

Hz), 34.3 (d, 1JC-P = 140.1 Hz), 55.9, 61.7 (d, 2JC-P = 8.3 Hz), 62.2 (d, 2JC-P = 8.3 Hz), 76.04, 94.6, 

114.2, 114.2, 124.85 (d, 2JC-P = 5.9 Hz), 128.0 (d, 3JC-P = 3.7 Hz), 128.5, 128.8, 129.1, 129.1 (d, 

3JC-P = 4.8 Hz), 134.1, 155.4 (d, 3JC-P = 8.3 Hz). 31P-NMR (121.5 MHz, CDCl3): δP ppm = 32.9. 

HRMS (ESI): calculated for C24H35NO7P [(M+H)+], 480.2146; found 480.2150. 

Diethyl (4-((benzyloxy)(methyl)amino)-1-(2-hydroxyphenyl)-4-oxobutyl)phosphonate (7.22). 

Compound 7.21 (660 mg, 1.38 mmol) and p-toluenesulfonic acid (PTSA) monohydrate (147 

mg, 0.77 mmol) were dissolved in methanol (14 mL) and H2O (1 mL) at room temperature. 
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After stirring the mixture overnight, TLC analysis revealed little progress in the deprotection. 

An additional amount of PTSA.H2O (800 mg, 4.13 mmol) and 24 h more of reaction time at 

room temperature, eventually led to a completed reaction. The reaction mixture was 

quenched with sat. aq. NaHC03 (30 ml), and MeOH was evaporated. The organic layer was 

washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. Silica gel 

chromatography (4% MeOH in CH2Cl2) of the residue gave 7.22 (523 mg, 87%). 1H NMR (300 

MHz, CDCl3) δH ppm 1.11 (t, J = 6.9 Hz, 3H, -CH2CH3), 1.32 (t, J = 7.4 Hz, 3H, -CH2CH3), 2.11-

2.49 (m, 4H, -CH2-CH2-CO), 3.15 (s, 3H, N-CH3), 3.48 (dt, J = 7.6 Hz, 23.2 Hz, 1H, P-CH(Ar)-CH2-

), 3.74-4.21 (m, 4H, -CH2CH3), 4.54 (s, 2H, -CH2Ph), 6.86 (t, J = 7.0 Hz, 1H, Ar-H), 6.96 (d, J =  

8.1 Hz, 1H, Ar-H), 7.05-7.36 (m, 7H, Ar-H), 8.91 (s, 1H, Ar-OH). 13C-NMR (75 MHz, CDCl3) δC 

ppm 16.1 (d, 3JC-P = 6.0 Hz), 16.3 (d, 3JC-P = 6.5 Hz), 22.1 (d, 2JC-P = 6.5 Hz), 29.3 (d, 3JC-P = 15.2 

Hz), 36.6 (d, 1JC-P = 135.0 Hz), 62.9 (d, 2JC-P = 7.0 Hz), 63.4 (d, 2JC-P = 7.1 Hz), 76.2, 119.1, 120.7, 

121.4, 128.6, 128.9, 129.0, 129.1, 129.3, 131.0 (d, 3JC-P = 6.8 Hz), 134.0, 156.0 (d, 3JC-P = 5.7 

Hz), 174.26. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 31.3. HRMS (ESI): calculated for 

C22H31NO6P [(M+H)+], 436.1884; found 436.1902. 

Diethyl (4-(hydroxy(methyl)amino)-1-(2-hydroxyphenyl)-4-oxobutyl)phosphonate (7.23). The 

benzyl-protected hydroxamate 7.22 (500 mg, 1.15 mmol) was dissolved in MeOH (10 mL) 

and Pd/C (10% wt. on activated carbon, 100 mg) was added under inert atmosphere. The 

resulting mixture was then stirred under hydrogen atmosphere for 15 minutes and the 

progress monitored by mass spectrometry. At completion, the reaction mixture was filtered, 

concentrated in vacuo, and flash column chromatography (5% MeOH in CH2Cl2) afforded 

7.23 (245 mg, 62%) as a golden brown oil. 1H NMR (300 MHz, CDCl3) δH ppm 1.12 (t, J = 7.3 

Hz, 3H, -CH2CH3), 1.30 (t, J = 7.3 Hz, 3H, -CH2CH3), 2.03-2.47 (m, 4H, -CH2-CH2-CO), 3.14 (s, 

3H, N-CH3), 3.30 (quint. J = 1.8 Hz, 1H, -CH(Ar)-CH2-), 3.74-4.17 (m, 4H, -CH2CH3), 6.78-6.87 

(m, 2H, Ar-H), 7.09 (tt, J = 1.9 Hz, 7.5 Hz, 1H, Ar-H), 7.34 (dt, J = 1.9 Hz, 7.7 Hz, 1H, Ar-H). 13C-

NMR (75 MHz, CDCl3) δC ppm 16.2 (d, 3JC-P = 5.7 Hz), 16.3 (d, 3JC-P = 6.0 Hz), 23.6 (d, 1JC-P = 

125.4 Hz), 28.1 (d, 3JC-P = 16.6 Hz), 29.4 (d, 2JC-P = 14.9 Hz), 36.0, 62.8 (d, 2JC-P = 7.2 Hz), 63.0 (d, 

2JC-P = 7.3 Hz), 118.7, 120.6, 128.7, 129.2, 129.8 (d, 2JC-P = 7.2 Hz), 155.3 (d, 3JC-P = 8.8 Hz), 

173.7. 31P-NMR (121.5 MHz, CDCl3): δP ppm = 30.6. HRMS (ESI): calculated for C15H25NO6P 

[(M+H)+], 346.1414; found 346.1493. 
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Ammonium (4-(hydroxy(methyl)amino)-1-(2-hydroxyphenyl)-4-oxobutyl)phosphonate (7.8). 

7.23 (150 mg, 0.43 mmol) was dissolved in dry CH2Cl2 (4 mL) under inert atmosphere and 

cooled to 0 °C. TMSBr (0.6 mL, 4.3 mmol) was added dropwise while stirring after which, the 

ice bath was removed and the reaction was stirred at room temperature. After 24 hours 

another 0.4 mL of TMSBr was added and the reaction was further stirred for 24 h. All 

volatiles were then removed in vacuo, the crude material was dissolved in 5% aqueous 

ammonia and washed with diethyl ether. Lyophilization of the solution yielded the 7.8 as a 

brown solid in quantitative yield. 1H NMR (300 MHz, D2O) δH ppm 2.07-2.42 (m, 4H, -CH2-

CH2-CO), 3.01-3.28 (s, 3H, N-CH3), 3.12-3.30 (m, 1H, P-CH(Ar)-CH2-), 6.85-7.00 (m, 2H, Ar-H), 

7.13-7.27 (m, 2H, Ar-H), 8.40 (s, 1H, Ar-OH). 13C-NMR (75 MHz, D2O) δC ppm 24.0, (d, 2JC-P = 

4.8 Hz), 30.3 (d, 3JC-P = 16.9 Hz), 35.8, 45.1 (d, 1JC-P = 129.4 Hz), 117.0, 121.0, 125.2 (d, 2JC-P = 

9.1 Hz), 128.0, 130.5, 154.1 (d, 3JC-P = 7.8 Hz), 175.2. 31P-NMR (121.5 MHz, D2O): δP ppm = 

22.0. HRMS (ESI): calculated for C11H15NO6P [(M-H)-], 288.0642; found 288.0579. 

N-(Benzyloxy)-3-(2-ethoxy-2-oxido-3H-benzo[d][1,2]oxaphosphol-3-yl)-N-methylpropanamide 

(7.14). In the presence of powdered activated 4 Å molecular sieves, a solution of 7.22 (800 

mg, 1.84 mmol) in dry toluene (10 mL) was stirred under reflux for 36 hours. Solvent 

evaporation under vacuum afforded a residue which upon analysis by TLC and mass 

spectrometry, was found to contain traces of the target product (7.14) and a significant 

amount of a contaminant corresponding to hydrolysis of the five membered ring in 7.14, 

together with unspent starting material. Attempts to purify this by column chromatography 

failed. 
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VIII.     BROADER INTERNATIONAL CONTEXT, RELEVANCE AND 

FUTURE PERSPECTIVES 
 

VIII.A. Global socio-economic impact of malaria 

With the end still out of sight, the World Health Organization’s plan of having reduced the 

number of new malaria infections by 75% (from levels registered in 2000) and deaths to near 

zero by the end of 2015 has shown to be a monumental challenge. Since the year 2000, a 

tremendous expansion in the financing and coverage of malaria control programs has led to 

a wide-scale reduction in malaria incidence and mortality. Global data in 2015 show that 57 

of 106 countries that had ongoing transmission in 2000 have reduced malaria incidence by 

>75%.1 Malaria mortality decreased by 60% globally between 2000 and 2015 and malaria is 

no longer the leading cause of death among children in sub-Saharan Africa, the region most 

affected by the disease. The WHO trends (Figure VIII.1)2 reveal wide ranging progress in 

averting malaria deaths: zero deaths, more than 75% reduction and less than 50% decrease 

in some regions although unfortunately, increased rates were observed in parts of Guyana 

and Venezuela. 

 

Figure VIII.1: Percentage change in malaria mortality rate between 2000 and 2013.2  
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Malaria received heightened attention in 1998 with the launching of the Roll Back Malaria 

Partnership and global financing for control of this disease increased from an estimated US$ 

960 million in 2005 to US$ 2.5 billion in 2014.1 The optimistic reports about a progressive 

decrease of malaria mortality and/or increase in antimalarial campaign financing should be 

put in perspective given the stubbornly high annual death toll due to malaria and the fact 

that it remains a major global health threat. In 2015 only, there were some 214 million 

malaria cases and about half a million deaths, an estimated 90% of these from Africa. Lapses 

in data collection and reporting suggest that these figures are underestimated. The 

emergence and spread of antimalarial drug resistance which is now established for 

commonly used antimalarials has substantial implications for malaria control and global 

public health.3 Not only does it lead to an increase in treatment failures and mortality, it also 

augments the risk of anaemia, low birth weight, increased transmission and malaria 

epidemics, repeated consultations at health facilities and the associated costs. 

An effective malaria containment strategy will (besides vector control and improved 

diagnostics), hinge especially on a radical treatment of infected individuals, which would 

directly curb mortality, and offset transmission patterns. In this regard, deployment of new 

and safe drugs acting on unexplored targets is invaluable, to replace moribund antimalarial 

medicines.  

VIII.B. The global burden of tuberculosis 

Tuberculosis ranks amongst the world’s most deadly communicable diseases and unlike 

malaria, is a major health problem not only for developing countries, but all regions of the 

world. Accordingly, the annual death toll from TB surpasses that due to malaria. Since 

declaration of a global emergency in 1993, the incidence rate was relatively stable up until 

around 2000. It then started falling by an average of 1.5% per year and is now 18% lower 

than the level of 2000. However, in 2014, an estimated 9.6 million people developed TB and 

1.5 million died from the disease (1.1 million HIV-negative and 0.4 million HIV-positive), the 

majority in poor countries (Figure VIII.2).4 Most cases of tuberculosis are found in the 

Western Pacific regions, Africa and South East Asia. Poverty and tuberculosis are closely 

interwoven: malnutrition, crowded unhygienic quarters with poor air circulation and 

improper sanitation are poverty indicators that increase both the probability of becoming 



Broader international context, relevance and future perspectives 
 

211 
 

infected and of developing clinical disease. Co-infection with the human immunodeficiency 

virus, which is highly prevalent in developing countries, leads to myriad consequences 

including increased susceptibility to TB, reactivation of latent TB and rapid TB progression to 

active disease.5 The global burden of tuberculosis amounts to approximately $12 billion 

annually.6  

 

Figure VIII.2: Estimated tuberculosis incidence rates, 2014.4  

Multidrug-resistance, which started in the early 1990s as an emerging torpedo to 

antituberculosis efforts, occurs when a Mycobacterium tuberculosis (Mtb, the causative 

agent of human tuberculosis) strain has become resistant to isoniazid (INH) and rifampicin 

(RIF), the two mainstays of first-line TB therapy.7,8 More TB patients were tested for drug 

resistance in 2014 than ever before: Worldwide, an estimated 480,000 cases of MDR-TB 

occurred, resulting in about 190,000 fatalities.4 These data heap pressure on the push for 

upgrading of the antituberculosis arsenal, including the development of novel chemical 

entities with unique modes of action that effectively neutralize all forms of TB infection.     
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VIII.C. The potential for Dxr inhibitors to contribute to the global 

antimalarial and/or antituberculosis armamentarium 

Having presented an overview of the pathways for modern drug discovery and development 

(section I.C.), it is essential to bring the case of antimalarial and antituberculosis drug 

discovery into context, with a critical examination of the prospects in pursuing these goals 

through the NMP. Whether by the target-based or phenotypic-based high-throughput (HTS) 

screening approach, the modus operandi, which is generally characterized by well-delineated 

milestones that include selection of the drug target (for the target-based approach), 

identification of a lead compound, its optimization to a compound suitable for testing in 

animals, and advancement of candidate(s) to clinical trials, culminates in a new drug for the 

treatment of a human disease.  

With a high quality lead (fosmidomycin) in hand, the work covered in this thesis focuses on 

structural modification of this compound, aimed at broadening its SAR and ameliorating its 

druglike character. From a synthetic medicinal chemistry vantage point, the Lipinski rule of 

five9 serves as a necessary but not exhaustive guideline for structural optimization towards 

molecules with improved drug-like properties, although some molecules that violate this 

rule have still trickled to the clinical level.10 Do the phosphonate group, the propyl spacer 

and the hydroxamate moiety of fosmidomycin, all of which offer diverse routes for multiple 

structural modifications, guarantee the successful development of a drug from this lead? 

Potential pitfalls including severe side effects, inability to create an acceptable dosage form 

(after obtaining a promising candidate) and the formation of reactive metabolites (e.g., from 

prodrugs) only intensify the downstream attrition debate. 

VIII.C.1. Desired qualities for new antimalarial drugs   

VIII.C.1.1. Advancing the concept of combination therapy   

The current WHO guidelines for malaria treatment recommend that drugs should be 

deployed mainly as combination therapy, aiming at primarily preventing or slowing the 

onset and spread of resistance.11 According to these guidelines, the three key criteria that 

members of a combination therapy should fulfill are: different modes of action, different 

biochemical targets and exhibition of independent blood schizonticidal activity. Although the 
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development of a fosmidomycin-clindamycin combination therapy recently stalled due to 

inadequate efficacy in clearing uncomplicated malaria in Mozambican children less than 

three years old,12 fosmidomycin remains in the spotlight with new, ongoing combination 

therapy initiatives. Notably, a fosmidomycin-piperaquine combination therapy is currently 

under Phase II clinical investigation by Jomaa Pharma GmbH.13 Like the artemisinins, 

fosmidomycin is a fast-acting antimalarial. It operates by Dxr inhibition, has a remarkably 

good human safety record and is active against existing drug-resistant parasites. 

Piperaquine, which is believed to accumulate within the parasite food vacuole where it 

prevents haem detoxification, is a member of the ‘quine’ family of antimalarials, with a 

longer half life than fosmidomycin (2 to 3 weeks, against 1.6 hours for fosmidomycin).14,15,16 

The rationale for combining these drugs is that besides their respective schizonticidal prowls, 

the difference in half life between the two is beneficial for mutual protection against 

parasite resistance and that piperaquine will additionally provide post-treatment 

prophylaxis. The above-mentioned WHO exigencies on the properties of combination 

therapy entities imply that multiple-drug therapies that include a nonantimalarial drug to 

enhance the antimalarial effect of a blood schizonticidal drug are not considered 

combination therapy. Thus, fosmidomycin-derived compounds stand a good chance to be 

used in combination therapies if the pharmacokinetic attributes of this lead are ameliorated 

such that as a single entity, the derived analogue(s) elicit(s) fast parasite clearance with high 

bioavailability, high human tolerance and a longer residence time.  

Thomson Reuters Life Science Consulting demonstrated that two-thirds of the Phase III 

clinical trial failures across all therapeutic areas, initial indications and major new indications, 

between 2007 and 2010 were attributable to inadequate efficacy.17 They concluded from 

this analysis that large numbers of failures are occurring with drugs that have novel 

mechanisms of action. As a mitigation plan, they suggested a reliance on high-quality 

scientific evidence by fully testing mechanisms against each target indication, beginning at 

the earlier levels of the drug discovery process. This revelation highlights the fact that 

promising drug targets with a likelihood of clinical efficacy, as shown in predictive in vitro 

and in vivo models, are key for drug discovery success. In this regard, the success rates in 

feeding the antimalarial/antituberculosis pipeline with drugs acting on the NMP will not only 

depend on the synthetic medicinal chemistry effort in deriving analogues of promising lead 
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compounds, but much more on the quality of the drug target(s). All the enzymes involved in 

the NMP have been genetically validated as drug targets18 and the X-ray structure of each of 

the enzymes has been solved.19,20 Recently, a systematic druggability assessment of the NMP 

enzymes conducted by Hirsch and co-workers, revealed that all substrate- or cofactor-

binding pockets are druggable.21 A ‘druggable’ target is a protein, peptide or nucleic acid 

with activity that can be modulated by a drug, which can consist of a small molecular weight 

chemical compound or a biologic such as an antibody or a recombinant protein.22 Of all the 

NMP enzymes, Dxr is the only one for which inhibitors with antimicrobial activity at 

pharmaceutically relevant concentrations are known23 and it is also the most widely 

investigated of these potential drug targets. 

VIII.C.1.2. Ease of administration; regimens that are appropriate for outpatient use 

Another desirable quality for an antimalarial drug is the possibility for regimens that are 

appropriate for outpatient use. The most hard hit malaria endemic areas of the world are 

unfortunately also the poorest; with relatively few standard medical facilities, qualified 

medical personnel and the inability of patients (especially in rural areas), to afford expensive 

health care by hospitalization. This means that oral formulations, which most closely meet 

the needs of these communities, should be promoted in antimalarial drug discovery 

ventures. Since all the enzymes of the NMP are well characterized, target-based drug 

discovery is the favored approach to arrive at clinical candidates. However, the high polarity 

of NMP intermediates, which are all phosphorylated and the corresponding polar enzyme 

active sites make the structure-based design of drug-like inhibitors for these enzymes 

challenging. An immediate consequence of this liability is that fosmidomycin-derived 

inhibitors of Dxr are highly polar, with the likelihood of poor oral bioavailability and short 

plasma half-life. This shortcoming is responsible for the recrudescent malaria infections 

associated with fosmidomycin use, even though this compound is a specific and highly 

potent inhibitor of Dxr.  

Even with the abundance of crystallographic information about Dxr from several organisms, 

its dramatic conformational change upon ligand binding also undermines the structure-

based design of improved inhibitors. Given difficulties arriving at novel and potent entities 

via the target-based drug discovery approach, a switch to the phenotypic-based paradigm 
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may uncover novel inhibitors with significantly better pharmacokinetic data than that of the 

currently known compounds. Fosmidomycin was actually discovered by a phenotypic-based 

drug discovery effort,24 and this approach is reportedly making a comeback in drug 

discovery, as some researchers have concluded that alternative strategies such as target-

based screening are useful but may also limit the breadth of new findings.25 

VIII.C.1.3. Radical treatment and chemoprevention 

A radical antimalarial campaign should involve not only the killing of the blood stage 

merozoites, but also inhibition of the liver stage (pre-erythrocytic) development and 

obstruction of the transmission stages (killing gametocytes and inactivating sporozoites), 

which would prevent re-infection or protect other humans.26 The pipeline for the blood 

stage is arguably the best in history, and has indeed been recently expanded by several 

potent new chemotypes. However, the current challenge is to translate the potential of 

these chemotypes into an agent that addresses all the qualities of an ideal antimalarial drug, 

notably: address drug-resistance issues, have a rapid onset of action, be safe especially in 

children and pregnant women and cure malaria in a single dose. The potential for drugs that 

target the transmission stages to revolutionize malaria eradication efforts is enormous, but 

research efforts in this direction have been hampered by the absence of high-throughput 

screens.27 Drug discovery endeavors directed towards the liver and transmission stages are 

still premature but slowly gaining traction. Fosmidomycin and related compounds act on the 

intra-erythrocytic parasites, and therefore cannot confer a full cure (especially for P. vivax 

infections), or serve as chemoprophylaxis. This shortcoming resonates with the WHO call for 

combination therapy as partner drugs may assure the destruction of the (fosmidomycin)-

insensitive parasite forms.  

Intermittent preventive treatment of malaria in pregnancy (IPTp), which entails a full 

therapeutic course of antimalarial medicine given to pregnant women at routine prenatal 

visits, regardless of whether the recipient is infected with malaria, reduces maternal malaria 

episodes, maternal and fetal anaemia, placental parasitaemia, intra-uterine growth 

retardation, preterm birth, low birth weight, and neonatal mortality. Given that pregnant 

women are at an increased risk for malaria infection and that great caution should be 

exercised when any drug is given during pregnancy, the lowest possible risk of clinical failure 
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and a satisfactory safety profile are sought after qualities for drugs used in IPTp. 

Unfortunately, most antimalarials have not been studied in pregnant women, restricting the 

options for treatment in this group of patients due to the unknown effects of these agents 

on the foetus.28 Noteworthy is the fact that the pharmacokinetic profile of most antimalarial 

drugs is modified in pregnancy and dosages will need to be adapted. Currently, a 

sulfadoxine-pyrimethamine combination (Fansidar) is the standard of care for IPTp.29 Data 

on the use of fosmidomycin for the treatment of malaria in pregnant women is scarce but 

some patents30,31 covering pharmaceutical preparations/compositions of fosmidomycin 

derivatives in combination with other antimalarial active ingredients, aim to widen the range 

or therapeutic application of these compounds, to include the treatment of ‘problematic’ 

groups such as children and pregnant women. The promising safety record14,32 of 

fosmidomycin, even in young children,33 is an advantage to be exploited as derivatives with 

improved efficacy may find a place for use during gestation or for neonatal care.  

Plasmodium species belong to the phylum apicomplexa: parasitic protists, which harbor a 

plastid-like organelle called apicoplast. The machinery within the apicoplast appears to serve 

two distinct but related functions, identified to be “self-sustenance” and the “sustenance of 

the parasite” as a whole. Ramya and collaborators demonstrated that although drugs which 

interfere with the processes of apicoplast replication, transcription, and translation lead to 

apicoplast loss, they do not kill the malaria parasite rapidly, as they permit other apicoplast 

biochemical processes essential to the survival of the parasite to proceed, thereby enabling 

it to survive a cycle of growth.34 Thus, such drugs do not affect the doubling frequency of 

these parasites in the first host cell; however, division is slowed upon subsequent invasion of 

new host cells as the consequence of the generation of daughter cells devoid of an 

apicoplast, which fail to complete erythrocytic development. This phenomenon, termed ‘the 

delayed death phenotype', is a severe limitation in malaria treatment since a single cycle of 

asexual reproduction in Plasmodium falciparum takes 48 h to complete and a delay of 48 h 

or more in treating malaria could have severe consequences for the patient. The essential 

biochemical processes taking place inside the apicoplast, which if obliterated, would led to 

rapid parasite death include fatty acid synthesis, heme biosynthesis, and isoprenoid 

synthesis. Fosmidomycin is a known exception to the delayed death phenotype shown by 

most antibiotics (e.g., clindamycin) that are active against Plasmodium parasites.35,36  
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VIII.C.2. Desired characteristics of new antituberculosis drugs   

A new treatment for drug sensitive, active tuberculosis, should address the following 

preferences over existing regimens: 

- Shorten treatment duration to preferably less than two months (potency greater than the 

most active first-line drug, isoniazid). 

- A novel mechanism of action against Mtb.  

- Possibility for oral dosing. 

- A pharmacokinetic-pharmacodynamic profile that allows for a once-daily or less frequent 

dosing. 

- Minimal or no interactions with hepatic cytochrome P450 enzymes, thereby reducing the 

likelihood of drug-drug interaction, especially with antiretroviral therapy. 

- Financially affordable. 

Currently available drugs for the treatment of drug-resistant TB forms are less effective 

(compared with drugs for first-line treatment), have more associated adverse side effects, 

and are significantly more expensive. Therefore, a new drug for this category might not be 

subjected to the same stringent criteria as for new first-line therapy, but will still generally 

fulfill the conditions stated above as an improvement on the current second-line TB drugs. 

The need to completely eliminate tuberculosis will mean that new TB drugs should be more 

effective for the treatment of latent TB infection. 

The WHO treatment policy for tuberculosis is similar to that of malaria, with a call for the 

broad use of combination therapy.37 The development of fosmidomycin derivatives as drugs 

for Mtb infection is still in its infancy but ongoing research conducted by the Dowd group 

and others on inhibition of the NMP as a potential treatment for tuberculosis indicate that 

there is a way forward.38,39 Fosmidomycin and associated compounds show minimal activity 

against intact Mtb cells even though some of these compounds effectively inhibit purified 

recombinant MtbDxr. The important challenges posed by the thick complex lipophilic cellular 

barrier shielding Mycobacteria, together with the lack of the essential glycerol-3-phosphate 
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transporter, which actively moves fosmidomycin across Plasmodium species membranes, 

need to be addressed in a systematic way, alongside reinforcement of interactions between 

MtbDxr and fosmidomycin derivatives. It has been shown that interference with the integrity 

of the thick mycobacterial cell wall improves the efficacy of fosmidomycin.40 The headway 

made already with prodrugs, which yield rather promising activity in killing intact pathogen 

cells, is impetus for further exploration of this option as a way to offset the intracellular 

delivery obstacles associated with both the phosphonate group of fosmidomycin and the 

mycobacterial cell barrier.  

VIII.D. Future perspectives 

The future of fosmidomycin-based therapeutics has to take account of what is currently 

available or possible. Investigations into the intravenous administration of potent 

fosmidomycin-type compounds for the treatment of severe malaria, which is often 

characterized by frequent vomiting (that precludes oral drug dosing), should be promoted. 

As a long-term goal, the development of a synergistic drug combination targeting Dxr and 

any other downstream enzyme of the NMP will be an ideal implementation of combination 

therapy, which is the standard in both malaria and TB therapy. Good combination therapy 

partners will also include drugs that interfere with the integrity of the cell barrier in these 

pathogens thereby facilitating cellular access.   

Substituting the polar phosphonate or the hydroxamate of fosmidomycin (which limit 

cellular entry) with less polar isosteres has widely proven deleterious to the activity of the 

derived analogues, leaving just the option of keeping these functionalities and dealing with 

the challenges they pose. Masking the phosphonate with prodrug moieties has on the other 

hand, shown to offer a promising leeway in going around the compound polarity issues. 

Recently, the Kurz group published41 a systematic comparison of phosphonate and 

phosphonate-hydroxamate double prodrugs of reverse fosmidomycin derivatives. According 

to the study, there was no outstanding advantage in blocking both functionalities with 

prodrug groups. This means that focusing on phosphonate-only prodrugs, may be a 

beneficial way forward while the challenges associated with the hydroxamate (so far the 

best metal complexing group in fosmidomycin-like compounds), may be addressed 

alternatively. The fact that hydroxamate prodrugs would have to be bioactivated by 
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esterase-like enzymes of the host or parasite cells, for which details are not known and that 

fosmidomycin derivatives with exclusive hydroxamate prodrug moieties have not been 

studied, reinforces this view.  

Inspiration can be borrowed from established and currently marketed antiviral phosphonate 

prodrugs, for the design of more effective and clinically relevant fosmidomycin prodrug 

derivatives. Both an oral antimalarial and an oral antiviral drug must be capable of 

gastrointestinal absorption, but the pathway thereafter differs for the two drug types. In 

order to access the apicoplast and obstruct isoprenoid synthesis in an intra-erythrocytic 

parasite form, the antimalarial drug must (following gastrointestinal absorption) cross 

multiple cellular membrane barriers notably, the erythrocyte membrane, the 

parasitophorous vacuole membrane, the Plasmodium cell membrane, and the four 

membrane layers of the apicoplast (Figure VIII.3).42  

 

Figure VIII.3: Passage of a Dxr inhibitor across membrane barriers in Plasmodium-infected 

red blood cells.41 

The antiviral drug on the other hand, needs permeation into the nuclear and/or cytoplasmic 

compartments of target cells, the site of viral replication and assembly. There is therefore 

more membranes to be crossed by the antimalarial than the antiviral drug, with the 

complication that partial or terminal prodrug hydrolysis could be proceeding in any or all of 

the following compartments: (i) the erythrocyte cytoplasm, (ii) the parasitophorous vacuole, 

(iii) the parasite cytoplasm, and/or (iv) inside the apicoplast. The Kurz report41 states that at 
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least a significant fraction of the prodrugs access the parasites without prior hydrolysis 

although it remains unknown whether hydrolysis then proceeds in the parasite cytoplasm 

and/or inside the apicoplast. This understanding clarifies the precaution that must be taken 

in importing prodrug knowledge from other therapeutic areas, or when designing prodrug 

moieties against different Dxr-dependent species such as falciparum and Mtb. 

Deprez-Poulain and coworkers showed that substituents in the neighborhood of the 

hydroxamate, such as methylation of the  position to the electophilic carbonyl increases 

plasma stability/half-life of this group.43 In the context of fosmidomycin derivatives, this will 

mean introduction of hydroxamate-stabilizing substituents in the -position to the 

phosphonate group (since a propyl spacer is the optimal linkage for the phosphonate and 

hydroxamate),39 with an extra effort to identify substituents that will also reinforce 

interactions with Dxr active site residues. Alternatively, some effort can be dedicated to the 

investigation of hydroxamate prodrugs. Any breakthroughs in modification of the propyl 

linker and/or the hydroxamate function of fosmidomycin will amount to no real milestone 

progress in an in vivo context, if the drug delivery obstacles associated with the phosphonate 

are not properly addressed. 

VIII.E. The broader malaria prevention outlook: Vector control 

The work covered in this thesis focuses on antimalarial chemotherapy. However, an effective 

malaria eradication plan would also involve targeting the mosquitoes, which are responsible 

for transmitting the parasite from one individual to another. Clearing of mashes in 

residential neighborhoods deprive mosquitoes of their breeding sites, thereby limiting their 

numbers and the likelihood of coming in contact with and biting humans. Biological methods 

involving the use of natural enemies of targeted mosquitoes and of biological toxins, achieve 

effective vector management.44 Such agents include larvivorous fish, invertebrate predators, 

bacteria and nematodes which are capable of thriving identifiable mosquito breeding places. 

Since mosquitoes bite mostly during the night when people are at rest, sleeping under long-

lasting insecticidal nets has been promoted as a way to significantly reduce the chances of 

being bitten by a mosquito. Currently, the WHO recommends that insecticidal nets contain 

pyrethroid insecticides only.45 Such nets are designed for a minimum lifespan of 20 standard 
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washes or 3 years of usage under field conditions although their physical and chemical 

performance can vary greatly depending on the setting. The decline in malaria mortality in 

children under 5 years between 2000 and 2015 coincides with an increased use of this 

inexpensive protective means; the proportion of children of this age group sleeping under a 

net increased from under 2% in 2000 to an estimated 68% in 2015. 

Indoor residual spraying, which involves spraying (on indoor walls and ceilings) an effective 

dose of insecticide with a long residual activity, typically once or twice per year, is also 

recommended by the WHO. In this regard, dichlorodiphenyltrichloroethane (which played an 

important role in malaria eradication efforts in Europe) continues to be used in limited 

situations alongside other modern synthetic and more durable analogues of natural 

pyrethrum.46 The emerging challenge to this strategy however, is the development of 

resistance in all major vector species and to all classes of insecticides. 

In a nutshell, an effective deployment of all vector control technologies, combined with a 

scale-up on the advances in antimalarial chemotherapy will deliver the knock-out blow 

necessary to attain the ambitious Global Technical Strategy for Malaria 2016-2030 (reducing 

malaria case incidence by at least 90% and reducing malaria mortality rates by at least 90% 

of the current rate), formulated by the WHO.  
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